1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33 
34 namespace {
35 class VectorLegalizer {
36   SelectionDAG& DAG;
37   const TargetLowering &TLI;
38   bool Changed; // Keep track of whether anything changed
39 
40   /// For nodes that are of legal width, and that have more than one use, this
41   /// map indicates what regularized operand to use.  This allows us to avoid
42   /// legalizing the same thing more than once.
43   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44 
45   /// \brief Adds a node to the translation cache.
AddLegalizedOperand(SDValue From,SDValue To)46   void AddLegalizedOperand(SDValue From, SDValue To) {
47     LegalizedNodes.insert(std::make_pair(From, To));
48     // If someone requests legalization of the new node, return itself.
49     if (From != To)
50       LegalizedNodes.insert(std::make_pair(To, To));
51   }
52 
53   /// \brief Legalizes the given node.
54   SDValue LegalizeOp(SDValue Op);
55 
56   /// \brief Assuming the node is legal, "legalize" the results.
57   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58 
59   /// \brief Implements unrolling a VSETCC.
60   SDValue UnrollVSETCC(SDValue Op);
61 
62   /// \brief Implement expand-based legalization of vector operations.
63   ///
64   /// This is just a high-level routine to dispatch to specific code paths for
65   /// operations to legalize them.
66   SDValue Expand(SDValue Op);
67 
68   /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69   /// FSUB isn't legal.
70   ///
71   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74 
75   /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76   SDValue ExpandSEXTINREG(SDValue Op);
77 
78   /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79   ///
80   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81   /// type. The contents of the bits in the extended part of each element are
82   /// undef.
83   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84 
85   /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86   ///
87   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88   /// type, then shifts left and arithmetic shifts right to introduce a sign
89   /// extension.
90   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91 
92   /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93   ///
94   /// Shuffles the low lanes of the operand into place and blends zeros into
95   /// the remaining lanes, finally bitcasting to the proper type.
96   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97 
98   /// \brief Expand bswap of vectors into a shuffle if legal.
99   SDValue ExpandBSWAP(SDValue Op);
100 
101   /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102   /// supported by the target.
103   SDValue ExpandVSELECT(SDValue Op);
104   SDValue ExpandSELECT(SDValue Op);
105   SDValue ExpandLoad(SDValue Op);
106   SDValue ExpandStore(SDValue Op);
107   SDValue ExpandFNEG(SDValue Op);
108 
109   /// \brief Implements vector promotion.
110   ///
111   /// This is essentially just bitcasting the operands to a different type and
112   /// bitcasting the result back to the original type.
113   SDValue Promote(SDValue Op);
114 
115   /// \brief Implements [SU]INT_TO_FP vector promotion.
116   ///
117   /// This is a [zs]ext of the input operand to the next size up.
118   SDValue PromoteINT_TO_FP(SDValue Op);
119 
120   /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
121   ///
122   /// It is promoted to the next size up integer type.  The result is then
123   /// truncated back to the original type.
124   SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
125 
126 public:
127   /// \brief Begin legalizer the vector operations in the DAG.
128   bool Run();
VectorLegalizer(SelectionDAG & dag)129   VectorLegalizer(SelectionDAG& dag) :
130       DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
131 };
132 
Run()133 bool VectorLegalizer::Run() {
134   // Before we start legalizing vector nodes, check if there are any vectors.
135   bool HasVectors = false;
136   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
137        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
138     // Check if the values of the nodes contain vectors. We don't need to check
139     // the operands because we are going to check their values at some point.
140     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
141          J != E; ++J)
142       HasVectors |= J->isVector();
143 
144     // If we found a vector node we can start the legalization.
145     if (HasVectors)
146       break;
147   }
148 
149   // If this basic block has no vectors then no need to legalize vectors.
150   if (!HasVectors)
151     return false;
152 
153   // The legalize process is inherently a bottom-up recursive process (users
154   // legalize their uses before themselves).  Given infinite stack space, we
155   // could just start legalizing on the root and traverse the whole graph.  In
156   // practice however, this causes us to run out of stack space on large basic
157   // blocks.  To avoid this problem, compute an ordering of the nodes where each
158   // node is only legalized after all of its operands are legalized.
159   DAG.AssignTopologicalOrder();
160   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
161        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
162     LegalizeOp(SDValue(I, 0));
163 
164   // Finally, it's possible the root changed.  Get the new root.
165   SDValue OldRoot = DAG.getRoot();
166   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
167   DAG.setRoot(LegalizedNodes[OldRoot]);
168 
169   LegalizedNodes.clear();
170 
171   // Remove dead nodes now.
172   DAG.RemoveDeadNodes();
173 
174   return Changed;
175 }
176 
TranslateLegalizeResults(SDValue Op,SDValue Result)177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
178   // Generic legalization: just pass the operand through.
179   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
180     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
181   return Result.getValue(Op.getResNo());
182 }
183 
LegalizeOp(SDValue Op)184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
185   // Note that LegalizeOp may be reentered even from single-use nodes, which
186   // means that we always must cache transformed nodes.
187   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
188   if (I != LegalizedNodes.end()) return I->second;
189 
190   SDNode* Node = Op.getNode();
191 
192   // Legalize the operands
193   SmallVector<SDValue, 8> Ops;
194   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
195     Ops.push_back(LegalizeOp(Node->getOperand(i)));
196 
197   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
198 
199   if (Op.getOpcode() == ISD::LOAD) {
200     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
201     ISD::LoadExtType ExtType = LD->getExtensionType();
202     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
203       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
204                                    LD->getMemoryVT())) {
205       default: llvm_unreachable("This action is not supported yet!");
206       case TargetLowering::Legal:
207         return TranslateLegalizeResults(Op, Result);
208       case TargetLowering::Custom:
209         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
210           Changed = true;
211           if (Lowered->getNumValues() != Op->getNumValues()) {
212             // This expanded to something other than the load. Assume the
213             // lowering code took care of any chain values, and just handle the
214             // returned value.
215             assert(Result.getValue(1).use_empty() &&
216                    "There are still live users of the old chain!");
217             return LegalizeOp(Lowered);
218           } else {
219             return TranslateLegalizeResults(Op, Lowered);
220           }
221         }
222       case TargetLowering::Expand:
223         Changed = true;
224         return LegalizeOp(ExpandLoad(Op));
225       }
226   } else if (Op.getOpcode() == ISD::STORE) {
227     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
228     EVT StVT = ST->getMemoryVT();
229     MVT ValVT = ST->getValue().getSimpleValueType();
230     if (StVT.isVector() && ST->isTruncatingStore())
231       switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) {
232       default: llvm_unreachable("This action is not supported yet!");
233       case TargetLowering::Legal:
234         return TranslateLegalizeResults(Op, Result);
235       case TargetLowering::Custom:
236         Changed = true;
237         return TranslateLegalizeResults(Op, TLI.LowerOperation(Result, DAG));
238       case TargetLowering::Expand:
239         Changed = true;
240         return LegalizeOp(ExpandStore(Op));
241       }
242   }
243 
244   bool HasVectorValue = false;
245   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
246        J != E;
247        ++J)
248     HasVectorValue |= J->isVector();
249   if (!HasVectorValue)
250     return TranslateLegalizeResults(Op, Result);
251 
252   EVT QueryType;
253   switch (Op.getOpcode()) {
254   default:
255     return TranslateLegalizeResults(Op, Result);
256   case ISD::ADD:
257   case ISD::SUB:
258   case ISD::MUL:
259   case ISD::SDIV:
260   case ISD::UDIV:
261   case ISD::SREM:
262   case ISD::UREM:
263   case ISD::FADD:
264   case ISD::FSUB:
265   case ISD::FMUL:
266   case ISD::FDIV:
267   case ISD::FREM:
268   case ISD::AND:
269   case ISD::OR:
270   case ISD::XOR:
271   case ISD::SHL:
272   case ISD::SRA:
273   case ISD::SRL:
274   case ISD::ROTL:
275   case ISD::ROTR:
276   case ISD::BSWAP:
277   case ISD::CTLZ:
278   case ISD::CTTZ:
279   case ISD::CTLZ_ZERO_UNDEF:
280   case ISD::CTTZ_ZERO_UNDEF:
281   case ISD::CTPOP:
282   case ISD::SELECT:
283   case ISD::VSELECT:
284   case ISD::SELECT_CC:
285   case ISD::SETCC:
286   case ISD::ZERO_EXTEND:
287   case ISD::ANY_EXTEND:
288   case ISD::TRUNCATE:
289   case ISD::SIGN_EXTEND:
290   case ISD::FP_TO_SINT:
291   case ISD::FP_TO_UINT:
292   case ISD::FNEG:
293   case ISD::FABS:
294   case ISD::FMINNUM:
295   case ISD::FMAXNUM:
296   case ISD::FCOPYSIGN:
297   case ISD::FSQRT:
298   case ISD::FSIN:
299   case ISD::FCOS:
300   case ISD::FPOWI:
301   case ISD::FPOW:
302   case ISD::FLOG:
303   case ISD::FLOG2:
304   case ISD::FLOG10:
305   case ISD::FEXP:
306   case ISD::FEXP2:
307   case ISD::FCEIL:
308   case ISD::FTRUNC:
309   case ISD::FRINT:
310   case ISD::FNEARBYINT:
311   case ISD::FROUND:
312   case ISD::FFLOOR:
313   case ISD::FP_ROUND:
314   case ISD::FP_EXTEND:
315   case ISD::FMA:
316   case ISD::SIGN_EXTEND_INREG:
317   case ISD::ANY_EXTEND_VECTOR_INREG:
318   case ISD::SIGN_EXTEND_VECTOR_INREG:
319   case ISD::ZERO_EXTEND_VECTOR_INREG:
320     QueryType = Node->getValueType(0);
321     break;
322   case ISD::FP_ROUND_INREG:
323     QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
324     break;
325   case ISD::SINT_TO_FP:
326   case ISD::UINT_TO_FP:
327     QueryType = Node->getOperand(0).getValueType();
328     break;
329   }
330 
331   switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
332   case TargetLowering::Promote:
333     Result = Promote(Op);
334     Changed = true;
335     break;
336   case TargetLowering::Legal:
337     break;
338   case TargetLowering::Custom: {
339     SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
340     if (Tmp1.getNode()) {
341       Result = Tmp1;
342       break;
343     }
344     // FALL THROUGH
345   }
346   case TargetLowering::Expand:
347     Result = Expand(Op);
348   }
349 
350   // Make sure that the generated code is itself legal.
351   if (Result != Op) {
352     Result = LegalizeOp(Result);
353     Changed = true;
354   }
355 
356   // Note that LegalizeOp may be reentered even from single-use nodes, which
357   // means that we always must cache transformed nodes.
358   AddLegalizedOperand(Op, Result);
359   return Result;
360 }
361 
Promote(SDValue Op)362 SDValue VectorLegalizer::Promote(SDValue Op) {
363   // For a few operations there is a specific concept for promotion based on
364   // the operand's type.
365   switch (Op.getOpcode()) {
366   case ISD::SINT_TO_FP:
367   case ISD::UINT_TO_FP:
368     // "Promote" the operation by extending the operand.
369     return PromoteINT_TO_FP(Op);
370   case ISD::FP_TO_UINT:
371   case ISD::FP_TO_SINT:
372     // Promote the operation by extending the operand.
373     return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
374   }
375 
376   // There are currently two cases of vector promotion:
377   // 1) Bitcasting a vector of integers to a different type to a vector of the
378   //    same overall length. For example, x86 promotes ISD::AND on v2i32 to v1i64.
379   // 2) Extending a vector of floats to a vector of the same number oflarger
380   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
381   MVT VT = Op.getSimpleValueType();
382   assert(Op.getNode()->getNumValues() == 1 &&
383          "Can't promote a vector with multiple results!");
384   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
385   SDLoc dl(Op);
386   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
387 
388   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
389     if (Op.getOperand(j).getValueType().isVector())
390       if (Op.getOperand(j)
391               .getValueType()
392               .getVectorElementType()
393               .isFloatingPoint() &&
394           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
395         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
396       else
397         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
398     else
399       Operands[j] = Op.getOperand(j);
400   }
401 
402   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands);
403   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
404       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
405        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
406     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0));
407   else
408     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
409 }
410 
PromoteINT_TO_FP(SDValue Op)411 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
412   // INT_TO_FP operations may require the input operand be promoted even
413   // when the type is otherwise legal.
414   EVT VT = Op.getOperand(0).getValueType();
415   assert(Op.getNode()->getNumValues() == 1 &&
416          "Can't promote a vector with multiple results!");
417 
418   // Normal getTypeToPromoteTo() doesn't work here, as that will promote
419   // by widening the vector w/ the same element width and twice the number
420   // of elements. We want the other way around, the same number of elements,
421   // each twice the width.
422   //
423   // Increase the bitwidth of the element to the next pow-of-two
424   // (which is greater than 8 bits).
425 
426   EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
427   assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
428   SDLoc dl(Op);
429   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
430 
431   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
432     ISD::SIGN_EXTEND;
433   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
434     if (Op.getOperand(j).getValueType().isVector())
435       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
436     else
437       Operands[j] = Op.getOperand(j);
438   }
439 
440   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
441 }
442 
443 // For FP_TO_INT we promote the result type to a vector type with wider
444 // elements and then truncate the result.  This is different from the default
445 // PromoteVector which uses bitcast to promote thus assumning that the
446 // promoted vector type has the same overall size.
PromoteFP_TO_INT(SDValue Op,bool isSigned)447 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
448   assert(Op.getNode()->getNumValues() == 1 &&
449          "Can't promote a vector with multiple results!");
450   EVT VT = Op.getValueType();
451 
452   EVT NewVT;
453   unsigned NewOpc;
454   while (1) {
455     NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
456     assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
457     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
458       NewOpc = ISD::FP_TO_SINT;
459       break;
460     }
461     if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
462       NewOpc = ISD::FP_TO_UINT;
463       break;
464     }
465   }
466 
467   SDLoc loc(Op);
468   SDValue promoted  = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
469   return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
470 }
471 
472 
ExpandLoad(SDValue Op)473 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
474   SDLoc dl(Op);
475   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
476   SDValue Chain = LD->getChain();
477   SDValue BasePTR = LD->getBasePtr();
478   EVT SrcVT = LD->getMemoryVT();
479   ISD::LoadExtType ExtType = LD->getExtensionType();
480 
481   SmallVector<SDValue, 8> Vals;
482   SmallVector<SDValue, 8> LoadChains;
483   unsigned NumElem = SrcVT.getVectorNumElements();
484 
485   EVT SrcEltVT = SrcVT.getScalarType();
486   EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
487 
488   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
489     // When elements in a vector is not byte-addressable, we cannot directly
490     // load each element by advancing pointer, which could only address bytes.
491     // Instead, we load all significant words, mask bits off, and concatenate
492     // them to form each element. Finally, they are extended to destination
493     // scalar type to build the destination vector.
494     EVT WideVT = TLI.getPointerTy();
495 
496     assert(WideVT.isRound() &&
497            "Could not handle the sophisticated case when the widest integer is"
498            " not power of 2.");
499     assert(WideVT.bitsGE(SrcEltVT) &&
500            "Type is not legalized?");
501 
502     unsigned WideBytes = WideVT.getStoreSize();
503     unsigned Offset = 0;
504     unsigned RemainingBytes = SrcVT.getStoreSize();
505     SmallVector<SDValue, 8> LoadVals;
506 
507     while (RemainingBytes > 0) {
508       SDValue ScalarLoad;
509       unsigned LoadBytes = WideBytes;
510 
511       if (RemainingBytes >= LoadBytes) {
512         ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
513                                  LD->getPointerInfo().getWithOffset(Offset),
514                                  LD->isVolatile(), LD->isNonTemporal(),
515                                  LD->isInvariant(), LD->getAlignment(),
516                                  LD->getAAInfo());
517       } else {
518         EVT LoadVT = WideVT;
519         while (RemainingBytes < LoadBytes) {
520           LoadBytes >>= 1; // Reduce the load size by half.
521           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
522         }
523         ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
524                                     LD->getPointerInfo().getWithOffset(Offset),
525                                     LoadVT, LD->isVolatile(),
526                                     LD->isNonTemporal(), LD->isInvariant(),
527                                     LD->getAlignment(), LD->getAAInfo());
528       }
529 
530       RemainingBytes -= LoadBytes;
531       Offset += LoadBytes;
532       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
533                             DAG.getConstant(LoadBytes, BasePTR.getValueType()));
534 
535       LoadVals.push_back(ScalarLoad.getValue(0));
536       LoadChains.push_back(ScalarLoad.getValue(1));
537     }
538 
539     // Extract bits, pack and extend/trunc them into destination type.
540     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
541     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT);
542 
543     unsigned BitOffset = 0;
544     unsigned WideIdx = 0;
545     unsigned WideBits = WideVT.getSizeInBits();
546 
547     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
548       SDValue Lo, Hi, ShAmt;
549 
550       if (BitOffset < WideBits) {
551         ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT));
552         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
553         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
554       }
555 
556       BitOffset += SrcEltBits;
557       if (BitOffset >= WideBits) {
558         WideIdx++;
559         BitOffset -= WideBits;
560         if (BitOffset > 0) {
561           ShAmt = DAG.getConstant(SrcEltBits - BitOffset,
562                                   TLI.getShiftAmountTy(WideVT));
563           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
564           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
565         }
566       }
567 
568       if (Hi.getNode())
569         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
570 
571       switch (ExtType) {
572       default: llvm_unreachable("Unknown extended-load op!");
573       case ISD::EXTLOAD:
574         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
575         break;
576       case ISD::ZEXTLOAD:
577         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
578         break;
579       case ISD::SEXTLOAD:
580         ShAmt = DAG.getConstant(WideBits - SrcEltBits,
581                                 TLI.getShiftAmountTy(WideVT));
582         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
583         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
584         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
585         break;
586       }
587       Vals.push_back(Lo);
588     }
589   } else {
590     unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
591 
592     for (unsigned Idx=0; Idx<NumElem; Idx++) {
593       SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
594                 Op.getNode()->getValueType(0).getScalarType(),
595                 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
596                 SrcVT.getScalarType(),
597                 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
598                 LD->getAlignment(), LD->getAAInfo());
599 
600       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
601                          DAG.getConstant(Stride, BasePTR.getValueType()));
602 
603       Vals.push_back(ScalarLoad.getValue(0));
604       LoadChains.push_back(ScalarLoad.getValue(1));
605     }
606   }
607 
608   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
609   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
610                               Op.getNode()->getValueType(0), Vals);
611 
612   AddLegalizedOperand(Op.getValue(0), Value);
613   AddLegalizedOperand(Op.getValue(1), NewChain);
614 
615   return (Op.getResNo() ? NewChain : Value);
616 }
617 
ExpandStore(SDValue Op)618 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
619   SDLoc dl(Op);
620   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
621   SDValue Chain = ST->getChain();
622   SDValue BasePTR = ST->getBasePtr();
623   SDValue Value = ST->getValue();
624   EVT StVT = ST->getMemoryVT();
625 
626   unsigned Alignment = ST->getAlignment();
627   bool isVolatile = ST->isVolatile();
628   bool isNonTemporal = ST->isNonTemporal();
629   AAMDNodes AAInfo = ST->getAAInfo();
630 
631   unsigned NumElem = StVT.getVectorNumElements();
632   // The type of the data we want to save
633   EVT RegVT = Value.getValueType();
634   EVT RegSclVT = RegVT.getScalarType();
635   // The type of data as saved in memory.
636   EVT MemSclVT = StVT.getScalarType();
637 
638   // Cast floats into integers
639   unsigned ScalarSize = MemSclVT.getSizeInBits();
640 
641   // Round odd types to the next pow of two.
642   if (!isPowerOf2_32(ScalarSize))
643     ScalarSize = NextPowerOf2(ScalarSize);
644 
645   // Store Stride in bytes
646   unsigned Stride = ScalarSize/8;
647   // Extract each of the elements from the original vector
648   // and save them into memory individually.
649   SmallVector<SDValue, 8> Stores;
650   for (unsigned Idx = 0; Idx < NumElem; Idx++) {
651     SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
652                RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy()));
653 
654     // This scalar TruncStore may be illegal, but we legalize it later.
655     SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
656                ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
657                isVolatile, isNonTemporal, Alignment, AAInfo);
658 
659     BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
660                                DAG.getConstant(Stride, BasePTR.getValueType()));
661 
662     Stores.push_back(Store);
663   }
664   SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
665   AddLegalizedOperand(Op, TF);
666   return TF;
667 }
668 
Expand(SDValue Op)669 SDValue VectorLegalizer::Expand(SDValue Op) {
670   switch (Op->getOpcode()) {
671   case ISD::SIGN_EXTEND_INREG:
672     return ExpandSEXTINREG(Op);
673   case ISD::ANY_EXTEND_VECTOR_INREG:
674     return ExpandANY_EXTEND_VECTOR_INREG(Op);
675   case ISD::SIGN_EXTEND_VECTOR_INREG:
676     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
677   case ISD::ZERO_EXTEND_VECTOR_INREG:
678     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
679   case ISD::BSWAP:
680     return ExpandBSWAP(Op);
681   case ISD::VSELECT:
682     return ExpandVSELECT(Op);
683   case ISD::SELECT:
684     return ExpandSELECT(Op);
685   case ISD::UINT_TO_FP:
686     return ExpandUINT_TO_FLOAT(Op);
687   case ISD::FNEG:
688     return ExpandFNEG(Op);
689   case ISD::SETCC:
690     return UnrollVSETCC(Op);
691   default:
692     return DAG.UnrollVectorOp(Op.getNode());
693   }
694 }
695 
ExpandSELECT(SDValue Op)696 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
697   // Lower a select instruction where the condition is a scalar and the
698   // operands are vectors. Lower this select to VSELECT and implement it
699   // using XOR AND OR. The selector bit is broadcasted.
700   EVT VT = Op.getValueType();
701   SDLoc DL(Op);
702 
703   SDValue Mask = Op.getOperand(0);
704   SDValue Op1 = Op.getOperand(1);
705   SDValue Op2 = Op.getOperand(2);
706 
707   assert(VT.isVector() && !Mask.getValueType().isVector()
708          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
709 
710   unsigned NumElem = VT.getVectorNumElements();
711 
712   // If we can't even use the basic vector operations of
713   // AND,OR,XOR, we will have to scalarize the op.
714   // Notice that the operation may be 'promoted' which means that it is
715   // 'bitcasted' to another type which is handled.
716   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
717   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
718       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
719       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
720       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
721     return DAG.UnrollVectorOp(Op.getNode());
722 
723   // Generate a mask operand.
724   EVT MaskTy = VT.changeVectorElementTypeToInteger();
725 
726   // What is the size of each element in the vector mask.
727   EVT BitTy = MaskTy.getScalarType();
728 
729   Mask = DAG.getSelect(DL, BitTy, Mask,
730           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy),
731           DAG.getConstant(0, BitTy));
732 
733   // Broadcast the mask so that the entire vector is all-one or all zero.
734   SmallVector<SDValue, 8> Ops(NumElem, Mask);
735   Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
736 
737   // Bitcast the operands to be the same type as the mask.
738   // This is needed when we select between FP types because
739   // the mask is a vector of integers.
740   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
741   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
742 
743   SDValue AllOnes = DAG.getConstant(
744             APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy);
745   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
746 
747   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
748   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
749   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
750   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
751 }
752 
ExpandSEXTINREG(SDValue Op)753 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
754   EVT VT = Op.getValueType();
755 
756   // Make sure that the SRA and SHL instructions are available.
757   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
758       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
759     return DAG.UnrollVectorOp(Op.getNode());
760 
761   SDLoc DL(Op);
762   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
763 
764   unsigned BW = VT.getScalarType().getSizeInBits();
765   unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
766   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT);
767 
768   Op = Op.getOperand(0);
769   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
770   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
771 }
772 
773 // Generically expand a vector anyext in register to a shuffle of the relevant
774 // lanes into the appropriate locations, with other lanes left undef.
ExpandANY_EXTEND_VECTOR_INREG(SDValue Op)775 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
776   SDLoc DL(Op);
777   EVT VT = Op.getValueType();
778   int NumElements = VT.getVectorNumElements();
779   SDValue Src = Op.getOperand(0);
780   EVT SrcVT = Src.getValueType();
781   int NumSrcElements = SrcVT.getVectorNumElements();
782 
783   // Build a base mask of undef shuffles.
784   SmallVector<int, 16> ShuffleMask;
785   ShuffleMask.resize(NumSrcElements, -1);
786 
787   // Place the extended lanes into the correct locations.
788   int ExtLaneScale = NumSrcElements / NumElements;
789   int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
790   for (int i = 0; i < NumElements; ++i)
791     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
792 
793   return DAG.getNode(
794       ISD::BITCAST, DL, VT,
795       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
796 }
797 
ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op)798 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
799   SDLoc DL(Op);
800   EVT VT = Op.getValueType();
801   SDValue Src = Op.getOperand(0);
802   EVT SrcVT = Src.getValueType();
803 
804   // First build an any-extend node which can be legalized above when we
805   // recurse through it.
806   Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
807 
808   // Now we need sign extend. Do this by shifting the elements. Even if these
809   // aren't legal operations, they have a better chance of being legalized
810   // without full scalarization than the sign extension does.
811   unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
812   unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
813   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, VT);
814   return DAG.getNode(ISD::SRA, DL, VT,
815                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
816                      ShiftAmount);
817 }
818 
819 // Generically expand a vector zext in register to a shuffle of the relevant
820 // lanes into the appropriate locations, a blend of zero into the high bits,
821 // and a bitcast to the wider element type.
ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op)822 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
823   SDLoc DL(Op);
824   EVT VT = Op.getValueType();
825   int NumElements = VT.getVectorNumElements();
826   SDValue Src = Op.getOperand(0);
827   EVT SrcVT = Src.getValueType();
828   int NumSrcElements = SrcVT.getVectorNumElements();
829 
830   // Build up a zero vector to blend into this one.
831   EVT SrcScalarVT = SrcVT.getScalarType();
832   SDValue ScalarZero = DAG.getTargetConstant(0, SrcScalarVT);
833   SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
834   SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
835 
836   // Shuffle the incoming lanes into the correct position, and pull all other
837   // lanes from the zero vector.
838   SmallVector<int, 16> ShuffleMask;
839   ShuffleMask.reserve(NumSrcElements);
840   for (int i = 0; i < NumSrcElements; ++i)
841     ShuffleMask.push_back(i);
842 
843   int ExtLaneScale = NumSrcElements / NumElements;
844   int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
845   for (int i = 0; i < NumElements; ++i)
846     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
847 
848   return DAG.getNode(ISD::BITCAST, DL, VT,
849                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
850 }
851 
ExpandBSWAP(SDValue Op)852 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
853   EVT VT = Op.getValueType();
854 
855   // Generate a byte wise shuffle mask for the BSWAP.
856   SmallVector<int, 16> ShuffleMask;
857   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
858   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
859     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
860       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
861 
862   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
863 
864   // Only emit a shuffle if the mask is legal.
865   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
866     return DAG.UnrollVectorOp(Op.getNode());
867 
868   SDLoc DL(Op);
869   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
870   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
871                             ShuffleMask.data());
872   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
873 }
874 
ExpandVSELECT(SDValue Op)875 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
876   // Implement VSELECT in terms of XOR, AND, OR
877   // on platforms which do not support blend natively.
878   SDLoc DL(Op);
879 
880   SDValue Mask = Op.getOperand(0);
881   SDValue Op1 = Op.getOperand(1);
882   SDValue Op2 = Op.getOperand(2);
883 
884   EVT VT = Mask.getValueType();
885 
886   // If we can't even use the basic vector operations of
887   // AND,OR,XOR, we will have to scalarize the op.
888   // Notice that the operation may be 'promoted' which means that it is
889   // 'bitcasted' to another type which is handled.
890   // This operation also isn't safe with AND, OR, XOR when the boolean
891   // type is 0/1 as we need an all ones vector constant to mask with.
892   // FIXME: Sign extend 1 to all ones if thats legal on the target.
893   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
894       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
895       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
896       TLI.getBooleanContents(Op1.getValueType()) !=
897           TargetLowering::ZeroOrNegativeOneBooleanContent)
898     return DAG.UnrollVectorOp(Op.getNode());
899 
900   // If the mask and the type are different sizes, unroll the vector op. This
901   // can occur when getSetCCResultType returns something that is different in
902   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
903   if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
904     return DAG.UnrollVectorOp(Op.getNode());
905 
906   // Bitcast the operands to be the same type as the mask.
907   // This is needed when we select between FP types because
908   // the mask is a vector of integers.
909   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
910   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
911 
912   SDValue AllOnes = DAG.getConstant(
913     APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT);
914   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
915 
916   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
917   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
918   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
919   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
920 }
921 
ExpandUINT_TO_FLOAT(SDValue Op)922 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
923   EVT VT = Op.getOperand(0).getValueType();
924   SDLoc DL(Op);
925 
926   // Make sure that the SINT_TO_FP and SRL instructions are available.
927   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
928       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
929     return DAG.UnrollVectorOp(Op.getNode());
930 
931  EVT SVT = VT.getScalarType();
932   assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
933       "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
934 
935   unsigned BW = SVT.getSizeInBits();
936   SDValue HalfWord = DAG.getConstant(BW/2, VT);
937 
938   // Constants to clear the upper part of the word.
939   // Notice that we can also use SHL+SHR, but using a constant is slightly
940   // faster on x86.
941   uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
942   SDValue HalfWordMask = DAG.getConstant(HWMask, VT);
943 
944   // Two to the power of half-word-size.
945   SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType());
946 
947   // Clear upper part of LO, lower HI
948   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
949   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
950 
951   // Convert hi and lo to floats
952   // Convert the hi part back to the upper values
953   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
954           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
955   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
956 
957   // Add the two halves
958   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
959 }
960 
961 
ExpandFNEG(SDValue Op)962 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
963   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
964     SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType());
965     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
966                        Zero, Op.getOperand(0));
967   }
968   return DAG.UnrollVectorOp(Op.getNode());
969 }
970 
UnrollVSETCC(SDValue Op)971 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
972   EVT VT = Op.getValueType();
973   unsigned NumElems = VT.getVectorNumElements();
974   EVT EltVT = VT.getVectorElementType();
975   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
976   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
977   SDLoc dl(Op);
978   SmallVector<SDValue, 8> Ops(NumElems);
979   for (unsigned i = 0; i < NumElems; ++i) {
980     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
981                                   DAG.getConstant(i, TLI.getVectorIdxTy()));
982     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
983                                   DAG.getConstant(i, TLI.getVectorIdxTy()));
984     Ops[i] = DAG.getNode(ISD::SETCC, dl,
985                          TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT),
986                          LHSElem, RHSElem, CC);
987     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
988                            DAG.getConstant(APInt::getAllOnesValue
989                                            (EltVT.getSizeInBits()), EltVT),
990                            DAG.getConstant(0, EltVT));
991   }
992   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
993 }
994 
995 }
996 
LegalizeVectors()997 bool SelectionDAG::LegalizeVectors() {
998   return VectorLegalizer(*this).Run();
999 }
1000