1 //===-- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing exception info into assembly files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "EHStreamer.h" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineInstr.h" 18 #include "llvm/CodeGen/MachineModuleInfo.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCStreamer.h" 22 #include "llvm/MC/MCSymbol.h" 23 #include "llvm/Support/LEB128.h" 24 #include "llvm/Target/TargetLoweringObjectFile.h" 25 26 using namespace llvm; 27 28 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 29 30 EHStreamer::~EHStreamer() {} 31 32 /// How many leading type ids two landing pads have in common. 33 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L, 34 const LandingPadInfo *R) { 35 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 36 unsigned LSize = LIds.size(), RSize = RIds.size(); 37 unsigned MinSize = LSize < RSize ? LSize : RSize; 38 unsigned Count = 0; 39 40 for (; Count != MinSize; ++Count) 41 if (LIds[Count] != RIds[Count]) 42 return Count; 43 44 return Count; 45 } 46 47 /// Compute the actions table and gather the first action index for each landing 48 /// pad site. 49 unsigned EHStreamer:: 50 computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads, 51 SmallVectorImpl<ActionEntry> &Actions, 52 SmallVectorImpl<unsigned> &FirstActions) { 53 54 // The action table follows the call-site table in the LSDA. The individual 55 // records are of two types: 56 // 57 // * Catch clause 58 // * Exception specification 59 // 60 // The two record kinds have the same format, with only small differences. 61 // They are distinguished by the "switch value" field: Catch clauses 62 // (TypeInfos) have strictly positive switch values, and exception 63 // specifications (FilterIds) have strictly negative switch values. Value 0 64 // indicates a catch-all clause. 65 // 66 // Negative type IDs index into FilterIds. Positive type IDs index into 67 // TypeInfos. The value written for a positive type ID is just the type ID 68 // itself. For a negative type ID, however, the value written is the 69 // (negative) byte offset of the corresponding FilterIds entry. The byte 70 // offset is usually equal to the type ID (because the FilterIds entries are 71 // written using a variable width encoding, which outputs one byte per entry 72 // as long as the value written is not too large) but can differ. This kind 73 // of complication does not occur for positive type IDs because type infos are 74 // output using a fixed width encoding. FilterOffsets[i] holds the byte 75 // offset corresponding to FilterIds[i]. 76 77 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 78 SmallVector<int, 16> FilterOffsets; 79 FilterOffsets.reserve(FilterIds.size()); 80 int Offset = -1; 81 82 for (std::vector<unsigned>::const_iterator 83 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { 84 FilterOffsets.push_back(Offset); 85 Offset -= getULEB128Size(*I); 86 } 87 88 FirstActions.reserve(LandingPads.size()); 89 90 int FirstAction = 0; 91 unsigned SizeActions = 0; 92 const LandingPadInfo *PrevLPI = nullptr; 93 94 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator 95 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) { 96 const LandingPadInfo *LPI = *I; 97 const std::vector<int> &TypeIds = LPI->TypeIds; 98 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0; 99 unsigned SizeSiteActions = 0; 100 101 if (NumShared < TypeIds.size()) { 102 unsigned SizeAction = 0; 103 unsigned PrevAction = (unsigned)-1; 104 105 if (NumShared) { 106 unsigned SizePrevIds = PrevLPI->TypeIds.size(); 107 assert(Actions.size()); 108 PrevAction = Actions.size() - 1; 109 SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) + 110 getSLEB128Size(Actions[PrevAction].ValueForTypeID); 111 112 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 113 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!"); 114 SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID); 115 SizeAction += -Actions[PrevAction].NextAction; 116 PrevAction = Actions[PrevAction].Previous; 117 } 118 } 119 120 // Compute the actions. 121 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { 122 int TypeID = TypeIds[J]; 123 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 124 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; 125 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID); 126 127 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; 128 SizeAction = SizeTypeID + getSLEB128Size(NextAction); 129 SizeSiteActions += SizeAction; 130 131 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; 132 Actions.push_back(Action); 133 PrevAction = Actions.size() - 1; 134 } 135 136 // Record the first action of the landing pad site. 137 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; 138 } // else identical - re-use previous FirstAction 139 140 // Information used when created the call-site table. The action record 141 // field of the call site record is the offset of the first associated 142 // action record, relative to the start of the actions table. This value is 143 // biased by 1 (1 indicating the start of the actions table), and 0 144 // indicates that there are no actions. 145 FirstActions.push_back(FirstAction); 146 147 // Compute this sites contribution to size. 148 SizeActions += SizeSiteActions; 149 150 PrevLPI = LPI; 151 } 152 153 return SizeActions; 154 } 155 156 /// Return `true' if this is a call to a function marked `nounwind'. Return 157 /// `false' otherwise. 158 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) { 159 assert(MI->isCall() && "This should be a call instruction!"); 160 161 bool MarkedNoUnwind = false; 162 bool SawFunc = false; 163 164 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 165 const MachineOperand &MO = MI->getOperand(I); 166 167 if (!MO.isGlobal()) continue; 168 169 const Function *F = dyn_cast<Function>(MO.getGlobal()); 170 if (!F) continue; 171 172 if (SawFunc) { 173 // Be conservative. If we have more than one function operand for this 174 // call, then we can't make the assumption that it's the callee and 175 // not a parameter to the call. 176 // 177 // FIXME: Determine if there's a way to say that `F' is the callee or 178 // parameter. 179 MarkedNoUnwind = false; 180 break; 181 } 182 183 MarkedNoUnwind = F->doesNotThrow(); 184 SawFunc = true; 185 } 186 187 return MarkedNoUnwind; 188 } 189 190 /// Compute the call-site table. The entry for an invoke has a try-range 191 /// containing the call, a non-zero landing pad, and an appropriate action. The 192 /// entry for an ordinary call has a try-range containing the call and zero for 193 /// the landing pad and the action. Calls marked 'nounwind' have no entry and 194 /// must not be contained in the try-range of any entry - they form gaps in the 195 /// table. Entries must be ordered by try-range address. 196 void EHStreamer:: 197 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, 198 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 199 const SmallVectorImpl<unsigned> &FirstActions) { 200 // Invokes and nounwind calls have entries in PadMap (due to being bracketed 201 // by try-range labels when lowered). Ordinary calls do not, so appropriate 202 // try-ranges for them need be deduced so we can put them in the LSDA. 203 RangeMapType PadMap; 204 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 205 const LandingPadInfo *LandingPad = LandingPads[i]; 206 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 207 MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; 208 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 209 PadRange P = { i, j }; 210 PadMap[BeginLabel] = P; 211 } 212 } 213 214 // The end label of the previous invoke or nounwind try-range. 215 MCSymbol *LastLabel = nullptr; 216 217 // Whether there is a potentially throwing instruction (currently this means 218 // an ordinary call) between the end of the previous try-range and now. 219 bool SawPotentiallyThrowing = false; 220 221 // Whether the last CallSite entry was for an invoke. 222 bool PreviousIsInvoke = false; 223 224 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 225 226 // Visit all instructions in order of address. 227 for (const auto &MBB : *Asm->MF) { 228 for (const auto &MI : MBB) { 229 if (!MI.isEHLabel()) { 230 if (MI.isCall()) 231 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); 232 continue; 233 } 234 235 // End of the previous try-range? 236 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); 237 if (BeginLabel == LastLabel) 238 SawPotentiallyThrowing = false; 239 240 // Beginning of a new try-range? 241 RangeMapType::const_iterator L = PadMap.find(BeginLabel); 242 if (L == PadMap.end()) 243 // Nope, it was just some random label. 244 continue; 245 246 const PadRange &P = L->second; 247 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 248 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 249 "Inconsistent landing pad map!"); 250 251 // For Dwarf exception handling (SjLj handling doesn't use this). If some 252 // instruction between the previous try-range and this one may throw, 253 // create a call-site entry with no landing pad for the region between the 254 // try-ranges. 255 if (SawPotentiallyThrowing && !IsSJLJ) { 256 CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 }; 257 CallSites.push_back(Site); 258 PreviousIsInvoke = false; 259 } 260 261 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 262 assert(BeginLabel && LastLabel && "Invalid landing pad!"); 263 264 if (!LandingPad->LandingPadLabel) { 265 // Create a gap. 266 PreviousIsInvoke = false; 267 } else { 268 // This try-range is for an invoke. 269 CallSiteEntry Site = { 270 BeginLabel, 271 LastLabel, 272 LandingPad->LandingPadLabel, 273 FirstActions[P.PadIndex] 274 }; 275 276 // Try to merge with the previous call-site. SJLJ doesn't do this 277 if (PreviousIsInvoke && !IsSJLJ) { 278 CallSiteEntry &Prev = CallSites.back(); 279 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { 280 // Extend the range of the previous entry. 281 Prev.EndLabel = Site.EndLabel; 282 continue; 283 } 284 } 285 286 // Otherwise, create a new call-site. 287 if (!IsSJLJ) 288 CallSites.push_back(Site); 289 else { 290 // SjLj EH must maintain the call sites in the order assigned 291 // to them by the SjLjPrepare pass. 292 unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel); 293 if (CallSites.size() < SiteNo) 294 CallSites.resize(SiteNo); 295 CallSites[SiteNo - 1] = Site; 296 } 297 PreviousIsInvoke = true; 298 } 299 } 300 } 301 302 // If some instruction between the previous try-range and the end of the 303 // function may throw, create a call-site entry with no landing pad for the 304 // region following the try-range. 305 if (SawPotentiallyThrowing && !IsSJLJ) { 306 CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 }; 307 CallSites.push_back(Site); 308 } 309 } 310 311 /// Emit landing pads and actions. 312 /// 313 /// The general organization of the table is complex, but the basic concepts are 314 /// easy. First there is a header which describes the location and organization 315 /// of the three components that follow. 316 /// 317 /// 1. The landing pad site information describes the range of code covered by 318 /// the try. In our case it's an accumulation of the ranges covered by the 319 /// invokes in the try. There is also a reference to the landing pad that 320 /// handles the exception once processed. Finally an index into the actions 321 /// table. 322 /// 2. The action table, in our case, is composed of pairs of type IDs and next 323 /// action offset. Starting with the action index from the landing pad 324 /// site, each type ID is checked for a match to the current exception. If 325 /// it matches then the exception and type id are passed on to the landing 326 /// pad. Otherwise the next action is looked up. This chain is terminated 327 /// with a next action of zero. If no type id is found then the frame is 328 /// unwound and handling continues. 329 /// 3. Type ID table contains references to all the C++ typeinfo for all 330 /// catches in the function. This tables is reverse indexed base 1. 331 void EHStreamer::emitExceptionTable() { 332 const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos(); 333 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 334 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); 335 336 // Sort the landing pads in order of their type ids. This is used to fold 337 // duplicate actions. 338 SmallVector<const LandingPadInfo *, 64> LandingPads; 339 LandingPads.reserve(PadInfos.size()); 340 341 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) 342 LandingPads.push_back(&PadInfos[i]); 343 344 // Order landing pads lexicographically by type id. 345 std::sort(LandingPads.begin(), LandingPads.end(), 346 [](const LandingPadInfo *L, 347 const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; }); 348 349 // Compute the actions table and gather the first action index for each 350 // landing pad site. 351 SmallVector<ActionEntry, 32> Actions; 352 SmallVector<unsigned, 64> FirstActions; 353 unsigned SizeActions = 354 computeActionsTable(LandingPads, Actions, FirstActions); 355 356 // Compute the call-site table. 357 SmallVector<CallSiteEntry, 64> CallSites; 358 computeCallSiteTable(CallSites, LandingPads, FirstActions); 359 360 // Final tallies. 361 362 // Call sites. 363 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 364 bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true; 365 366 unsigned CallSiteTableLength; 367 if (IsSJLJ) 368 CallSiteTableLength = 0; 369 else { 370 unsigned SiteStartSize = 4; // dwarf::DW_EH_PE_udata4 371 unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4 372 unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4 373 CallSiteTableLength = 374 CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize); 375 } 376 377 for (unsigned i = 0, e = CallSites.size(); i < e; ++i) { 378 CallSiteTableLength += getULEB128Size(CallSites[i].Action); 379 if (IsSJLJ) 380 CallSiteTableLength += getULEB128Size(i); 381 } 382 383 // Type infos. 384 const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection(); 385 unsigned TTypeEncoding; 386 unsigned TypeFormatSize; 387 388 if (!HaveTTData) { 389 // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say 390 // that we're omitting that bit. 391 TTypeEncoding = dwarf::DW_EH_PE_omit; 392 // dwarf::DW_EH_PE_absptr 393 TypeFormatSize = Asm->getDataLayout().getPointerSize(); 394 } else { 395 // Okay, we have actual filters or typeinfos to emit. As such, we need to 396 // pick a type encoding for them. We're about to emit a list of pointers to 397 // typeinfo objects at the end of the LSDA. However, unless we're in static 398 // mode, this reference will require a relocation by the dynamic linker. 399 // 400 // Because of this, we have a couple of options: 401 // 402 // 1) If we are in -static mode, we can always use an absolute reference 403 // from the LSDA, because the static linker will resolve it. 404 // 405 // 2) Otherwise, if the LSDA section is writable, we can output the direct 406 // reference to the typeinfo and allow the dynamic linker to relocate 407 // it. Since it is in a writable section, the dynamic linker won't 408 // have a problem. 409 // 410 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, 411 // we need to use some form of indirection. For example, on Darwin, 412 // we can output a statically-relocatable reference to a dyld stub. The 413 // offset to the stub is constant, but the contents are in a section 414 // that is updated by the dynamic linker. This is easy enough, but we 415 // need to tell the personality function of the unwinder to indirect 416 // through the dyld stub. 417 // 418 // FIXME: When (3) is actually implemented, we'll have to emit the stubs 419 // somewhere. This predicate should be moved to a shared location that is 420 // in target-independent code. 421 // 422 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding(); 423 TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding); 424 } 425 426 // Begin the exception table. 427 // Sometimes we want not to emit the data into separate section (e.g. ARM 428 // EHABI). In this case LSDASection will be NULL. 429 if (LSDASection) 430 Asm->OutStreamer.SwitchSection(LSDASection); 431 Asm->EmitAlignment(2); 432 433 // Emit the LSDA. 434 MCSymbol *GCCETSym = 435 Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+ 436 Twine(Asm->getFunctionNumber())); 437 Asm->OutStreamer.EmitLabel(GCCETSym); 438 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception", 439 Asm->getFunctionNumber())); 440 441 if (IsSJLJ) 442 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_", 443 Asm->getFunctionNumber())); 444 445 // Emit the LSDA header. 446 Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 447 Asm->EmitEncodingByte(TTypeEncoding, "@TType"); 448 449 // The type infos need to be aligned. GCC does this by inserting padding just 450 // before the type infos. However, this changes the size of the exception 451 // table, so you need to take this into account when you output the exception 452 // table size. However, the size is output using a variable length encoding. 453 // So by increasing the size by inserting padding, you may increase the number 454 // of bytes used for writing the size. If it increases, say by one byte, then 455 // you now need to output one less byte of padding to get the type infos 456 // aligned. However this decreases the size of the exception table. This 457 // changes the value you have to output for the exception table size. Due to 458 // the variable length encoding, the number of bytes used for writing the 459 // length may decrease. If so, you then have to increase the amount of 460 // padding. And so on. If you look carefully at the GCC code you will see that 461 // it indeed does this in a loop, going on and on until the values stabilize. 462 // We chose another solution: don't output padding inside the table like GCC 463 // does, instead output it before the table. 464 unsigned SizeTypes = TypeInfos.size() * TypeFormatSize; 465 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength); 466 unsigned TTypeBaseOffset = 467 sizeof(int8_t) + // Call site format 468 CallSiteTableLengthSize + // Call site table length size 469 CallSiteTableLength + // Call site table length 470 SizeActions + // Actions size 471 SizeTypes; 472 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset); 473 unsigned TotalSize = 474 sizeof(int8_t) + // LPStart format 475 sizeof(int8_t) + // TType format 476 (HaveTTData ? TTypeBaseOffsetSize : 0) + // TType base offset size 477 TTypeBaseOffset; // TType base offset 478 unsigned SizeAlign = (4 - TotalSize) & 3; 479 480 if (HaveTTData) { 481 // Account for any extra padding that will be added to the call site table 482 // length. 483 Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign); 484 SizeAlign = 0; 485 } 486 487 bool VerboseAsm = Asm->OutStreamer.isVerboseAsm(); 488 489 // SjLj Exception handling 490 if (IsSJLJ) { 491 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site"); 492 493 // Add extra padding if it wasn't added to the TType base offset. 494 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign); 495 496 // Emit the landing pad site information. 497 unsigned idx = 0; 498 for (SmallVectorImpl<CallSiteEntry>::const_iterator 499 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { 500 const CallSiteEntry &S = *I; 501 502 // Offset of the landing pad, counted in 16-byte bundles relative to the 503 // @LPStart address. 504 if (VerboseAsm) { 505 Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<"); 506 Asm->OutStreamer.AddComment(" On exception at call site "+Twine(idx)); 507 } 508 Asm->EmitULEB128(idx); 509 510 // Offset of the first associated action record, relative to the start of 511 // the action table. This value is biased by 1 (1 indicates the start of 512 // the action table), and 0 indicates that there are no actions. 513 if (VerboseAsm) { 514 if (S.Action == 0) 515 Asm->OutStreamer.AddComment(" Action: cleanup"); 516 else 517 Asm->OutStreamer.AddComment(" Action: " + 518 Twine((S.Action - 1) / 2 + 1)); 519 } 520 Asm->EmitULEB128(S.Action); 521 } 522 } else { 523 // Itanium LSDA exception handling 524 525 // The call-site table is a list of all call sites that may throw an 526 // exception (including C++ 'throw' statements) in the procedure 527 // fragment. It immediately follows the LSDA header. Each entry indicates, 528 // for a given call, the first corresponding action record and corresponding 529 // landing pad. 530 // 531 // The table begins with the number of bytes, stored as an LEB128 532 // compressed, unsigned integer. The records immediately follow the record 533 // count. They are sorted in increasing call-site address. Each record 534 // indicates: 535 // 536 // * The position of the call-site. 537 // * The position of the landing pad. 538 // * The first action record for that call site. 539 // 540 // A missing entry in the call-site table indicates that a call is not 541 // supposed to throw. 542 543 // Emit the landing pad call site table. 544 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site"); 545 546 // Add extra padding if it wasn't added to the TType base offset. 547 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign); 548 549 unsigned Entry = 0; 550 for (SmallVectorImpl<CallSiteEntry>::const_iterator 551 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) { 552 const CallSiteEntry &S = *I; 553 554 MCSymbol *EHFuncBeginSym = 555 Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber()); 556 557 MCSymbol *BeginLabel = S.BeginLabel; 558 if (!BeginLabel) 559 BeginLabel = EHFuncBeginSym; 560 MCSymbol *EndLabel = S.EndLabel; 561 if (!EndLabel) 562 EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber()); 563 564 565 // Offset of the call site relative to the previous call site, counted in 566 // number of 16-byte bundles. The first call site is counted relative to 567 // the start of the procedure fragment. 568 if (VerboseAsm) 569 Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<"); 570 Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4); 571 if (VerboseAsm) 572 Asm->OutStreamer.AddComment(Twine(" Call between ") + 573 BeginLabel->getName() + " and " + 574 EndLabel->getName()); 575 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 576 577 // Offset of the landing pad, counted in 16-byte bundles relative to the 578 // @LPStart address. 579 if (!S.PadLabel) { 580 if (VerboseAsm) 581 Asm->OutStreamer.AddComment(" has no landing pad"); 582 Asm->OutStreamer.EmitIntValue(0, 4/*size*/); 583 } else { 584 if (VerboseAsm) 585 Asm->OutStreamer.AddComment(Twine(" jumps to ") + 586 S.PadLabel->getName()); 587 Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4); 588 } 589 590 // Offset of the first associated action record, relative to the start of 591 // the action table. This value is biased by 1 (1 indicates the start of 592 // the action table), and 0 indicates that there are no actions. 593 if (VerboseAsm) { 594 if (S.Action == 0) 595 Asm->OutStreamer.AddComment(" On action: cleanup"); 596 else 597 Asm->OutStreamer.AddComment(" On action: " + 598 Twine((S.Action - 1) / 2 + 1)); 599 } 600 Asm->EmitULEB128(S.Action); 601 } 602 } 603 604 // Emit the Action Table. 605 int Entry = 0; 606 for (SmallVectorImpl<ActionEntry>::const_iterator 607 I = Actions.begin(), E = Actions.end(); I != E; ++I) { 608 const ActionEntry &Action = *I; 609 610 if (VerboseAsm) { 611 // Emit comments that decode the action table. 612 Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<"); 613 } 614 615 // Type Filter 616 // 617 // Used by the runtime to match the type of the thrown exception to the 618 // type of the catch clauses or the types in the exception specification. 619 if (VerboseAsm) { 620 if (Action.ValueForTypeID > 0) 621 Asm->OutStreamer.AddComment(" Catch TypeInfo " + 622 Twine(Action.ValueForTypeID)); 623 else if (Action.ValueForTypeID < 0) 624 Asm->OutStreamer.AddComment(" Filter TypeInfo " + 625 Twine(Action.ValueForTypeID)); 626 else 627 Asm->OutStreamer.AddComment(" Cleanup"); 628 } 629 Asm->EmitSLEB128(Action.ValueForTypeID); 630 631 // Action Record 632 // 633 // Self-relative signed displacement in bytes of the next action record, 634 // or 0 if there is no next action record. 635 if (VerboseAsm) { 636 if (Action.NextAction == 0) { 637 Asm->OutStreamer.AddComment(" No further actions"); 638 } else { 639 unsigned NextAction = Entry + (Action.NextAction + 1) / 2; 640 Asm->OutStreamer.AddComment(" Continue to action "+Twine(NextAction)); 641 } 642 } 643 Asm->EmitSLEB128(Action.NextAction); 644 } 645 646 emitTypeInfos(TTypeEncoding); 647 648 Asm->EmitAlignment(2); 649 } 650 651 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) { 652 const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos(); 653 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 654 655 bool VerboseAsm = Asm->OutStreamer.isVerboseAsm(); 656 657 int Entry = 0; 658 // Emit the Catch TypeInfos. 659 if (VerboseAsm && !TypeInfos.empty()) { 660 Asm->OutStreamer.AddComment(">> Catch TypeInfos <<"); 661 Asm->OutStreamer.AddBlankLine(); 662 Entry = TypeInfos.size(); 663 } 664 665 for (std::vector<const GlobalValue *>::const_reverse_iterator 666 I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) { 667 const GlobalValue *GV = *I; 668 if (VerboseAsm) 669 Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--)); 670 Asm->EmitTTypeReference(GV, TTypeEncoding); 671 } 672 673 // Emit the Exception Specifications. 674 if (VerboseAsm && !FilterIds.empty()) { 675 Asm->OutStreamer.AddComment(">> Filter TypeInfos <<"); 676 Asm->OutStreamer.AddBlankLine(); 677 Entry = 0; 678 } 679 for (std::vector<unsigned>::const_iterator 680 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { 681 unsigned TypeID = *I; 682 if (VerboseAsm) { 683 --Entry; 684 if (TypeID != 0) 685 Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry)); 686 } 687 688 Asm->EmitULEB128(TypeID); 689 } 690 } 691 692 /// Emit all exception information that should come after the content. 693 void EHStreamer::endModule() { 694 llvm_unreachable("Should be implemented"); 695 } 696 697 /// Gather pre-function exception information. Assumes it's being emitted 698 /// immediately after the function entry point. 699 void EHStreamer::beginFunction(const MachineFunction *MF) { 700 llvm_unreachable("Should be implemented"); 701 } 702 703 /// Gather and emit post-function exception information. 704 void EHStreamer::endFunction(const MachineFunction *) { 705 llvm_unreachable("Should be implemented"); 706 } 707