1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/IR/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex<int size, int offset = 0> {
26  string Namespace = "";
27
28  // Size - Size (in bits) of the sub-registers represented by this index.
29  int Size = size;
30
31  // Offset - Offset of the first bit that is part of this sub-register index.
32  // Set it to -1 if the same index is used to represent sub-registers that can
33  // be at different offsets (for example when using an index to access an
34  // element in a register tuple).
35  int Offset = offset;
36
37  // ComposedOf - A list of two SubRegIndex instances, [A, B].
38  // This indicates that this SubRegIndex is the result of composing A and B.
39  // See ComposedSubRegIndex.
40  list<SubRegIndex> ComposedOf = [];
41
42  // CoveringSubRegIndices - A list of two or more sub-register indexes that
43  // cover this sub-register.
44  //
45  // This field should normally be left blank as TableGen can infer it.
46  //
47  // TableGen automatically detects sub-registers that straddle the registers
48  // in the SubRegs field of a Register definition. For example:
49  //
50  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
51  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
52  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
53  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
54  //
55  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
56  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
57  // CoveringSubRegIndices = [dsub_1, dsub_2].
58  list<SubRegIndex> CoveringSubRegIndices = [];
59}
60
61// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
62// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
63class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
64  : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
65                        !if(!eq(B.Offset, -1), -1,
66                            !add(A.Offset, B.Offset)))> {
67  // See SubRegIndex.
68  let ComposedOf = [A, B];
69}
70
71// RegAltNameIndex - The alternate name set to use for register operands of
72// this register class when printing.
73class RegAltNameIndex {
74  string Namespace = "";
75}
76def NoRegAltName : RegAltNameIndex;
77
78// Register - You should define one instance of this class for each register
79// in the target machine.  String n will become the "name" of the register.
80class Register<string n, list<string> altNames = []> {
81  string Namespace = "";
82  string AsmName = n;
83  list<string> AltNames = altNames;
84
85  // Aliases - A list of registers that this register overlaps with.  A read or
86  // modification of this register can potentially read or modify the aliased
87  // registers.
88  list<Register> Aliases = [];
89
90  // SubRegs - A list of registers that are parts of this register. Note these
91  // are "immediate" sub-registers and the registers within the list do not
92  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
93  // not [AX, AH, AL].
94  list<Register> SubRegs = [];
95
96  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
97  // to address it. Sub-sub-register indices are automatically inherited from
98  // SubRegs.
99  list<SubRegIndex> SubRegIndices = [];
100
101  // RegAltNameIndices - The alternate name indices which are valid for this
102  // register.
103  list<RegAltNameIndex> RegAltNameIndices = [];
104
105  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
106  // These values can be determined by locating the <target>.h file in the
107  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
108  // order of these names correspond to the enumeration used by gcc.  A value of
109  // -1 indicates that the gcc number is undefined and -2 that register number
110  // is invalid for this mode/flavour.
111  list<int> DwarfNumbers = [];
112
113  // CostPerUse - Additional cost of instructions using this register compared
114  // to other registers in its class. The register allocator will try to
115  // minimize the number of instructions using a register with a CostPerUse.
116  // This is used by the x86-64 and ARM Thumb targets where some registers
117  // require larger instruction encodings.
118  int CostPerUse = 0;
119
120  // CoveredBySubRegs - When this bit is set, the value of this register is
121  // completely determined by the value of its sub-registers.  For example, the
122  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
123  // covered by its sub-register AX.
124  bit CoveredBySubRegs = 0;
125
126  // HWEncoding - The target specific hardware encoding for this register.
127  bits<16> HWEncoding = 0;
128}
129
130// RegisterWithSubRegs - This can be used to define instances of Register which
131// need to specify sub-registers.
132// List "subregs" specifies which registers are sub-registers to this one. This
133// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
134// This allows the code generator to be careful not to put two values with
135// overlapping live ranges into registers which alias.
136class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
137  let SubRegs = subregs;
138}
139
140// DAGOperand - An empty base class that unifies RegisterClass's and other forms
141// of Operand's that are legal as type qualifiers in DAG patterns.  This should
142// only ever be used for defining multiclasses that are polymorphic over both
143// RegisterClass's and other Operand's.
144class DAGOperand { }
145
146// RegisterClass - Now that all of the registers are defined, and aliases
147// between registers are defined, specify which registers belong to which
148// register classes.  This also defines the default allocation order of
149// registers by register allocators.
150//
151class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
152                    dag regList, RegAltNameIndex idx = NoRegAltName>
153  : DAGOperand {
154  string Namespace = namespace;
155
156  // RegType - Specify the list ValueType of the registers in this register
157  // class.  Note that all registers in a register class must have the same
158  // ValueTypes.  This is a list because some targets permit storing different
159  // types in same register, for example vector values with 128-bit total size,
160  // but different count/size of items, like SSE on x86.
161  //
162  list<ValueType> RegTypes = regTypes;
163
164  // Size - Specify the spill size in bits of the registers.  A default value of
165  // zero lets tablgen pick an appropriate size.
166  int Size = 0;
167
168  // Alignment - Specify the alignment required of the registers when they are
169  // stored or loaded to memory.
170  //
171  int Alignment = alignment;
172
173  // CopyCost - This value is used to specify the cost of copying a value
174  // between two registers in this register class. The default value is one
175  // meaning it takes a single instruction to perform the copying. A negative
176  // value means copying is extremely expensive or impossible.
177  int CopyCost = 1;
178
179  // MemberList - Specify which registers are in this class.  If the
180  // allocation_order_* method are not specified, this also defines the order of
181  // allocation used by the register allocator.
182  //
183  dag MemberList = regList;
184
185  // AltNameIndex - The alternate register name to use when printing operands
186  // of this register class. Every register in the register class must have
187  // a valid alternate name for the given index.
188  RegAltNameIndex altNameIndex = idx;
189
190  // isAllocatable - Specify that the register class can be used for virtual
191  // registers and register allocation.  Some register classes are only used to
192  // model instruction operand constraints, and should have isAllocatable = 0.
193  bit isAllocatable = 1;
194
195  // AltOrders - List of alternative allocation orders. The default order is
196  // MemberList itself, and that is good enough for most targets since the
197  // register allocators automatically remove reserved registers and move
198  // callee-saved registers to the end.
199  list<dag> AltOrders = [];
200
201  // AltOrderSelect - The body of a function that selects the allocation order
202  // to use in a given machine function. The code will be inserted in a
203  // function like this:
204  //
205  //   static inline unsigned f(const MachineFunction &MF) { ... }
206  //
207  // The function should return 0 to select the default order defined by
208  // MemberList, 1 to select the first AltOrders entry and so on.
209  code AltOrderSelect = [{}];
210}
211
212// The memberList in a RegisterClass is a dag of set operations. TableGen
213// evaluates these set operations and expand them into register lists. These
214// are the most common operation, see test/TableGen/SetTheory.td for more
215// examples of what is possible:
216//
217// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
218// register class, or a sub-expression. This is also the way to simply list
219// registers.
220//
221// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
222//
223// (and GPR, CSR) - Set intersection. All registers from the first set that are
224// also in the second set.
225//
226// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
227// numbered registers.  Takes an optional 4th operand which is a stride to use
228// when generating the sequence.
229//
230// (shl GPR, 4) - Remove the first N elements.
231//
232// (trunc GPR, 4) - Truncate after the first N elements.
233//
234// (rotl GPR, 1) - Rotate N places to the left.
235//
236// (rotr GPR, 1) - Rotate N places to the right.
237//
238// (decimate GPR, 2) - Pick every N'th element, starting with the first.
239//
240// (interleave A, B, ...) - Interleave the elements from each argument list.
241//
242// All of these operators work on ordered sets, not lists. That means
243// duplicates are removed from sub-expressions.
244
245// Set operators. The rest is defined in TargetSelectionDAG.td.
246def sequence;
247def decimate;
248def interleave;
249
250// RegisterTuples - Automatically generate super-registers by forming tuples of
251// sub-registers. This is useful for modeling register sequence constraints
252// with pseudo-registers that are larger than the architectural registers.
253//
254// The sub-register lists are zipped together:
255//
256//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
257//
258// Generates the same registers as:
259//
260//   let SubRegIndices = [sube, subo] in {
261//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
262//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
263//   }
264//
265// The generated pseudo-registers inherit super-classes and fields from their
266// first sub-register. Most fields from the Register class are inferred, and
267// the AsmName and Dwarf numbers are cleared.
268//
269// RegisterTuples instances can be used in other set operations to form
270// register classes and so on. This is the only way of using the generated
271// registers.
272class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
273  // SubRegs - N lists of registers to be zipped up. Super-registers are
274  // synthesized from the first element of each SubRegs list, the second
275  // element and so on.
276  list<dag> SubRegs = Regs;
277
278  // SubRegIndices - N SubRegIndex instances. This provides the names of the
279  // sub-registers in the synthesized super-registers.
280  list<SubRegIndex> SubRegIndices = Indices;
281}
282
283
284//===----------------------------------------------------------------------===//
285// DwarfRegNum - This class provides a mapping of the llvm register enumeration
286// to the register numbering used by gcc and gdb.  These values are used by a
287// debug information writer to describe where values may be located during
288// execution.
289class DwarfRegNum<list<int> Numbers> {
290  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
291  // These values can be determined by locating the <target>.h file in the
292  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
293  // order of these names correspond to the enumeration used by gcc.  A value of
294  // -1 indicates that the gcc number is undefined and -2 that register number
295  // is invalid for this mode/flavour.
296  list<int> DwarfNumbers = Numbers;
297}
298
299// DwarfRegAlias - This class declares that a given register uses the same dwarf
300// numbers as another one. This is useful for making it clear that the two
301// registers do have the same number. It also lets us build a mapping
302// from dwarf register number to llvm register.
303class DwarfRegAlias<Register reg> {
304      Register DwarfAlias = reg;
305}
306
307//===----------------------------------------------------------------------===//
308// Pull in the common support for scheduling
309//
310include "llvm/Target/TargetSchedule.td"
311
312class Predicate; // Forward def
313
314//===----------------------------------------------------------------------===//
315// Instruction set description - These classes correspond to the C++ classes in
316// the Target/TargetInstrInfo.h file.
317//
318class Instruction {
319  string Namespace = "";
320
321  dag OutOperandList;       // An dag containing the MI def operand list.
322  dag InOperandList;        // An dag containing the MI use operand list.
323  string AsmString = "";    // The .s format to print the instruction with.
324
325  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
326  // otherwise, uninitialized.
327  list<dag> Pattern;
328
329  // The follow state will eventually be inferred automatically from the
330  // instruction pattern.
331
332  list<Register> Uses = []; // Default to using no non-operand registers
333  list<Register> Defs = []; // Default to modifying no non-operand registers
334
335  // Predicates - List of predicates which will be turned into isel matching
336  // code.
337  list<Predicate> Predicates = [];
338
339  // Size - Size of encoded instruction, or zero if the size cannot be determined
340  // from the opcode.
341  int Size = 0;
342
343  // DecoderNamespace - The "namespace" in which this instruction exists, on
344  // targets like ARM which multiple ISA namespaces exist.
345  string DecoderNamespace = "";
346
347  // Code size, for instruction selection.
348  // FIXME: What does this actually mean?
349  int CodeSize = 0;
350
351  // Added complexity passed onto matching pattern.
352  int AddedComplexity  = 0;
353
354  // These bits capture information about the high-level semantics of the
355  // instruction.
356  bit isReturn     = 0;     // Is this instruction a return instruction?
357  bit isBranch     = 0;     // Is this instruction a branch instruction?
358  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
359  bit isCompare    = 0;     // Is this instruction a comparison instruction?
360  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
361  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
362  bit isSelect     = 0;     // Is this instruction a select instruction?
363  bit isBarrier    = 0;     // Can control flow fall through this instruction?
364  bit isCall       = 0;     // Is this instruction a call instruction?
365  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
366  bit mayLoad      = ?;     // Is it possible for this inst to read memory?
367  bit mayStore     = ?;     // Is it possible for this inst to write memory?
368  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
369  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
370  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
371  bit isReMaterializable = 0; // Is this instruction re-materializable?
372  bit isPredicable = 0;     // Is this instruction predicable?
373  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
374  bit usesCustomInserter = 0; // Pseudo instr needing special help.
375  bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
376  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
377  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
378  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
379  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
380  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
381  bit isRegSequence = 0;    // Is this instruction a kind of reg sequence?
382                            // If so, make sure to override
383                            // TargetInstrInfo::getRegSequenceLikeInputs.
384  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
385                            // If so, won't have encoding information for
386                            // the [MC]CodeEmitter stuff.
387  bit isExtractSubreg = 0;  // Is this instruction a kind of extract subreg?
388                             // If so, make sure to override
389                             // TargetInstrInfo::getExtractSubregLikeInputs.
390  bit isInsertSubreg = 0;   // Is this instruction a kind of insert subreg?
391                            // If so, make sure to override
392                            // TargetInstrInfo::getInsertSubregLikeInputs.
393
394  // Side effect flags - When set, the flags have these meanings:
395  //
396  //  hasSideEffects - The instruction has side effects that are not
397  //    captured by any operands of the instruction or other flags.
398  //
399  bit hasSideEffects = ?;
400
401  // Is this instruction a "real" instruction (with a distinct machine
402  // encoding), or is it a pseudo instruction used for codegen modeling
403  // purposes.
404  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
405  // instructions can (and often do) still have encoding information
406  // associated with them. Once we've migrated all of them over to true
407  // pseudo-instructions that are lowered to real instructions prior to
408  // the printer/emitter, we can remove this attribute and just use isPseudo.
409  //
410  // The intended use is:
411  // isPseudo: Does not have encoding information and should be expanded,
412  //   at the latest, during lowering to MCInst.
413  //
414  // isCodeGenOnly: Does have encoding information and can go through to the
415  //   CodeEmitter unchanged, but duplicates a canonical instruction
416  //   definition's encoding and should be ignored when constructing the
417  //   assembler match tables.
418  bit isCodeGenOnly = 0;
419
420  // Is this instruction a pseudo instruction for use by the assembler parser.
421  bit isAsmParserOnly = 0;
422
423  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
424
425  // Scheduling information from TargetSchedule.td.
426  list<SchedReadWrite> SchedRW;
427
428  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
429
430  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
431  /// be encoded into the output machineinstr.
432  string DisableEncoding = "";
433
434  string PostEncoderMethod = "";
435  string DecoderMethod = "";
436
437  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
438  bits<64> TSFlags = 0;
439
440  ///@name Assembler Parser Support
441  ///@{
442
443  string AsmMatchConverter = "";
444
445  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
446  /// two-operand matcher inst-alias for a three operand instruction.
447  /// For example, the arm instruction "add r3, r3, r5" can be written
448  /// as "add r3, r5". The constraint is of the same form as a tied-operand
449  /// constraint. For example, "$Rn = $Rd".
450  string TwoOperandAliasConstraint = "";
451
452  ///@}
453
454  /// UseNamedOperandTable - If set, the operand indices of this instruction
455  /// can be queried via the getNamedOperandIdx() function which is generated
456  /// by TableGen.
457  bit UseNamedOperandTable = 0;
458}
459
460/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
461/// Which instruction it expands to and how the operands map from the
462/// pseudo.
463class PseudoInstExpansion<dag Result> {
464  dag ResultInst = Result;     // The instruction to generate.
465  bit isPseudo = 1;
466}
467
468/// Predicates - These are extra conditionals which are turned into instruction
469/// selector matching code. Currently each predicate is just a string.
470class Predicate<string cond> {
471  string CondString = cond;
472
473  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
474  /// matcher, this is true.  Targets should set this by inheriting their
475  /// feature from the AssemblerPredicate class in addition to Predicate.
476  bit AssemblerMatcherPredicate = 0;
477
478  /// AssemblerCondString - Name of the subtarget feature being tested used
479  /// as alternative condition string used for assembler matcher.
480  /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
481  ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
482  /// It can also list multiple features separated by ",".
483  /// e.g. "ModeThumb,FeatureThumb2" is translated to
484  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
485  string AssemblerCondString = "";
486
487  /// PredicateName - User-level name to use for the predicate. Mainly for use
488  /// in diagnostics such as missing feature errors in the asm matcher.
489  string PredicateName = "";
490}
491
492/// NoHonorSignDependentRounding - This predicate is true if support for
493/// sign-dependent-rounding is not enabled.
494def NoHonorSignDependentRounding
495 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
496
497class Requires<list<Predicate> preds> {
498  list<Predicate> Predicates = preds;
499}
500
501/// ops definition - This is just a simple marker used to identify the operand
502/// list for an instruction. outs and ins are identical both syntactically and
503/// semanticallyr; they are used to define def operands and use operands to
504/// improve readibility. This should be used like this:
505///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
506def ops;
507def outs;
508def ins;
509
510/// variable_ops definition - Mark this instruction as taking a variable number
511/// of operands.
512def variable_ops;
513
514
515/// PointerLikeRegClass - Values that are designed to have pointer width are
516/// derived from this.  TableGen treats the register class as having a symbolic
517/// type that it doesn't know, and resolves the actual regclass to use by using
518/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
519class PointerLikeRegClass<int Kind> {
520  int RegClassKind = Kind;
521}
522
523
524/// ptr_rc definition - Mark this operand as being a pointer value whose
525/// register class is resolved dynamically via a callback to TargetInstrInfo.
526/// FIXME: We should probably change this to a class which contain a list of
527/// flags. But currently we have but one flag.
528def ptr_rc : PointerLikeRegClass<0>;
529
530/// unknown definition - Mark this operand as being of unknown type, causing
531/// it to be resolved by inference in the context it is used.
532class unknown_class;
533def unknown : unknown_class;
534
535/// AsmOperandClass - Representation for the kinds of operands which the target
536/// specific parser can create and the assembly matcher may need to distinguish.
537///
538/// Operand classes are used to define the order in which instructions are
539/// matched, to ensure that the instruction which gets matched for any
540/// particular list of operands is deterministic.
541///
542/// The target specific parser must be able to classify a parsed operand into a
543/// unique class which does not partially overlap with any other classes. It can
544/// match a subset of some other class, in which case the super class field
545/// should be defined.
546class AsmOperandClass {
547  /// The name to use for this class, which should be usable as an enum value.
548  string Name = ?;
549
550  /// The super classes of this operand.
551  list<AsmOperandClass> SuperClasses = [];
552
553  /// The name of the method on the target specific operand to call to test
554  /// whether the operand is an instance of this class. If not set, this will
555  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
556  /// signature should be:
557  ///   bool isFoo() const;
558  string PredicateMethod = ?;
559
560  /// The name of the method on the target specific operand to call to add the
561  /// target specific operand to an MCInst. If not set, this will default to
562  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
563  /// signature should be:
564  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
565  string RenderMethod = ?;
566
567  /// The name of the method on the target specific operand to call to custom
568  /// handle the operand parsing. This is useful when the operands do not relate
569  /// to immediates or registers and are very instruction specific (as flags to
570  /// set in a processor register, coprocessor number, ...).
571  string ParserMethod = ?;
572
573  // The diagnostic type to present when referencing this operand in a
574  // match failure error message. By default, use a generic "invalid operand"
575  // diagnostic. The target AsmParser maps these codes to text.
576  string DiagnosticType = "";
577}
578
579def ImmAsmOperand : AsmOperandClass {
580  let Name = "Imm";
581}
582
583/// Operand Types - These provide the built-in operand types that may be used
584/// by a target.  Targets can optionally provide their own operand types as
585/// needed, though this should not be needed for RISC targets.
586class Operand<ValueType ty> : DAGOperand {
587  ValueType Type = ty;
588  string PrintMethod = "printOperand";
589  string EncoderMethod = "";
590  string DecoderMethod = "";
591  string OperandType = "OPERAND_UNKNOWN";
592  dag MIOperandInfo = (ops);
593
594  // MCOperandPredicate - Optionally, a code fragment operating on
595  // const MCOperand &MCOp, and returning a bool, to indicate if
596  // the value of MCOp is valid for the specific subclass of Operand
597  code MCOperandPredicate;
598
599  // ParserMatchClass - The "match class" that operands of this type fit
600  // in. Match classes are used to define the order in which instructions are
601  // match, to ensure that which instructions gets matched is deterministic.
602  //
603  // The target specific parser must be able to classify an parsed operand into
604  // a unique class, which does not partially overlap with any other classes. It
605  // can match a subset of some other class, in which case the AsmOperandClass
606  // should declare the other operand as one of its super classes.
607  AsmOperandClass ParserMatchClass = ImmAsmOperand;
608}
609
610class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
611  : DAGOperand {
612  // RegClass - The register class of the operand.
613  RegisterClass RegClass = regclass;
614  // PrintMethod - The target method to call to print register operands of
615  // this type. The method normally will just use an alt-name index to look
616  // up the name to print. Default to the generic printOperand().
617  string PrintMethod = pm;
618  // ParserMatchClass - The "match class" that operands of this type fit
619  // in. Match classes are used to define the order in which instructions are
620  // match, to ensure that which instructions gets matched is deterministic.
621  //
622  // The target specific parser must be able to classify an parsed operand into
623  // a unique class, which does not partially overlap with any other classes. It
624  // can match a subset of some other class, in which case the AsmOperandClass
625  // should declare the other operand as one of its super classes.
626  AsmOperandClass ParserMatchClass;
627
628  string OperandNamespace = "MCOI";
629  string OperandType = "OPERAND_REGISTER";
630}
631
632let OperandType = "OPERAND_IMMEDIATE" in {
633def i1imm  : Operand<i1>;
634def i8imm  : Operand<i8>;
635def i16imm : Operand<i16>;
636def i32imm : Operand<i32>;
637def i64imm : Operand<i64>;
638
639def f32imm : Operand<f32>;
640def f64imm : Operand<f64>;
641}
642
643/// zero_reg definition - Special node to stand for the zero register.
644///
645def zero_reg;
646
647/// All operands which the MC layer classifies as predicates should inherit from
648/// this class in some manner. This is already handled for the most commonly
649/// used PredicateOperand, but may be useful in other circumstances.
650class PredicateOp;
651
652/// OperandWithDefaultOps - This Operand class can be used as the parent class
653/// for an Operand that needs to be initialized with a default value if
654/// no value is supplied in a pattern.  This class can be used to simplify the
655/// pattern definitions for instructions that have target specific flags
656/// encoded as immediate operands.
657class OperandWithDefaultOps<ValueType ty, dag defaultops>
658  : Operand<ty> {
659  dag DefaultOps = defaultops;
660}
661
662/// PredicateOperand - This can be used to define a predicate operand for an
663/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
664/// AlwaysVal specifies the value of this predicate when set to "always
665/// execute".
666class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
667  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
668  let MIOperandInfo = OpTypes;
669}
670
671/// OptionalDefOperand - This is used to define a optional definition operand
672/// for an instruction. DefaultOps is the register the operand represents if
673/// none is supplied, e.g. zero_reg.
674class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
675  : OperandWithDefaultOps<ty, defaultops> {
676  let MIOperandInfo = OpTypes;
677}
678
679
680// InstrInfo - This class should only be instantiated once to provide parameters
681// which are global to the target machine.
682//
683class InstrInfo {
684  // Target can specify its instructions in either big or little-endian formats.
685  // For instance, while both Sparc and PowerPC are big-endian platforms, the
686  // Sparc manual specifies its instructions in the format [31..0] (big), while
687  // PowerPC specifies them using the format [0..31] (little).
688  bit isLittleEndianEncoding = 0;
689
690  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
691  // by default, and TableGen will infer their value from the instruction
692  // pattern when possible.
693  //
694  // Normally, TableGen will issue an error it it can't infer the value of a
695  // property that hasn't been set explicitly. When guessInstructionProperties
696  // is set, it will guess a safe value instead.
697  //
698  // This option is a temporary migration help. It will go away.
699  bit guessInstructionProperties = 1;
700
701  // TableGen's instruction encoder generator has support for matching operands
702  // to bit-field variables both by name and by position. While matching by
703  // name is preferred, this is currently not possible for complex operands,
704  // and some targets still reply on the positional encoding rules. When
705  // generating a decoder for such targets, the positional encoding rules must
706  // be used by the decoder generator as well.
707  //
708  // This option is temporary; it will go away once the TableGen decoder
709  // generator has better support for complex operands and targets have
710  // migrated away from using positionally encoded operands.
711  bit decodePositionallyEncodedOperands = 0;
712
713  // When set, this indicates that there will be no overlap between those
714  // operands that are matched by ordering (positional operands) and those
715  // matched by name.
716  //
717  // This option is temporary; it will go away once the TableGen decoder
718  // generator has better support for complex operands and targets have
719  // migrated away from using positionally encoded operands.
720  bit noNamedPositionallyEncodedOperands = 0;
721}
722
723// Standard Pseudo Instructions.
724// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
725// Only these instructions are allowed in the TargetOpcode namespace.
726let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
727def PHI : Instruction {
728  let OutOperandList = (outs);
729  let InOperandList = (ins variable_ops);
730  let AsmString = "PHINODE";
731}
732def INLINEASM : Instruction {
733  let OutOperandList = (outs);
734  let InOperandList = (ins variable_ops);
735  let AsmString = "";
736  let hasSideEffects = 0;  // Note side effect is encoded in an operand.
737}
738def CFI_INSTRUCTION : Instruction {
739  let OutOperandList = (outs);
740  let InOperandList = (ins i32imm:$id);
741  let AsmString = "";
742  let hasCtrlDep = 1;
743  let isNotDuplicable = 1;
744}
745def EH_LABEL : Instruction {
746  let OutOperandList = (outs);
747  let InOperandList = (ins i32imm:$id);
748  let AsmString = "";
749  let hasCtrlDep = 1;
750  let isNotDuplicable = 1;
751}
752def GC_LABEL : Instruction {
753  let OutOperandList = (outs);
754  let InOperandList = (ins i32imm:$id);
755  let AsmString = "";
756  let hasCtrlDep = 1;
757  let isNotDuplicable = 1;
758}
759def KILL : Instruction {
760  let OutOperandList = (outs);
761  let InOperandList = (ins variable_ops);
762  let AsmString = "";
763  let hasSideEffects = 0;
764}
765def EXTRACT_SUBREG : Instruction {
766  let OutOperandList = (outs unknown:$dst);
767  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
768  let AsmString = "";
769  let hasSideEffects = 0;
770}
771def INSERT_SUBREG : Instruction {
772  let OutOperandList = (outs unknown:$dst);
773  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
774  let AsmString = "";
775  let hasSideEffects = 0;
776  let Constraints = "$supersrc = $dst";
777}
778def IMPLICIT_DEF : Instruction {
779  let OutOperandList = (outs unknown:$dst);
780  let InOperandList = (ins);
781  let AsmString = "";
782  let hasSideEffects = 0;
783  let isReMaterializable = 1;
784  let isAsCheapAsAMove = 1;
785}
786def SUBREG_TO_REG : Instruction {
787  let OutOperandList = (outs unknown:$dst);
788  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
789  let AsmString = "";
790  let hasSideEffects = 0;
791}
792def COPY_TO_REGCLASS : Instruction {
793  let OutOperandList = (outs unknown:$dst);
794  let InOperandList = (ins unknown:$src, i32imm:$regclass);
795  let AsmString = "";
796  let hasSideEffects = 0;
797  let isAsCheapAsAMove = 1;
798}
799def DBG_VALUE : Instruction {
800  let OutOperandList = (outs);
801  let InOperandList = (ins variable_ops);
802  let AsmString = "DBG_VALUE";
803  let hasSideEffects = 0;
804}
805def REG_SEQUENCE : Instruction {
806  let OutOperandList = (outs unknown:$dst);
807  let InOperandList = (ins unknown:$supersrc, variable_ops);
808  let AsmString = "";
809  let hasSideEffects = 0;
810  let isAsCheapAsAMove = 1;
811}
812def COPY : Instruction {
813  let OutOperandList = (outs unknown:$dst);
814  let InOperandList = (ins unknown:$src);
815  let AsmString = "";
816  let hasSideEffects = 0;
817  let isAsCheapAsAMove = 1;
818}
819def BUNDLE : Instruction {
820  let OutOperandList = (outs);
821  let InOperandList = (ins variable_ops);
822  let AsmString = "BUNDLE";
823}
824def LIFETIME_START : Instruction {
825  let OutOperandList = (outs);
826  let InOperandList = (ins i32imm:$id);
827  let AsmString = "LIFETIME_START";
828  let hasSideEffects = 0;
829}
830def LIFETIME_END : Instruction {
831  let OutOperandList = (outs);
832  let InOperandList = (ins i32imm:$id);
833  let AsmString = "LIFETIME_END";
834  let hasSideEffects = 0;
835}
836def STACKMAP : Instruction {
837  let OutOperandList = (outs);
838  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
839  let isCall = 1;
840  let mayLoad = 1;
841  let usesCustomInserter = 1;
842}
843def PATCHPOINT : Instruction {
844  let OutOperandList = (outs unknown:$dst);
845  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
846                       i32imm:$nargs, i32imm:$cc, variable_ops);
847  let isCall = 1;
848  let mayLoad = 1;
849  let usesCustomInserter = 1;
850}
851def STATEPOINT : Instruction {
852  let OutOperandList = (outs);
853  let InOperandList = (ins variable_ops);
854  let usesCustomInserter = 1;
855  let mayLoad = 1;
856  let mayStore = 1;
857  let hasSideEffects = 1;
858  let isCall = 1;
859}
860def LOAD_STACK_GUARD : Instruction {
861  let OutOperandList = (outs ptr_rc:$dst);
862  let InOperandList = (ins);
863  let mayLoad = 1;
864  bit isReMaterializable = 1;
865  let hasSideEffects = 0;
866  bit isPseudo = 1;
867}
868def FRAME_ALLOC : Instruction {
869  // This instruction is really just a label. It has to be part of the chain so
870  // that it doesn't get dropped from the DAG, but it produces nothing and has
871  // no side effects.
872  let OutOperandList = (outs);
873  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
874  let hasSideEffects = 0;
875  let hasCtrlDep = 1;
876}
877}
878
879//===----------------------------------------------------------------------===//
880// AsmParser - This class can be implemented by targets that wish to implement
881// .s file parsing.
882//
883// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
884// syntax on X86 for example).
885//
886class AsmParser {
887  // AsmParserClassName - This specifies the suffix to use for the asmparser
888  // class.  Generated AsmParser classes are always prefixed with the target
889  // name.
890  string AsmParserClassName  = "AsmParser";
891
892  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
893  // function of the AsmParser class to call on every matched instruction.
894  // This can be used to perform target specific instruction post-processing.
895  string AsmParserInstCleanup  = "";
896
897  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
898  // written register name matcher
899  bit ShouldEmitMatchRegisterName = 1;
900
901  /// Does the instruction mnemonic allow '.'
902  bit MnemonicContainsDot = 0;
903}
904def DefaultAsmParser : AsmParser;
905
906//===----------------------------------------------------------------------===//
907// AsmParserVariant - Subtargets can have multiple different assembly parsers
908// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
909// implemented by targets to describe such variants.
910//
911class AsmParserVariant {
912  // Variant - AsmParsers can be of multiple different variants.  Variants are
913  // used to support targets that need to parser multiple formats for the
914  // assembly language.
915  int Variant = 0;
916
917  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
918  string Name = "";
919
920  // CommentDelimiter - If given, the delimiter string used to recognize
921  // comments which are hard coded in the .td assembler strings for individual
922  // instructions.
923  string CommentDelimiter = "";
924
925  // RegisterPrefix - If given, the token prefix which indicates a register
926  // token. This is used by the matcher to automatically recognize hard coded
927  // register tokens as constrained registers, instead of tokens, for the
928  // purposes of matching.
929  string RegisterPrefix = "";
930}
931def DefaultAsmParserVariant : AsmParserVariant;
932
933/// AssemblerPredicate - This is a Predicate that can be used when the assembler
934/// matches instructions and aliases.
935class AssemblerPredicate<string cond, string name = ""> {
936  bit AssemblerMatcherPredicate = 1;
937  string AssemblerCondString = cond;
938  string PredicateName = name;
939}
940
941/// TokenAlias - This class allows targets to define assembler token
942/// operand aliases. That is, a token literal operand which is equivalent
943/// to another, canonical, token literal. For example, ARM allows:
944///   vmov.u32 s4, #0  -> vmov.i32, #0
945/// 'u32' is a more specific designator for the 32-bit integer type specifier
946/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
947///   def : TokenAlias<".u32", ".i32">;
948///
949/// This works by marking the match class of 'From' as a subclass of the
950/// match class of 'To'.
951class TokenAlias<string From, string To> {
952  string FromToken = From;
953  string ToToken = To;
954}
955
956/// MnemonicAlias - This class allows targets to define assembler mnemonic
957/// aliases.  This should be used when all forms of one mnemonic are accepted
958/// with a different mnemonic.  For example, X86 allows:
959///   sal %al, 1    -> shl %al, 1
960///   sal %ax, %cl  -> shl %ax, %cl
961///   sal %eax, %cl -> shl %eax, %cl
962/// etc.  Though "sal" is accepted with many forms, all of them are directly
963/// translated to a shl, so it can be handled with (in the case of X86, it
964/// actually has one for each suffix as well):
965///   def : MnemonicAlias<"sal", "shl">;
966///
967/// Mnemonic aliases are mapped before any other translation in the match phase,
968/// and do allow Requires predicates, e.g.:
969///
970///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
971///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
972///
973/// Mnemonic aliases can also be constrained to specific variants, e.g.:
974///
975///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
976///
977/// If no variant (e.g., "att" or "intel") is specified then the alias is
978/// applied unconditionally.
979class MnemonicAlias<string From, string To, string VariantName = ""> {
980  string FromMnemonic = From;
981  string ToMnemonic = To;
982  string AsmVariantName = VariantName;
983
984  // Predicates - Predicates that must be true for this remapping to happen.
985  list<Predicate> Predicates = [];
986}
987
988/// InstAlias - This defines an alternate assembly syntax that is allowed to
989/// match an instruction that has a different (more canonical) assembly
990/// representation.
991class InstAlias<string Asm, dag Result, int Emit = 1> {
992  string AsmString = Asm;      // The .s format to match the instruction with.
993  dag ResultInst = Result;     // The MCInst to generate.
994
995  // This determines which order the InstPrinter detects aliases for
996  // printing. A larger value makes the alias more likely to be
997  // emitted. The Instruction's own definition is notionally 0.5, so 0
998  // disables printing and 1 enables it if there are no conflicting aliases.
999  int EmitPriority = Emit;
1000
1001  // Predicates - Predicates that must be true for this to match.
1002  list<Predicate> Predicates = [];
1003}
1004
1005//===----------------------------------------------------------------------===//
1006// AsmWriter - This class can be implemented by targets that need to customize
1007// the format of the .s file writer.
1008//
1009// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1010// on X86 for example).
1011//
1012class AsmWriter {
1013  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1014  // class.  Generated AsmWriter classes are always prefixed with the target
1015  // name.
1016  string AsmWriterClassName  = "InstPrinter";
1017
1018  // Variant - AsmWriters can be of multiple different variants.  Variants are
1019  // used to support targets that need to emit assembly code in ways that are
1020  // mostly the same for different targets, but have minor differences in
1021  // syntax.  If the asmstring contains {|} characters in them, this integer
1022  // will specify which alternative to use.  For example "{x|y|z}" with Variant
1023  // == 1, will expand to "y".
1024  int Variant = 0;
1025}
1026def DefaultAsmWriter : AsmWriter;
1027
1028
1029//===----------------------------------------------------------------------===//
1030// Target - This class contains the "global" target information
1031//
1032class Target {
1033  // InstructionSet - Instruction set description for this target.
1034  InstrInfo InstructionSet;
1035
1036  // AssemblyParsers - The AsmParser instances available for this target.
1037  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1038
1039  /// AssemblyParserVariants - The AsmParserVariant instances available for
1040  /// this target.
1041  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1042
1043  // AssemblyWriters - The AsmWriter instances available for this target.
1044  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1045}
1046
1047//===----------------------------------------------------------------------===//
1048// SubtargetFeature - A characteristic of the chip set.
1049//
1050class SubtargetFeature<string n, string a,  string v, string d,
1051                       list<SubtargetFeature> i = []> {
1052  // Name - Feature name.  Used by command line (-mattr=) to determine the
1053  // appropriate target chip.
1054  //
1055  string Name = n;
1056
1057  // Attribute - Attribute to be set by feature.
1058  //
1059  string Attribute = a;
1060
1061  // Value - Value the attribute to be set to by feature.
1062  //
1063  string Value = v;
1064
1065  // Desc - Feature description.  Used by command line (-mattr=) to display help
1066  // information.
1067  //
1068  string Desc = d;
1069
1070  // Implies - Features that this feature implies are present. If one of those
1071  // features isn't set, then this one shouldn't be set either.
1072  //
1073  list<SubtargetFeature> Implies = i;
1074}
1075
1076/// Specifies a Subtarget feature that this instruction is deprecated on.
1077class Deprecated<SubtargetFeature dep> {
1078  SubtargetFeature DeprecatedFeatureMask = dep;
1079}
1080
1081/// A custom predicate used to determine if an instruction is
1082/// deprecated or not.
1083class ComplexDeprecationPredicate<string dep> {
1084  string ComplexDeprecationPredicate = dep;
1085}
1086
1087//===----------------------------------------------------------------------===//
1088// Processor chip sets - These values represent each of the chip sets supported
1089// by the scheduler.  Each Processor definition requires corresponding
1090// instruction itineraries.
1091//
1092class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
1093  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1094  // appropriate target chip.
1095  //
1096  string Name = n;
1097
1098  // SchedModel - The machine model for scheduling and instruction cost.
1099  //
1100  SchedMachineModel SchedModel = NoSchedModel;
1101
1102  // ProcItin - The scheduling information for the target processor.
1103  //
1104  ProcessorItineraries ProcItin = pi;
1105
1106  // Features - list of
1107  list<SubtargetFeature> Features = f;
1108}
1109
1110// ProcessorModel allows subtargets to specify the more general
1111// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1112// gradually move to this newer form.
1113//
1114// Although this class always passes NoItineraries to the Processor
1115// class, the SchedMachineModel may still define valid Itineraries.
1116class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
1117  : Processor<n, NoItineraries, f> {
1118  let SchedModel = m;
1119}
1120
1121//===----------------------------------------------------------------------===//
1122// InstrMapping - This class is used to create mapping tables to relate
1123// instructions with each other based on the values specified in RowFields,
1124// ColFields, KeyCol and ValueCols.
1125//
1126class InstrMapping {
1127  // FilterClass - Used to limit search space only to the instructions that
1128  // define the relationship modeled by this InstrMapping record.
1129  string FilterClass;
1130
1131  // RowFields - List of fields/attributes that should be same for all the
1132  // instructions in a row of the relation table. Think of this as a set of
1133  // properties shared by all the instructions related by this relationship
1134  // model and is used to categorize instructions into subgroups. For instance,
1135  // if we want to define a relation that maps 'Add' instruction to its
1136  // predicated forms, we can define RowFields like this:
1137  //
1138  // let RowFields = BaseOp
1139  // All add instruction predicated/non-predicated will have to set their BaseOp
1140  // to the same value.
1141  //
1142  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1143  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1144  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1145  list<string> RowFields = [];
1146
1147  // List of fields/attributes that are same for all the instructions
1148  // in a column of the relation table.
1149  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1150  // based on the 'predSense' values. All the instruction in a specific
1151  // column have the same value and it is fixed for the column according
1152  // to the values set in 'ValueCols'.
1153  list<string> ColFields = [];
1154
1155  // Values for the fields/attributes listed in 'ColFields'.
1156  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1157  // that models this relation) should be non-predicated.
1158  // In the example above, 'Add' is the key instruction.
1159  list<string> KeyCol = [];
1160
1161  // List of values for the fields/attributes listed in 'ColFields', one for
1162  // each column in the relation table.
1163  //
1164  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1165  // table. First column requires all the instructions to have predSense
1166  // set to 'true' and second column requires it to be 'false'.
1167  list<list<string> > ValueCols = [];
1168}
1169
1170//===----------------------------------------------------------------------===//
1171// Pull in the common support for calling conventions.
1172//
1173include "llvm/Target/TargetCallingConv.td"
1174
1175//===----------------------------------------------------------------------===//
1176// Pull in the common support for DAG isel generation.
1177//
1178include "llvm/Target/TargetSelectionDAG.td"
1179