1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
TargetLowering(const TargetMachine & tm)39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
getTargetNodeName(unsigned Opcode) const42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 /// Check whether a given call node is in tail position within its function. If
47 /// so, it sets Chain to the input chain of the tail call.
isInTailCallPosition(SelectionDAG & DAG,SDNode * Node,SDValue & Chain) const48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
49                                           SDValue &Chain) const {
50   const Function *F = DAG.getMachineFunction().getFunction();
51 
52   // Conservatively require the attributes of the call to match those of
53   // the return. Ignore noalias because it doesn't affect the call sequence.
54   AttributeSet CallerAttrs = F->getAttributes();
55   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
56       .removeAttribute(Attribute::NoAlias).hasAttributes())
57     return false;
58 
59   // It's not safe to eliminate the sign / zero extension of the return value.
60   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
61       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
62     return false;
63 
64   // Check if the only use is a function return node.
65   return isUsedByReturnOnly(Node, Chain);
66 }
67 
68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
69 /// and called function attributes.
setAttributes(ImmutableCallSite * CS,unsigned AttrIdx)70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
71                                                  unsigned AttrIdx) {
72   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
73   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
74   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
75   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
76   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
77   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
78   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
79   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
80   Alignment  = CS->getParamAlignment(AttrIdx);
81 }
82 
83 /// Generate a libcall taking the given operands as arguments and returning a
84 /// result of type RetVT.
85 std::pair<SDValue, SDValue>
makeLibCall(SelectionDAG & DAG,RTLIB::Libcall LC,EVT RetVT,const SDValue * Ops,unsigned NumOps,bool isSigned,SDLoc dl,bool doesNotReturn,bool isReturnValueUsed) const86 TargetLowering::makeLibCall(SelectionDAG &DAG,
87                             RTLIB::Libcall LC, EVT RetVT,
88                             const SDValue *Ops, unsigned NumOps,
89                             bool isSigned, SDLoc dl,
90                             bool doesNotReturn,
91                             bool isReturnValueUsed) const {
92   TargetLowering::ArgListTy Args;
93   Args.reserve(NumOps);
94 
95   TargetLowering::ArgListEntry Entry;
96   for (unsigned i = 0; i != NumOps; ++i) {
97     Entry.Node = Ops[i];
98     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
99     Entry.isSExt = shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned);
100     Entry.isZExt = !shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned);
101     Args.push_back(Entry);
102   }
103   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
104 
105   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
106   TargetLowering::CallLoweringInfo CLI(DAG);
107   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
108   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
109     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
110     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
111     .setSExtResult(signExtend).setZExtResult(!signExtend);
112   return LowerCallTo(CLI);
113 }
114 
115 
116 /// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
117 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,SDLoc dl) const118 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
119                                          SDValue &NewLHS, SDValue &NewRHS,
120                                          ISD::CondCode &CCCode,
121                                          SDLoc dl) const {
122   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
123          && "Unsupported setcc type!");
124 
125   // Expand into one or more soft-fp libcall(s).
126   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
127   switch (CCCode) {
128   case ISD::SETEQ:
129   case ISD::SETOEQ:
130     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
131           (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
132     break;
133   case ISD::SETNE:
134   case ISD::SETUNE:
135     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
136           (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
137     break;
138   case ISD::SETGE:
139   case ISD::SETOGE:
140     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
141           (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
142     break;
143   case ISD::SETLT:
144   case ISD::SETOLT:
145     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
146           (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
147     break;
148   case ISD::SETLE:
149   case ISD::SETOLE:
150     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
151           (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
152     break;
153   case ISD::SETGT:
154   case ISD::SETOGT:
155     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
156           (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
157     break;
158   case ISD::SETUO:
159     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
160           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
161     break;
162   case ISD::SETO:
163     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
164           (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
165     break;
166   default:
167     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
168           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
169     switch (CCCode) {
170     case ISD::SETONE:
171       // SETONE = SETOLT | SETOGT
172       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
173             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
174       // Fallthrough
175     case ISD::SETUGT:
176       LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
177             (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
178       break;
179     case ISD::SETUGE:
180       LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
181             (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
182       break;
183     case ISD::SETULT:
184       LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
185             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
186       break;
187     case ISD::SETULE:
188       LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
189             (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
190       break;
191     case ISD::SETUEQ:
192       LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
193             (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
194       break;
195     default: llvm_unreachable("Do not know how to soften this setcc!");
196     }
197   }
198 
199   // Use the target specific return value for comparions lib calls.
200   EVT RetVT = getCmpLibcallReturnType();
201   SDValue Ops[2] = { NewLHS, NewRHS };
202   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/,
203                        dl).first;
204   NewRHS = DAG.getConstant(0, RetVT);
205   CCCode = getCmpLibcallCC(LC1);
206   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
207     SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
208                               getSetCCResultType(*DAG.getContext(), RetVT),
209                               NewLHS, NewRHS, DAG.getCondCode(CCCode));
210     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/,
211                          dl).first;
212     NewLHS = DAG.getNode(ISD::SETCC, dl,
213                          getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
214                          NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
215     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
216     NewRHS = SDValue();
217   }
218 }
219 
220 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
221 /// current function.  The returned value is a member of the
222 /// MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const223 unsigned TargetLowering::getJumpTableEncoding() const {
224   // In non-pic modes, just use the address of a block.
225   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
226     return MachineJumpTableInfo::EK_BlockAddress;
227 
228   // In PIC mode, if the target supports a GPRel32 directive, use it.
229   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
230     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
231 
232   // Otherwise, use a label difference.
233   return MachineJumpTableInfo::EK_LabelDifference32;
234 }
235 
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const236 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
237                                                  SelectionDAG &DAG) const {
238   // If our PIC model is GP relative, use the global offset table as the base.
239   unsigned JTEncoding = getJumpTableEncoding();
240 
241   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
242       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
243     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
244 
245   return Table;
246 }
247 
248 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
249 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
250 /// MCExpr.
251 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const252 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
253                                              unsigned JTI,MCContext &Ctx) const{
254   // The normal PIC reloc base is the label at the start of the jump table.
255   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
256 }
257 
258 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const259 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
260   // Assume that everything is safe in static mode.
261   if (getTargetMachine().getRelocationModel() == Reloc::Static)
262     return true;
263 
264   // In dynamic-no-pic mode, assume that known defined values are safe.
265   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
266       GA &&
267       !GA->getGlobal()->isDeclaration() &&
268       !GA->getGlobal()->isWeakForLinker())
269     return true;
270 
271   // Otherwise assume nothing is safe.
272   return false;
273 }
274 
275 //===----------------------------------------------------------------------===//
276 //  Optimization Methods
277 //===----------------------------------------------------------------------===//
278 
279 /// ShrinkDemandedConstant - Check to see if the specified operand of the
280 /// specified instruction is a constant integer.  If so, check to see if there
281 /// are any bits set in the constant that are not demanded.  If so, shrink the
282 /// constant and return true.
ShrinkDemandedConstant(SDValue Op,const APInt & Demanded)283 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
284                                                         const APInt &Demanded) {
285   SDLoc dl(Op);
286 
287   // FIXME: ISD::SELECT, ISD::SELECT_CC
288   switch (Op.getOpcode()) {
289   default: break;
290   case ISD::XOR:
291   case ISD::AND:
292   case ISD::OR: {
293     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
294     if (!C) return false;
295 
296     if (Op.getOpcode() == ISD::XOR &&
297         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
298       return false;
299 
300     // if we can expand it to have all bits set, do it
301     if (C->getAPIntValue().intersects(~Demanded)) {
302       EVT VT = Op.getValueType();
303       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
304                                 DAG.getConstant(Demanded &
305                                                 C->getAPIntValue(),
306                                                 VT));
307       return CombineTo(Op, New);
308     }
309 
310     break;
311   }
312   }
313 
314   return false;
315 }
316 
317 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
318 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
319 /// cast, but it could be generalized for targets with other types of
320 /// implicit widening casts.
321 bool
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & Demanded,SDLoc dl)322 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
323                                                     unsigned BitWidth,
324                                                     const APInt &Demanded,
325                                                     SDLoc dl) {
326   assert(Op.getNumOperands() == 2 &&
327          "ShrinkDemandedOp only supports binary operators!");
328   assert(Op.getNode()->getNumValues() == 1 &&
329          "ShrinkDemandedOp only supports nodes with one result!");
330 
331   // Early return, as this function cannot handle vector types.
332   if (Op.getValueType().isVector())
333     return false;
334 
335   // Don't do this if the node has another user, which may require the
336   // full value.
337   if (!Op.getNode()->hasOneUse())
338     return false;
339 
340   // Search for the smallest integer type with free casts to and from
341   // Op's type. For expedience, just check power-of-2 integer types.
342   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
343   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
344   unsigned SmallVTBits = DemandedSize;
345   if (!isPowerOf2_32(SmallVTBits))
346     SmallVTBits = NextPowerOf2(SmallVTBits);
347   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
348     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
349     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
350         TLI.isZExtFree(SmallVT, Op.getValueType())) {
351       // We found a type with free casts.
352       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
353                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
354                                           Op.getNode()->getOperand(0)),
355                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
356                                           Op.getNode()->getOperand(1)));
357       bool NeedZext = DemandedSize > SmallVTBits;
358       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
359                               dl, Op.getValueType(), X);
360       return CombineTo(Op, Z);
361     }
362   }
363   return false;
364 }
365 
366 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
367 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
368 /// use this information to simplify Op, create a new simplified DAG node and
369 /// return true, returning the original and new nodes in Old and New. Otherwise,
370 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
371 /// the expression (used to simplify the caller).  The KnownZero/One bits may
372 /// only be accurate for those bits in the DemandedMask.
SimplifyDemandedBits(SDValue Op,const APInt & DemandedMask,APInt & KnownZero,APInt & KnownOne,TargetLoweringOpt & TLO,unsigned Depth) const373 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
374                                           const APInt &DemandedMask,
375                                           APInt &KnownZero,
376                                           APInt &KnownOne,
377                                           TargetLoweringOpt &TLO,
378                                           unsigned Depth) const {
379   unsigned BitWidth = DemandedMask.getBitWidth();
380   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
381          "Mask size mismatches value type size!");
382   APInt NewMask = DemandedMask;
383   SDLoc dl(Op);
384 
385   // Don't know anything.
386   KnownZero = KnownOne = APInt(BitWidth, 0);
387 
388   // Other users may use these bits.
389   if (!Op.getNode()->hasOneUse()) {
390     if (Depth != 0) {
391       // If not at the root, Just compute the KnownZero/KnownOne bits to
392       // simplify things downstream.
393       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
394       return false;
395     }
396     // If this is the root being simplified, allow it to have multiple uses,
397     // just set the NewMask to all bits.
398     NewMask = APInt::getAllOnesValue(BitWidth);
399   } else if (DemandedMask == 0) {
400     // Not demanding any bits from Op.
401     if (Op.getOpcode() != ISD::UNDEF)
402       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
403     return false;
404   } else if (Depth == 6) {        // Limit search depth.
405     return false;
406   }
407 
408   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
409   switch (Op.getOpcode()) {
410   case ISD::Constant:
411     // We know all of the bits for a constant!
412     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
413     KnownZero = ~KnownOne;
414     return false;   // Don't fall through, will infinitely loop.
415   case ISD::AND:
416     // If the RHS is a constant, check to see if the LHS would be zero without
417     // using the bits from the RHS.  Below, we use knowledge about the RHS to
418     // simplify the LHS, here we're using information from the LHS to simplify
419     // the RHS.
420     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
421       APInt LHSZero, LHSOne;
422       // Do not increment Depth here; that can cause an infinite loop.
423       TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
424       // If the LHS already has zeros where RHSC does, this and is dead.
425       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
426         return TLO.CombineTo(Op, Op.getOperand(0));
427       // If any of the set bits in the RHS are known zero on the LHS, shrink
428       // the constant.
429       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
430         return true;
431     }
432 
433     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
434                              KnownOne, TLO, Depth+1))
435       return true;
436     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
437     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
438                              KnownZero2, KnownOne2, TLO, Depth+1))
439       return true;
440     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
441 
442     // If all of the demanded bits are known one on one side, return the other.
443     // These bits cannot contribute to the result of the 'and'.
444     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
445       return TLO.CombineTo(Op, Op.getOperand(0));
446     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
447       return TLO.CombineTo(Op, Op.getOperand(1));
448     // If all of the demanded bits in the inputs are known zeros, return zero.
449     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
450       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
451     // If the RHS is a constant, see if we can simplify it.
452     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
453       return true;
454     // If the operation can be done in a smaller type, do so.
455     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
456       return true;
457 
458     // Output known-1 bits are only known if set in both the LHS & RHS.
459     KnownOne &= KnownOne2;
460     // Output known-0 are known to be clear if zero in either the LHS | RHS.
461     KnownZero |= KnownZero2;
462     break;
463   case ISD::OR:
464     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
465                              KnownOne, TLO, Depth+1))
466       return true;
467     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
468     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
469                              KnownZero2, KnownOne2, TLO, Depth+1))
470       return true;
471     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
472 
473     // If all of the demanded bits are known zero on one side, return the other.
474     // These bits cannot contribute to the result of the 'or'.
475     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
476       return TLO.CombineTo(Op, Op.getOperand(0));
477     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
478       return TLO.CombineTo(Op, Op.getOperand(1));
479     // If all of the potentially set bits on one side are known to be set on
480     // the other side, just use the 'other' side.
481     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
482       return TLO.CombineTo(Op, Op.getOperand(0));
483     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
484       return TLO.CombineTo(Op, Op.getOperand(1));
485     // If the RHS is a constant, see if we can simplify it.
486     if (TLO.ShrinkDemandedConstant(Op, NewMask))
487       return true;
488     // If the operation can be done in a smaller type, do so.
489     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
490       return true;
491 
492     // Output known-0 bits are only known if clear in both the LHS & RHS.
493     KnownZero &= KnownZero2;
494     // Output known-1 are known to be set if set in either the LHS | RHS.
495     KnownOne |= KnownOne2;
496     break;
497   case ISD::XOR:
498     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
499                              KnownOne, TLO, Depth+1))
500       return true;
501     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
502     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
503                              KnownOne2, TLO, Depth+1))
504       return true;
505     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
506 
507     // If all of the demanded bits are known zero on one side, return the other.
508     // These bits cannot contribute to the result of the 'xor'.
509     if ((KnownZero & NewMask) == NewMask)
510       return TLO.CombineTo(Op, Op.getOperand(0));
511     if ((KnownZero2 & NewMask) == NewMask)
512       return TLO.CombineTo(Op, Op.getOperand(1));
513     // If the operation can be done in a smaller type, do so.
514     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
515       return true;
516 
517     // If all of the unknown bits are known to be zero on one side or the other
518     // (but not both) turn this into an *inclusive* or.
519     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
520     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
521       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
522                                                Op.getOperand(0),
523                                                Op.getOperand(1)));
524 
525     // Output known-0 bits are known if clear or set in both the LHS & RHS.
526     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
527     // Output known-1 are known to be set if set in only one of the LHS, RHS.
528     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
529 
530     // If all of the demanded bits on one side are known, and all of the set
531     // bits on that side are also known to be set on the other side, turn this
532     // into an AND, as we know the bits will be cleared.
533     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
534     // NB: it is okay if more bits are known than are requested
535     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
536       if (KnownOne == KnownOne2) { // set bits are the same on both sides
537         EVT VT = Op.getValueType();
538         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
539         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
540                                                  Op.getOperand(0), ANDC));
541       }
542     }
543 
544     // If the RHS is a constant, see if we can simplify it.
545     // for XOR, we prefer to force bits to 1 if they will make a -1.
546     // if we can't force bits, try to shrink constant
547     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
548       APInt Expanded = C->getAPIntValue() | (~NewMask);
549       // if we can expand it to have all bits set, do it
550       if (Expanded.isAllOnesValue()) {
551         if (Expanded != C->getAPIntValue()) {
552           EVT VT = Op.getValueType();
553           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
554                                           TLO.DAG.getConstant(Expanded, VT));
555           return TLO.CombineTo(Op, New);
556         }
557         // if it already has all the bits set, nothing to change
558         // but don't shrink either!
559       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
560         return true;
561       }
562     }
563 
564     KnownZero = KnownZeroOut;
565     KnownOne  = KnownOneOut;
566     break;
567   case ISD::SELECT:
568     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
569                              KnownOne, TLO, Depth+1))
570       return true;
571     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
572                              KnownOne2, TLO, Depth+1))
573       return true;
574     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
575     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
576 
577     // If the operands are constants, see if we can simplify them.
578     if (TLO.ShrinkDemandedConstant(Op, NewMask))
579       return true;
580 
581     // Only known if known in both the LHS and RHS.
582     KnownOne &= KnownOne2;
583     KnownZero &= KnownZero2;
584     break;
585   case ISD::SELECT_CC:
586     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
587                              KnownOne, TLO, Depth+1))
588       return true;
589     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
590                              KnownOne2, TLO, Depth+1))
591       return true;
592     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
593     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
594 
595     // If the operands are constants, see if we can simplify them.
596     if (TLO.ShrinkDemandedConstant(Op, NewMask))
597       return true;
598 
599     // Only known if known in both the LHS and RHS.
600     KnownOne &= KnownOne2;
601     KnownZero &= KnownZero2;
602     break;
603   case ISD::SHL:
604     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
605       unsigned ShAmt = SA->getZExtValue();
606       SDValue InOp = Op.getOperand(0);
607 
608       // If the shift count is an invalid immediate, don't do anything.
609       if (ShAmt >= BitWidth)
610         break;
611 
612       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
613       // single shift.  We can do this if the bottom bits (which are shifted
614       // out) are never demanded.
615       if (InOp.getOpcode() == ISD::SRL &&
616           isa<ConstantSDNode>(InOp.getOperand(1))) {
617         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
618           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
619           unsigned Opc = ISD::SHL;
620           int Diff = ShAmt-C1;
621           if (Diff < 0) {
622             Diff = -Diff;
623             Opc = ISD::SRL;
624           }
625 
626           SDValue NewSA =
627             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
628           EVT VT = Op.getValueType();
629           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
630                                                    InOp.getOperand(0), NewSA));
631         }
632       }
633 
634       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
635                                KnownZero, KnownOne, TLO, Depth+1))
636         return true;
637 
638       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
639       // are not demanded. This will likely allow the anyext to be folded away.
640       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
641         SDValue InnerOp = InOp.getNode()->getOperand(0);
642         EVT InnerVT = InnerOp.getValueType();
643         unsigned InnerBits = InnerVT.getSizeInBits();
644         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
645             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
646           EVT ShTy = getShiftAmountTy(InnerVT);
647           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
648             ShTy = InnerVT;
649           SDValue NarrowShl =
650             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
651                             TLO.DAG.getConstant(ShAmt, ShTy));
652           return
653             TLO.CombineTo(Op,
654                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
655                                           NarrowShl));
656         }
657         // Repeat the SHL optimization above in cases where an extension
658         // intervenes: (shl (anyext (shr x, c1)), c2) to
659         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
660         // aren't demanded (as above) and that the shifted upper c1 bits of
661         // x aren't demanded.
662         if (InOp.hasOneUse() &&
663             InnerOp.getOpcode() == ISD::SRL &&
664             InnerOp.hasOneUse() &&
665             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
666           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
667             ->getZExtValue();
668           if (InnerShAmt < ShAmt &&
669               InnerShAmt < InnerBits &&
670               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
671               NewMask.trunc(ShAmt) == 0) {
672             SDValue NewSA =
673               TLO.DAG.getConstant(ShAmt - InnerShAmt,
674                                   Op.getOperand(1).getValueType());
675             EVT VT = Op.getValueType();
676             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
677                                              InnerOp.getOperand(0));
678             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
679                                                      NewExt, NewSA));
680           }
681         }
682       }
683 
684       KnownZero <<= SA->getZExtValue();
685       KnownOne  <<= SA->getZExtValue();
686       // low bits known zero.
687       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
688     }
689     break;
690   case ISD::SRL:
691     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
692       EVT VT = Op.getValueType();
693       unsigned ShAmt = SA->getZExtValue();
694       unsigned VTSize = VT.getSizeInBits();
695       SDValue InOp = Op.getOperand(0);
696 
697       // If the shift count is an invalid immediate, don't do anything.
698       if (ShAmt >= BitWidth)
699         break;
700 
701       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
702       // single shift.  We can do this if the top bits (which are shifted out)
703       // are never demanded.
704       if (InOp.getOpcode() == ISD::SHL &&
705           isa<ConstantSDNode>(InOp.getOperand(1))) {
706         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
707           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
708           unsigned Opc = ISD::SRL;
709           int Diff = ShAmt-C1;
710           if (Diff < 0) {
711             Diff = -Diff;
712             Opc = ISD::SHL;
713           }
714 
715           SDValue NewSA =
716             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
717           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
718                                                    InOp.getOperand(0), NewSA));
719         }
720       }
721 
722       // Compute the new bits that are at the top now.
723       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
724                                KnownZero, KnownOne, TLO, Depth+1))
725         return true;
726       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
727       KnownZero = KnownZero.lshr(ShAmt);
728       KnownOne  = KnownOne.lshr(ShAmt);
729 
730       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
731       KnownZero |= HighBits;  // High bits known zero.
732     }
733     break;
734   case ISD::SRA:
735     // If this is an arithmetic shift right and only the low-bit is set, we can
736     // always convert this into a logical shr, even if the shift amount is
737     // variable.  The low bit of the shift cannot be an input sign bit unless
738     // the shift amount is >= the size of the datatype, which is undefined.
739     if (NewMask == 1)
740       return TLO.CombineTo(Op,
741                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
742                                            Op.getOperand(0), Op.getOperand(1)));
743 
744     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
745       EVT VT = Op.getValueType();
746       unsigned ShAmt = SA->getZExtValue();
747 
748       // If the shift count is an invalid immediate, don't do anything.
749       if (ShAmt >= BitWidth)
750         break;
751 
752       APInt InDemandedMask = (NewMask << ShAmt);
753 
754       // If any of the demanded bits are produced by the sign extension, we also
755       // demand the input sign bit.
756       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
757       if (HighBits.intersects(NewMask))
758         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
759 
760       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
761                                KnownZero, KnownOne, TLO, Depth+1))
762         return true;
763       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
764       KnownZero = KnownZero.lshr(ShAmt);
765       KnownOne  = KnownOne.lshr(ShAmt);
766 
767       // Handle the sign bit, adjusted to where it is now in the mask.
768       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
769 
770       // If the input sign bit is known to be zero, or if none of the top bits
771       // are demanded, turn this into an unsigned shift right.
772       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits)
773         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
774                                                  Op.getOperand(0),
775                                                  Op.getOperand(1)));
776 
777       int Log2 = NewMask.exactLogBase2();
778       if (Log2 >= 0) {
779         // The bit must come from the sign.
780         SDValue NewSA =
781           TLO.DAG.getConstant(BitWidth - 1 - Log2,
782                               Op.getOperand(1).getValueType());
783         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
784                                                  Op.getOperand(0), NewSA));
785       }
786 
787       if (KnownOne.intersects(SignBit))
788         // New bits are known one.
789         KnownOne |= HighBits;
790     }
791     break;
792   case ISD::SIGN_EXTEND_INREG: {
793     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
794 
795     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
796     // If we only care about the highest bit, don't bother shifting right.
797     if (MsbMask == DemandedMask) {
798       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
799       SDValue InOp = Op.getOperand(0);
800 
801       // Compute the correct shift amount type, which must be getShiftAmountTy
802       // for scalar types after legalization.
803       EVT ShiftAmtTy = Op.getValueType();
804       if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
805         ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
806 
807       SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
808       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
809                                             Op.getValueType(), InOp, ShiftAmt));
810     }
811 
812     // Sign extension.  Compute the demanded bits in the result that are not
813     // present in the input.
814     APInt NewBits =
815       APInt::getHighBitsSet(BitWidth,
816                             BitWidth - ExVT.getScalarType().getSizeInBits());
817 
818     // If none of the extended bits are demanded, eliminate the sextinreg.
819     if ((NewBits & NewMask) == 0)
820       return TLO.CombineTo(Op, Op.getOperand(0));
821 
822     APInt InSignBit =
823       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
824     APInt InputDemandedBits =
825       APInt::getLowBitsSet(BitWidth,
826                            ExVT.getScalarType().getSizeInBits()) &
827       NewMask;
828 
829     // Since the sign extended bits are demanded, we know that the sign
830     // bit is demanded.
831     InputDemandedBits |= InSignBit;
832 
833     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
834                              KnownZero, KnownOne, TLO, Depth+1))
835       return true;
836     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
837 
838     // If the sign bit of the input is known set or clear, then we know the
839     // top bits of the result.
840 
841     // If the input sign bit is known zero, convert this into a zero extension.
842     if (KnownZero.intersects(InSignBit))
843       return TLO.CombineTo(Op,
844                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
845 
846     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
847       KnownOne |= NewBits;
848       KnownZero &= ~NewBits;
849     } else {                       // Input sign bit unknown
850       KnownZero &= ~NewBits;
851       KnownOne &= ~NewBits;
852     }
853     break;
854   }
855   case ISD::BUILD_PAIR: {
856     EVT HalfVT = Op.getOperand(0).getValueType();
857     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
858 
859     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
860     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
861 
862     APInt KnownZeroLo, KnownOneLo;
863     APInt KnownZeroHi, KnownOneHi;
864 
865     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
866                              KnownOneLo, TLO, Depth + 1))
867       return true;
868 
869     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
870                              KnownOneHi, TLO, Depth + 1))
871       return true;
872 
873     KnownZero = KnownZeroLo.zext(BitWidth) |
874                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
875 
876     KnownOne = KnownOneLo.zext(BitWidth) |
877                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
878     break;
879   }
880   case ISD::ZERO_EXTEND: {
881     unsigned OperandBitWidth =
882       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
883     APInt InMask = NewMask.trunc(OperandBitWidth);
884 
885     // If none of the top bits are demanded, convert this into an any_extend.
886     APInt NewBits =
887       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
888     if (!NewBits.intersects(NewMask))
889       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
890                                                Op.getValueType(),
891                                                Op.getOperand(0)));
892 
893     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
894                              KnownZero, KnownOne, TLO, Depth+1))
895       return true;
896     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
897     KnownZero = KnownZero.zext(BitWidth);
898     KnownOne = KnownOne.zext(BitWidth);
899     KnownZero |= NewBits;
900     break;
901   }
902   case ISD::SIGN_EXTEND: {
903     EVT InVT = Op.getOperand(0).getValueType();
904     unsigned InBits = InVT.getScalarType().getSizeInBits();
905     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
906     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
907     APInt NewBits   = ~InMask & NewMask;
908 
909     // If none of the top bits are demanded, convert this into an any_extend.
910     if (NewBits == 0)
911       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
912                                               Op.getValueType(),
913                                               Op.getOperand(0)));
914 
915     // Since some of the sign extended bits are demanded, we know that the sign
916     // bit is demanded.
917     APInt InDemandedBits = InMask & NewMask;
918     InDemandedBits |= InSignBit;
919     InDemandedBits = InDemandedBits.trunc(InBits);
920 
921     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
922                              KnownOne, TLO, Depth+1))
923       return true;
924     KnownZero = KnownZero.zext(BitWidth);
925     KnownOne = KnownOne.zext(BitWidth);
926 
927     // If the sign bit is known zero, convert this to a zero extend.
928     if (KnownZero.intersects(InSignBit))
929       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
930                                                Op.getValueType(),
931                                                Op.getOperand(0)));
932 
933     // If the sign bit is known one, the top bits match.
934     if (KnownOne.intersects(InSignBit)) {
935       KnownOne |= NewBits;
936       assert((KnownZero & NewBits) == 0);
937     } else {   // Otherwise, top bits aren't known.
938       assert((KnownOne & NewBits) == 0);
939       assert((KnownZero & NewBits) == 0);
940     }
941     break;
942   }
943   case ISD::ANY_EXTEND: {
944     unsigned OperandBitWidth =
945       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
946     APInt InMask = NewMask.trunc(OperandBitWidth);
947     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
948                              KnownZero, KnownOne, TLO, Depth+1))
949       return true;
950     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
951     KnownZero = KnownZero.zext(BitWidth);
952     KnownOne = KnownOne.zext(BitWidth);
953     break;
954   }
955   case ISD::TRUNCATE: {
956     // Simplify the input, using demanded bit information, and compute the known
957     // zero/one bits live out.
958     unsigned OperandBitWidth =
959       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
960     APInt TruncMask = NewMask.zext(OperandBitWidth);
961     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
962                              KnownZero, KnownOne, TLO, Depth+1))
963       return true;
964     KnownZero = KnownZero.trunc(BitWidth);
965     KnownOne = KnownOne.trunc(BitWidth);
966 
967     // If the input is only used by this truncate, see if we can shrink it based
968     // on the known demanded bits.
969     if (Op.getOperand(0).getNode()->hasOneUse()) {
970       SDValue In = Op.getOperand(0);
971       switch (In.getOpcode()) {
972       default: break;
973       case ISD::SRL:
974         // Shrink SRL by a constant if none of the high bits shifted in are
975         // demanded.
976         if (TLO.LegalTypes() &&
977             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
978           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
979           // undesirable.
980           break;
981         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
982         if (!ShAmt)
983           break;
984         SDValue Shift = In.getOperand(1);
985         if (TLO.LegalTypes()) {
986           uint64_t ShVal = ShAmt->getZExtValue();
987           Shift =
988             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
989         }
990 
991         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
992                                                OperandBitWidth - BitWidth);
993         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
994 
995         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
996           // None of the shifted in bits are needed.  Add a truncate of the
997           // shift input, then shift it.
998           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
999                                              Op.getValueType(),
1000                                              In.getOperand(0));
1001           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1002                                                    Op.getValueType(),
1003                                                    NewTrunc,
1004                                                    Shift));
1005         }
1006         break;
1007       }
1008     }
1009 
1010     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1011     break;
1012   }
1013   case ISD::AssertZext: {
1014     // AssertZext demands all of the high bits, plus any of the low bits
1015     // demanded by its users.
1016     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1017     APInt InMask = APInt::getLowBitsSet(BitWidth,
1018                                         VT.getSizeInBits());
1019     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1020                              KnownZero, KnownOne, TLO, Depth+1))
1021       return true;
1022     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1023 
1024     KnownZero |= ~InMask & NewMask;
1025     break;
1026   }
1027   case ISD::BITCAST:
1028     // If this is an FP->Int bitcast and if the sign bit is the only
1029     // thing demanded, turn this into a FGETSIGN.
1030     if (!TLO.LegalOperations() &&
1031         !Op.getValueType().isVector() &&
1032         !Op.getOperand(0).getValueType().isVector() &&
1033         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1034         Op.getOperand(0).getValueType().isFloatingPoint()) {
1035       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1036       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1037       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1038         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1039         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1040         // place.  We expect the SHL to be eliminated by other optimizations.
1041         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1042         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1043         if (!OpVTLegal && OpVTSizeInBits > 32)
1044           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1045         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1046         SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1047         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1048                                                  Op.getValueType(),
1049                                                  Sign, ShAmt));
1050       }
1051     }
1052     break;
1053   case ISD::ADD:
1054   case ISD::MUL:
1055   case ISD::SUB: {
1056     // Add, Sub, and Mul don't demand any bits in positions beyond that
1057     // of the highest bit demanded of them.
1058     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1059                                         BitWidth - NewMask.countLeadingZeros());
1060     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1061                              KnownOne2, TLO, Depth+1))
1062       return true;
1063     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1064                              KnownOne2, TLO, Depth+1))
1065       return true;
1066     // See if the operation should be performed at a smaller bit width.
1067     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1068       return true;
1069   }
1070   // FALL THROUGH
1071   default:
1072     // Just use computeKnownBits to compute output bits.
1073     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1074     break;
1075   }
1076 
1077   // If we know the value of all of the demanded bits, return this as a
1078   // constant.
1079   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1080     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1081 
1082   return false;
1083 }
1084 
1085 /// computeKnownBitsForTargetNode - Determine which of the bits specified
1086 /// in Mask are known to be either zero or one and return them in the
1087 /// KnownZero/KnownOne bitsets.
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const1088 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1089                                                    APInt &KnownZero,
1090                                                    APInt &KnownOne,
1091                                                    const SelectionDAG &DAG,
1092                                                    unsigned Depth) const {
1093   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1094           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1095           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1096           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1097          "Should use MaskedValueIsZero if you don't know whether Op"
1098          " is a target node!");
1099   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1100 }
1101 
1102 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1103 /// targets that want to expose additional information about sign bits to the
1104 /// DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,const SelectionDAG &,unsigned Depth) const1105 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1106                                                          const SelectionDAG &,
1107                                                          unsigned Depth) const {
1108   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1109           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1110           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1111           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1112          "Should use ComputeNumSignBits if you don't know whether Op"
1113          " is a target node!");
1114   return 1;
1115 }
1116 
1117 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1118 /// one bit set. This differs from computeKnownBits in that it doesn't need to
1119 /// determine which bit is set.
1120 ///
ValueHasExactlyOneBitSet(SDValue Val,const SelectionDAG & DAG)1121 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1122   // A left-shift of a constant one will have exactly one bit set, because
1123   // shifting the bit off the end is undefined.
1124   if (Val.getOpcode() == ISD::SHL)
1125     if (ConstantSDNode *C =
1126          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1127       if (C->getAPIntValue() == 1)
1128         return true;
1129 
1130   // Similarly, a right-shift of a constant sign-bit will have exactly
1131   // one bit set.
1132   if (Val.getOpcode() == ISD::SRL)
1133     if (ConstantSDNode *C =
1134          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1135       if (C->getAPIntValue().isSignBit())
1136         return true;
1137 
1138   // More could be done here, though the above checks are enough
1139   // to handle some common cases.
1140 
1141   // Fall back to computeKnownBits to catch other known cases.
1142   EVT OpVT = Val.getValueType();
1143   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1144   APInt KnownZero, KnownOne;
1145   DAG.computeKnownBits(Val, KnownZero, KnownOne);
1146   return (KnownZero.countPopulation() == BitWidth - 1) &&
1147          (KnownOne.countPopulation() == 1);
1148 }
1149 
isConstTrueVal(const SDNode * N) const1150 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1151   if (!N)
1152     return false;
1153 
1154   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1155   if (!CN) {
1156     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1157     if (!BV)
1158       return false;
1159 
1160     BitVector UndefElements;
1161     CN = BV->getConstantSplatNode(&UndefElements);
1162     // Only interested in constant splats, and we don't try to handle undef
1163     // elements in identifying boolean constants.
1164     if (!CN || UndefElements.none())
1165       return false;
1166   }
1167 
1168   switch (getBooleanContents(N->getValueType(0))) {
1169   case UndefinedBooleanContent:
1170     return CN->getAPIntValue()[0];
1171   case ZeroOrOneBooleanContent:
1172     return CN->isOne();
1173   case ZeroOrNegativeOneBooleanContent:
1174     return CN->isAllOnesValue();
1175   }
1176 
1177   llvm_unreachable("Invalid boolean contents");
1178 }
1179 
isConstFalseVal(const SDNode * N) const1180 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1181   if (!N)
1182     return false;
1183 
1184   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1185   if (!CN) {
1186     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1187     if (!BV)
1188       return false;
1189 
1190     BitVector UndefElements;
1191     CN = BV->getConstantSplatNode(&UndefElements);
1192     // Only interested in constant splats, and we don't try to handle undef
1193     // elements in identifying boolean constants.
1194     if (!CN || UndefElements.none())
1195       return false;
1196   }
1197 
1198   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1199     return !CN->getAPIntValue()[0];
1200 
1201   return CN->isNullValue();
1202 }
1203 
1204 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1205 /// and cc. If it is unable to simplify it, return a null SDValue.
1206 SDValue
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,SDLoc dl) const1207 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1208                               ISD::CondCode Cond, bool foldBooleans,
1209                               DAGCombinerInfo &DCI, SDLoc dl) const {
1210   SelectionDAG &DAG = DCI.DAG;
1211 
1212   // These setcc operations always fold.
1213   switch (Cond) {
1214   default: break;
1215   case ISD::SETFALSE:
1216   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1217   case ISD::SETTRUE:
1218   case ISD::SETTRUE2: {
1219     TargetLowering::BooleanContent Cnt =
1220         getBooleanContents(N0->getValueType(0));
1221     return DAG.getConstant(
1222         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
1223   }
1224   }
1225 
1226   // Ensure that the constant occurs on the RHS, and fold constant
1227   // comparisons.
1228   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1229   if (isa<ConstantSDNode>(N0.getNode()) &&
1230       (DCI.isBeforeLegalizeOps() ||
1231        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1232     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1233 
1234   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1235     const APInt &C1 = N1C->getAPIntValue();
1236 
1237     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1238     // equality comparison, then we're just comparing whether X itself is
1239     // zero.
1240     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1241         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1242         N0.getOperand(1).getOpcode() == ISD::Constant) {
1243       const APInt &ShAmt
1244         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1245       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1246           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1247         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1248           // (srl (ctlz x), 5) == 0  -> X != 0
1249           // (srl (ctlz x), 5) != 1  -> X != 0
1250           Cond = ISD::SETNE;
1251         } else {
1252           // (srl (ctlz x), 5) != 0  -> X == 0
1253           // (srl (ctlz x), 5) == 1  -> X == 0
1254           Cond = ISD::SETEQ;
1255         }
1256         SDValue Zero = DAG.getConstant(0, N0.getValueType());
1257         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1258                             Zero, Cond);
1259       }
1260     }
1261 
1262     SDValue CTPOP = N0;
1263     // Look through truncs that don't change the value of a ctpop.
1264     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1265       CTPOP = N0.getOperand(0);
1266 
1267     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1268         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1269                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1270       EVT CTVT = CTPOP.getValueType();
1271       SDValue CTOp = CTPOP.getOperand(0);
1272 
1273       // (ctpop x) u< 2 -> (x & x-1) == 0
1274       // (ctpop x) u> 1 -> (x & x-1) != 0
1275       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1276         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1277                                   DAG.getConstant(1, CTVT));
1278         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1279         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1280         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1281       }
1282 
1283       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1284     }
1285 
1286     // (zext x) == C --> x == (trunc C)
1287     // (sext x) == C --> x == (trunc C)
1288     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1289         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1290       unsigned MinBits = N0.getValueSizeInBits();
1291       SDValue PreExt;
1292       bool Signed = false;
1293       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1294         // ZExt
1295         MinBits = N0->getOperand(0).getValueSizeInBits();
1296         PreExt = N0->getOperand(0);
1297       } else if (N0->getOpcode() == ISD::AND) {
1298         // DAGCombine turns costly ZExts into ANDs
1299         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1300           if ((C->getAPIntValue()+1).isPowerOf2()) {
1301             MinBits = C->getAPIntValue().countTrailingOnes();
1302             PreExt = N0->getOperand(0);
1303           }
1304       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1305         // SExt
1306         MinBits = N0->getOperand(0).getValueSizeInBits();
1307         PreExt = N0->getOperand(0);
1308         Signed = true;
1309       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1310         // ZEXTLOAD / SEXTLOAD
1311         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1312           MinBits = LN0->getMemoryVT().getSizeInBits();
1313           PreExt = N0;
1314         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1315           Signed = true;
1316           MinBits = LN0->getMemoryVT().getSizeInBits();
1317           PreExt = N0;
1318         }
1319       }
1320 
1321       // Figure out how many bits we need to preserve this constant.
1322       unsigned ReqdBits = Signed ?
1323         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1324         C1.getActiveBits();
1325 
1326       // Make sure we're not losing bits from the constant.
1327       if (MinBits > 0 &&
1328           MinBits < C1.getBitWidth() &&
1329           MinBits >= ReqdBits) {
1330         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1331         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1332           // Will get folded away.
1333           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1334           SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
1335           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1336         }
1337       }
1338     }
1339 
1340     // If the LHS is '(and load, const)', the RHS is 0,
1341     // the test is for equality or unsigned, and all 1 bits of the const are
1342     // in the same partial word, see if we can shorten the load.
1343     if (DCI.isBeforeLegalize() &&
1344         !ISD::isSignedIntSetCC(Cond) &&
1345         N0.getOpcode() == ISD::AND && C1 == 0 &&
1346         N0.getNode()->hasOneUse() &&
1347         isa<LoadSDNode>(N0.getOperand(0)) &&
1348         N0.getOperand(0).getNode()->hasOneUse() &&
1349         isa<ConstantSDNode>(N0.getOperand(1))) {
1350       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1351       APInt bestMask;
1352       unsigned bestWidth = 0, bestOffset = 0;
1353       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1354         unsigned origWidth = N0.getValueType().getSizeInBits();
1355         unsigned maskWidth = origWidth;
1356         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1357         // 8 bits, but have to be careful...
1358         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1359           origWidth = Lod->getMemoryVT().getSizeInBits();
1360         const APInt &Mask =
1361           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1362         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1363           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1364           for (unsigned offset=0; offset<origWidth/width; offset++) {
1365             if ((newMask & Mask) == Mask) {
1366               if (!getDataLayout()->isLittleEndian())
1367                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1368               else
1369                 bestOffset = (uint64_t)offset * (width/8);
1370               bestMask = Mask.lshr(offset * (width/8) * 8);
1371               bestWidth = width;
1372               break;
1373             }
1374             newMask = newMask << width;
1375           }
1376         }
1377       }
1378       if (bestWidth) {
1379         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1380         if (newVT.isRound()) {
1381           EVT PtrType = Lod->getOperand(1).getValueType();
1382           SDValue Ptr = Lod->getBasePtr();
1383           if (bestOffset != 0)
1384             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1385                               DAG.getConstant(bestOffset, PtrType));
1386           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1387           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1388                                 Lod->getPointerInfo().getWithOffset(bestOffset),
1389                                         false, false, false, NewAlign);
1390           return DAG.getSetCC(dl, VT,
1391                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1392                                       DAG.getConstant(bestMask.trunc(bestWidth),
1393                                                       newVT)),
1394                               DAG.getConstant(0LL, newVT), Cond);
1395         }
1396       }
1397     }
1398 
1399     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1400     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1401       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1402 
1403       // If the comparison constant has bits in the upper part, the
1404       // zero-extended value could never match.
1405       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1406                                               C1.getBitWidth() - InSize))) {
1407         switch (Cond) {
1408         case ISD::SETUGT:
1409         case ISD::SETUGE:
1410         case ISD::SETEQ: return DAG.getConstant(0, VT);
1411         case ISD::SETULT:
1412         case ISD::SETULE:
1413         case ISD::SETNE: return DAG.getConstant(1, VT);
1414         case ISD::SETGT:
1415         case ISD::SETGE:
1416           // True if the sign bit of C1 is set.
1417           return DAG.getConstant(C1.isNegative(), VT);
1418         case ISD::SETLT:
1419         case ISD::SETLE:
1420           // True if the sign bit of C1 isn't set.
1421           return DAG.getConstant(C1.isNonNegative(), VT);
1422         default:
1423           break;
1424         }
1425       }
1426 
1427       // Otherwise, we can perform the comparison with the low bits.
1428       switch (Cond) {
1429       case ISD::SETEQ:
1430       case ISD::SETNE:
1431       case ISD::SETUGT:
1432       case ISD::SETUGE:
1433       case ISD::SETULT:
1434       case ISD::SETULE: {
1435         EVT newVT = N0.getOperand(0).getValueType();
1436         if (DCI.isBeforeLegalizeOps() ||
1437             (isOperationLegal(ISD::SETCC, newVT) &&
1438              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1439           EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT);
1440           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), newVT);
1441 
1442           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1443                                           NewConst, Cond);
1444           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1445         }
1446         break;
1447       }
1448       default:
1449         break;   // todo, be more careful with signed comparisons
1450       }
1451     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1452                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1453       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1454       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1455       EVT ExtDstTy = N0.getValueType();
1456       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1457 
1458       // If the constant doesn't fit into the number of bits for the source of
1459       // the sign extension, it is impossible for both sides to be equal.
1460       if (C1.getMinSignedBits() > ExtSrcTyBits)
1461         return DAG.getConstant(Cond == ISD::SETNE, VT);
1462 
1463       SDValue ZextOp;
1464       EVT Op0Ty = N0.getOperand(0).getValueType();
1465       if (Op0Ty == ExtSrcTy) {
1466         ZextOp = N0.getOperand(0);
1467       } else {
1468         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1469         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1470                               DAG.getConstant(Imm, Op0Ty));
1471       }
1472       if (!DCI.isCalledByLegalizer())
1473         DCI.AddToWorklist(ZextOp.getNode());
1474       // Otherwise, make this a use of a zext.
1475       return DAG.getSetCC(dl, VT, ZextOp,
1476                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1477                                                               ExtDstTyBits,
1478                                                               ExtSrcTyBits),
1479                                           ExtDstTy),
1480                           Cond);
1481     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1482                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1483       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1484       if (N0.getOpcode() == ISD::SETCC &&
1485           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1486         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1487         if (TrueWhenTrue)
1488           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1489         // Invert the condition.
1490         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1491         CC = ISD::getSetCCInverse(CC,
1492                                   N0.getOperand(0).getValueType().isInteger());
1493         if (DCI.isBeforeLegalizeOps() ||
1494             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1495           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1496       }
1497 
1498       if ((N0.getOpcode() == ISD::XOR ||
1499            (N0.getOpcode() == ISD::AND &&
1500             N0.getOperand(0).getOpcode() == ISD::XOR &&
1501             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1502           isa<ConstantSDNode>(N0.getOperand(1)) &&
1503           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1504         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1505         // can only do this if the top bits are known zero.
1506         unsigned BitWidth = N0.getValueSizeInBits();
1507         if (DAG.MaskedValueIsZero(N0,
1508                                   APInt::getHighBitsSet(BitWidth,
1509                                                         BitWidth-1))) {
1510           // Okay, get the un-inverted input value.
1511           SDValue Val;
1512           if (N0.getOpcode() == ISD::XOR)
1513             Val = N0.getOperand(0);
1514           else {
1515             assert(N0.getOpcode() == ISD::AND &&
1516                     N0.getOperand(0).getOpcode() == ISD::XOR);
1517             // ((X^1)&1)^1 -> X & 1
1518             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1519                               N0.getOperand(0).getOperand(0),
1520                               N0.getOperand(1));
1521           }
1522 
1523           return DAG.getSetCC(dl, VT, Val, N1,
1524                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1525         }
1526       } else if (N1C->getAPIntValue() == 1 &&
1527                  (VT == MVT::i1 ||
1528                   getBooleanContents(N0->getValueType(0)) ==
1529                       ZeroOrOneBooleanContent)) {
1530         SDValue Op0 = N0;
1531         if (Op0.getOpcode() == ISD::TRUNCATE)
1532           Op0 = Op0.getOperand(0);
1533 
1534         if ((Op0.getOpcode() == ISD::XOR) &&
1535             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1536             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1537           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1538           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1539           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1540                               Cond);
1541         }
1542         if (Op0.getOpcode() == ISD::AND &&
1543             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1544             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1545           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1546           if (Op0.getValueType().bitsGT(VT))
1547             Op0 = DAG.getNode(ISD::AND, dl, VT,
1548                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1549                           DAG.getConstant(1, VT));
1550           else if (Op0.getValueType().bitsLT(VT))
1551             Op0 = DAG.getNode(ISD::AND, dl, VT,
1552                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1553                         DAG.getConstant(1, VT));
1554 
1555           return DAG.getSetCC(dl, VT, Op0,
1556                               DAG.getConstant(0, Op0.getValueType()),
1557                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1558         }
1559         if (Op0.getOpcode() == ISD::AssertZext &&
1560             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1561           return DAG.getSetCC(dl, VT, Op0,
1562                               DAG.getConstant(0, Op0.getValueType()),
1563                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1564       }
1565     }
1566 
1567     APInt MinVal, MaxVal;
1568     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1569     if (ISD::isSignedIntSetCC(Cond)) {
1570       MinVal = APInt::getSignedMinValue(OperandBitSize);
1571       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1572     } else {
1573       MinVal = APInt::getMinValue(OperandBitSize);
1574       MaxVal = APInt::getMaxValue(OperandBitSize);
1575     }
1576 
1577     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1578     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1579       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1580       // X >= C0 --> X > (C0 - 1)
1581       APInt C = C1 - 1;
1582       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1583       if ((DCI.isBeforeLegalizeOps() ||
1584            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1585           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1586                                 isLegalICmpImmediate(C.getSExtValue())))) {
1587         return DAG.getSetCC(dl, VT, N0,
1588                             DAG.getConstant(C, N1.getValueType()),
1589                             NewCC);
1590       }
1591     }
1592 
1593     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1594       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1595       // X <= C0 --> X < (C0 + 1)
1596       APInt C = C1 + 1;
1597       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1598       if ((DCI.isBeforeLegalizeOps() ||
1599            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1600           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1601                                 isLegalICmpImmediate(C.getSExtValue())))) {
1602         return DAG.getSetCC(dl, VT, N0,
1603                             DAG.getConstant(C, N1.getValueType()),
1604                             NewCC);
1605       }
1606     }
1607 
1608     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1609       return DAG.getConstant(0, VT);      // X < MIN --> false
1610     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1611       return DAG.getConstant(1, VT);      // X >= MIN --> true
1612     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1613       return DAG.getConstant(0, VT);      // X > MAX --> false
1614     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1615       return DAG.getConstant(1, VT);      // X <= MAX --> true
1616 
1617     // Canonicalize setgt X, Min --> setne X, Min
1618     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1619       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1620     // Canonicalize setlt X, Max --> setne X, Max
1621     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1622       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1623 
1624     // If we have setult X, 1, turn it into seteq X, 0
1625     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1626       return DAG.getSetCC(dl, VT, N0,
1627                           DAG.getConstant(MinVal, N0.getValueType()),
1628                           ISD::SETEQ);
1629     // If we have setugt X, Max-1, turn it into seteq X, Max
1630     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1631       return DAG.getSetCC(dl, VT, N0,
1632                           DAG.getConstant(MaxVal, N0.getValueType()),
1633                           ISD::SETEQ);
1634 
1635     // If we have "setcc X, C0", check to see if we can shrink the immediate
1636     // by changing cc.
1637 
1638     // SETUGT X, SINTMAX  -> SETLT X, 0
1639     if (Cond == ISD::SETUGT &&
1640         C1 == APInt::getSignedMaxValue(OperandBitSize))
1641       return DAG.getSetCC(dl, VT, N0,
1642                           DAG.getConstant(0, N1.getValueType()),
1643                           ISD::SETLT);
1644 
1645     // SETULT X, SINTMIN  -> SETGT X, -1
1646     if (Cond == ISD::SETULT &&
1647         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1648       SDValue ConstMinusOne =
1649           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1650                           N1.getValueType());
1651       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1652     }
1653 
1654     // Fold bit comparisons when we can.
1655     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1656         (VT == N0.getValueType() ||
1657          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1658         N0.getOpcode() == ISD::AND)
1659       if (ConstantSDNode *AndRHS =
1660                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1661         EVT ShiftTy = DCI.isBeforeLegalize() ?
1662           getPointerTy() : getShiftAmountTy(N0.getValueType());
1663         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1664           // Perform the xform if the AND RHS is a single bit.
1665           if (AndRHS->getAPIntValue().isPowerOf2()) {
1666             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1667                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1668                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1669           }
1670         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1671           // (X & 8) == 8  -->  (X & 8) >> 3
1672           // Perform the xform if C1 is a single bit.
1673           if (C1.isPowerOf2()) {
1674             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1675                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1676                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
1677           }
1678         }
1679       }
1680 
1681     if (C1.getMinSignedBits() <= 64 &&
1682         !isLegalICmpImmediate(C1.getSExtValue())) {
1683       // (X & -256) == 256 -> (X >> 8) == 1
1684       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1685           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1686         if (ConstantSDNode *AndRHS =
1687             dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1688           const APInt &AndRHSC = AndRHS->getAPIntValue();
1689           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1690             unsigned ShiftBits = AndRHSC.countTrailingZeros();
1691             EVT ShiftTy = DCI.isBeforeLegalize() ?
1692               getPointerTy() : getShiftAmountTy(N0.getValueType());
1693             EVT CmpTy = N0.getValueType();
1694             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1695                                         DAG.getConstant(ShiftBits, ShiftTy));
1696             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
1697             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1698           }
1699         }
1700       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1701                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1702         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1703         // X <  0x100000000 -> (X >> 32) <  1
1704         // X >= 0x100000000 -> (X >> 32) >= 1
1705         // X <= 0x0ffffffff -> (X >> 32) <  1
1706         // X >  0x0ffffffff -> (X >> 32) >= 1
1707         unsigned ShiftBits;
1708         APInt NewC = C1;
1709         ISD::CondCode NewCond = Cond;
1710         if (AdjOne) {
1711           ShiftBits = C1.countTrailingOnes();
1712           NewC = NewC + 1;
1713           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1714         } else {
1715           ShiftBits = C1.countTrailingZeros();
1716         }
1717         NewC = NewC.lshr(ShiftBits);
1718         if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
1719           EVT ShiftTy = DCI.isBeforeLegalize() ?
1720             getPointerTy() : getShiftAmountTy(N0.getValueType());
1721           EVT CmpTy = N0.getValueType();
1722           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1723                                       DAG.getConstant(ShiftBits, ShiftTy));
1724           SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
1725           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1726         }
1727       }
1728     }
1729   }
1730 
1731   if (isa<ConstantFPSDNode>(N0.getNode())) {
1732     // Constant fold or commute setcc.
1733     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1734     if (O.getNode()) return O;
1735   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1736     // If the RHS of an FP comparison is a constant, simplify it away in
1737     // some cases.
1738     if (CFP->getValueAPF().isNaN()) {
1739       // If an operand is known to be a nan, we can fold it.
1740       switch (ISD::getUnorderedFlavor(Cond)) {
1741       default: llvm_unreachable("Unknown flavor!");
1742       case 0:  // Known false.
1743         return DAG.getConstant(0, VT);
1744       case 1:  // Known true.
1745         return DAG.getConstant(1, VT);
1746       case 2:  // Undefined.
1747         return DAG.getUNDEF(VT);
1748       }
1749     }
1750 
1751     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1752     // constant if knowing that the operand is non-nan is enough.  We prefer to
1753     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1754     // materialize 0.0.
1755     if (Cond == ISD::SETO || Cond == ISD::SETUO)
1756       return DAG.getSetCC(dl, VT, N0, N0, Cond);
1757 
1758     // If the condition is not legal, see if we can find an equivalent one
1759     // which is legal.
1760     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1761       // If the comparison was an awkward floating-point == or != and one of
1762       // the comparison operands is infinity or negative infinity, convert the
1763       // condition to a less-awkward <= or >=.
1764       if (CFP->getValueAPF().isInfinity()) {
1765         if (CFP->getValueAPF().isNegative()) {
1766           if (Cond == ISD::SETOEQ &&
1767               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1768             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1769           if (Cond == ISD::SETUEQ &&
1770               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1771             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1772           if (Cond == ISD::SETUNE &&
1773               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1774             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1775           if (Cond == ISD::SETONE &&
1776               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1777             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1778         } else {
1779           if (Cond == ISD::SETOEQ &&
1780               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1781             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1782           if (Cond == ISD::SETUEQ &&
1783               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1784             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1785           if (Cond == ISD::SETUNE &&
1786               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1787             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1788           if (Cond == ISD::SETONE &&
1789               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1790             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1791         }
1792       }
1793     }
1794   }
1795 
1796   if (N0 == N1) {
1797     // The sext(setcc()) => setcc() optimization relies on the appropriate
1798     // constant being emitted.
1799     uint64_t EqVal = 0;
1800     switch (getBooleanContents(N0.getValueType())) {
1801     case UndefinedBooleanContent:
1802     case ZeroOrOneBooleanContent:
1803       EqVal = ISD::isTrueWhenEqual(Cond);
1804       break;
1805     case ZeroOrNegativeOneBooleanContent:
1806       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
1807       break;
1808     }
1809 
1810     // We can always fold X == X for integer setcc's.
1811     if (N0.getValueType().isInteger()) {
1812       return DAG.getConstant(EqVal, VT);
1813     }
1814     unsigned UOF = ISD::getUnorderedFlavor(Cond);
1815     if (UOF == 2)   // FP operators that are undefined on NaNs.
1816       return DAG.getConstant(EqVal, VT);
1817     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1818       return DAG.getConstant(EqVal, VT);
1819     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1820     // if it is not already.
1821     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1822     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
1823           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
1824       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1825   }
1826 
1827   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1828       N0.getValueType().isInteger()) {
1829     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1830         N0.getOpcode() == ISD::XOR) {
1831       // Simplify (X+Y) == (X+Z) -->  Y == Z
1832       if (N0.getOpcode() == N1.getOpcode()) {
1833         if (N0.getOperand(0) == N1.getOperand(0))
1834           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1835         if (N0.getOperand(1) == N1.getOperand(1))
1836           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1837         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1838           // If X op Y == Y op X, try other combinations.
1839           if (N0.getOperand(0) == N1.getOperand(1))
1840             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1841                                 Cond);
1842           if (N0.getOperand(1) == N1.getOperand(0))
1843             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1844                                 Cond);
1845         }
1846       }
1847 
1848       // If RHS is a legal immediate value for a compare instruction, we need
1849       // to be careful about increasing register pressure needlessly.
1850       bool LegalRHSImm = false;
1851 
1852       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1853         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1854           // Turn (X+C1) == C2 --> X == C2-C1
1855           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1856             return DAG.getSetCC(dl, VT, N0.getOperand(0),
1857                                 DAG.getConstant(RHSC->getAPIntValue()-
1858                                                 LHSR->getAPIntValue(),
1859                                 N0.getValueType()), Cond);
1860           }
1861 
1862           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1863           if (N0.getOpcode() == ISD::XOR)
1864             // If we know that all of the inverted bits are zero, don't bother
1865             // performing the inversion.
1866             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1867               return
1868                 DAG.getSetCC(dl, VT, N0.getOperand(0),
1869                              DAG.getConstant(LHSR->getAPIntValue() ^
1870                                                RHSC->getAPIntValue(),
1871                                              N0.getValueType()),
1872                              Cond);
1873         }
1874 
1875         // Turn (C1-X) == C2 --> X == C1-C2
1876         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1877           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1878             return
1879               DAG.getSetCC(dl, VT, N0.getOperand(1),
1880                            DAG.getConstant(SUBC->getAPIntValue() -
1881                                              RHSC->getAPIntValue(),
1882                                            N0.getValueType()),
1883                            Cond);
1884           }
1885         }
1886 
1887         // Could RHSC fold directly into a compare?
1888         if (RHSC->getValueType(0).getSizeInBits() <= 64)
1889           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
1890       }
1891 
1892       // Simplify (X+Z) == X -->  Z == 0
1893       // Don't do this if X is an immediate that can fold into a cmp
1894       // instruction and X+Z has other uses. It could be an induction variable
1895       // chain, and the transform would increase register pressure.
1896       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
1897         if (N0.getOperand(0) == N1)
1898           return DAG.getSetCC(dl, VT, N0.getOperand(1),
1899                               DAG.getConstant(0, N0.getValueType()), Cond);
1900         if (N0.getOperand(1) == N1) {
1901           if (DAG.isCommutativeBinOp(N0.getOpcode()))
1902             return DAG.getSetCC(dl, VT, N0.getOperand(0),
1903                                 DAG.getConstant(0, N0.getValueType()), Cond);
1904           if (N0.getNode()->hasOneUse()) {
1905             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1906             // (Z-X) == X  --> Z == X<<1
1907             SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
1908                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
1909             if (!DCI.isCalledByLegalizer())
1910               DCI.AddToWorklist(SH.getNode());
1911             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1912           }
1913         }
1914       }
1915     }
1916 
1917     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1918         N1.getOpcode() == ISD::XOR) {
1919       // Simplify  X == (X+Z) -->  Z == 0
1920       if (N1.getOperand(0) == N0)
1921         return DAG.getSetCC(dl, VT, N1.getOperand(1),
1922                         DAG.getConstant(0, N1.getValueType()), Cond);
1923       if (N1.getOperand(1) == N0) {
1924         if (DAG.isCommutativeBinOp(N1.getOpcode()))
1925           return DAG.getSetCC(dl, VT, N1.getOperand(0),
1926                           DAG.getConstant(0, N1.getValueType()), Cond);
1927         if (N1.getNode()->hasOneUse()) {
1928           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1929           // X == (Z-X)  --> X<<1 == Z
1930           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1931                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
1932           if (!DCI.isCalledByLegalizer())
1933             DCI.AddToWorklist(SH.getNode());
1934           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1935         }
1936       }
1937     }
1938 
1939     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1940     // Note that where y is variable and is known to have at most
1941     // one bit set (for example, if it is z&1) we cannot do this;
1942     // the expressions are not equivalent when y==0.
1943     if (N0.getOpcode() == ISD::AND)
1944       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1945         if (ValueHasExactlyOneBitSet(N1, DAG)) {
1946           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1947           if (DCI.isBeforeLegalizeOps() ||
1948               isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1949             SDValue Zero = DAG.getConstant(0, N1.getValueType());
1950             return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1951           }
1952         }
1953       }
1954     if (N1.getOpcode() == ISD::AND)
1955       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1956         if (ValueHasExactlyOneBitSet(N0, DAG)) {
1957           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1958           if (DCI.isBeforeLegalizeOps() ||
1959               isCondCodeLegal(Cond, N1.getSimpleValueType())) {
1960             SDValue Zero = DAG.getConstant(0, N0.getValueType());
1961             return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1962           }
1963         }
1964       }
1965   }
1966 
1967   // Fold away ALL boolean setcc's.
1968   SDValue Temp;
1969   if (N0.getValueType() == MVT::i1 && foldBooleans) {
1970     switch (Cond) {
1971     default: llvm_unreachable("Unknown integer setcc!");
1972     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1973       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1974       N0 = DAG.getNOT(dl, Temp, MVT::i1);
1975       if (!DCI.isCalledByLegalizer())
1976         DCI.AddToWorklist(Temp.getNode());
1977       break;
1978     case ISD::SETNE:  // X != Y   -->  (X^Y)
1979       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1980       break;
1981     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
1982     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
1983       Temp = DAG.getNOT(dl, N0, MVT::i1);
1984       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1985       if (!DCI.isCalledByLegalizer())
1986         DCI.AddToWorklist(Temp.getNode());
1987       break;
1988     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
1989     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
1990       Temp = DAG.getNOT(dl, N1, MVT::i1);
1991       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
1992       if (!DCI.isCalledByLegalizer())
1993         DCI.AddToWorklist(Temp.getNode());
1994       break;
1995     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
1996     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
1997       Temp = DAG.getNOT(dl, N0, MVT::i1);
1998       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
1999       if (!DCI.isCalledByLegalizer())
2000         DCI.AddToWorklist(Temp.getNode());
2001       break;
2002     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2003     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2004       Temp = DAG.getNOT(dl, N1, MVT::i1);
2005       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2006       break;
2007     }
2008     if (VT != MVT::i1) {
2009       if (!DCI.isCalledByLegalizer())
2010         DCI.AddToWorklist(N0.getNode());
2011       // FIXME: If running after legalize, we probably can't do this.
2012       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2013     }
2014     return N0;
2015   }
2016 
2017   // Could not fold it.
2018   return SDValue();
2019 }
2020 
2021 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2022 /// node is a GlobalAddress + offset.
isGAPlusOffset(SDNode * N,const GlobalValue * & GA,int64_t & Offset) const2023 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2024                                     int64_t &Offset) const {
2025   if (isa<GlobalAddressSDNode>(N)) {
2026     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2027     GA = GASD->getGlobal();
2028     Offset += GASD->getOffset();
2029     return true;
2030   }
2031 
2032   if (N->getOpcode() == ISD::ADD) {
2033     SDValue N1 = N->getOperand(0);
2034     SDValue N2 = N->getOperand(1);
2035     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2036       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2037       if (V) {
2038         Offset += V->getSExtValue();
2039         return true;
2040       }
2041     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2042       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2043       if (V) {
2044         Offset += V->getSExtValue();
2045         return true;
2046       }
2047     }
2048   }
2049 
2050   return false;
2051 }
2052 
2053 
2054 SDValue TargetLowering::
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2055 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2056   // Default implementation: no optimization.
2057   return SDValue();
2058 }
2059 
2060 //===----------------------------------------------------------------------===//
2061 //  Inline Assembler Implementation Methods
2062 //===----------------------------------------------------------------------===//
2063 
2064 
2065 TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const2066 TargetLowering::getConstraintType(const std::string &Constraint) const {
2067   unsigned S = Constraint.size();
2068 
2069   if (S == 1) {
2070     switch (Constraint[0]) {
2071     default: break;
2072     case 'r': return C_RegisterClass;
2073     case 'm':    // memory
2074     case 'o':    // offsetable
2075     case 'V':    // not offsetable
2076       return C_Memory;
2077     case 'i':    // Simple Integer or Relocatable Constant
2078     case 'n':    // Simple Integer
2079     case 'E':    // Floating Point Constant
2080     case 'F':    // Floating Point Constant
2081     case 's':    // Relocatable Constant
2082     case 'p':    // Address.
2083     case 'X':    // Allow ANY value.
2084     case 'I':    // Target registers.
2085     case 'J':
2086     case 'K':
2087     case 'L':
2088     case 'M':
2089     case 'N':
2090     case 'O':
2091     case 'P':
2092     case '<':
2093     case '>':
2094       return C_Other;
2095     }
2096   }
2097 
2098   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2099     if (S == 8 && !Constraint.compare(1, 6, "memory", 6))  // "{memory}"
2100       return C_Memory;
2101     return C_Register;
2102   }
2103   return C_Unknown;
2104 }
2105 
2106 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2107 /// with another that has more specific requirements based on the type of the
2108 /// corresponding operand.
LowerXConstraint(EVT ConstraintVT) const2109 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2110   if (ConstraintVT.isInteger())
2111     return "r";
2112   if (ConstraintVT.isFloatingPoint())
2113     return "f";      // works for many targets
2114   return nullptr;
2115 }
2116 
2117 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2118 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2119 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2120                                                   std::string &Constraint,
2121                                                   std::vector<SDValue> &Ops,
2122                                                   SelectionDAG &DAG) const {
2123 
2124   if (Constraint.length() > 1) return;
2125 
2126   char ConstraintLetter = Constraint[0];
2127   switch (ConstraintLetter) {
2128   default: break;
2129   case 'X':     // Allows any operand; labels (basic block) use this.
2130     if (Op.getOpcode() == ISD::BasicBlock) {
2131       Ops.push_back(Op);
2132       return;
2133     }
2134     // fall through
2135   case 'i':    // Simple Integer or Relocatable Constant
2136   case 'n':    // Simple Integer
2137   case 's': {  // Relocatable Constant
2138     // These operands are interested in values of the form (GV+C), where C may
2139     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2140     // is possible and fine if either GV or C are missing.
2141     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2142     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2143 
2144     // If we have "(add GV, C)", pull out GV/C
2145     if (Op.getOpcode() == ISD::ADD) {
2146       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2147       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2148       if (!C || !GA) {
2149         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2150         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2151       }
2152       if (!C || !GA)
2153         C = nullptr, GA = nullptr;
2154     }
2155 
2156     // If we find a valid operand, map to the TargetXXX version so that the
2157     // value itself doesn't get selected.
2158     if (GA) {   // Either &GV   or   &GV+C
2159       if (ConstraintLetter != 'n') {
2160         int64_t Offs = GA->getOffset();
2161         if (C) Offs += C->getZExtValue();
2162         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2163                                                  C ? SDLoc(C) : SDLoc(),
2164                                                  Op.getValueType(), Offs));
2165         return;
2166       }
2167     }
2168     if (C) {   // just C, no GV.
2169       // Simple constants are not allowed for 's'.
2170       if (ConstraintLetter != 's') {
2171         // gcc prints these as sign extended.  Sign extend value to 64 bits
2172         // now; without this it would get ZExt'd later in
2173         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2174         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2175                                             MVT::i64));
2176         return;
2177       }
2178     }
2179     break;
2180   }
2181   }
2182 }
2183 
2184 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
getRegForInlineAsmConstraint(const std::string & Constraint,MVT VT) const2185 getRegForInlineAsmConstraint(const std::string &Constraint,
2186                              MVT VT) const {
2187   if (Constraint.empty() || Constraint[0] != '{')
2188     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2189   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2190 
2191   // Remove the braces from around the name.
2192   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2193 
2194   std::pair<unsigned, const TargetRegisterClass*> R =
2195     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2196 
2197   // Figure out which register class contains this reg.
2198   const TargetRegisterInfo *RI =
2199       getTargetMachine().getSubtargetImpl()->getRegisterInfo();
2200   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2201        E = RI->regclass_end(); RCI != E; ++RCI) {
2202     const TargetRegisterClass *RC = *RCI;
2203 
2204     // If none of the value types for this register class are valid, we
2205     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2206     if (!isLegalRC(RC))
2207       continue;
2208 
2209     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2210          I != E; ++I) {
2211       if (RegName.equals_lower(RI->getName(*I))) {
2212         std::pair<unsigned, const TargetRegisterClass*> S =
2213           std::make_pair(*I, RC);
2214 
2215         // If this register class has the requested value type, return it,
2216         // otherwise keep searching and return the first class found
2217         // if no other is found which explicitly has the requested type.
2218         if (RC->hasType(VT))
2219           return S;
2220         else if (!R.second)
2221           R = S;
2222       }
2223     }
2224   }
2225 
2226   return R;
2227 }
2228 
2229 //===----------------------------------------------------------------------===//
2230 // Constraint Selection.
2231 
2232 /// isMatchingInputConstraint - Return true of this is an input operand that is
2233 /// a matching constraint like "4".
isMatchingInputConstraint() const2234 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2235   assert(!ConstraintCode.empty() && "No known constraint!");
2236   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2237 }
2238 
2239 /// getMatchedOperand - If this is an input matching constraint, this method
2240 /// returns the output operand it matches.
getMatchedOperand() const2241 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2242   assert(!ConstraintCode.empty() && "No known constraint!");
2243   return atoi(ConstraintCode.c_str());
2244 }
2245 
2246 
2247 /// ParseConstraints - Split up the constraint string from the inline
2248 /// assembly value into the specific constraints and their prefixes,
2249 /// and also tie in the associated operand values.
2250 /// If this returns an empty vector, and if the constraint string itself
2251 /// isn't empty, there was an error parsing.
ParseConstraints(ImmutableCallSite CS) const2252 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2253     ImmutableCallSite CS) const {
2254   /// ConstraintOperands - Information about all of the constraints.
2255   AsmOperandInfoVector ConstraintOperands;
2256   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2257   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2258 
2259   // Do a prepass over the constraints, canonicalizing them, and building up the
2260   // ConstraintOperands list.
2261   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2262   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2263 
2264   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2265     ConstraintOperands.emplace_back(std::move(CI));
2266     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2267 
2268     // Update multiple alternative constraint count.
2269     if (OpInfo.multipleAlternatives.size() > maCount)
2270       maCount = OpInfo.multipleAlternatives.size();
2271 
2272     OpInfo.ConstraintVT = MVT::Other;
2273 
2274     // Compute the value type for each operand.
2275     switch (OpInfo.Type) {
2276     case InlineAsm::isOutput:
2277       // Indirect outputs just consume an argument.
2278       if (OpInfo.isIndirect) {
2279         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2280         break;
2281       }
2282 
2283       // The return value of the call is this value.  As such, there is no
2284       // corresponding argument.
2285       assert(!CS.getType()->isVoidTy() &&
2286              "Bad inline asm!");
2287       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2288         OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
2289       } else {
2290         assert(ResNo == 0 && "Asm only has one result!");
2291         OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
2292       }
2293       ++ResNo;
2294       break;
2295     case InlineAsm::isInput:
2296       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2297       break;
2298     case InlineAsm::isClobber:
2299       // Nothing to do.
2300       break;
2301     }
2302 
2303     if (OpInfo.CallOperandVal) {
2304       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2305       if (OpInfo.isIndirect) {
2306         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2307         if (!PtrTy)
2308           report_fatal_error("Indirect operand for inline asm not a pointer!");
2309         OpTy = PtrTy->getElementType();
2310       }
2311 
2312       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2313       if (StructType *STy = dyn_cast<StructType>(OpTy))
2314         if (STy->getNumElements() == 1)
2315           OpTy = STy->getElementType(0);
2316 
2317       // If OpTy is not a single value, it may be a struct/union that we
2318       // can tile with integers.
2319       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2320         unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
2321         switch (BitSize) {
2322         default: break;
2323         case 1:
2324         case 8:
2325         case 16:
2326         case 32:
2327         case 64:
2328         case 128:
2329           OpInfo.ConstraintVT =
2330             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2331           break;
2332         }
2333       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2334         unsigned PtrSize
2335           = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace());
2336         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2337       } else {
2338         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2339       }
2340     }
2341   }
2342 
2343   // If we have multiple alternative constraints, select the best alternative.
2344   if (ConstraintOperands.size()) {
2345     if (maCount) {
2346       unsigned bestMAIndex = 0;
2347       int bestWeight = -1;
2348       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2349       int weight = -1;
2350       unsigned maIndex;
2351       // Compute the sums of the weights for each alternative, keeping track
2352       // of the best (highest weight) one so far.
2353       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2354         int weightSum = 0;
2355         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2356             cIndex != eIndex; ++cIndex) {
2357           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2358           if (OpInfo.Type == InlineAsm::isClobber)
2359             continue;
2360 
2361           // If this is an output operand with a matching input operand,
2362           // look up the matching input. If their types mismatch, e.g. one
2363           // is an integer, the other is floating point, or their sizes are
2364           // different, flag it as an maCantMatch.
2365           if (OpInfo.hasMatchingInput()) {
2366             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2367             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2368               if ((OpInfo.ConstraintVT.isInteger() !=
2369                    Input.ConstraintVT.isInteger()) ||
2370                   (OpInfo.ConstraintVT.getSizeInBits() !=
2371                    Input.ConstraintVT.getSizeInBits())) {
2372                 weightSum = -1;  // Can't match.
2373                 break;
2374               }
2375             }
2376           }
2377           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2378           if (weight == -1) {
2379             weightSum = -1;
2380             break;
2381           }
2382           weightSum += weight;
2383         }
2384         // Update best.
2385         if (weightSum > bestWeight) {
2386           bestWeight = weightSum;
2387           bestMAIndex = maIndex;
2388         }
2389       }
2390 
2391       // Now select chosen alternative in each constraint.
2392       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2393           cIndex != eIndex; ++cIndex) {
2394         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2395         if (cInfo.Type == InlineAsm::isClobber)
2396           continue;
2397         cInfo.selectAlternative(bestMAIndex);
2398       }
2399     }
2400   }
2401 
2402   // Check and hook up tied operands, choose constraint code to use.
2403   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2404       cIndex != eIndex; ++cIndex) {
2405     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2406 
2407     // If this is an output operand with a matching input operand, look up the
2408     // matching input. If their types mismatch, e.g. one is an integer, the
2409     // other is floating point, or their sizes are different, flag it as an
2410     // error.
2411     if (OpInfo.hasMatchingInput()) {
2412       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2413 
2414       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2415         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
2416           getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
2417                                        OpInfo.ConstraintVT);
2418         std::pair<unsigned, const TargetRegisterClass*> InputRC =
2419           getRegForInlineAsmConstraint(Input.ConstraintCode,
2420                                        Input.ConstraintVT);
2421         if ((OpInfo.ConstraintVT.isInteger() !=
2422              Input.ConstraintVT.isInteger()) ||
2423             (MatchRC.second != InputRC.second)) {
2424           report_fatal_error("Unsupported asm: input constraint"
2425                              " with a matching output constraint of"
2426                              " incompatible type!");
2427         }
2428       }
2429 
2430     }
2431   }
2432 
2433   return ConstraintOperands;
2434 }
2435 
2436 
2437 /// getConstraintGenerality - Return an integer indicating how general CT
2438 /// is.
getConstraintGenerality(TargetLowering::ConstraintType CT)2439 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2440   switch (CT) {
2441   case TargetLowering::C_Other:
2442   case TargetLowering::C_Unknown:
2443     return 0;
2444   case TargetLowering::C_Register:
2445     return 1;
2446   case TargetLowering::C_RegisterClass:
2447     return 2;
2448   case TargetLowering::C_Memory:
2449     return 3;
2450   }
2451   llvm_unreachable("Invalid constraint type");
2452 }
2453 
2454 /// Examine constraint type and operand type and determine a weight value.
2455 /// This object must already have been set up with the operand type
2456 /// and the current alternative constraint selected.
2457 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const2458   TargetLowering::getMultipleConstraintMatchWeight(
2459     AsmOperandInfo &info, int maIndex) const {
2460   InlineAsm::ConstraintCodeVector *rCodes;
2461   if (maIndex >= (int)info.multipleAlternatives.size())
2462     rCodes = &info.Codes;
2463   else
2464     rCodes = &info.multipleAlternatives[maIndex].Codes;
2465   ConstraintWeight BestWeight = CW_Invalid;
2466 
2467   // Loop over the options, keeping track of the most general one.
2468   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2469     ConstraintWeight weight =
2470       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2471     if (weight > BestWeight)
2472       BestWeight = weight;
2473   }
2474 
2475   return BestWeight;
2476 }
2477 
2478 /// Examine constraint type and operand type and determine a weight value.
2479 /// This object must already have been set up with the operand type
2480 /// and the current alternative constraint selected.
2481 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const2482   TargetLowering::getSingleConstraintMatchWeight(
2483     AsmOperandInfo &info, const char *constraint) const {
2484   ConstraintWeight weight = CW_Invalid;
2485   Value *CallOperandVal = info.CallOperandVal;
2486     // If we don't have a value, we can't do a match,
2487     // but allow it at the lowest weight.
2488   if (!CallOperandVal)
2489     return CW_Default;
2490   // Look at the constraint type.
2491   switch (*constraint) {
2492     case 'i': // immediate integer.
2493     case 'n': // immediate integer with a known value.
2494       if (isa<ConstantInt>(CallOperandVal))
2495         weight = CW_Constant;
2496       break;
2497     case 's': // non-explicit intregal immediate.
2498       if (isa<GlobalValue>(CallOperandVal))
2499         weight = CW_Constant;
2500       break;
2501     case 'E': // immediate float if host format.
2502     case 'F': // immediate float.
2503       if (isa<ConstantFP>(CallOperandVal))
2504         weight = CW_Constant;
2505       break;
2506     case '<': // memory operand with autodecrement.
2507     case '>': // memory operand with autoincrement.
2508     case 'm': // memory operand.
2509     case 'o': // offsettable memory operand
2510     case 'V': // non-offsettable memory operand
2511       weight = CW_Memory;
2512       break;
2513     case 'r': // general register.
2514     case 'g': // general register, memory operand or immediate integer.
2515               // note: Clang converts "g" to "imr".
2516       if (CallOperandVal->getType()->isIntegerTy())
2517         weight = CW_Register;
2518       break;
2519     case 'X': // any operand.
2520     default:
2521       weight = CW_Default;
2522       break;
2523   }
2524   return weight;
2525 }
2526 
2527 /// ChooseConstraint - If there are multiple different constraints that we
2528 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2529 /// This is somewhat tricky: constraints fall into four classes:
2530 ///    Other         -> immediates and magic values
2531 ///    Register      -> one specific register
2532 ///    RegisterClass -> a group of regs
2533 ///    Memory        -> memory
2534 /// Ideally, we would pick the most specific constraint possible: if we have
2535 /// something that fits into a register, we would pick it.  The problem here
2536 /// is that if we have something that could either be in a register or in
2537 /// memory that use of the register could cause selection of *other*
2538 /// operands to fail: they might only succeed if we pick memory.  Because of
2539 /// this the heuristic we use is:
2540 ///
2541 ///  1) If there is an 'other' constraint, and if the operand is valid for
2542 ///     that constraint, use it.  This makes us take advantage of 'i'
2543 ///     constraints when available.
2544 ///  2) Otherwise, pick the most general constraint present.  This prefers
2545 ///     'm' over 'r', for example.
2546 ///
ChooseConstraint(TargetLowering::AsmOperandInfo & OpInfo,const TargetLowering & TLI,SDValue Op,SelectionDAG * DAG)2547 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2548                              const TargetLowering &TLI,
2549                              SDValue Op, SelectionDAG *DAG) {
2550   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2551   unsigned BestIdx = 0;
2552   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2553   int BestGenerality = -1;
2554 
2555   // Loop over the options, keeping track of the most general one.
2556   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2557     TargetLowering::ConstraintType CType =
2558       TLI.getConstraintType(OpInfo.Codes[i]);
2559 
2560     // If this is an 'other' constraint, see if the operand is valid for it.
2561     // For example, on X86 we might have an 'rI' constraint.  If the operand
2562     // is an integer in the range [0..31] we want to use I (saving a load
2563     // of a register), otherwise we must use 'r'.
2564     if (CType == TargetLowering::C_Other && Op.getNode()) {
2565       assert(OpInfo.Codes[i].size() == 1 &&
2566              "Unhandled multi-letter 'other' constraint");
2567       std::vector<SDValue> ResultOps;
2568       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2569                                        ResultOps, *DAG);
2570       if (!ResultOps.empty()) {
2571         BestType = CType;
2572         BestIdx = i;
2573         break;
2574       }
2575     }
2576 
2577     // Things with matching constraints can only be registers, per gcc
2578     // documentation.  This mainly affects "g" constraints.
2579     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2580       continue;
2581 
2582     // This constraint letter is more general than the previous one, use it.
2583     int Generality = getConstraintGenerality(CType);
2584     if (Generality > BestGenerality) {
2585       BestType = CType;
2586       BestIdx = i;
2587       BestGenerality = Generality;
2588     }
2589   }
2590 
2591   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2592   OpInfo.ConstraintType = BestType;
2593 }
2594 
2595 /// ComputeConstraintToUse - Determines the constraint code and constraint
2596 /// type to use for the specific AsmOperandInfo, setting
2597 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const2598 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2599                                             SDValue Op,
2600                                             SelectionDAG *DAG) const {
2601   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2602 
2603   // Single-letter constraints ('r') are very common.
2604   if (OpInfo.Codes.size() == 1) {
2605     OpInfo.ConstraintCode = OpInfo.Codes[0];
2606     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2607   } else {
2608     ChooseConstraint(OpInfo, *this, Op, DAG);
2609   }
2610 
2611   // 'X' matches anything.
2612   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2613     // Labels and constants are handled elsewhere ('X' is the only thing
2614     // that matches labels).  For Functions, the type here is the type of
2615     // the result, which is not what we want to look at; leave them alone.
2616     Value *v = OpInfo.CallOperandVal;
2617     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2618       OpInfo.CallOperandVal = v;
2619       return;
2620     }
2621 
2622     // Otherwise, try to resolve it to something we know about by looking at
2623     // the actual operand type.
2624     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2625       OpInfo.ConstraintCode = Repl;
2626       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2627     }
2628   }
2629 }
2630 
2631 /// \brief Given an exact SDIV by a constant, create a multiplication
2632 /// with the multiplicative inverse of the constant.
BuildExactSDIV(SDValue Op1,SDValue Op2,SDLoc dl,SelectionDAG & DAG) const2633 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2634                                        SelectionDAG &DAG) const {
2635   ConstantSDNode *C = cast<ConstantSDNode>(Op2);
2636   APInt d = C->getAPIntValue();
2637   assert(d != 0 && "Division by zero!");
2638 
2639   // Shift the value upfront if it is even, so the LSB is one.
2640   unsigned ShAmt = d.countTrailingZeros();
2641   if (ShAmt) {
2642     // TODO: For UDIV use SRL instead of SRA.
2643     SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
2644     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false,
2645                       true);
2646     d = d.ashr(ShAmt);
2647   }
2648 
2649   // Calculate the multiplicative inverse, using Newton's method.
2650   APInt t, xn = d;
2651   while ((t = d*xn) != 1)
2652     xn *= APInt(d.getBitWidth(), 2) - t;
2653 
2654   Op2 = DAG.getConstant(xn, Op1.getValueType());
2655   return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2656 }
2657 
2658 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2659 /// return a DAG expression to select that will generate the same value by
2660 /// multiplying by a magic number.
2661 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildSDIV(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,bool IsAfterLegalization,std::vector<SDNode * > * Created) const2662 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2663                                   SelectionDAG &DAG, bool IsAfterLegalization,
2664                                   std::vector<SDNode *> *Created) const {
2665   assert(Created && "No vector to hold sdiv ops.");
2666 
2667   EVT VT = N->getValueType(0);
2668   SDLoc dl(N);
2669 
2670   // Check to see if we can do this.
2671   // FIXME: We should be more aggressive here.
2672   if (!isTypeLegal(VT))
2673     return SDValue();
2674 
2675   APInt::ms magics = Divisor.magic();
2676 
2677   // Multiply the numerator (operand 0) by the magic value
2678   // FIXME: We should support doing a MUL in a wider type
2679   SDValue Q;
2680   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2681                             isOperationLegalOrCustom(ISD::MULHS, VT))
2682     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2683                     DAG.getConstant(magics.m, VT));
2684   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2685                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2686     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2687                               N->getOperand(0),
2688                               DAG.getConstant(magics.m, VT)).getNode(), 1);
2689   else
2690     return SDValue();       // No mulhs or equvialent
2691   // If d > 0 and m < 0, add the numerator
2692   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
2693     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2694     Created->push_back(Q.getNode());
2695   }
2696   // If d < 0 and m > 0, subtract the numerator.
2697   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
2698     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2699     Created->push_back(Q.getNode());
2700   }
2701   // Shift right algebraic if shift value is nonzero
2702   if (magics.s > 0) {
2703     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2704                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2705     Created->push_back(Q.getNode());
2706   }
2707   // Extract the sign bit and add it to the quotient
2708   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q,
2709                           DAG.getConstant(VT.getScalarSizeInBits() - 1,
2710                                           getShiftAmountTy(Q.getValueType())));
2711   Created->push_back(T.getNode());
2712   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2713 }
2714 
2715 /// \brief Given an ISD::UDIV node expressing a divide by constant,
2716 /// return a DAG expression to select that will generate the same value by
2717 /// multiplying by a magic number.
2718 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildUDIV(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,bool IsAfterLegalization,std::vector<SDNode * > * Created) const2719 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
2720                                   SelectionDAG &DAG, bool IsAfterLegalization,
2721                                   std::vector<SDNode *> *Created) const {
2722   assert(Created && "No vector to hold udiv ops.");
2723 
2724   EVT VT = N->getValueType(0);
2725   SDLoc dl(N);
2726 
2727   // Check to see if we can do this.
2728   // FIXME: We should be more aggressive here.
2729   if (!isTypeLegal(VT))
2730     return SDValue();
2731 
2732   // FIXME: We should use a narrower constant when the upper
2733   // bits are known to be zero.
2734   APInt::mu magics = Divisor.magicu();
2735 
2736   SDValue Q = N->getOperand(0);
2737 
2738   // If the divisor is even, we can avoid using the expensive fixup by shifting
2739   // the divided value upfront.
2740   if (magics.a != 0 && !Divisor[0]) {
2741     unsigned Shift = Divisor.countTrailingZeros();
2742     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
2743                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
2744     Created->push_back(Q.getNode());
2745 
2746     // Get magic number for the shifted divisor.
2747     magics = Divisor.lshr(Shift).magicu(Shift);
2748     assert(magics.a == 0 && "Should use cheap fixup now");
2749   }
2750 
2751   // Multiply the numerator (operand 0) by the magic value
2752   // FIXME: We should support doing a MUL in a wider type
2753   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2754                             isOperationLegalOrCustom(ISD::MULHU, VT))
2755     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
2756   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2757                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2758     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2759                             DAG.getConstant(magics.m, VT)).getNode(), 1);
2760   else
2761     return SDValue();       // No mulhu or equvialent
2762 
2763   Created->push_back(Q.getNode());
2764 
2765   if (magics.a == 0) {
2766     assert(magics.s < Divisor.getBitWidth() &&
2767            "We shouldn't generate an undefined shift!");
2768     return DAG.getNode(ISD::SRL, dl, VT, Q,
2769                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2770   } else {
2771     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2772     Created->push_back(NPQ.getNode());
2773     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2774                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
2775     Created->push_back(NPQ.getNode());
2776     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2777     Created->push_back(NPQ.getNode());
2778     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2779              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
2780   }
2781 }
2782 
2783 bool TargetLowering::
verifyReturnAddressArgumentIsConstant(SDValue Op,SelectionDAG & DAG) const2784 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
2785   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
2786     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
2787                                 "be a constant integer");
2788     return true;
2789   }
2790 
2791   return false;
2792 }
2793 
2794 //===----------------------------------------------------------------------===//
2795 // Legalization Utilities
2796 //===----------------------------------------------------------------------===//
2797 
expandMUL(SDNode * N,SDValue & Lo,SDValue & Hi,EVT HiLoVT,SelectionDAG & DAG,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const2798 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2799                                SelectionDAG &DAG, SDValue LL, SDValue LH,
2800                                SDValue RL, SDValue RH) const {
2801   EVT VT = N->getValueType(0);
2802   SDLoc dl(N);
2803 
2804   bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
2805   bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
2806   bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
2807   bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
2808   if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
2809     unsigned OuterBitSize = VT.getSizeInBits();
2810     unsigned InnerBitSize = HiLoVT.getSizeInBits();
2811     unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
2812     unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
2813 
2814     // LL, LH, RL, and RH must be either all NULL or all set to a value.
2815     assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
2816            (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
2817 
2818     if (!LL.getNode() && !RL.getNode() &&
2819         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
2820       LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
2821       RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
2822     }
2823 
2824     if (!LL.getNode())
2825       return false;
2826 
2827     APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
2828     if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
2829         DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
2830       // The inputs are both zero-extended.
2831       if (HasUMUL_LOHI) {
2832         // We can emit a umul_lohi.
2833         Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
2834                          RL);
2835         Hi = SDValue(Lo.getNode(), 1);
2836         return true;
2837       }
2838       if (HasMULHU) {
2839         // We can emit a mulhu+mul.
2840         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
2841         Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
2842         return true;
2843       }
2844     }
2845     if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
2846       // The input values are both sign-extended.
2847       if (HasSMUL_LOHI) {
2848         // We can emit a smul_lohi.
2849         Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
2850                          RL);
2851         Hi = SDValue(Lo.getNode(), 1);
2852         return true;
2853       }
2854       if (HasMULHS) {
2855         // We can emit a mulhs+mul.
2856         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
2857         Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
2858         return true;
2859       }
2860     }
2861 
2862     if (!LH.getNode() && !RH.getNode() &&
2863         isOperationLegalOrCustom(ISD::SRL, VT) &&
2864         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
2865       unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
2866       SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT));
2867       LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
2868       LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
2869       RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
2870       RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
2871     }
2872 
2873     if (!LH.getNode())
2874       return false;
2875 
2876     if (HasUMUL_LOHI) {
2877       // Lo,Hi = umul LHS, RHS.
2878       SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
2879                                      DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
2880       Lo = UMulLOHI;
2881       Hi = UMulLOHI.getValue(1);
2882       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
2883       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
2884       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
2885       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
2886       return true;
2887     }
2888     if (HasMULHU) {
2889       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
2890       Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
2891       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
2892       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
2893       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
2894       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
2895       return true;
2896     }
2897   }
2898   return false;
2899 }
2900 
expandFP_TO_SINT(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const2901 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
2902                                SelectionDAG &DAG) const {
2903   EVT VT = Node->getOperand(0).getValueType();
2904   EVT NVT = Node->getValueType(0);
2905   SDLoc dl(SDValue(Node, 0));
2906 
2907   // FIXME: Only f32 to i64 conversions are supported.
2908   if (VT != MVT::f32 || NVT != MVT::i64)
2909     return false;
2910 
2911   // Expand f32 -> i64 conversion
2912   // This algorithm comes from compiler-rt's implementation of fixsfdi:
2913   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
2914   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
2915                                 VT.getSizeInBits());
2916   SDValue ExponentMask = DAG.getConstant(0x7F800000, IntVT);
2917   SDValue ExponentLoBit = DAG.getConstant(23, IntVT);
2918   SDValue Bias = DAG.getConstant(127, IntVT);
2919   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()),
2920                                      IntVT);
2921   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, IntVT);
2922   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, IntVT);
2923 
2924   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
2925 
2926   SDValue ExponentBits = DAG.getNode(ISD::SRL, dl, IntVT,
2927       DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
2928       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT)));
2929   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
2930 
2931   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
2932       DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
2933       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT)));
2934   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
2935 
2936   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
2937       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
2938       DAG.getConstant(0x00800000, IntVT));
2939 
2940   R = DAG.getZExtOrTrunc(R, dl, NVT);
2941 
2942 
2943   R = DAG.getSelectCC(dl, Exponent, ExponentLoBit,
2944      DAG.getNode(ISD::SHL, dl, NVT, R,
2945                  DAG.getZExtOrTrunc(
2946                     DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
2947                     dl, getShiftAmountTy(IntVT))),
2948      DAG.getNode(ISD::SRL, dl, NVT, R,
2949                  DAG.getZExtOrTrunc(
2950                     DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
2951                     dl, getShiftAmountTy(IntVT))),
2952      ISD::SETGT);
2953 
2954   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
2955       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
2956       Sign);
2957 
2958   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, IntVT),
2959       DAG.getConstant(0, NVT), Ret, ISD::SETLT);
2960   return true;
2961 }
2962