1 //===--- CrashRecoveryContext.cpp - Crash Recovery ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Support/CrashRecoveryContext.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/Config/config.h"
13 #include "llvm/Support/ErrorHandling.h"
14 #include "llvm/Support/ManagedStatic.h"
15 #include "llvm/Support/Mutex.h"
16 #include "llvm/Support/ThreadLocal.h"
17 #include <cstdio>
18 #include <setjmp.h>
19 using namespace llvm;
20 
21 namespace {
22 
23 struct CrashRecoveryContextImpl;
24 
25 static ManagedStatic<sys::ThreadLocal<const CrashRecoveryContextImpl> > CurrentContext;
26 
27 struct CrashRecoveryContextImpl {
28   CrashRecoveryContext *CRC;
29   std::string Backtrace;
30   ::jmp_buf JumpBuffer;
31   volatile unsigned Failed : 1;
32   unsigned SwitchedThread : 1;
33 
34 public:
35   CrashRecoveryContextImpl(CrashRecoveryContext *CRC) : CRC(CRC),
36                                                         Failed(false),
37                                                         SwitchedThread(false) {
38     CurrentContext->set(this);
39   }
40   ~CrashRecoveryContextImpl() {
41     if (!SwitchedThread)
42       CurrentContext->erase();
43   }
44 
45   /// \brief Called when the separate crash-recovery thread was finished, to
46   /// indicate that we don't need to clear the thread-local CurrentContext.
47   void setSwitchedThread() { SwitchedThread = true; }
48 
49   void HandleCrash() {
50     // Eliminate the current context entry, to avoid re-entering in case the
51     // cleanup code crashes.
52     CurrentContext->erase();
53 
54     assert(!Failed && "Crash recovery context already failed!");
55     Failed = true;
56 
57     // FIXME: Stash the backtrace.
58 
59     // Jump back to the RunSafely we were called under.
60     longjmp(JumpBuffer, 1);
61   }
62 };
63 
64 }
65 
66 static ManagedStatic<sys::Mutex> gCrashRecoveryContextMutex;
67 static bool gCrashRecoveryEnabled = false;
68 
69 static ManagedStatic<sys::ThreadLocal<const CrashRecoveryContextCleanup> >
70        tlIsRecoveringFromCrash;
71 
72 CrashRecoveryContextCleanup::~CrashRecoveryContextCleanup() {}
73 
74 CrashRecoveryContext::~CrashRecoveryContext() {
75   // Reclaim registered resources.
76   CrashRecoveryContextCleanup *i = head;
77   tlIsRecoveringFromCrash->set(head);
78   while (i) {
79     CrashRecoveryContextCleanup *tmp = i;
80     i = tmp->next;
81     tmp->cleanupFired = true;
82     tmp->recoverResources();
83     delete tmp;
84   }
85   tlIsRecoveringFromCrash->erase();
86 
87   CrashRecoveryContextImpl *CRCI = (CrashRecoveryContextImpl *) Impl;
88   delete CRCI;
89 }
90 
91 bool CrashRecoveryContext::isRecoveringFromCrash() {
92   return tlIsRecoveringFromCrash->get() != 0;
93 }
94 
95 CrashRecoveryContext *CrashRecoveryContext::GetCurrent() {
96   if (!gCrashRecoveryEnabled)
97     return 0;
98 
99   const CrashRecoveryContextImpl *CRCI = CurrentContext->get();
100   if (!CRCI)
101     return 0;
102 
103   return CRCI->CRC;
104 }
105 
106 void CrashRecoveryContext::registerCleanup(CrashRecoveryContextCleanup *cleanup)
107 {
108   if (!cleanup)
109     return;
110   if (head)
111     head->prev = cleanup;
112   cleanup->next = head;
113   head = cleanup;
114 }
115 
116 void
117 CrashRecoveryContext::unregisterCleanup(CrashRecoveryContextCleanup *cleanup) {
118   if (!cleanup)
119     return;
120   if (cleanup == head) {
121     head = cleanup->next;
122     if (head)
123       head->prev = 0;
124   }
125   else {
126     cleanup->prev->next = cleanup->next;
127     if (cleanup->next)
128       cleanup->next->prev = cleanup->prev;
129   }
130   delete cleanup;
131 }
132 
133 #ifdef LLVM_ON_WIN32
134 
135 #include "Windows/Windows.h"
136 
137 // On Windows, we can make use of vectored exception handling to
138 // catch most crashing situations.  Note that this does mean
139 // we will be alerted of exceptions *before* structured exception
140 // handling has the opportunity to catch it.  But that isn't likely
141 // to cause problems because nowhere in the project is SEH being
142 // used.
143 //
144 // Vectored exception handling is built on top of SEH, and so it
145 // works on a per-thread basis.
146 //
147 // The vectored exception handler functionality was added in Windows
148 // XP, so if support for older versions of Windows is required,
149 // it will have to be added.
150 //
151 // If we want to support as far back as Win2k, we could use the
152 // SetUnhandledExceptionFilter API, but there's a risk of that
153 // being entirely overwritten (it's not a chain).
154 
155 static LONG CALLBACK ExceptionHandler(PEXCEPTION_POINTERS ExceptionInfo)
156 {
157   // Lookup the current thread local recovery object.
158   const CrashRecoveryContextImpl *CRCI = CurrentContext->get();
159 
160   if (!CRCI) {
161     // Something has gone horribly wrong, so let's just tell everyone
162     // to keep searching
163     CrashRecoveryContext::Disable();
164     return EXCEPTION_CONTINUE_SEARCH;
165   }
166 
167   // TODO: We can capture the stack backtrace here and store it on the
168   // implementation if we so choose.
169 
170   // Handle the crash
171   const_cast<CrashRecoveryContextImpl*>(CRCI)->HandleCrash();
172 
173   // Note that we don't actually get here because HandleCrash calls
174   // longjmp, which means the HandleCrash function never returns.
175   llvm_unreachable("Handled the crash, should have longjmp'ed out of here");
176 }
177 
178 // Because the Enable and Disable calls are static, it means that
179 // there may not actually be an Impl available, or even a current
180 // CrashRecoveryContext at all.  So we make use of a thread-local
181 // exception table.  The handles contained in here will either be
182 // non-NULL, valid VEH handles, or NULL.
183 static sys::ThreadLocal<const void> sCurrentExceptionHandle;
184 
185 void CrashRecoveryContext::Enable() {
186   sys::ScopedLock L(*gCrashRecoveryContextMutex);
187 
188   if (gCrashRecoveryEnabled)
189     return;
190 
191   gCrashRecoveryEnabled = true;
192 
193   // We can set up vectored exception handling now.  We will install our
194   // handler as the front of the list, though there's no assurances that
195   // it will remain at the front (another call could install itself before
196   // our handler).  This 1) isn't likely, and 2) shouldn't cause problems.
197   PVOID handle = ::AddVectoredExceptionHandler(1, ExceptionHandler);
198   sCurrentExceptionHandle.set(handle);
199 }
200 
201 void CrashRecoveryContext::Disable() {
202   sys::ScopedLock L(*gCrashRecoveryContextMutex);
203 
204   if (!gCrashRecoveryEnabled)
205     return;
206 
207   gCrashRecoveryEnabled = false;
208 
209   PVOID currentHandle = const_cast<PVOID>(sCurrentExceptionHandle.get());
210   if (currentHandle) {
211     // Now we can remove the vectored exception handler from the chain
212     ::RemoveVectoredExceptionHandler(currentHandle);
213 
214     // Reset the handle in our thread-local set.
215     sCurrentExceptionHandle.set(NULL);
216   }
217 }
218 
219 #else
220 
221 // Generic POSIX implementation.
222 //
223 // This implementation relies on synchronous signals being delivered to the
224 // current thread. We use a thread local object to keep track of the active
225 // crash recovery context, and install signal handlers to invoke HandleCrash on
226 // the active object.
227 //
228 // This implementation does not to attempt to chain signal handlers in any
229 // reliable fashion -- if we get a signal outside of a crash recovery context we
230 // simply disable crash recovery and raise the signal again.
231 
232 #include <signal.h>
233 
234 static const int Signals[] = { SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGSEGV, SIGTRAP };
235 static const unsigned NumSignals = sizeof(Signals) / sizeof(Signals[0]);
236 static struct sigaction PrevActions[NumSignals];
237 
238 static void CrashRecoverySignalHandler(int Signal) {
239   // Lookup the current thread local recovery object.
240   const CrashRecoveryContextImpl *CRCI = CurrentContext->get();
241 
242   if (!CRCI) {
243     // We didn't find a crash recovery context -- this means either we got a
244     // signal on a thread we didn't expect it on, the application got a signal
245     // outside of a crash recovery context, or something else went horribly
246     // wrong.
247     //
248     // Disable crash recovery and raise the signal again. The assumption here is
249     // that the enclosing application will terminate soon, and we won't want to
250     // attempt crash recovery again.
251     //
252     // This call of Disable isn't thread safe, but it doesn't actually matter.
253     CrashRecoveryContext::Disable();
254     raise(Signal);
255 
256     // The signal will be thrown once the signal mask is restored.
257     return;
258   }
259 
260   // Unblock the signal we received.
261   sigset_t SigMask;
262   sigemptyset(&SigMask);
263   sigaddset(&SigMask, Signal);
264   sigprocmask(SIG_UNBLOCK, &SigMask, 0);
265 
266   if (CRCI)
267     const_cast<CrashRecoveryContextImpl*>(CRCI)->HandleCrash();
268 }
269 
270 void CrashRecoveryContext::Enable() {
271   sys::ScopedLock L(*gCrashRecoveryContextMutex);
272 
273   if (gCrashRecoveryEnabled)
274     return;
275 
276   gCrashRecoveryEnabled = true;
277 
278   // Setup the signal handler.
279   struct sigaction Handler;
280   Handler.sa_handler = CrashRecoverySignalHandler;
281   Handler.sa_flags = 0;
282   sigemptyset(&Handler.sa_mask);
283 
284   for (unsigned i = 0; i != NumSignals; ++i) {
285     sigaction(Signals[i], &Handler, &PrevActions[i]);
286   }
287 }
288 
289 void CrashRecoveryContext::Disable() {
290   sys::ScopedLock L(*gCrashRecoveryContextMutex);
291 
292   if (!gCrashRecoveryEnabled)
293     return;
294 
295   gCrashRecoveryEnabled = false;
296 
297   // Restore the previous signal handlers.
298   for (unsigned i = 0; i != NumSignals; ++i)
299     sigaction(Signals[i], &PrevActions[i], 0);
300 }
301 
302 #endif
303 
304 bool CrashRecoveryContext::RunSafely(void (*Fn)(void*), void *UserData) {
305   // If crash recovery is disabled, do nothing.
306   if (gCrashRecoveryEnabled) {
307     assert(!Impl && "Crash recovery context already initialized!");
308     CrashRecoveryContextImpl *CRCI = new CrashRecoveryContextImpl(this);
309     Impl = CRCI;
310 
311     if (setjmp(CRCI->JumpBuffer) != 0) {
312       return false;
313     }
314   }
315 
316   Fn(UserData);
317   return true;
318 }
319 
320 void CrashRecoveryContext::HandleCrash() {
321   CrashRecoveryContextImpl *CRCI = (CrashRecoveryContextImpl *) Impl;
322   assert(CRCI && "Crash recovery context never initialized!");
323   CRCI->HandleCrash();
324 }
325 
326 const std::string &CrashRecoveryContext::getBacktrace() const {
327   CrashRecoveryContextImpl *CRC = (CrashRecoveryContextImpl *) Impl;
328   assert(CRC && "Crash recovery context never initialized!");
329   assert(CRC->Failed && "No crash was detected!");
330   return CRC->Backtrace;
331 }
332 
333 //
334 
335 namespace {
336 struct RunSafelyOnThreadInfo {
337   void (*UserFn)(void*);
338   void *UserData;
339   CrashRecoveryContext *CRC;
340   bool Result;
341 };
342 }
343 
344 static void RunSafelyOnThread_Dispatch(void *UserData) {
345   RunSafelyOnThreadInfo *Info =
346     reinterpret_cast<RunSafelyOnThreadInfo*>(UserData);
347   Info->Result = Info->CRC->RunSafely(Info->UserFn, Info->UserData);
348 }
349 bool CrashRecoveryContext::RunSafelyOnThread(void (*Fn)(void*), void *UserData,
350                                              unsigned RequestedStackSize) {
351   RunSafelyOnThreadInfo Info = { Fn, UserData, this, false };
352   llvm_execute_on_thread(RunSafelyOnThread_Dispatch, &Info, RequestedStackSize);
353   if (CrashRecoveryContextImpl *CRC = (CrashRecoveryContextImpl *)Impl)
354     CRC->setSwitchedThread();
355   return Info.Result;
356 }
357