1//=- HexagonInstrInfoV4.td - Target Desc. for Hexagon Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Hexagon V4 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14let hasSideEffects = 0 in
15class T_Immext<Operand ImmType>
16  : EXTENDERInst<(outs), (ins ImmType:$imm),
17                 "immext(#$imm)", []> {
18    bits<32> imm;
19    let IClass = 0b0000;
20
21    let Inst{27-16} = imm{31-20};
22    let Inst{13-0} = imm{19-6};
23  }
24
25def A4_ext : T_Immext<u26_6Imm>;
26let isCodeGenOnly = 1 in {
27  let isBranch = 1 in
28    def A4_ext_b : T_Immext<brtarget>;
29  let isCall = 1 in
30    def A4_ext_c : T_Immext<calltarget>;
31  def A4_ext_g : T_Immext<globaladdress>;
32}
33
34def BITPOS32 : SDNodeXForm<imm, [{
35   // Return the bit position we will set [0-31].
36   // As an SDNode.
37   int32_t imm = N->getSExtValue();
38   return XformMskToBitPosU5Imm(imm);
39}]>;
40
41// Fold (add (CONST32 tglobaladdr:$addr) <offset>) into a global address.
42def FoldGlobalAddr : ComplexPattern<i32, 1, "foldGlobalAddress", [], []>;
43
44// Fold (add (CONST32_GP tglobaladdr:$addr) <offset>) into a global address.
45def FoldGlobalAddrGP : ComplexPattern<i32, 1, "foldGlobalAddressGP", [], []>;
46
47def NumUsesBelowThresCONST32 : PatFrag<(ops node:$addr),
48                                       (HexagonCONST32 node:$addr), [{
49  return hasNumUsesBelowThresGA(N->getOperand(0).getNode());
50}]>;
51
52// Hexagon V4 Architecture spec defines 8 instruction classes:
53// LD ST ALU32 XTYPE J JR MEMOP NV CR SYSTEM(system is not implemented in the
54// compiler)
55
56// LD Instructions:
57// ========================================
58// Loads (8/16/32/64 bit)
59// Deallocframe
60
61// ST Instructions:
62// ========================================
63// Stores (8/16/32/64 bit)
64// Allocframe
65
66// ALU32 Instructions:
67// ========================================
68// Arithmetic / Logical (32 bit)
69// Vector Halfword
70
71// XTYPE Instructions (32/64 bit):
72// ========================================
73// Arithmetic, Logical, Bit Manipulation
74// Multiply (Integer, Fractional, Complex)
75// Permute / Vector Permute Operations
76// Predicate Operations
77// Shift / Shift with Add/Sub/Logical
78// Vector Byte ALU
79// Vector Halfword (ALU, Shift, Multiply)
80// Vector Word (ALU, Shift)
81
82// J Instructions:
83// ========================================
84// Jump/Call PC-relative
85
86// JR Instructions:
87// ========================================
88// Jump/Call Register
89
90// MEMOP Instructions:
91// ========================================
92// Operation on memory (8/16/32 bit)
93
94// NV Instructions:
95// ========================================
96// New-value Jumps
97// New-value Stores
98
99// CR Instructions:
100// ========================================
101// Control-Register Transfers
102// Hardware Loop Setup
103// Predicate Logicals & Reductions
104
105// SYSTEM Instructions (not implemented in the compiler):
106// ========================================
107// Prefetch
108// Cache Maintenance
109// Bus Operations
110
111
112//===----------------------------------------------------------------------===//
113// ALU32 +
114//===----------------------------------------------------------------------===//
115
116class T_ALU32_3op_not<string mnemonic, bits<3> MajOp, bits<3> MinOp,
117                      bit OpsRev>
118  : T_ALU32_3op<mnemonic, MajOp, MinOp, OpsRev, 0> {
119  let AsmString = "$Rd = "#mnemonic#"($Rs, ~$Rt)";
120}
121
122let BaseOpcode = "andn_rr", CextOpcode = "andn", isCodeGenOnly = 0 in
123def A4_andn    : T_ALU32_3op_not<"and", 0b001, 0b100, 1>;
124let BaseOpcode = "orn_rr", CextOpcode = "orn", isCodeGenOnly = 0 in
125def A4_orn     : T_ALU32_3op_not<"or",  0b001, 0b101, 1>;
126
127let CextOpcode = "rcmp.eq", isCodeGenOnly = 0 in
128def A4_rcmpeq  : T_ALU32_3op<"cmp.eq",  0b011, 0b010, 0, 1>;
129let CextOpcode = "!rcmp.eq", isCodeGenOnly = 0 in
130def A4_rcmpneq : T_ALU32_3op<"!cmp.eq", 0b011, 0b011, 0, 1>;
131
132let isCodeGenOnly = 0 in {
133def C4_cmpneq  : T_ALU32_3op_cmp<"!cmp.eq",  0b00, 1, 1>;
134def C4_cmplte  : T_ALU32_3op_cmp<"!cmp.gt",  0b10, 1, 0>;
135def C4_cmplteu : T_ALU32_3op_cmp<"!cmp.gtu", 0b11, 1, 0>;
136}
137
138// Pats for instruction selection.
139
140// A class to embed the usual comparison patfrags within a zext to i32.
141// The seteq/setne frags use "lhs" and "rhs" as operands, so use the same
142// names, or else the frag's "body" won't match the operands.
143class CmpInReg<PatFrag Op>
144  : PatFrag<(ops node:$lhs, node:$rhs),(i32 (zext (i1 Op.Fragment)))>;
145
146def: T_cmp32_rr_pat<A4_rcmpeq,  CmpInReg<seteq>, i32>;
147def: T_cmp32_rr_pat<A4_rcmpneq, CmpInReg<setne>, i32>;
148
149class T_CMP_rrbh<string mnemonic, bits<3> MinOp, bit IsComm>
150  : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
151    "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", S_3op_tc_2early_SLOT23>,
152    ImmRegRel {
153  let validSubTargets = HasV4SubT;
154  let InputType = "reg";
155  let CextOpcode = mnemonic;
156  let isCompare = 1;
157  let isCommutable = IsComm;
158  let hasSideEffects = 0;
159
160  bits<2> Pd;
161  bits<5> Rs;
162  bits<5> Rt;
163
164  let IClass = 0b1100;
165  let Inst{27-21} = 0b0111110;
166  let Inst{20-16} = Rs;
167  let Inst{12-8} = Rt;
168  let Inst{7-5} = MinOp;
169  let Inst{1-0} = Pd;
170}
171
172let isCodeGenOnly = 0 in {
173def A4_cmpbeq  : T_CMP_rrbh<"cmpb.eq",  0b110, 1>;
174def A4_cmpbgt  : T_CMP_rrbh<"cmpb.gt",  0b010, 0>;
175def A4_cmpbgtu : T_CMP_rrbh<"cmpb.gtu", 0b111, 0>;
176def A4_cmpheq  : T_CMP_rrbh<"cmph.eq",  0b011, 1>;
177def A4_cmphgt  : T_CMP_rrbh<"cmph.gt",  0b100, 0>;
178def A4_cmphgtu : T_CMP_rrbh<"cmph.gtu", 0b101, 0>;
179}
180
181class T_CMP_ribh<string mnemonic, bits<2> MajOp, bit IsHalf, bit IsComm,
182                 Operand ImmType, bit IsImmExt, bit IsImmSigned, int ImmBits>
183  : ALU64Inst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, ImmType:$Imm),
184    "$Pd = "#mnemonic#"($Rs, #$Imm)", [], "", ALU64_tc_2early_SLOT23>,
185    ImmRegRel {
186  let validSubTargets = HasV4SubT;
187  let InputType = "imm";
188  let CextOpcode = mnemonic;
189  let isCompare = 1;
190  let isCommutable = IsComm;
191  let hasSideEffects = 0;
192  let isExtendable = IsImmExt;
193  let opExtendable = !if (IsImmExt, 2, 0);
194  let isExtentSigned = IsImmSigned;
195  let opExtentBits = ImmBits;
196
197  bits<2> Pd;
198  bits<5> Rs;
199  bits<8> Imm;
200
201  let IClass = 0b1101;
202  let Inst{27-24} = 0b1101;
203  let Inst{22-21} = MajOp;
204  let Inst{20-16} = Rs;
205  let Inst{12-5} = Imm;
206  let Inst{4} = 0b0;
207  let Inst{3} = IsHalf;
208  let Inst{1-0} = Pd;
209}
210
211let isCodeGenOnly = 0 in {
212def A4_cmpbeqi  : T_CMP_ribh<"cmpb.eq",  0b00, 0, 1, u8Imm, 0, 0, 8>;
213def A4_cmpbgti  : T_CMP_ribh<"cmpb.gt",  0b01, 0, 0, s8Imm, 0, 1, 8>;
214def A4_cmpbgtui : T_CMP_ribh<"cmpb.gtu", 0b10, 0, 0, u7Ext, 1, 0, 7>;
215def A4_cmpheqi  : T_CMP_ribh<"cmph.eq",  0b00, 1, 1, s8Ext, 1, 1, 8>;
216def A4_cmphgti  : T_CMP_ribh<"cmph.gt",  0b01, 1, 0, s8Ext, 1, 1, 8>;
217def A4_cmphgtui : T_CMP_ribh<"cmph.gtu", 0b10, 1, 0, u7Ext, 1, 0, 7>;
218}
219class T_RCMP_EQ_ri<string mnemonic, bit IsNeg>
220  : ALU32_ri<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s8Ext:$s8),
221    "$Rd = "#mnemonic#"($Rs, #$s8)", [], "", ALU32_2op_tc_1_SLOT0123>,
222    ImmRegRel {
223  let validSubTargets = HasV4SubT;
224  let InputType = "imm";
225  let CextOpcode = !if (IsNeg, "!rcmp.eq", "rcmp.eq");
226  let isExtendable = 1;
227  let opExtendable = 2;
228  let isExtentSigned = 1;
229  let opExtentBits = 8;
230  let hasNewValue = 1;
231
232  bits<5> Rd;
233  bits<5> Rs;
234  bits<8> s8;
235
236  let IClass = 0b0111;
237  let Inst{27-24} = 0b0011;
238  let Inst{22} = 0b1;
239  let Inst{21} = IsNeg;
240  let Inst{20-16} = Rs;
241  let Inst{13} = 0b1;
242  let Inst{12-5} = s8;
243  let Inst{4-0} = Rd;
244}
245
246let isCodeGenOnly = 0 in {
247def A4_rcmpeqi  : T_RCMP_EQ_ri<"cmp.eq",  0>;
248def A4_rcmpneqi : T_RCMP_EQ_ri<"!cmp.eq", 1>;
249}
250
251def: Pat<(i32 (zext (i1 (seteq (i32 IntRegs:$Rs), s8ExtPred:$s8)))),
252         (A4_rcmpeqi IntRegs:$Rs, s8ExtPred:$s8)>;
253def: Pat<(i32 (zext (i1 (setne (i32 IntRegs:$Rs), s8ExtPred:$s8)))),
254         (A4_rcmpneqi IntRegs:$Rs, s8ExtPred:$s8)>;
255
256// Preserve the S2_tstbit_r generation
257def: Pat<(i32 (zext (i1 (setne (i32 (and (i32 (shl 1, (i32 IntRegs:$src2))),
258                                         (i32 IntRegs:$src1))), 0)))),
259         (C2_muxii (S2_tstbit_r IntRegs:$src1, IntRegs:$src2), 1, 0)>;
260
261
262//===----------------------------------------------------------------------===//
263// ALU32 -
264//===----------------------------------------------------------------------===//
265
266
267//===----------------------------------------------------------------------===//
268// ALU32/PERM +
269//===----------------------------------------------------------------------===//
270
271// Combine a word and an immediate into a register pair.
272let hasSideEffects = 0, isExtentSigned = 1, isExtendable = 1,
273    opExtentBits = 8 in
274class T_Combine1 <bits<2> MajOp, dag ins, string AsmStr>
275  : ALU32Inst <(outs DoubleRegs:$Rdd), ins, AsmStr> {
276    bits<5> Rdd;
277    bits<5> Rs;
278    bits<8> s8;
279
280    let IClass      = 0b0111;
281    let Inst{27-24} = 0b0011;
282    let Inst{22-21} = MajOp;
283    let Inst{20-16} = Rs;
284    let Inst{13}    = 0b1;
285    let Inst{12-5}  = s8;
286    let Inst{4-0}   = Rdd;
287  }
288
289let opExtendable = 2, isCodeGenOnly = 0 in
290def A4_combineri : T_Combine1<0b00, (ins IntRegs:$Rs, s8Ext:$s8),
291                                    "$Rdd = combine($Rs, #$s8)">;
292
293let opExtendable = 1, isCodeGenOnly = 0 in
294def A4_combineir : T_Combine1<0b01, (ins s8Ext:$s8, IntRegs:$Rs),
295                                    "$Rdd = combine(#$s8, $Rs)">;
296
297def HexagonWrapperCombineRI_V4 :
298  SDNode<"HexagonISD::WrapperCombineRI_V4", SDTHexagonI64I32I32>;
299def HexagonWrapperCombineIR_V4 :
300  SDNode<"HexagonISD::WrapperCombineIR_V4", SDTHexagonI64I32I32>;
301
302def : Pat <(HexagonWrapperCombineRI_V4 IntRegs:$r, s8ExtPred:$i),
303           (A4_combineri IntRegs:$r, s8ExtPred:$i)>,
304          Requires<[HasV4T]>;
305
306def : Pat <(HexagonWrapperCombineIR_V4 s8ExtPred:$i, IntRegs:$r),
307           (A4_combineir s8ExtPred:$i, IntRegs:$r)>,
308          Requires<[HasV4T]>;
309
310// A4_combineii: Set two small immediates.
311let hasSideEffects = 0, isExtendable = 1, opExtentBits = 6, opExtendable = 2 in
312def A4_combineii: ALU32Inst<(outs DoubleRegs:$Rdd), (ins s8Imm:$s8, u6Ext:$U6),
313  "$Rdd = combine(#$s8, #$U6)"> {
314    bits<5> Rdd;
315    bits<8> s8;
316    bits<6> U6;
317
318    let IClass = 0b0111;
319    let Inst{27-23} = 0b11001;
320    let Inst{20-16} = U6{5-1};
321    let Inst{13}    = U6{0};
322    let Inst{12-5}  = s8;
323    let Inst{4-0}   = Rdd;
324  }
325
326//===----------------------------------------------------------------------===//
327// ALU32/PERM -
328//===----------------------------------------------------------------------===//
329
330//===----------------------------------------------------------------------===//
331// LD +
332//===----------------------------------------------------------------------===//
333//===----------------------------------------------------------------------===//
334// Template class for load instructions with Absolute set addressing mode.
335//===----------------------------------------------------------------------===//
336let isExtended = 1, opExtendable = 2, hasSideEffects = 0,
337validSubTargets = HasV4SubT, addrMode = AbsoluteSet in
338class T_LD_abs_set<string mnemonic, RegisterClass RC>:
339            LDInst2<(outs RC:$dst1, IntRegs:$dst2),
340            (ins u0AlwaysExt:$addr),
341            "$dst1 = "#mnemonic#"($dst2=##$addr)",
342            []>,
343            Requires<[HasV4T]>;
344
345def LDrid_abs_set_V4  : T_LD_abs_set <"memd", DoubleRegs>;
346def LDrib_abs_set_V4  : T_LD_abs_set <"memb", IntRegs>;
347def LDriub_abs_set_V4 : T_LD_abs_set <"memub", IntRegs>;
348def LDrih_abs_set_V4  : T_LD_abs_set <"memh", IntRegs>;
349def LDriw_abs_set_V4  : T_LD_abs_set <"memw", IntRegs>;
350def LDriuh_abs_set_V4 : T_LD_abs_set <"memuh", IntRegs>;
351
352//===----------------------------------------------------------------------===//
353// Template classes for the non-predicated load instructions with
354// base + register offset addressing mode
355//===----------------------------------------------------------------------===//
356class T_load_rr <string mnemonic, RegisterClass RC, bits<3> MajOp>:
357   LDInst<(outs RC:$dst), (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$u2),
358  "$dst = "#mnemonic#"($src1 + $src2<<#$u2)",
359  [], "", V4LDST_tc_ld_SLOT01>, ImmRegShl, AddrModeRel {
360    bits<5> dst;
361    bits<5> src1;
362    bits<5> src2;
363    bits<2> u2;
364
365    let IClass = 0b0011;
366
367    let Inst{27-24} = 0b1010;
368    let Inst{23-21} = MajOp;
369    let Inst{20-16} = src1;
370    let Inst{12-8}  = src2;
371    let Inst{13}    = u2{1};
372    let Inst{7}     = u2{0};
373    let Inst{4-0}   = dst;
374  }
375
376//===----------------------------------------------------------------------===//
377// Template classes for the predicated load instructions with
378// base + register offset addressing mode
379//===----------------------------------------------------------------------===//
380let isPredicated =  1 in
381class T_pload_rr <string mnemonic, RegisterClass RC, bits<3> MajOp,
382                  bit isNot, bit isPredNew>:
383   LDInst <(outs RC:$dst),
384           (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$u2),
385  !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
386  ") ")#"$dst = "#mnemonic#"($src2+$src3<<#$u2)",
387  [], "", V4LDST_tc_ld_SLOT01>, AddrModeRel {
388    bits<5> dst;
389    bits<2> src1;
390    bits<5> src2;
391    bits<5> src3;
392    bits<2> u2;
393
394    let isPredicatedFalse = isNot;
395    let isPredicatedNew = isPredNew;
396
397    let IClass = 0b0011;
398
399    let Inst{27-26} = 0b00;
400    let Inst{25}    = isPredNew;
401    let Inst{24}    = isNot;
402    let Inst{23-21} = MajOp;
403    let Inst{20-16} = src2;
404    let Inst{12-8}  = src3;
405    let Inst{13}    = u2{1};
406    let Inst{7}     = u2{0};
407    let Inst{6-5}   = src1;
408    let Inst{4-0}   = dst;
409  }
410
411//===----------------------------------------------------------------------===//
412// multiclass for load instructions with base + register offset
413// addressing mode
414//===----------------------------------------------------------------------===//
415let hasSideEffects = 0, addrMode = BaseRegOffset in
416multiclass ld_idxd_shl <string mnemonic, string CextOp, RegisterClass RC,
417                        bits<3> MajOp > {
418  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl,
419      InputType = "reg" in {
420    let isPredicable = 1 in
421    def L4_#NAME#_rr : T_load_rr <mnemonic, RC, MajOp>;
422
423    // Predicated
424    def L4_p#NAME#t_rr : T_pload_rr <mnemonic, RC, MajOp, 0, 0>;
425    def L4_p#NAME#f_rr : T_pload_rr <mnemonic, RC, MajOp, 1, 0>;
426
427    // Predicated new
428    def L4_p#NAME#tnew_rr : T_pload_rr <mnemonic, RC, MajOp, 0, 1>;
429    def L4_p#NAME#fnew_rr : T_pload_rr <mnemonic, RC, MajOp, 1, 1>;
430  }
431}
432
433let hasNewValue = 1, accessSize = ByteAccess, isCodeGenOnly = 0 in {
434  defm loadrb  : ld_idxd_shl<"memb", "LDrib", IntRegs, 0b000>;
435  defm loadrub : ld_idxd_shl<"memub", "LDriub", IntRegs, 0b001>;
436}
437
438let hasNewValue = 1, accessSize = HalfWordAccess, isCodeGenOnly = 0 in {
439  defm loadrh  : ld_idxd_shl<"memh", "LDrih", IntRegs, 0b010>;
440  defm loadruh : ld_idxd_shl<"memuh", "LDriuh", IntRegs, 0b011>;
441}
442
443let hasNewValue = 1, accessSize = WordAccess, isCodeGenOnly = 0 in
444defm loadri : ld_idxd_shl<"memw", "LDriw", IntRegs, 0b100>;
445
446let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
447defm loadrd  : ld_idxd_shl<"memd", "LDrid", DoubleRegs, 0b110>;
448
449// 'def pats' for load instructions with base + register offset and non-zero
450// immediate value. Immediate value is used to left-shift the second
451// register operand.
452let AddedComplexity = 40 in {
453def : Pat <(i32 (sextloadi8 (add IntRegs:$src1,
454                                 (shl IntRegs:$src2, u2ImmPred:$offset)))),
455           (L4_loadrb_rr IntRegs:$src1,
456            IntRegs:$src2, u2ImmPred:$offset)>,
457            Requires<[HasV4T]>;
458
459def : Pat <(i32 (zextloadi8 (add IntRegs:$src1,
460                                 (shl IntRegs:$src2, u2ImmPred:$offset)))),
461           (L4_loadrub_rr IntRegs:$src1,
462            IntRegs:$src2, u2ImmPred:$offset)>,
463            Requires<[HasV4T]>;
464
465def : Pat <(i32 (extloadi8 (add IntRegs:$src1,
466                                (shl IntRegs:$src2, u2ImmPred:$offset)))),
467           (L4_loadrub_rr IntRegs:$src1,
468            IntRegs:$src2, u2ImmPred:$offset)>,
469            Requires<[HasV4T]>;
470
471def : Pat <(i32 (sextloadi16 (add IntRegs:$src1,
472                                  (shl IntRegs:$src2, u2ImmPred:$offset)))),
473           (L4_loadrh_rr IntRegs:$src1,
474            IntRegs:$src2, u2ImmPred:$offset)>,
475            Requires<[HasV4T]>;
476
477def : Pat <(i32 (zextloadi16 (add IntRegs:$src1,
478                                  (shl IntRegs:$src2, u2ImmPred:$offset)))),
479           (L4_loadruh_rr IntRegs:$src1,
480            IntRegs:$src2, u2ImmPred:$offset)>,
481            Requires<[HasV4T]>;
482
483def : Pat <(i32 (extloadi16 (add IntRegs:$src1,
484                                 (shl IntRegs:$src2, u2ImmPred:$offset)))),
485           (L4_loadruh_rr IntRegs:$src1,
486            IntRegs:$src2, u2ImmPred:$offset)>,
487            Requires<[HasV4T]>;
488
489def : Pat <(i32 (load (add IntRegs:$src1,
490                           (shl IntRegs:$src2, u2ImmPred:$offset)))),
491           (L4_loadri_rr IntRegs:$src1,
492            IntRegs:$src2, u2ImmPred:$offset)>,
493            Requires<[HasV4T]>;
494
495def : Pat <(i64 (load (add IntRegs:$src1,
496                           (shl IntRegs:$src2, u2ImmPred:$offset)))),
497           (L4_loadrd_rr IntRegs:$src1,
498            IntRegs:$src2, u2ImmPred:$offset)>,
499            Requires<[HasV4T]>;
500}
501
502
503// 'def pats' for load instruction base + register offset and
504// zero immediate value.
505let AddedComplexity = 10 in {
506def : Pat <(i64 (load (add IntRegs:$src1, IntRegs:$src2))),
507           (L4_loadrd_rr IntRegs:$src1, IntRegs:$src2, 0)>,
508            Requires<[HasV4T]>;
509
510def : Pat <(i32 (sextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
511           (L4_loadrb_rr IntRegs:$src1, IntRegs:$src2, 0)>,
512            Requires<[HasV4T]>;
513
514def : Pat <(i32 (zextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
515           (L4_loadrub_rr IntRegs:$src1, IntRegs:$src2, 0)>,
516            Requires<[HasV4T]>;
517
518def : Pat <(i32 (extloadi8 (add IntRegs:$src1, IntRegs:$src2))),
519           (L4_loadrub_rr IntRegs:$src1, IntRegs:$src2, 0)>,
520            Requires<[HasV4T]>;
521
522def : Pat <(i32 (sextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
523           (L4_loadrh_rr IntRegs:$src1, IntRegs:$src2, 0)>,
524            Requires<[HasV4T]>;
525
526def : Pat <(i32 (zextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
527           (L4_loadruh_rr IntRegs:$src1, IntRegs:$src2, 0)>,
528            Requires<[HasV4T]>;
529
530def : Pat <(i32 (extloadi16 (add IntRegs:$src1, IntRegs:$src2))),
531           (L4_loadruh_rr IntRegs:$src1, IntRegs:$src2, 0)>,
532            Requires<[HasV4T]>;
533
534def : Pat <(i32 (load (add IntRegs:$src1, IntRegs:$src2))),
535           (L4_loadri_rr IntRegs:$src1, IntRegs:$src2, 0)>,
536            Requires<[HasV4T]>;
537}
538
539// zext i1->i64
540def : Pat <(i64 (zext (i1 PredRegs:$src1))),
541      (i64 (A4_combineir 0, (C2_muxii (i1 PredRegs:$src1), 1, 0)))>,
542      Requires<[HasV4T]>;
543
544// zext i32->i64
545def : Pat <(i64 (zext (i32 IntRegs:$src1))),
546      (i64 (A4_combineir 0, (i32 IntRegs:$src1)))>,
547      Requires<[HasV4T]>;
548// zext i8->i64
549def:  Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
550      (i64 (A4_combineir 0, (L2_loadrub_io AddrFI:$src1, 0)))>,
551      Requires<[HasV4T]>;
552
553let AddedComplexity = 20 in
554def:  Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1),
555                                s11_0ExtPred:$offset))),
556      (i64 (A4_combineir 0, (L2_loadrub_io IntRegs:$src1,
557                                  s11_0ExtPred:$offset)))>,
558      Requires<[HasV4T]>;
559
560// zext i1->i64
561def:  Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)),
562      (i64 (A4_combineir 0, (L2_loadrub_io AddrFI:$src1, 0)))>,
563      Requires<[HasV4T]>;
564
565let AddedComplexity = 20 in
566def:  Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1),
567                                s11_0ExtPred:$offset))),
568      (i64 (A4_combineir 0, (L2_loadrub_io IntRegs:$src1,
569                                  s11_0ExtPred:$offset)))>,
570      Requires<[HasV4T]>;
571
572// zext i16->i64
573def:  Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
574      (i64 (A4_combineir 0, (L2_loadruh_io AddrFI:$src1, 0)))>,
575      Requires<[HasV4T]>;
576
577let AddedComplexity = 20 in
578def:  Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1),
579                                  s11_1ExtPred:$offset))),
580      (i64 (A4_combineir 0, (L2_loadruh_io IntRegs:$src1,
581                                  s11_1ExtPred:$offset)))>,
582      Requires<[HasV4T]>;
583
584// anyext i16->i64
585def:  Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
586      (i64 (A4_combineir 0, (L2_loadrh_io AddrFI:$src1, 0)))>,
587      Requires<[HasV4T]>;
588
589let AddedComplexity = 20 in
590def:  Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1),
591                                  s11_1ExtPred:$offset))),
592      (i64 (A4_combineir 0, (L2_loadrh_io IntRegs:$src1,
593                                  s11_1ExtPred:$offset)))>,
594      Requires<[HasV4T]>;
595
596// zext i32->i64
597def:  Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
598      (i64 (A4_combineir 0, (L2_loadri_io AddrFI:$src1, 0)))>,
599      Requires<[HasV4T]>;
600
601let AddedComplexity = 100 in
602def:  Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
603      (i64 (A4_combineir 0, (L2_loadri_io IntRegs:$src1,
604                                  s11_2ExtPred:$offset)))>,
605      Requires<[HasV4T]>;
606
607// anyext i32->i64
608def:  Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
609      (i64 (A4_combineir 0, (L2_loadri_io AddrFI:$src1, 0)))>,
610      Requires<[HasV4T]>;
611
612let AddedComplexity = 100 in
613def:  Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
614      (i64 (A4_combineir 0, (L2_loadri_io IntRegs:$src1,
615                                  s11_2ExtPred:$offset)))>,
616      Requires<[HasV4T]>;
617
618
619
620//===----------------------------------------------------------------------===//
621// LD -
622//===----------------------------------------------------------------------===//
623
624//===----------------------------------------------------------------------===//
625// ST +
626//===----------------------------------------------------------------------===//
627///
628//===----------------------------------------------------------------------===//
629// Template class for store instructions with Absolute set addressing mode.
630//===----------------------------------------------------------------------===//
631let isExtended = 1, opExtendable = 2, validSubTargets = HasV4SubT,
632addrMode = AbsoluteSet in
633class T_ST_abs_set<string mnemonic, RegisterClass RC>:
634            STInst2<(outs IntRegs:$dst1),
635            (ins RC:$src1, u0AlwaysExt:$src2),
636            mnemonic#"($dst1=##$src2) = $src1",
637            []>,
638            Requires<[HasV4T]>;
639
640def STrid_abs_set_V4 : T_ST_abs_set <"memd", DoubleRegs>;
641def STrib_abs_set_V4 : T_ST_abs_set <"memb", IntRegs>;
642def STrih_abs_set_V4 : T_ST_abs_set <"memh", IntRegs>;
643def STriw_abs_set_V4 : T_ST_abs_set <"memw", IntRegs>;
644
645//===----------------------------------------------------------------------===//
646// Template classes for the non-predicated store instructions with
647// base + register offset addressing mode
648//===----------------------------------------------------------------------===//
649let isPredicable = 1 in
650class T_store_rr <string mnemonic, RegisterClass RC, bits<3> MajOp, bit isH>
651  : STInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt),
652  mnemonic#"($Rs + $Ru<<#$u2) = $Rt"#!if(isH, ".h",""),
653  [],"",V4LDST_tc_st_SLOT01>, ImmRegShl, AddrModeRel {
654
655    bits<5> Rs;
656    bits<5> Ru;
657    bits<2> u2;
658    bits<5> Rt;
659
660    let IClass = 0b0011;
661
662    let Inst{27-24} = 0b1011;
663    let Inst{23-21} = MajOp;
664    let Inst{20-16} = Rs;
665    let Inst{12-8}  = Ru;
666    let Inst{13}    = u2{1};
667    let Inst{7}     = u2{0};
668    let Inst{4-0}   = Rt;
669  }
670
671//===----------------------------------------------------------------------===//
672// Template classes for the predicated store instructions with
673// base + register offset addressing mode
674//===----------------------------------------------------------------------===//
675let isPredicated = 1 in
676class T_pstore_rr <string mnemonic, RegisterClass RC, bits<3> MajOp,
677                   bit isNot, bit isPredNew, bit isH>
678  : STInst <(outs),
679            (ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt),
680
681  !if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
682  ") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Rt"#!if(isH, ".h",""),
683  [], "", V4LDST_tc_st_SLOT01> , AddrModeRel{
684    bits<2> Pv;
685    bits<5> Rs;
686    bits<5> Ru;
687    bits<2> u2;
688    bits<5> Rt;
689
690    let isPredicatedFalse = isNot;
691    let isPredicatedNew = isPredNew;
692
693    let IClass = 0b0011;
694
695    let Inst{27-26} = 0b01;
696    let Inst{25}    = isPredNew;
697    let Inst{24}    = isNot;
698    let Inst{23-21} = MajOp;
699    let Inst{20-16} = Rs;
700    let Inst{12-8}  = Ru;
701    let Inst{13}    = u2{1};
702    let Inst{7}     = u2{0};
703    let Inst{6-5}   = Pv;
704    let Inst{4-0}   = Rt;
705  }
706
707//===----------------------------------------------------------------------===//
708// Template classes for the new-value store instructions with
709// base + register offset addressing mode
710//===----------------------------------------------------------------------===//
711let isPredicable = 1, isNewValue = 1, opNewValue = 3 in
712class T_store_new_rr <string mnemonic, bits<2> MajOp> :
713  NVInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt),
714  mnemonic#"($Rs + $Ru<<#$u2) = $Nt.new",
715  [],"",V4LDST_tc_st_SLOT0>, ImmRegShl, AddrModeRel {
716
717    bits<5> Rs;
718    bits<5> Ru;
719    bits<2> u2;
720    bits<3> Nt;
721
722    let IClass = 0b0011;
723
724    let Inst{27-21} = 0b1011101;
725    let Inst{20-16} = Rs;
726    let Inst{12-8}  = Ru;
727    let Inst{13}    = u2{1};
728    let Inst{7}     = u2{0};
729    let Inst{4-3}   = MajOp;
730    let Inst{2-0}   = Nt;
731  }
732
733//===----------------------------------------------------------------------===//
734// Template classes for the predicated new-value store instructions with
735// base + register offset addressing mode
736//===----------------------------------------------------------------------===//
737let isPredicated = 1, isNewValue = 1, opNewValue = 4 in
738class T_pstore_new_rr <string mnemonic, bits<2> MajOp, bit isNot, bit isPredNew>
739  : NVInst<(outs),
740           (ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt),
741   !if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
742   ") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Nt.new",
743   [], "", V4LDST_tc_st_SLOT0>, AddrModeRel {
744    bits<2> Pv;
745    bits<5> Rs;
746    bits<5> Ru;
747    bits<2> u2;
748    bits<3> Nt;
749
750    let isPredicatedFalse = isNot;
751    let isPredicatedNew = isPredNew;
752
753    let IClass = 0b0011;
754    let Inst{27-26} = 0b01;
755    let Inst{25}    = isPredNew;
756    let Inst{24}    = isNot;
757    let Inst{23-21} = 0b101;
758    let Inst{20-16} = Rs;
759    let Inst{12-8}  = Ru;
760    let Inst{13}    = u2{1};
761    let Inst{7}     = u2{0};
762    let Inst{6-5}   = Pv;
763    let Inst{4-3}   = MajOp;
764    let Inst{2-0}   = Nt;
765  }
766
767//===----------------------------------------------------------------------===//
768// multiclass for store instructions with base + register offset addressing
769// mode
770//===----------------------------------------------------------------------===//
771let isNVStorable = 1 in
772multiclass ST_Idxd_shl<string mnemonic, string CextOp, RegisterClass RC,
773                       bits<3> MajOp, bit isH = 0> {
774  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
775    def S4_#NAME#_rr : T_store_rr <mnemonic, RC, MajOp, isH>;
776
777    // Predicated
778    def S4_p#NAME#t_rr : T_pstore_rr <mnemonic, RC, MajOp, 0, 0, isH>;
779    def S4_p#NAME#f_rr : T_pstore_rr <mnemonic, RC, MajOp, 1, 0, isH>;
780
781    // Predicated new
782    def S4_p#NAME#tnew_rr : T_pstore_rr <mnemonic, RC, MajOp, 0, 1, isH>;
783    def S4_p#NAME#fnew_rr : T_pstore_rr <mnemonic, RC, MajOp, 1, 1, isH>;
784  }
785}
786
787//===----------------------------------------------------------------------===//
788// multiclass for new-value store instructions with base + register offset
789// addressing mode.
790//===----------------------------------------------------------------------===//
791let mayStore = 1, isNVStore = 1 in
792multiclass ST_Idxd_shl_nv <string mnemonic, string CextOp, RegisterClass RC,
793                           bits<2> MajOp> {
794  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
795    def S4_#NAME#new_rr : T_store_new_rr<mnemonic, MajOp>;
796
797    // Predicated
798    def S4_p#NAME#newt_rr : T_pstore_new_rr <mnemonic, MajOp, 0, 0>;
799    def S4_p#NAME#newf_rr : T_pstore_new_rr <mnemonic, MajOp, 1, 0>;
800
801    // Predicated new
802    def S4_p#NAME#newtnew_rr : T_pstore_new_rr <mnemonic, MajOp, 0, 1>;
803    def S4_p#NAME#newfnew_rr : T_pstore_new_rr <mnemonic, MajOp, 1, 1>;
804  }
805}
806
807let addrMode = BaseRegOffset, InputType = "reg", hasSideEffects = 0,
808    isCodeGenOnly = 0 in {
809  let accessSize = ByteAccess in
810  defm storerb: ST_Idxd_shl<"memb", "STrib", IntRegs, 0b000>,
811                ST_Idxd_shl_nv<"memb", "STrib", IntRegs, 0b00>;
812
813  let accessSize = HalfWordAccess in
814  defm storerh: ST_Idxd_shl<"memh", "STrih", IntRegs, 0b010>,
815                ST_Idxd_shl_nv<"memh", "STrih", IntRegs, 0b01>;
816
817  let accessSize = WordAccess in
818  defm storeri: ST_Idxd_shl<"memw", "STriw", IntRegs, 0b100>,
819                ST_Idxd_shl_nv<"memw", "STriw", IntRegs, 0b10>;
820
821  let isNVStorable = 0, accessSize = DoubleWordAccess in
822  defm storerd: ST_Idxd_shl<"memd", "STrid", DoubleRegs, 0b110>;
823
824  let isNVStorable = 0, accessSize = HalfWordAccess in
825  defm storerf: ST_Idxd_shl<"memh", "STrif", IntRegs, 0b011, 1>;
826}
827
828let Predicates = [HasV4T], AddedComplexity = 10 in {
829def : Pat<(truncstorei8 (i32 IntRegs:$src4),
830                       (add IntRegs:$src1, (shl IntRegs:$src2,
831                                                u2ImmPred:$src3))),
832          (S4_storerb_rr IntRegs:$src1, IntRegs:$src2,
833                                u2ImmPred:$src3, IntRegs:$src4)>;
834
835def : Pat<(truncstorei16 (i32 IntRegs:$src4),
836                        (add IntRegs:$src1, (shl IntRegs:$src2,
837                                                 u2ImmPred:$src3))),
838          (S4_storerh_rr IntRegs:$src1, IntRegs:$src2,
839                                u2ImmPred:$src3, IntRegs:$src4)>;
840
841def : Pat<(store (i32 IntRegs:$src4),
842                 (add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
843          (S4_storeri_rr IntRegs:$src1, IntRegs:$src2,
844                                u2ImmPred:$src3, IntRegs:$src4)>;
845
846def : Pat<(store (i64 DoubleRegs:$src4),
847                (add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
848          (S4_storerd_rr IntRegs:$src1, IntRegs:$src2,
849                                u2ImmPred:$src3, DoubleRegs:$src4)>;
850}
851
852let isExtended = 1, opExtendable = 2 in
853class T_ST_LongOff <string mnemonic, PatFrag stOp, RegisterClass RC, ValueType VT> :
854            STInst<(outs),
855            (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, RC:$src4),
856            mnemonic#"($src1<<#$src2+##$src3) = $src4",
857            [(stOp (VT RC:$src4),
858                    (add (shl (i32 IntRegs:$src1), u2ImmPred:$src2),
859                         u0AlwaysExtPred:$src3))]>,
860            Requires<[HasV4T]>;
861
862let isExtended = 1, opExtendable = 2, mayStore = 1, isNVStore = 1 in
863class T_ST_LongOff_nv <string mnemonic> :
864            NVInst_V4<(outs),
865            (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, IntRegs:$src4),
866            mnemonic#"($src1<<#$src2+##$src3) = $src4.new",
867            []>,
868            Requires<[HasV4T]>;
869
870multiclass ST_LongOff <string mnemonic, string BaseOp, PatFrag stOp> {
871  let  BaseOpcode = BaseOp#"_shl" in {
872    let isNVStorable = 1 in
873    def NAME#_V4 : T_ST_LongOff<mnemonic, stOp, IntRegs, i32>;
874
875    def NAME#_nv_V4 : T_ST_LongOff_nv<mnemonic>;
876  }
877}
878
879let AddedComplexity = 10, validSubTargets = HasV4SubT in {
880  def STrid_shl_V4 : T_ST_LongOff<"memd", store, DoubleRegs, i64>;
881  defm STrib_shl   : ST_LongOff <"memb", "STrib", truncstorei8>, NewValueRel;
882  defm STrih_shl   : ST_LongOff <"memh", "Strih", truncstorei16>, NewValueRel;
883  defm STriw_shl   : ST_LongOff <"memw", "STriw", store>, NewValueRel;
884}
885
886let AddedComplexity = 40 in
887multiclass T_ST_LOff_Pats <InstHexagon I, RegisterClass RC, ValueType VT,
888                           PatFrag stOp> {
889 def : Pat<(stOp (VT RC:$src4),
890           (add (shl IntRegs:$src1, u2ImmPred:$src2),
891               (NumUsesBelowThresCONST32 tglobaladdr:$src3))),
892           (I IntRegs:$src1, u2ImmPred:$src2, tglobaladdr:$src3, RC:$src4)>;
893
894 def : Pat<(stOp (VT RC:$src4),
895           (add IntRegs:$src1,
896               (NumUsesBelowThresCONST32 tglobaladdr:$src3))),
897           (I IntRegs:$src1, 0, tglobaladdr:$src3, RC:$src4)>;
898}
899
900defm : T_ST_LOff_Pats<STrid_shl_V4, DoubleRegs, i64, store>;
901defm : T_ST_LOff_Pats<STriw_shl_V4, IntRegs, i32, store>;
902defm : T_ST_LOff_Pats<STrib_shl_V4, IntRegs, i32, truncstorei8>;
903defm : T_ST_LOff_Pats<STrih_shl_V4, IntRegs, i32, truncstorei16>;
904
905// memd(Rx++#s4:3)=Rtt
906// memd(Rx++#s4:3:circ(Mu))=Rtt
907// memd(Rx++I:circ(Mu))=Rtt
908// memd(Rx++Mu)=Rtt
909// memd(Rx++Mu:brev)=Rtt
910// memd(gp+#u16:3)=Rtt
911
912// Store doubleword conditionally.
913// if ([!]Pv[.new]) memd(#u6)=Rtt
914// TODO: needs to be implemented.
915
916//===----------------------------------------------------------------------===//
917// Template class
918//===----------------------------------------------------------------------===//
919let isPredicable = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 8,
920    opExtendable = 2 in
921class T_StoreImm <string mnemonic, Operand OffsetOp, bits<2> MajOp >
922  : STInst <(outs ), (ins IntRegs:$Rs, OffsetOp:$offset, s8Ext:$S8),
923  mnemonic#"($Rs+#$offset)=#$S8",
924  [], "", V4LDST_tc_st_SLOT01>,
925  ImmRegRel, PredNewRel {
926    bits<5> Rs;
927    bits<8> S8;
928    bits<8> offset;
929    bits<6> offsetBits;
930
931    string OffsetOpStr = !cast<string>(OffsetOp);
932    let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2},
933                     !if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1},
934                                         /* u6_0Imm */ offset{5-0}));
935
936    let IClass = 0b0011;
937
938    let Inst{27-25} = 0b110;
939    let Inst{22-21} = MajOp;
940    let Inst{20-16} = Rs;
941    let Inst{12-7}  = offsetBits;
942    let Inst{13}    = S8{7};
943    let Inst{6-0}   = S8{6-0};
944  }
945
946let isPredicated = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 6,
947    opExtendable = 3 in
948class T_StoreImm_pred <string mnemonic, Operand OffsetOp, bits<2> MajOp,
949                       bit isPredNot, bit isPredNew >
950  : STInst <(outs ),
951            (ins PredRegs:$Pv, IntRegs:$Rs, OffsetOp:$offset, s6Ext:$S6),
952  !if(isPredNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
953  ") ")#mnemonic#"($Rs+#$offset)=#$S6",
954  [], "", V4LDST_tc_st_SLOT01>,
955  ImmRegRel, PredNewRel {
956    bits<2> Pv;
957    bits<5> Rs;
958    bits<6> S6;
959    bits<8> offset;
960    bits<6> offsetBits;
961
962    string OffsetOpStr = !cast<string>(OffsetOp);
963    let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2},
964                     !if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1},
965                                         /* u6_0Imm */ offset{5-0}));
966    let isPredicatedNew = isPredNew;
967    let isPredicatedFalse = isPredNot;
968
969    let IClass = 0b0011;
970
971    let Inst{27-25} = 0b100;
972    let Inst{24}    = isPredNew;
973    let Inst{23}    = isPredNot;
974    let Inst{22-21} = MajOp;
975    let Inst{20-16} = Rs;
976    let Inst{13}    = S6{5};
977    let Inst{12-7}  = offsetBits;
978    let Inst{6-5}   = Pv;
979    let Inst{4-0}   = S6{4-0};
980  }
981
982
983//===----------------------------------------------------------------------===//
984// multiclass for store instructions with base + immediate offset
985// addressing mode and immediate stored value.
986// mem[bhw](Rx++#s4:3)=#s8
987// if ([!]Pv[.new]) mem[bhw](Rx++#s4:3)=#s6
988//===----------------------------------------------------------------------===//
989
990multiclass ST_Imm_Pred <string mnemonic, Operand OffsetOp, bits<2> MajOp,
991                        bit PredNot> {
992  def _io    : T_StoreImm_pred <mnemonic, OffsetOp, MajOp, PredNot, 0>;
993  // Predicate new
994  def new_io : T_StoreImm_pred <mnemonic, OffsetOp, MajOp, PredNot, 1>;
995}
996
997multiclass ST_Imm <string mnemonic, string CextOp, Operand OffsetOp,
998                   bits<2> MajOp> {
999  let CextOpcode = CextOp, BaseOpcode = CextOp#_imm in {
1000    def _io : T_StoreImm <mnemonic, OffsetOp, MajOp>;
1001
1002    defm t : ST_Imm_Pred <mnemonic, OffsetOp, MajOp, 0>;
1003    defm f : ST_Imm_Pred <mnemonic, OffsetOp, MajOp, 1>;
1004  }
1005}
1006
1007let hasSideEffects = 0, validSubTargets = HasV4SubT, addrMode = BaseImmOffset,
1008    InputType = "imm", isCodeGenOnly = 0 in {
1009  let accessSize = ByteAccess in
1010  defm S4_storeirb : ST_Imm<"memb", "STrib", u6_0Imm, 0b00>;
1011
1012  let accessSize = HalfWordAccess in
1013  defm S4_storeirh : ST_Imm<"memh", "STrih", u6_1Imm, 0b01>;
1014
1015  let accessSize = WordAccess in
1016  defm S4_storeiri : ST_Imm<"memw", "STriw", u6_2Imm, 0b10>;
1017}
1018
1019let Predicates = [HasV4T], AddedComplexity = 10 in {
1020def: Pat<(truncstorei8 s8ExtPred:$src3, (add IntRegs:$src1, u6_0ImmPred:$src2)),
1021            (S4_storeirb_io IntRegs:$src1, u6_0ImmPred:$src2, s8ExtPred:$src3)>;
1022
1023def: Pat<(truncstorei16 s8ExtPred:$src3, (add IntRegs:$src1,
1024                                              u6_1ImmPred:$src2)),
1025            (S4_storeirh_io IntRegs:$src1, u6_1ImmPred:$src2, s8ExtPred:$src3)>;
1026
1027def: Pat<(store s8ExtPred:$src3, (add IntRegs:$src1, u6_2ImmPred:$src2)),
1028            (S4_storeiri_io IntRegs:$src1, u6_2ImmPred:$src2, s8ExtPred:$src3)>;
1029}
1030
1031let AddedComplexity = 6 in
1032def : Pat <(truncstorei8 s8ExtPred:$src2, (i32 IntRegs:$src1)),
1033           (S4_storeirb_io IntRegs:$src1, 0, s8ExtPred:$src2)>,
1034           Requires<[HasV4T]>;
1035
1036// memb(Rx++#s4:0:circ(Mu))=Rt
1037// memb(Rx++I:circ(Mu))=Rt
1038// memb(Rx++Mu)=Rt
1039// memb(Rx++Mu:brev)=Rt
1040// memb(gp+#u16:0)=Rt
1041
1042
1043// Store halfword.
1044// TODO: needs to be implemented
1045// memh(Re=#U6)=Rt.H
1046// memh(Rs+#s11:1)=Rt.H
1047let AddedComplexity = 6 in
1048def : Pat <(truncstorei16 s8ExtPred:$src2, (i32 IntRegs:$src1)),
1049           (S4_storeirh_io IntRegs:$src1, 0, s8ExtPred:$src2)>,
1050           Requires<[HasV4T]>;
1051
1052// memh(Rs+Ru<<#u2)=Rt.H
1053// TODO: needs to be implemented.
1054
1055// memh(Ru<<#u2+#U6)=Rt.H
1056// memh(Rx++#s4:1:circ(Mu))=Rt.H
1057// memh(Rx++#s4:1:circ(Mu))=Rt
1058// memh(Rx++I:circ(Mu))=Rt.H
1059// memh(Rx++I:circ(Mu))=Rt
1060// memh(Rx++Mu)=Rt.H
1061// memh(Rx++Mu)=Rt
1062// memh(Rx++Mu:brev)=Rt.H
1063// memh(Rx++Mu:brev)=Rt
1064// memh(gp+#u16:1)=Rt
1065// if ([!]Pv[.new]) memh(#u6)=Rt.H
1066// if ([!]Pv[.new]) memh(#u6)=Rt
1067
1068
1069// if ([!]Pv[.new]) memh(Rs+#u6:1)=Rt.H
1070// TODO: needs to be implemented.
1071
1072// if ([!]Pv[.new]) memh(Rx++#s4:1)=Rt.H
1073// TODO: Needs to be implemented.
1074
1075// Store word.
1076// memw(Re=#U6)=Rt
1077// TODO: Needs to be implemented.
1078
1079// Store predicate:
1080let hasSideEffects = 0 in
1081def STriw_pred_V4 : STInst2<(outs),
1082            (ins MEMri:$addr, PredRegs:$src1),
1083            "Error; should not emit",
1084            []>,
1085            Requires<[HasV4T]>;
1086
1087let AddedComplexity = 6 in
1088def : Pat <(store s8ExtPred:$src2, (i32 IntRegs:$src1)),
1089           (S4_storeiri_io IntRegs:$src1, 0, s8ExtPred:$src2)>,
1090           Requires<[HasV4T]>;
1091
1092// memw(Rx++#s4:2)=Rt
1093// memw(Rx++#s4:2:circ(Mu))=Rt
1094// memw(Rx++I:circ(Mu))=Rt
1095// memw(Rx++Mu)=Rt
1096// memw(Rx++Mu:brev)=Rt
1097
1098//===----------------------------------------------------------------------===
1099// ST -
1100//===----------------------------------------------------------------------===
1101
1102
1103//===----------------------------------------------------------------------===//
1104// NV/ST +
1105//===----------------------------------------------------------------------===//
1106
1107let opNewValue = 2, opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in
1108class T_store_io_nv <string mnemonic, RegisterClass RC,
1109                    Operand ImmOp, bits<2>MajOp>
1110  : NVInst_V4 <(outs),
1111               (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
1112  mnemonic#"($src1+#$src2) = $src3.new",
1113  [],"",ST_tc_st_SLOT0> {
1114    bits<5> src1;
1115    bits<13> src2; // Actual address offset
1116    bits<3> src3;
1117    bits<11> offsetBits; // Represents offset encoding
1118
1119    let opExtentBits = !if (!eq(mnemonic, "memb"), 11,
1120                       !if (!eq(mnemonic, "memh"), 12,
1121                       !if (!eq(mnemonic, "memw"), 13, 0)));
1122
1123    let opExtentAlign = !if (!eq(mnemonic, "memb"), 0,
1124                        !if (!eq(mnemonic, "memh"), 1,
1125                        !if (!eq(mnemonic, "memw"), 2, 0)));
1126
1127    let offsetBits = !if (!eq(mnemonic, "memb"),  src2{10-0},
1128                     !if (!eq(mnemonic, "memh"),  src2{11-1},
1129                     !if (!eq(mnemonic, "memw"),  src2{12-2}, 0)));
1130
1131    let IClass = 0b1010;
1132
1133    let Inst{27} = 0b0;
1134    let Inst{26-25} = offsetBits{10-9};
1135    let Inst{24-21} = 0b1101;
1136    let Inst{20-16} = src1;
1137    let Inst{13} = offsetBits{8};
1138    let Inst{12-11} = MajOp;
1139    let Inst{10-8} = src3;
1140    let Inst{7-0} = offsetBits{7-0};
1141  }
1142
1143let opExtendable = 2, opNewValue = 3, isPredicated = 1 in
1144class T_pstore_io_nv <string mnemonic, RegisterClass RC, Operand predImmOp,
1145                         bits<2>MajOp, bit PredNot, bit isPredNew>
1146  : NVInst_V4 <(outs),
1147               (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC:$src4),
1148  !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
1149  ") ")#mnemonic#"($src2+#$src3) = $src4.new",
1150  [],"",V2LDST_tc_st_SLOT0> {
1151    bits<2> src1;
1152    bits<5> src2;
1153    bits<9> src3;
1154    bits<3> src4;
1155    bits<6> offsetBits; // Represents offset encoding
1156
1157    let isPredicatedNew = isPredNew;
1158    let isPredicatedFalse = PredNot;
1159    let opExtentBits = !if (!eq(mnemonic, "memb"), 6,
1160                       !if (!eq(mnemonic, "memh"), 7,
1161                       !if (!eq(mnemonic, "memw"), 8, 0)));
1162
1163    let opExtentAlign = !if (!eq(mnemonic, "memb"), 0,
1164                        !if (!eq(mnemonic, "memh"), 1,
1165                        !if (!eq(mnemonic, "memw"), 2, 0)));
1166
1167    let offsetBits = !if (!eq(mnemonic, "memb"), src3{5-0},
1168                     !if (!eq(mnemonic, "memh"), src3{6-1},
1169                     !if (!eq(mnemonic, "memw"), src3{7-2}, 0)));
1170
1171    let IClass = 0b0100;
1172
1173    let Inst{27}    = 0b0;
1174    let Inst{26}    = PredNot;
1175    let Inst{25}    = isPredNew;
1176    let Inst{24-21} = 0b0101;
1177    let Inst{20-16} = src2;
1178    let Inst{13}    = offsetBits{5};
1179    let Inst{12-11} = MajOp;
1180    let Inst{10-8}  = src4;
1181    let Inst{7-3}   = offsetBits{4-0};
1182    let Inst{2}     = 0b0;
1183    let Inst{1-0}   = src1;
1184  }
1185
1186// multiclass for new-value store instructions with base + immediate offset.
1187//
1188let mayStore = 1, isNVStore = 1, isNewValue = 1, hasSideEffects = 0,
1189    isExtendable = 1 in
1190multiclass ST_Idxd_nv<string mnemonic, string CextOp, RegisterClass RC,
1191                   Operand ImmOp, Operand predImmOp, bits<2> MajOp> {
1192
1193  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
1194    def S2_#NAME#new_io : T_store_io_nv <mnemonic, RC, ImmOp, MajOp>;
1195    // Predicated
1196    def S2_p#NAME#newt_io :T_pstore_io_nv <mnemonic, RC, predImmOp, MajOp, 0, 0>;
1197    def S2_p#NAME#newf_io :T_pstore_io_nv <mnemonic, RC, predImmOp, MajOp, 1, 0>;
1198    // Predicated new
1199    def S4_p#NAME#newtnew_io :T_pstore_io_nv <mnemonic, RC, predImmOp,
1200                                              MajOp, 0, 1>;
1201    def S4_p#NAME#newfnew_io :T_pstore_io_nv <mnemonic, RC, predImmOp,
1202                                              MajOp, 1, 1>;
1203  }
1204}
1205
1206let addrMode = BaseImmOffset, InputType = "imm", isCodeGenOnly = 0 in {
1207  let accessSize = ByteAccess in
1208  defm storerb: ST_Idxd_nv<"memb", "STrib", IntRegs, s11_0Ext,
1209                           u6_0Ext, 0b00>, AddrModeRel;
1210
1211  let accessSize = HalfWordAccess, opExtentAlign = 1 in
1212  defm storerh: ST_Idxd_nv<"memh", "STrih", IntRegs, s11_1Ext,
1213                           u6_1Ext, 0b01>, AddrModeRel;
1214
1215  let accessSize = WordAccess, opExtentAlign = 2 in
1216  defm storeri: ST_Idxd_nv<"memw", "STriw", IntRegs, s11_2Ext,
1217                           u6_2Ext, 0b10>, AddrModeRel;
1218}
1219
1220//===----------------------------------------------------------------------===//
1221// Template class for non-predicated post increment .new stores
1222// mem[bhwd](Rx++#s4:[0123])=Nt.new
1223//===----------------------------------------------------------------------===//
1224let isPredicable = 1, hasSideEffects = 0, validSubTargets = HasV4SubT,
1225    addrMode = PostInc, isNVStore = 1, isNewValue = 1, opNewValue = 3 in
1226class T_StorePI_nv <string mnemonic, Operand ImmOp, bits<2> MajOp >
1227  : NVInstPI_V4 <(outs IntRegs:$_dst_),
1228                 (ins IntRegs:$src1, ImmOp:$offset, IntRegs:$src2),
1229  mnemonic#"($src1++#$offset) = $src2.new",
1230  [], "$src1 = $_dst_">,
1231  AddrModeRel {
1232    bits<5> src1;
1233    bits<3> src2;
1234    bits<7> offset;
1235    bits<4> offsetBits;
1236
1237    string ImmOpStr = !cast<string>(ImmOp);
1238    let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
1239                     !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
1240                                      /* s4_0Imm */ offset{3-0}));
1241    let IClass = 0b1010;
1242
1243    let Inst{27-21} = 0b1011101;
1244    let Inst{20-16} = src1;
1245    let Inst{13} = 0b0;
1246    let Inst{12-11} = MajOp;
1247    let Inst{10-8} = src2;
1248    let Inst{7} = 0b0;
1249    let Inst{6-3} = offsetBits;
1250    let Inst{1} = 0b0;
1251  }
1252
1253//===----------------------------------------------------------------------===//
1254// Template class for predicated post increment .new stores
1255// if([!]Pv[.new]) mem[bhwd](Rx++#s4:[0123])=Nt.new
1256//===----------------------------------------------------------------------===//
1257let isPredicated = 1, hasSideEffects = 0, validSubTargets = HasV4SubT,
1258    addrMode = PostInc, isNVStore = 1, isNewValue = 1, opNewValue = 4 in
1259class T_StorePI_nv_pred <string mnemonic, Operand ImmOp,
1260                         bits<2> MajOp, bit isPredNot, bit isPredNew >
1261  : NVInstPI_V4 <(outs IntRegs:$_dst_),
1262                 (ins PredRegs:$src1, IntRegs:$src2,
1263                      ImmOp:$offset, IntRegs:$src3),
1264  !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
1265  ") ")#mnemonic#"($src2++#$offset) = $src3.new",
1266  [], "$src2 = $_dst_">,
1267  AddrModeRel {
1268    bits<2> src1;
1269    bits<5> src2;
1270    bits<3> src3;
1271    bits<7> offset;
1272    bits<4> offsetBits;
1273
1274    string ImmOpStr = !cast<string>(ImmOp);
1275    let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
1276                     !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
1277                                      /* s4_0Imm */ offset{3-0}));
1278    let isPredicatedNew = isPredNew;
1279    let isPredicatedFalse = isPredNot;
1280
1281    let IClass = 0b1010;
1282
1283    let Inst{27-21} = 0b1011101;
1284    let Inst{20-16} = src2;
1285    let Inst{13} = 0b1;
1286    let Inst{12-11} = MajOp;
1287    let Inst{10-8} = src3;
1288    let Inst{7} = isPredNew;
1289    let Inst{6-3} = offsetBits;
1290    let Inst{2} = isPredNot;
1291    let Inst{1-0} = src1;
1292  }
1293
1294multiclass ST_PostInc_Pred_nv<string mnemonic, Operand ImmOp,
1295                              bits<2> MajOp, bit PredNot> {
1296  def _pi : T_StorePI_nv_pred <mnemonic, ImmOp, MajOp, PredNot, 0>;
1297
1298  // Predicate new
1299  def new_pi : T_StorePI_nv_pred <mnemonic, ImmOp, MajOp, PredNot, 1>;
1300}
1301
1302multiclass ST_PostInc_nv<string mnemonic, string BaseOp, Operand ImmOp,
1303                         bits<2> MajOp> {
1304  let BaseOpcode = "POST_"#BaseOp in {
1305    def S2_#NAME#_pi : T_StorePI_nv <mnemonic, ImmOp, MajOp>;
1306
1307    // Predicated
1308    defm S2_p#NAME#t : ST_PostInc_Pred_nv <mnemonic, ImmOp, MajOp, 0>;
1309    defm S2_p#NAME#f : ST_PostInc_Pred_nv <mnemonic, ImmOp, MajOp, 1>;
1310  }
1311}
1312
1313let accessSize = ByteAccess, isCodeGenOnly = 0 in
1314defm storerbnew: ST_PostInc_nv <"memb", "STrib", s4_0Imm, 0b00>;
1315
1316let accessSize = HalfWordAccess, isCodeGenOnly = 0 in
1317defm storerhnew: ST_PostInc_nv <"memh", "STrih", s4_1Imm, 0b01>;
1318
1319let accessSize = WordAccess, isCodeGenOnly = 0 in
1320defm storerinew: ST_PostInc_nv <"memw", "STriw", s4_2Imm, 0b10>;
1321
1322//===----------------------------------------------------------------------===//
1323// Template class for post increment .new stores with register offset
1324//===----------------------------------------------------------------------===//
1325let isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3 in
1326class T_StorePI_RegNV <string mnemonic, bits<2> MajOp, MemAccessSize AccessSz>
1327  : NVInstPI_V4 <(outs IntRegs:$_dst_),
1328                 (ins IntRegs:$src1, ModRegs:$src2, IntRegs:$src3),
1329  #mnemonic#"($src1++$src2) = $src3.new",
1330  [], "$src1 = $_dst_"> {
1331    bits<5> src1;
1332    bits<1> src2;
1333    bits<3> src3;
1334    let accessSize = AccessSz;
1335
1336    let IClass = 0b1010;
1337
1338    let Inst{27-21} = 0b1101101;
1339    let Inst{20-16} = src1;
1340    let Inst{13}    = src2;
1341    let Inst{12-11} = MajOp;
1342    let Inst{10-8}  = src3;
1343    let Inst{7}     = 0b0;
1344  }
1345
1346let isCodeGenOnly = 0 in {
1347def S2_storerbnew_pr : T_StorePI_RegNV<"memb", 0b00, ByteAccess>;
1348def S2_storerhnew_pr : T_StorePI_RegNV<"memh", 0b01, HalfWordAccess>;
1349def S2_storerinew_pr : T_StorePI_RegNV<"memw", 0b10, WordAccess>;
1350}
1351
1352// memb(Rx++#s4:0:circ(Mu))=Nt.new
1353// memb(Rx++I:circ(Mu))=Nt.new
1354// memb(Rx++Mu)=Nt.new
1355// memb(Rx++Mu:brev)=Nt.new
1356// memh(Rx++#s4:1:circ(Mu))=Nt.new
1357// memh(Rx++I:circ(Mu))=Nt.new
1358// memh(Rx++Mu)=Nt.new
1359// memh(Rx++Mu:brev)=Nt.new
1360
1361// memw(Rx++#s4:2:circ(Mu))=Nt.new
1362// memw(Rx++I:circ(Mu))=Nt.new
1363// memw(Rx++Mu)=Nt.new
1364// memw(Rx++Mu:brev)=Nt.new
1365
1366//===----------------------------------------------------------------------===//
1367// NV/ST -
1368//===----------------------------------------------------------------------===//
1369
1370//===----------------------------------------------------------------------===//
1371// NV/J +
1372//===----------------------------------------------------------------------===//
1373
1374//===----------------------------------------------------------------------===//
1375// multiclass/template class for the new-value compare jumps with the register
1376// operands.
1377//===----------------------------------------------------------------------===//
1378
1379let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11,
1380    opExtentAlign = 2 in
1381class NVJrr_template<string mnemonic, bits<3> majOp, bit NvOpNum,
1382                      bit isNegCond, bit isTak>
1383  : NVInst_V4<(outs),
1384    (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset),
1385    "if ("#!if(isNegCond, "!","")#mnemonic#
1386    "($src1"#!if(!eq(NvOpNum, 0),".new, ",", ")#
1387    "$src2"#!if(!eq(NvOpNum, 1),".new))","))")#" jump:"
1388    #!if(isTak, "t","nt")#" $offset", []> {
1389
1390      bits<5> src1;
1391      bits<5> src2;
1392      bits<3> Ns;    // New-Value Operand
1393      bits<5> RegOp; // Non-New-Value Operand
1394      bits<11> offset;
1395
1396      let isTaken = isTak;
1397      let isPredicatedFalse = isNegCond;
1398      let opNewValue{0} = NvOpNum;
1399
1400      let Ns = !if(!eq(NvOpNum, 0), src1{2-0}, src2{2-0});
1401      let RegOp = !if(!eq(NvOpNum, 0), src2, src1);
1402
1403      let IClass = 0b0010;
1404      let Inst{26} = 0b0;
1405      let Inst{25-23} = majOp;
1406      let Inst{22} = isNegCond;
1407      let Inst{18-16} = Ns;
1408      let Inst{13} = isTak;
1409      let Inst{12-8} = RegOp;
1410      let Inst{21-20} = offset{10-9};
1411      let Inst{7-1} = offset{8-2};
1412}
1413
1414
1415multiclass NVJrr_cond<string mnemonic, bits<3> majOp, bit NvOpNum,
1416                       bit isNegCond> {
1417  // Branch not taken:
1418  def _nt_V4: NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 0>;
1419  // Branch taken:
1420  def _t_V4: NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 1>;
1421}
1422
1423// NvOpNum = 0 -> First Operand is a new-value Register
1424// NvOpNum = 1 -> Second Operand is a new-value Register
1425
1426multiclass NVJrr_base<string mnemonic, string BaseOp, bits<3> majOp,
1427                       bit NvOpNum> {
1428  let BaseOpcode = BaseOp#_NVJ in {
1429    defm _t_Jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 0>; // True cond
1430    defm _f_Jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 1>; // False cond
1431  }
1432}
1433
1434// if ([!]cmp.eq(Ns.new,Rt)) jump:[n]t #r9:2
1435// if ([!]cmp.gt(Ns.new,Rt)) jump:[n]t #r9:2
1436// if ([!]cmp.gtu(Ns.new,Rt)) jump:[n]t #r9:2
1437// if ([!]cmp.gt(Rt,Ns.new)) jump:[n]t #r9:2
1438// if ([!]cmp.gtu(Rt,Ns.new)) jump:[n]t #r9:2
1439
1440let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
1441    Defs = [PC], hasSideEffects = 0, validSubTargets = HasV4SubT,
1442    isCodeGenOnly = 0 in {
1443  defm CMPEQrr  : NVJrr_base<"cmp.eq",  "CMPEQ",  0b000, 0>, PredRel;
1444  defm CMPGTrr  : NVJrr_base<"cmp.gt",  "CMPGT",  0b001, 0>, PredRel;
1445  defm CMPGTUrr : NVJrr_base<"cmp.gtu", "CMPGTU", 0b010, 0>, PredRel;
1446  defm CMPLTrr  : NVJrr_base<"cmp.gt",  "CMPLT",  0b011, 1>, PredRel;
1447  defm CMPLTUrr : NVJrr_base<"cmp.gtu", "CMPLTU", 0b100, 1>, PredRel;
1448}
1449
1450//===----------------------------------------------------------------------===//
1451// multiclass/template class for the new-value compare jumps instruction
1452// with a register and an unsigned immediate (U5) operand.
1453//===----------------------------------------------------------------------===//
1454
1455let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11,
1456    opExtentAlign = 2 in
1457class NVJri_template<string mnemonic, bits<3> majOp, bit isNegCond,
1458                         bit isTak>
1459  : NVInst_V4<(outs),
1460    (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset),
1461    "if ("#!if(isNegCond, "!","")#mnemonic#"($src1.new, #$src2)) jump:"
1462    #!if(isTak, "t","nt")#" $offset", []> {
1463
1464      let isTaken = isTak;
1465      let isPredicatedFalse = isNegCond;
1466      let isTaken = isTak;
1467
1468      bits<3> src1;
1469      bits<5> src2;
1470      bits<11> offset;
1471
1472      let IClass = 0b0010;
1473      let Inst{26} = 0b1;
1474      let Inst{25-23} = majOp;
1475      let Inst{22} = isNegCond;
1476      let Inst{18-16} = src1;
1477      let Inst{13} = isTak;
1478      let Inst{12-8} = src2;
1479      let Inst{21-20} = offset{10-9};
1480      let Inst{7-1} = offset{8-2};
1481}
1482
1483multiclass NVJri_cond<string mnemonic, bits<3> majOp, bit isNegCond> {
1484  // Branch not taken:
1485  def _nt_V4: NVJri_template<mnemonic, majOp, isNegCond, 0>;
1486  // Branch taken:
1487  def _t_V4: NVJri_template<mnemonic, majOp, isNegCond, 1>;
1488}
1489
1490multiclass NVJri_base<string mnemonic, string BaseOp, bits<3> majOp> {
1491  let BaseOpcode = BaseOp#_NVJri in {
1492    defm _t_Jumpnv : NVJri_cond<mnemonic, majOp, 0>; // True Cond
1493    defm _f_Jumpnv : NVJri_cond<mnemonic, majOp, 1>; // False cond
1494  }
1495}
1496
1497// if ([!]cmp.eq(Ns.new,#U5)) jump:[n]t #r9:2
1498// if ([!]cmp.gt(Ns.new,#U5)) jump:[n]t #r9:2
1499// if ([!]cmp.gtu(Ns.new,#U5)) jump:[n]t #r9:2
1500
1501let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
1502    Defs = [PC], hasSideEffects = 0, validSubTargets = HasV4SubT,
1503    isCodeGenOnly = 0 in {
1504  defm CMPEQri  : NVJri_base<"cmp.eq", "CMPEQ", 0b000>, PredRel;
1505  defm CMPGTri  : NVJri_base<"cmp.gt", "CMPGT", 0b001>, PredRel;
1506  defm CMPGTUri : NVJri_base<"cmp.gtu", "CMPGTU", 0b010>, PredRel;
1507}
1508
1509//===----------------------------------------------------------------------===//
1510// multiclass/template class for the new-value compare jumps instruction
1511// with a register and an hardcoded 0/-1 immediate value.
1512//===----------------------------------------------------------------------===//
1513
1514let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 11,
1515    opExtentAlign = 2 in
1516class NVJ_ConstImm_template<string mnemonic, bits<3> majOp, string ImmVal,
1517                            bit isNegCond, bit isTak>
1518  : NVInst_V4<(outs),
1519    (ins IntRegs:$src1, brtarget:$offset),
1520    "if ("#!if(isNegCond, "!","")#mnemonic
1521    #"($src1.new, #"#ImmVal#")) jump:"
1522    #!if(isTak, "t","nt")#" $offset", []> {
1523
1524      let isTaken = isTak;
1525      let isPredicatedFalse = isNegCond;
1526      let isTaken = isTak;
1527
1528      bits<3> src1;
1529      bits<11> offset;
1530      let IClass = 0b0010;
1531      let Inst{26} = 0b1;
1532      let Inst{25-23} = majOp;
1533      let Inst{22} = isNegCond;
1534      let Inst{18-16} = src1;
1535      let Inst{13} = isTak;
1536      let Inst{21-20} = offset{10-9};
1537      let Inst{7-1} = offset{8-2};
1538}
1539
1540multiclass NVJ_ConstImm_cond<string mnemonic, bits<3> majOp, string ImmVal,
1541                             bit isNegCond> {
1542  // Branch not taken:
1543  def _nt_V4: NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 0>;
1544  // Branch taken:
1545  def _t_V4: NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 1>;
1546}
1547
1548multiclass NVJ_ConstImm_base<string mnemonic, string BaseOp, bits<3> majOp,
1549                             string ImmVal> {
1550  let BaseOpcode = BaseOp#_NVJ_ConstImm in {
1551    defm _t_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 0>; // True
1552    defm _f_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 1>; // False
1553  }
1554}
1555
1556// if ([!]tstbit(Ns.new,#0)) jump:[n]t #r9:2
1557// if ([!]cmp.eq(Ns.new,#-1)) jump:[n]t #r9:2
1558// if ([!]cmp.gt(Ns.new,#-1)) jump:[n]t #r9:2
1559
1560let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator=1,
1561    Defs = [PC], hasSideEffects = 0, isCodeGenOnly = 0 in {
1562  defm TSTBIT0  : NVJ_ConstImm_base<"tstbit", "TSTBIT", 0b011, "0">, PredRel;
1563  defm CMPEQn1  : NVJ_ConstImm_base<"cmp.eq", "CMPEQ",  0b100, "-1">, PredRel;
1564  defm CMPGTn1  : NVJ_ConstImm_base<"cmp.gt", "CMPGT",  0b101, "-1">, PredRel;
1565}
1566
1567// J4_hintjumpr: Hint indirect conditional jump.
1568let isBranch = 1, isIndirectBranch = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
1569def J4_hintjumpr: JRInst <
1570  (outs),
1571  (ins IntRegs:$Rs),
1572  "hintjr($Rs)"> {
1573    bits<5> Rs;
1574    let IClass = 0b0101;
1575    let Inst{27-21} = 0b0010101;
1576    let Inst{20-16} = Rs;
1577  }
1578
1579//===----------------------------------------------------------------------===//
1580// NV/J -
1581//===----------------------------------------------------------------------===//
1582
1583//===----------------------------------------------------------------------===//
1584// CR +
1585//===----------------------------------------------------------------------===//
1586
1587// PC-relative add
1588let hasNewValue = 1, isExtendable = 1, opExtendable = 1,
1589    isExtentSigned = 0, opExtentBits = 6, hasSideEffects = 0,
1590    Uses = [PC], validSubTargets = HasV4SubT in
1591def C4_addipc : CRInst <(outs IntRegs:$Rd), (ins u6Ext:$u6),
1592  "$Rd = add(pc, #$u6)", [], "", CR_tc_2_SLOT3 > {
1593    bits<5> Rd;
1594    bits<6> u6;
1595
1596    let IClass = 0b0110;
1597    let Inst{27-16} = 0b101001001001;
1598    let Inst{12-7} = u6;
1599    let Inst{4-0} = Rd;
1600  }
1601
1602
1603
1604let hasSideEffects = 0 in
1605class T_LOGICAL_3OP<string MnOp1, string MnOp2, bits<2> OpBits, bit IsNeg>
1606    : CRInst<(outs PredRegs:$Pd),
1607             (ins PredRegs:$Ps, PredRegs:$Pt, PredRegs:$Pu),
1608             "$Pd = " # MnOp1 # "($Ps, " # MnOp2 # "($Pt, " #
1609                   !if (IsNeg,"!","") # "$Pu))",
1610             [], "", CR_tc_2early_SLOT23> {
1611  bits<2> Pd;
1612  bits<2> Ps;
1613  bits<2> Pt;
1614  bits<2> Pu;
1615
1616  let IClass = 0b0110;
1617  let Inst{27-24} = 0b1011;
1618  let Inst{23} = IsNeg;
1619  let Inst{22-21} = OpBits;
1620  let Inst{20} = 0b1;
1621  let Inst{17-16} = Ps;
1622  let Inst{13} = 0b0;
1623  let Inst{9-8} = Pt;
1624  let Inst{7-6} = Pu;
1625  let Inst{1-0} = Pd;
1626}
1627
1628let isCodeGenOnly = 0 in {
1629def C4_and_and  : T_LOGICAL_3OP<"and", "and", 0b00, 0>;
1630def C4_and_or   : T_LOGICAL_3OP<"and", "or",  0b01, 0>;
1631def C4_or_and   : T_LOGICAL_3OP<"or",  "and", 0b10, 0>;
1632def C4_or_or    : T_LOGICAL_3OP<"or",  "or",  0b11, 0>;
1633def C4_and_andn : T_LOGICAL_3OP<"and", "and", 0b00, 1>;
1634def C4_and_orn  : T_LOGICAL_3OP<"and", "or",  0b01, 1>;
1635def C4_or_andn  : T_LOGICAL_3OP<"or",  "and", 0b10, 1>;
1636def C4_or_orn   : T_LOGICAL_3OP<"or",  "or",  0b11, 1>;
1637}
1638
1639//===----------------------------------------------------------------------===//
1640// CR -
1641//===----------------------------------------------------------------------===//
1642
1643//===----------------------------------------------------------------------===//
1644// XTYPE/ALU +
1645//===----------------------------------------------------------------------===//
1646
1647// Logical with-not instructions.
1648let validSubTargets = HasV4SubT, isCodeGenOnly = 0 in {
1649  def A4_andnp : T_ALU64_logical<"and", 0b001, 1, 0, 1>;
1650  def A4_ornp  : T_ALU64_logical<"or",  0b011, 1, 0, 1>;
1651}
1652
1653let hasNewValue = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
1654def S4_parity: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
1655      "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
1656  bits<5> Rd;
1657  bits<5> Rs;
1658  bits<5> Rt;
1659
1660  let IClass = 0b1101;
1661  let Inst{27-21} = 0b0101111;
1662  let Inst{20-16} = Rs;
1663  let Inst{12-8} = Rt;
1664  let Inst{4-0} = Rd;
1665}
1666//  Add and accumulate.
1667//  Rd=add(Rs,add(Ru,#s6))
1668let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 6,
1669    opExtendable = 3, isCodeGenOnly = 0 in
1670def S4_addaddi : ALU64Inst <(outs IntRegs:$Rd),
1671                            (ins IntRegs:$Rs, IntRegs:$Ru, s6Ext:$s6),
1672  "$Rd = add($Rs, add($Ru, #$s6))" ,
1673  [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rs),
1674                           (add (i32 IntRegs:$Ru), s6_16ExtPred:$s6)))],
1675  "", ALU64_tc_2_SLOT23> {
1676    bits<5> Rd;
1677    bits<5> Rs;
1678    bits<5> Ru;
1679    bits<6> s6;
1680
1681    let IClass = 0b1101;
1682
1683    let Inst{27-23} = 0b10110;
1684    let Inst{22-21} = s6{5-4};
1685    let Inst{20-16} = Rs;
1686    let Inst{13}    = s6{3};
1687    let Inst{12-8}  = Rd;
1688    let Inst{7-5}   = s6{2-0};
1689    let Inst{4-0}   = Ru;
1690  }
1691
1692let isExtentSigned = 1, hasSideEffects = 0, hasNewValue = 1, isExtendable = 1,
1693    opExtentBits = 6, opExtendable = 2, isCodeGenOnly = 0 in
1694def S4_subaddi: ALU64Inst <(outs IntRegs:$Rd),
1695                           (ins IntRegs:$Rs, s6Ext:$s6, IntRegs:$Ru),
1696  "$Rd = add($Rs, sub(#$s6, $Ru))",
1697  [], "", ALU64_tc_2_SLOT23> {
1698    bits<5> Rd;
1699    bits<5> Rs;
1700    bits<6> s6;
1701    bits<5> Ru;
1702
1703    let IClass = 0b1101;
1704
1705    let Inst{27-23} = 0b10111;
1706    let Inst{22-21} = s6{5-4};
1707    let Inst{20-16} = Rs;
1708    let Inst{13}    = s6{3};
1709    let Inst{12-8}  = Rd;
1710    let Inst{7-5}   = s6{2-0};
1711    let Inst{4-0}   = Ru;
1712  }
1713
1714// Extract bitfield
1715// Rdd=extract(Rss,#u6,#U6)
1716// Rdd=extract(Rss,Rtt)
1717// Rd=extract(Rs,Rtt)
1718// Rd=extract(Rs,#u5,#U5)
1719
1720let isCodeGenOnly = 0 in {
1721def S4_extractp_rp : T_S3op_64 < "extract",  0b11, 0b100, 0>;
1722def S4_extractp    : T_S2op_extract <"extract",  0b1010, DoubleRegs, u6Imm>;
1723}
1724
1725let hasNewValue = 1, isCodeGenOnly = 0 in {
1726  def S4_extract_rp : T_S3op_extract<"extract",  0b01>;
1727  def S4_extract    : T_S2op_extract <"extract",  0b1101, IntRegs, u5Imm>;
1728}
1729
1730let Itinerary = M_tc_3x_SLOT23, Defs = [USR_OVF], isCodeGenOnly = 0 in {
1731  def M4_mac_up_s1_sat: T_MType_acc_rr<"+= mpy", 0b011, 0b000, 0, [], 0, 1, 1>;
1732  def M4_nac_up_s1_sat: T_MType_acc_rr<"-= mpy", 0b011, 0b001, 0, [], 0, 1, 1>;
1733}
1734
1735// Logical xor with xor accumulation.
1736// Rxx^=xor(Rss,Rtt)
1737let hasSideEffects = 0, isCodeGenOnly = 0 in
1738def M4_xor_xacc
1739  : SInst <(outs DoubleRegs:$Rxx),
1740           (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
1741  "$Rxx ^= xor($Rss, $Rtt)",
1742  [(set (i64 DoubleRegs:$Rxx),
1743   (xor (i64 DoubleRegs:$dst2), (xor (i64 DoubleRegs:$Rss),
1744                                     (i64 DoubleRegs:$Rtt))))],
1745  "$dst2 = $Rxx", S_3op_tc_1_SLOT23> {
1746    bits<5> Rxx;
1747    bits<5> Rss;
1748    bits<5> Rtt;
1749
1750    let IClass = 0b1100;
1751
1752    let Inst{27-23} = 0b10101;
1753    let Inst{20-16} = Rss;
1754    let Inst{12-8}  = Rtt;
1755    let Inst{4-0}   = Rxx;
1756  }
1757
1758// Split bitfield
1759let isCodeGenOnly = 0 in
1760def A4_bitspliti : T_S2op_2_di <"bitsplit", 0b110, 0b100>;
1761
1762// Arithmetic/Convergent round
1763let isCodeGenOnly = 0 in
1764def A4_cround_ri : T_S2op_2_ii <"cround", 0b111, 0b000>;
1765
1766let isCodeGenOnly = 0 in
1767def A4_round_ri  : T_S2op_2_ii <"round", 0b111, 0b100>;
1768
1769let Defs = [USR_OVF], isCodeGenOnly = 0 in
1770def A4_round_ri_sat : T_S2op_2_ii <"round", 0b111, 0b110, 1>;
1771
1772// Logical-logical words.
1773// Compound or-and -- Rx=or(Ru,and(Rx,#s10))
1774let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 10,
1775    opExtendable = 3, isCodeGenOnly = 0 in
1776def S4_or_andix:
1777  ALU64Inst<(outs IntRegs:$Rx),
1778            (ins IntRegs:$Ru, IntRegs:$_src_, s10Ext:$s10),
1779  "$Rx = or($Ru, and($_src_, #$s10))" ,
1780  [(set (i32 IntRegs:$Rx),
1781        (or (i32 IntRegs:$Ru), (and (i32 IntRegs:$_src_), s10ExtPred:$s10)))] ,
1782  "$_src_ = $Rx", ALU64_tc_2_SLOT23> {
1783    bits<5> Rx;
1784    bits<5> Ru;
1785    bits<10> s10;
1786
1787    let IClass = 0b1101;
1788
1789    let Inst{27-22} = 0b101001;
1790    let Inst{20-16} = Rx;
1791    let Inst{21}    = s10{9};
1792    let Inst{13-5}  = s10{8-0};
1793    let Inst{4-0}   = Ru;
1794  }
1795
1796// Miscellaneous ALU64 instructions.
1797//
1798let hasNewValue = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
1799def A4_modwrapu: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
1800      "$Rd = modwrap($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
1801  bits<5> Rd;
1802  bits<5> Rs;
1803  bits<5> Rt;
1804
1805  let IClass = 0b1101;
1806  let Inst{27-21} = 0b0011111;
1807  let Inst{20-16} = Rs;
1808  let Inst{12-8} = Rt;
1809  let Inst{7-5} = 0b111;
1810  let Inst{4-0} = Rd;
1811}
1812
1813let hasSideEffects = 0, isCodeGenOnly = 0 in
1814def A4_bitsplit: ALU64Inst<(outs DoubleRegs:$Rd),
1815      (ins IntRegs:$Rs, IntRegs:$Rt),
1816      "$Rd = bitsplit($Rs, $Rt)", [], "", ALU64_tc_1_SLOT23> {
1817  bits<5> Rd;
1818  bits<5> Rs;
1819  bits<5> Rt;
1820
1821  let IClass = 0b1101;
1822  let Inst{27-24} = 0b0100;
1823  let Inst{21} = 0b1;
1824  let Inst{20-16} = Rs;
1825  let Inst{12-8} = Rt;
1826  let Inst{4-0} = Rd;
1827}
1828
1829let isCodeGenOnly = 0 in {
1830// Rx[&|]=xor(Rs,Rt)
1831def M4_or_xor   : T_MType_acc_rr < "|= xor", 0b110, 0b001, 0>;
1832def M4_and_xor  : T_MType_acc_rr < "&= xor", 0b010, 0b010, 0>;
1833
1834// Rx[&|^]=or(Rs,Rt)
1835def M4_xor_or   : T_MType_acc_rr < "^= or",  0b110, 0b011, 0>;
1836
1837let CextOpcode = "ORr_ORr" in
1838def M4_or_or    : T_MType_acc_rr < "|= or",  0b110, 0b000, 0>;
1839def M4_and_or   : T_MType_acc_rr < "&= or",  0b010, 0b001, 0>;
1840
1841// Rx[&|^]=and(Rs,Rt)
1842def M4_xor_and  : T_MType_acc_rr < "^= and", 0b110, 0b010, 0>;
1843
1844let CextOpcode = "ORr_ANDr" in
1845def M4_or_and   : T_MType_acc_rr < "|= and", 0b010, 0b011, 0>;
1846def M4_and_and  : T_MType_acc_rr < "&= and", 0b010, 0b000, 0>;
1847
1848// Rx[&|^]=and(Rs,~Rt)
1849def M4_xor_andn : T_MType_acc_rr < "^= and", 0b001, 0b010, 0, [], 1>;
1850def M4_or_andn  : T_MType_acc_rr < "|= and", 0b001, 0b000, 0, [], 1>;
1851def M4_and_andn : T_MType_acc_rr < "&= and", 0b001, 0b001, 0, [], 1>;
1852}
1853
1854// Compound or-or and or-and
1855let isExtentSigned = 1, InputType = "imm", hasNewValue = 1, isExtendable = 1,
1856    opExtentBits = 10, opExtendable = 3 in
1857class T_CompOR <string mnemonic, bits<2> MajOp, SDNode OpNode>
1858  : MInst_acc <(outs IntRegs:$Rx),
1859               (ins IntRegs:$src1, IntRegs:$Rs, s10Ext:$s10),
1860  "$Rx |= "#mnemonic#"($Rs, #$s10)",
1861  [(set (i32 IntRegs:$Rx), (or (i32 IntRegs:$src1),
1862                           (OpNode (i32 IntRegs:$Rs), s10ExtPred:$s10)))],
1863  "$src1 = $Rx", ALU64_tc_2_SLOT23>, ImmRegRel {
1864    bits<5> Rx;
1865    bits<5> Rs;
1866    bits<10> s10;
1867
1868    let IClass = 0b1101;
1869
1870    let Inst{27-24} = 0b1010;
1871    let Inst{23-22} = MajOp;
1872    let Inst{20-16} = Rs;
1873    let Inst{21}    = s10{9};
1874    let Inst{13-5}  = s10{8-0};
1875    let Inst{4-0}   = Rx;
1876  }
1877
1878let CextOpcode = "ORr_ANDr", isCodeGenOnly = 0 in
1879def S4_or_andi : T_CompOR <"and", 0b00, and>;
1880
1881let CextOpcode = "ORr_ORr", isCodeGenOnly = 0 in
1882def S4_or_ori : T_CompOR <"or", 0b10, or>;
1883
1884//    Modulo wrap
1885//        Rd=modwrap(Rs,Rt)
1886//    Round
1887//        Rd=cround(Rs,#u5)
1888//        Rd=cround(Rs,Rt)
1889//        Rd=round(Rs,#u5)[:sat]
1890//        Rd=round(Rs,Rt)[:sat]
1891//    Vector reduce add unsigned halfwords
1892//        Rd=vraddh(Rss,Rtt)
1893//    Vector add bytes
1894//        Rdd=vaddb(Rss,Rtt)
1895//    Vector conditional negate
1896//        Rdd=vcnegh(Rss,Rt)
1897//        Rxx+=vrcnegh(Rss,Rt)
1898//    Vector maximum bytes
1899//        Rdd=vmaxb(Rtt,Rss)
1900//    Vector reduce maximum halfwords
1901//        Rxx=vrmaxh(Rss,Ru)
1902//        Rxx=vrmaxuh(Rss,Ru)
1903//    Vector reduce maximum words
1904//        Rxx=vrmaxuw(Rss,Ru)
1905//        Rxx=vrmaxw(Rss,Ru)
1906//    Vector minimum bytes
1907//        Rdd=vminb(Rtt,Rss)
1908//    Vector reduce minimum halfwords
1909//        Rxx=vrminh(Rss,Ru)
1910//        Rxx=vrminuh(Rss,Ru)
1911//    Vector reduce minimum words
1912//        Rxx=vrminuw(Rss,Ru)
1913//        Rxx=vrminw(Rss,Ru)
1914//    Vector subtract bytes
1915//        Rdd=vsubb(Rss,Rtt)
1916
1917//===----------------------------------------------------------------------===//
1918// XTYPE/ALU -
1919//===----------------------------------------------------------------------===//
1920
1921//===----------------------------------------------------------------------===//
1922// XTYPE/BIT +
1923//===----------------------------------------------------------------------===//
1924
1925// Bit reverse
1926let isCodeGenOnly = 0 in
1927def S2_brevp : T_S2op_3 <"brev", 0b11, 0b110>;
1928
1929// Bit count
1930let isCodeGenOnly = 0 in {
1931def S2_ct0p : T_COUNT_LEADING_64<"ct0", 0b111, 0b010>;
1932def S2_ct1p : T_COUNT_LEADING_64<"ct1", 0b111, 0b100>;
1933def S4_clbpnorm : T_COUNT_LEADING_64<"normamt", 0b011, 0b000>;
1934}
1935
1936def: Pat<(i32 (trunc (cttz (i64 DoubleRegs:$Rss)))),
1937         (S2_ct0p (i64 DoubleRegs:$Rss))>;
1938def: Pat<(i32 (trunc (cttz (not (i64 DoubleRegs:$Rss))))),
1939         (S2_ct1p (i64 DoubleRegs:$Rss))>;
1940
1941let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in
1942def S4_clbaddi : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s6Imm:$s6),
1943    "$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> {
1944  bits<5> Rs;
1945  bits<5> Rd;
1946  bits<6> s6;
1947  let IClass = 0b1000;
1948  let Inst{27-24} = 0b1100;
1949  let Inst{23-21} = 0b001;
1950  let Inst{20-16} = Rs;
1951  let Inst{13-8} = s6;
1952  let Inst{7-5} = 0b000;
1953  let Inst{4-0} = Rd;
1954}
1955
1956let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in
1957def S4_clbpaddi : SInst<(outs IntRegs:$Rd), (ins DoubleRegs:$Rs, s6Imm:$s6),
1958    "$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> {
1959  bits<5> Rs;
1960  bits<5> Rd;
1961  bits<6> s6;
1962  let IClass = 0b1000;
1963  let Inst{27-24} = 0b1000;
1964  let Inst{23-21} = 0b011;
1965  let Inst{20-16} = Rs;
1966  let Inst{13-8} = s6;
1967  let Inst{7-5} = 0b010;
1968  let Inst{4-0} = Rd;
1969}
1970
1971
1972// Bit test/set/clear
1973let isCodeGenOnly = 0 in {
1974def S4_ntstbit_i : T_TEST_BIT_IMM<"!tstbit", 0b001>;
1975def S4_ntstbit_r : T_TEST_BIT_REG<"!tstbit", 1>;
1976}
1977
1978let AddedComplexity = 20 in {   // Complexity greater than cmp reg-imm.
1979  def: Pat<(i1 (seteq (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)),
1980           (S4_ntstbit_i (i32 IntRegs:$Rs), u5ImmPred:$u5)>;
1981  def: Pat<(i1 (seteq (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)),
1982           (S4_ntstbit_r (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))>;
1983}
1984
1985// Add extra complexity to prefer these instructions over bitsset/bitsclr.
1986// The reason is that tstbit/ntstbit can be folded into a compound instruction:
1987//   if ([!]tstbit(...)) jump ...
1988let AddedComplexity = 100 in
1989def: Pat<(i1 (setne (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))),
1990         (S2_tstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>;
1991
1992let AddedComplexity = 100 in
1993def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))),
1994         (S4_ntstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>;
1995
1996let isCodeGenOnly = 0 in {
1997def C4_nbitsset  : T_TEST_BITS_REG<"!bitsset", 0b01, 1>;
1998def C4_nbitsclr  : T_TEST_BITS_REG<"!bitsclr", 0b10, 1>;
1999def C4_nbitsclri : T_TEST_BITS_IMM<"!bitsclr", 0b10, 1>;
2000}
2001
2002// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
2003// represented as a compare against "value & 0xFF", which is an exact match
2004// for cmpb (same for cmph). The patterns below do not contain any additional
2005// complexity that would make them preferable, and if they were actually used
2006// instead of cmpb/cmph, they would result in a compare against register that
2007// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
2008def: Pat<(i1 (setne (and I32:$Rs, u6ImmPred:$u6), 0)),
2009         (C4_nbitsclri I32:$Rs, u6ImmPred:$u6)>;
2010def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
2011         (C4_nbitsclr I32:$Rs, I32:$Rt)>;
2012def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
2013         (C4_nbitsset I32:$Rs, I32:$Rt)>;
2014
2015//===----------------------------------------------------------------------===//
2016// XTYPE/BIT -
2017//===----------------------------------------------------------------------===//
2018
2019//===----------------------------------------------------------------------===//
2020// XTYPE/MPY +
2021//===----------------------------------------------------------------------===//
2022
2023// Rd=add(#u6,mpyi(Rs,#U6)) -- Multiply by immed and add immed.
2024
2025let hasNewValue = 1, isExtendable = 1, opExtentBits = 6, opExtendable = 1,
2026    isCodeGenOnly = 0 in
2027def M4_mpyri_addi : MInst<(outs IntRegs:$Rd),
2028  (ins u6Ext:$u6, IntRegs:$Rs, u6Imm:$U6),
2029  "$Rd = add(#$u6, mpyi($Rs, #$U6))" ,
2030  [(set (i32 IntRegs:$Rd),
2031        (add (mul (i32 IntRegs:$Rs), u6ImmPred:$U6),
2032             u6ExtPred:$u6))] ,"",ALU64_tc_3x_SLOT23> {
2033    bits<5> Rd;
2034    bits<6> u6;
2035    bits<5> Rs;
2036    bits<6> U6;
2037
2038    let IClass = 0b1101;
2039
2040    let Inst{27-24} = 0b1000;
2041    let Inst{23}    = U6{5};
2042    let Inst{22-21} = u6{5-4};
2043    let Inst{20-16} = Rs;
2044    let Inst{13}    = u6{3};
2045    let Inst{12-8}  = Rd;
2046    let Inst{7-5}   = u6{2-0};
2047    let Inst{4-0}   = U6{4-0};
2048  }
2049
2050// Rd=add(#u6,mpyi(Rs,Rt))
2051let CextOpcode = "ADD_MPY", InputType = "imm", hasNewValue = 1,
2052    isExtendable = 1, opExtentBits = 6, opExtendable = 1, isCodeGenOnly = 0 in
2053def M4_mpyrr_addi : MInst <(outs IntRegs:$Rd),
2054  (ins u6Ext:$u6, IntRegs:$Rs, IntRegs:$Rt),
2055  "$Rd = add(#$u6, mpyi($Rs, $Rt))" ,
2056  [(set (i32 IntRegs:$Rd),
2057        (add (mul (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), u6ExtPred:$u6))],
2058  "", ALU64_tc_3x_SLOT23>, ImmRegRel {
2059    bits<5> Rd;
2060    bits<6> u6;
2061    bits<5> Rs;
2062    bits<5> Rt;
2063
2064    let IClass = 0b1101;
2065
2066    let Inst{27-23} = 0b01110;
2067    let Inst{22-21} = u6{5-4};
2068    let Inst{20-16} = Rs;
2069    let Inst{13}    = u6{3};
2070    let Inst{12-8}  = Rt;
2071    let Inst{7-5}   = u6{2-0};
2072    let Inst{4-0}   = Rd;
2073  }
2074
2075let hasNewValue = 1 in
2076class T_AddMpy <bit MajOp, PatLeaf ImmPred, dag ins>
2077  : ALU64Inst <(outs IntRegs:$dst), ins,
2078  "$dst = add($src1, mpyi("#!if(MajOp,"$src3, #$src2))",
2079                                      "#$src2, $src3))"),
2080  [(set (i32 IntRegs:$dst),
2081        (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src3), ImmPred:$src2)))],
2082  "", ALU64_tc_3x_SLOT23> {
2083    bits<5> dst;
2084    bits<5> src1;
2085    bits<8> src2;
2086    bits<5> src3;
2087
2088    let IClass = 0b1101;
2089
2090    bits<6> ImmValue = !if(MajOp, src2{5-0}, src2{7-2});
2091
2092    let Inst{27-24} = 0b1111;
2093    let Inst{23}    = MajOp;
2094    let Inst{22-21} = ImmValue{5-4};
2095    let Inst{20-16} = src3;
2096    let Inst{13}    = ImmValue{3};
2097    let Inst{12-8}  = dst;
2098    let Inst{7-5}   = ImmValue{2-0};
2099    let Inst{4-0}   = src1;
2100  }
2101
2102let isCodeGenOnly = 0 in
2103def M4_mpyri_addr_u2 : T_AddMpy<0b0, u6_2ImmPred,
2104                       (ins IntRegs:$src1, u6_2Imm:$src2, IntRegs:$src3)>;
2105
2106let isExtendable = 1, opExtentBits = 6, opExtendable = 3,
2107    CextOpcode = "ADD_MPY", InputType = "imm", isCodeGenOnly = 0 in
2108def M4_mpyri_addr : T_AddMpy<0b1, u6ExtPred,
2109                    (ins IntRegs:$src1, IntRegs:$src3, u6Ext:$src2)>, ImmRegRel;
2110
2111// Rx=add(Ru,mpyi(Rx,Rs))
2112let validSubTargets = HasV4SubT, CextOpcode = "ADD_MPY", InputType = "reg",
2113    hasNewValue = 1, isCodeGenOnly = 0 in
2114def M4_mpyrr_addr: MInst_acc <(outs IntRegs:$Rx),
2115                              (ins IntRegs:$Ru, IntRegs:$_src_, IntRegs:$Rs),
2116  "$Rx = add($Ru, mpyi($_src_, $Rs))",
2117  [(set (i32 IntRegs:$Rx), (add (i32 IntRegs:$Ru),
2118                           (mul (i32 IntRegs:$_src_), (i32 IntRegs:$Rs))))],
2119  "$_src_ = $Rx", M_tc_3x_SLOT23>, ImmRegRel {
2120    bits<5> Rx;
2121    bits<5> Ru;
2122    bits<5> Rs;
2123
2124    let IClass = 0b1110;
2125
2126    let Inst{27-21} = 0b0011000;
2127    let Inst{12-8} = Rx;
2128    let Inst{4-0} = Ru;
2129    let Inst{20-16} = Rs;
2130  }
2131
2132// Rd=add(##,mpyi(Rs,#U6))
2133def : Pat <(add (mul (i32 IntRegs:$src2), u6ImmPred:$src3),
2134                     (HexagonCONST32 tglobaladdr:$src1)),
2135           (i32 (M4_mpyri_addi tglobaladdr:$src1, IntRegs:$src2,
2136                               u6ImmPred:$src3))>;
2137
2138// Rd=add(##,mpyi(Rs,Rt))
2139def : Pat <(add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
2140                     (HexagonCONST32 tglobaladdr:$src1)),
2141           (i32 (M4_mpyrr_addi tglobaladdr:$src1, IntRegs:$src2,
2142                               IntRegs:$src3))>;
2143
2144// Polynomial multiply words
2145// Rdd=pmpyw(Rs,Rt)
2146// Rxx^=pmpyw(Rs,Rt)
2147
2148// Vector reduce multiply word by signed half (32x16)
2149// Rdd=vrmpyweh(Rss,Rtt)[:<<1]
2150// Rdd=vrmpywoh(Rss,Rtt)[:<<1]
2151// Rxx+=vrmpyweh(Rss,Rtt)[:<<1]
2152// Rxx+=vrmpywoh(Rss,Rtt)[:<<1]
2153
2154// Multiply and use upper result
2155// Rd=mpy(Rs,Rt.H):<<1:sat
2156// Rd=mpy(Rs,Rt.L):<<1:sat
2157// Rd=mpy(Rs,Rt):<<1
2158// Rd=mpy(Rs,Rt):<<1:sat
2159// Rd=mpysu(Rs,Rt)
2160// Rx+=mpy(Rs,Rt):<<1:sat
2161// Rx-=mpy(Rs,Rt):<<1:sat
2162
2163// Vector multiply bytes
2164// Rdd=vmpybsu(Rs,Rt)
2165// Rdd=vmpybu(Rs,Rt)
2166// Rxx+=vmpybsu(Rs,Rt)
2167// Rxx+=vmpybu(Rs,Rt)
2168
2169// Vector polynomial multiply halfwords
2170// Rdd=vpmpyh(Rs,Rt)
2171// Rxx^=vpmpyh(Rs,Rt)
2172
2173//===----------------------------------------------------------------------===//
2174// XTYPE/MPY -
2175//===----------------------------------------------------------------------===//
2176
2177
2178//===----------------------------------------------------------------------===//
2179// XTYPE/SHIFT +
2180//===----------------------------------------------------------------------===//
2181// Shift by immediate and accumulate/logical.
2182// Rx=add(#u8,asl(Rx,#U5))  Rx=add(#u8,lsr(Rx,#U5))
2183// Rx=sub(#u8,asl(Rx,#U5))  Rx=sub(#u8,lsr(Rx,#U5))
2184// Rx=and(#u8,asl(Rx,#U5))  Rx=and(#u8,lsr(Rx,#U5))
2185// Rx=or(#u8,asl(Rx,#U5))   Rx=or(#u8,lsr(Rx,#U5))
2186let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
2187    hasNewValue = 1, opNewValue = 0, validSubTargets = HasV4SubT in
2188class T_S4_ShiftOperate<string MnOp, string MnSh, SDNode Op, SDNode Sh,
2189                        bit asl_lsr, bits<2> MajOp, InstrItinClass Itin>
2190  : MInst_acc<(outs IntRegs:$Rd), (ins u8Ext:$u8, IntRegs:$Rx, u5Imm:$U5),
2191      "$Rd = "#MnOp#"(#$u8, "#MnSh#"($Rx, #$U5))",
2192      [(set (i32 IntRegs:$Rd),
2193            (Op (Sh I32:$Rx, u5ImmPred:$U5), u8ExtPred:$u8))],
2194      "$Rd = $Rx", Itin> {
2195
2196  bits<5> Rd;
2197  bits<8> u8;
2198  bits<5> Rx;
2199  bits<5> U5;
2200
2201  let IClass = 0b1101;
2202  let Inst{27-24} = 0b1110;
2203  let Inst{23-21} = u8{7-5};
2204  let Inst{20-16} = Rd;
2205  let Inst{13} = u8{4};
2206  let Inst{12-8} = U5;
2207  let Inst{7-5} = u8{3-1};
2208  let Inst{4} = asl_lsr;
2209  let Inst{3} = u8{0};
2210  let Inst{2-1} = MajOp;
2211}
2212
2213multiclass T_ShiftOperate<string mnemonic, SDNode Op, bits<2> MajOp,
2214                          InstrItinClass Itin> {
2215  def _asl_ri : T_S4_ShiftOperate<mnemonic, "asl", Op, shl, 0, MajOp, Itin>;
2216  def _lsr_ri : T_S4_ShiftOperate<mnemonic, "lsr", Op, srl, 1, MajOp, Itin>;
2217}
2218
2219let AddedComplexity = 200, isCodeGenOnly = 0 in {
2220  defm S4_addi : T_ShiftOperate<"add", add, 0b10, ALU64_tc_2_SLOT23>;
2221  defm S4_andi : T_ShiftOperate<"and", and, 0b00, ALU64_tc_2_SLOT23>;
2222}
2223
2224let AddedComplexity = 30, isCodeGenOnly = 0 in
2225defm S4_ori  : T_ShiftOperate<"or",  or,  0b01, ALU64_tc_1_SLOT23>;
2226
2227let isCodeGenOnly = 0 in
2228defm S4_subi : T_ShiftOperate<"sub", sub, 0b11, ALU64_tc_1_SLOT23>;
2229
2230
2231// Rd=[cround|round](Rs,Rt)
2232let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23, isCodeGenOnly = 0 in {
2233  def A4_cround_rr    : T_S3op_3 < "cround", IntRegs, 0b11, 0b00>;
2234  def A4_round_rr     : T_S3op_3 < "round", IntRegs, 0b11, 0b10>;
2235}
2236
2237// Rd=round(Rs,Rt):sat
2238let hasNewValue = 1, Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23,
2239    isCodeGenOnly = 0 in
2240def A4_round_rr_sat : T_S3op_3 < "round", IntRegs, 0b11, 0b11, 1>;
2241
2242// Rdd=[add|sub](Rss,Rtt,Px):carry
2243let isPredicateLate = 1, hasSideEffects = 0 in
2244class T_S3op_carry <string mnemonic, bits<3> MajOp>
2245  : SInst < (outs DoubleRegs:$Rdd, PredRegs:$Px),
2246            (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, PredRegs:$Pu),
2247  "$Rdd = "#mnemonic#"($Rss, $Rtt, $Pu):carry",
2248  [], "$Px = $Pu", S_3op_tc_1_SLOT23 > {
2249    bits<5> Rdd;
2250    bits<5> Rss;
2251    bits<5> Rtt;
2252    bits<2> Pu;
2253
2254    let IClass = 0b1100;
2255
2256    let Inst{27-24} = 0b0010;
2257    let Inst{23-21} = MajOp;
2258    let Inst{20-16} = Rss;
2259    let Inst{12-8}  = Rtt;
2260    let Inst{6-5}   = Pu;
2261    let Inst{4-0}   = Rdd;
2262  }
2263
2264let isCodeGenOnly = 0 in {
2265def A4_addp_c : T_S3op_carry < "add", 0b110 >;
2266def A4_subp_c : T_S3op_carry < "sub", 0b111 >;
2267}
2268
2269// Shift an immediate left by register amount.
2270let hasNewValue = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
2271def S4_lsli: SInst <(outs IntRegs:$Rd), (ins s6Imm:$s6, IntRegs:$Rt),
2272  "$Rd = lsl(#$s6, $Rt)" ,
2273  [(set (i32 IntRegs:$Rd), (shl s6ImmPred:$s6,
2274                                 (i32 IntRegs:$Rt)))],
2275  "", S_3op_tc_1_SLOT23> {
2276    bits<5> Rd;
2277    bits<6> s6;
2278    bits<5> Rt;
2279
2280    let IClass = 0b1100;
2281
2282    let Inst{27-22} = 0b011010;
2283    let Inst{20-16} = s6{5-1};
2284    let Inst{12-8}  = Rt;
2285    let Inst{7-6}   = 0b11;
2286    let Inst{4-0}   = Rd;
2287    let Inst{5}     = s6{0};
2288  }
2289
2290//===----------------------------------------------------------------------===//
2291// XTYPE/SHIFT -
2292//===----------------------------------------------------------------------===//
2293
2294//===----------------------------------------------------------------------===//
2295// MEMOP: Word, Half, Byte
2296//===----------------------------------------------------------------------===//
2297
2298def MEMOPIMM : SDNodeXForm<imm, [{
2299  // Call the transformation function XformM5ToU5Imm to get the negative
2300  // immediate's positive counterpart.
2301  int32_t imm = N->getSExtValue();
2302  return XformM5ToU5Imm(imm);
2303}]>;
2304
2305def MEMOPIMM_HALF : SDNodeXForm<imm, [{
2306  // -1 .. -31 represented as 65535..65515
2307  // assigning to a short restores our desired signed value.
2308  // Call the transformation function XformM5ToU5Imm to get the negative
2309  // immediate's positive counterpart.
2310  int16_t imm = N->getSExtValue();
2311  return XformM5ToU5Imm(imm);
2312}]>;
2313
2314def MEMOPIMM_BYTE : SDNodeXForm<imm, [{
2315  // -1 .. -31 represented as 255..235
2316  // assigning to a char restores our desired signed value.
2317  // Call the transformation function XformM5ToU5Imm to get the negative
2318  // immediate's positive counterpart.
2319  int8_t imm = N->getSExtValue();
2320  return XformM5ToU5Imm(imm);
2321}]>;
2322
2323def SETMEMIMM : SDNodeXForm<imm, [{
2324   // Return the bit position we will set [0-31].
2325   // As an SDNode.
2326   int32_t imm = N->getSExtValue();
2327   return XformMskToBitPosU5Imm(imm);
2328}]>;
2329
2330def CLRMEMIMM : SDNodeXForm<imm, [{
2331   // Return the bit position we will clear [0-31].
2332   // As an SDNode.
2333   // we bit negate the value first
2334   int32_t imm = ~(N->getSExtValue());
2335   return XformMskToBitPosU5Imm(imm);
2336}]>;
2337
2338def SETMEMIMM_SHORT : SDNodeXForm<imm, [{
2339   // Return the bit position we will set [0-15].
2340   // As an SDNode.
2341   int16_t imm = N->getSExtValue();
2342   return XformMskToBitPosU4Imm(imm);
2343}]>;
2344
2345def CLRMEMIMM_SHORT : SDNodeXForm<imm, [{
2346   // Return the bit position we will clear [0-15].
2347   // As an SDNode.
2348   // we bit negate the value first
2349   int16_t imm = ~(N->getSExtValue());
2350   return XformMskToBitPosU4Imm(imm);
2351}]>;
2352
2353def SETMEMIMM_BYTE : SDNodeXForm<imm, [{
2354   // Return the bit position we will set [0-7].
2355   // As an SDNode.
2356   int8_t imm =  N->getSExtValue();
2357   return XformMskToBitPosU3Imm(imm);
2358}]>;
2359
2360def CLRMEMIMM_BYTE : SDNodeXForm<imm, [{
2361   // Return the bit position we will clear [0-7].
2362   // As an SDNode.
2363   // we bit negate the value first
2364   int8_t imm = ~(N->getSExtValue());
2365   return XformMskToBitPosU3Imm(imm);
2366}]>;
2367
2368//===----------------------------------------------------------------------===//
2369// Template class for MemOp instructions with the register value.
2370//===----------------------------------------------------------------------===//
2371class MemOp_rr_base <string opc, bits<2> opcBits, Operand ImmOp,
2372                     string memOp, bits<2> memOpBits> :
2373      MEMInst_V4<(outs),
2374                 (ins IntRegs:$base, ImmOp:$offset, IntRegs:$delta),
2375                 opc#"($base+#$offset)"#memOp#"$delta",
2376                 []>,
2377                 Requires<[UseMEMOP]> {
2378
2379    bits<5> base;
2380    bits<5> delta;
2381    bits<32> offset;
2382    bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
2383
2384    let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
2385                     !if (!eq(opcBits, 0b01), offset{6-1},
2386                     !if (!eq(opcBits, 0b10), offset{7-2},0)));
2387
2388    let opExtentAlign = opcBits;
2389    let IClass = 0b0011;
2390    let Inst{27-24} = 0b1110;
2391    let Inst{22-21} = opcBits;
2392    let Inst{20-16} = base;
2393    let Inst{13} = 0b0;
2394    let Inst{12-7} = offsetBits;
2395    let Inst{6-5} = memOpBits;
2396    let Inst{4-0} = delta;
2397}
2398
2399//===----------------------------------------------------------------------===//
2400// Template class for MemOp instructions with the immediate value.
2401//===----------------------------------------------------------------------===//
2402class MemOp_ri_base <string opc, bits<2> opcBits, Operand ImmOp,
2403                     string memOp, bits<2> memOpBits> :
2404      MEMInst_V4 <(outs),
2405                  (ins IntRegs:$base, ImmOp:$offset, u5Imm:$delta),
2406                  opc#"($base+#$offset)"#memOp#"#$delta"
2407                  #!if(memOpBits{1},")", ""), // clrbit, setbit - include ')'
2408                  []>,
2409                  Requires<[UseMEMOP]> {
2410
2411    bits<5> base;
2412    bits<5> delta;
2413    bits<32> offset;
2414    bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
2415
2416    let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
2417                     !if (!eq(opcBits, 0b01), offset{6-1},
2418                     !if (!eq(opcBits, 0b10), offset{7-2},0)));
2419
2420    let opExtentAlign = opcBits;
2421    let IClass = 0b0011;
2422    let Inst{27-24} = 0b1111;
2423    let Inst{22-21} = opcBits;
2424    let Inst{20-16} = base;
2425    let Inst{13} = 0b0;
2426    let Inst{12-7} = offsetBits;
2427    let Inst{6-5} = memOpBits;
2428    let Inst{4-0} = delta;
2429}
2430
2431// multiclass to define MemOp instructions with register operand.
2432multiclass MemOp_rr<string opc, bits<2> opcBits, Operand ImmOp> {
2433  def L4_add#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " += ", 0b00>; // add
2434  def L4_sub#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " -= ", 0b01>; // sub
2435  def L4_and#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " &= ", 0b10>; // and
2436  def L4_or#NAME  : MemOp_rr_base <opc, opcBits, ImmOp, " |= ", 0b11>; // or
2437}
2438
2439// multiclass to define MemOp instructions with immediate Operand.
2440multiclass MemOp_ri<string opc, bits<2> opcBits, Operand ImmOp> {
2441  def L4_iadd#NAME : MemOp_ri_base <opc, opcBits, ImmOp, " += ", 0b00 >;
2442  def L4_isub#NAME : MemOp_ri_base <opc, opcBits, ImmOp, " -= ", 0b01 >;
2443  def L4_iand#NAME : MemOp_ri_base<opc, opcBits, ImmOp, " = clrbit(", 0b10>;
2444  def L4_ior#NAME : MemOp_ri_base<opc, opcBits, ImmOp, " = setbit(", 0b11>;
2445}
2446
2447multiclass MemOp_base <string opc, bits<2> opcBits, Operand ImmOp> {
2448  defm _#NAME : MemOp_rr <opc, opcBits, ImmOp>;
2449  defm _#NAME : MemOp_ri <opc, opcBits, ImmOp>;
2450}
2451
2452// Define MemOp instructions.
2453let isExtendable = 1, opExtendable = 1, isExtentSigned = 0,
2454    validSubTargets =HasV4SubT in {
2455  let opExtentBits = 6, accessSize = ByteAccess, isCodeGenOnly = 0 in
2456  defm memopb_io : MemOp_base <"memb", 0b00, u6_0Ext>;
2457
2458  let opExtentBits = 7, accessSize = HalfWordAccess, isCodeGenOnly = 0 in
2459  defm memoph_io : MemOp_base <"memh", 0b01, u6_1Ext>;
2460
2461  let opExtentBits = 8, accessSize = WordAccess, isCodeGenOnly = 0 in
2462  defm memopw_io : MemOp_base <"memw", 0b10, u6_2Ext>;
2463}
2464
2465//===----------------------------------------------------------------------===//
2466// Multiclass to define 'Def Pats' for ALU operations on the memory
2467// Here value used for the ALU operation is an immediate value.
2468// mem[bh](Rs+#0) += #U5
2469// mem[bh](Rs+#u6) += #U5
2470//===----------------------------------------------------------------------===//
2471
2472multiclass MemOpi_u5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf ExtPred,
2473                          InstHexagon MI, SDNode OpNode> {
2474  let AddedComplexity = 180 in
2475  def : Pat < (stOp (OpNode (ldOp IntRegs:$addr), u5ImmPred:$addend),
2476                    IntRegs:$addr),
2477              (MI IntRegs:$addr, #0, u5ImmPred:$addend )>;
2478
2479  let AddedComplexity = 190 in
2480  def : Pat <(stOp (OpNode (ldOp (add IntRegs:$base, ExtPred:$offset)),
2481                     u5ImmPred:$addend),
2482             (add IntRegs:$base, ExtPred:$offset)),
2483       (MI IntRegs:$base, ExtPred:$offset, u5ImmPred:$addend)>;
2484}
2485
2486multiclass MemOpi_u5ALUOp<PatFrag ldOp, PatFrag stOp, PatLeaf ExtPred,
2487                          InstHexagon addMI, InstHexagon subMI> {
2488  defm : MemOpi_u5Pats<ldOp, stOp, ExtPred, addMI, add>;
2489  defm : MemOpi_u5Pats<ldOp, stOp, ExtPred, subMI, sub>;
2490}
2491
2492multiclass MemOpi_u5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
2493  // Half Word
2494  defm : MemOpi_u5ALUOp <ldOpHalf, truncstorei16, u6_1ExtPred,
2495                         L4_iadd_memoph_io, L4_isub_memoph_io>;
2496  // Byte
2497  defm : MemOpi_u5ALUOp <ldOpByte, truncstorei8, u6ExtPred,
2498                         L4_iadd_memopb_io, L4_isub_memopb_io>;
2499}
2500
2501let Predicates = [HasV4T, UseMEMOP] in {
2502  defm : MemOpi_u5ExtType<zextloadi8, zextloadi16>; // zero extend
2503  defm : MemOpi_u5ExtType<sextloadi8, sextloadi16>; // sign extend
2504  defm : MemOpi_u5ExtType<extloadi8,  extloadi16>;  // any extend
2505
2506  // Word
2507  defm : MemOpi_u5ALUOp <load, store, u6_2ExtPred, L4_iadd_memopw_io,
2508                         L4_isub_memopw_io>;
2509}
2510
2511//===----------------------------------------------------------------------===//
2512// multiclass to define 'Def Pats' for ALU operations on the memory.
2513// Here value used for the ALU operation is a negative value.
2514// mem[bh](Rs+#0) += #m5
2515// mem[bh](Rs+#u6) += #m5
2516//===----------------------------------------------------------------------===//
2517
2518multiclass MemOpi_m5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf extPred,
2519                          PatLeaf immPred, ComplexPattern addrPred,
2520                          SDNodeXForm xformFunc, InstHexagon MI> {
2521  let AddedComplexity = 190 in
2522  def : Pat <(stOp (add (ldOp IntRegs:$addr), immPred:$subend),
2523                   IntRegs:$addr),
2524             (MI IntRegs:$addr, #0, (xformFunc immPred:$subend) )>;
2525
2526  let AddedComplexity = 195 in
2527  def : Pat<(stOp (add (ldOp (add IntRegs:$base, extPred:$offset)),
2528                       immPred:$subend),
2529                  (add IntRegs:$base, extPred:$offset)),
2530            (MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$subend))>;
2531}
2532
2533multiclass MemOpi_m5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
2534  // Half Word
2535  defm : MemOpi_m5Pats <ldOpHalf, truncstorei16, u6_1ExtPred, m5HImmPred,
2536                        ADDRriU6_1, MEMOPIMM_HALF, L4_isub_memoph_io>;
2537  // Byte
2538  defm : MemOpi_m5Pats <ldOpByte, truncstorei8, u6ExtPred, m5BImmPred,
2539                        ADDRriU6_0, MEMOPIMM_BYTE, L4_isub_memopb_io>;
2540}
2541
2542let Predicates = [HasV4T, UseMEMOP] in {
2543  defm : MemOpi_m5ExtType<zextloadi8, zextloadi16>; // zero extend
2544  defm : MemOpi_m5ExtType<sextloadi8, sextloadi16>; // sign extend
2545  defm : MemOpi_m5ExtType<extloadi8,  extloadi16>;  // any extend
2546
2547  // Word
2548  defm : MemOpi_m5Pats <load, store, u6_2ExtPred, m5ImmPred,
2549                          ADDRriU6_2, MEMOPIMM, L4_isub_memopw_io>;
2550}
2551
2552//===----------------------------------------------------------------------===//
2553// Multiclass to define 'def Pats' for bit operations on the memory.
2554// mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
2555// mem[bhw](Rs+#u6) = [clrbit|setbit](#U5)
2556//===----------------------------------------------------------------------===//
2557
2558multiclass MemOpi_bitPats <PatFrag ldOp, PatFrag stOp, PatLeaf immPred,
2559                     PatLeaf extPred, ComplexPattern addrPred,
2560                     SDNodeXForm xformFunc, InstHexagon MI, SDNode OpNode> {
2561
2562  // mem[bhw](Rs+#u6:[012]) = [clrbit|setbit](#U5)
2563  let AddedComplexity = 250 in
2564  def : Pat<(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
2565                          immPred:$bitend),
2566                  (add IntRegs:$base, extPred:$offset)),
2567            (MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$bitend))>;
2568
2569  // mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
2570  let AddedComplexity = 225 in
2571  def : Pat <(stOp (OpNode (ldOp (addrPred IntRegs:$addr, extPred:$offset)),
2572                           immPred:$bitend),
2573                   (addrPred (i32 IntRegs:$addr), extPred:$offset)),
2574             (MI IntRegs:$addr, extPred:$offset, (xformFunc immPred:$bitend))>;
2575}
2576
2577multiclass MemOpi_bitExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
2578  // Byte - clrbit
2579  defm : MemOpi_bitPats<ldOpByte, truncstorei8, Clr3ImmPred, u6ExtPred,
2580                       ADDRriU6_0, CLRMEMIMM_BYTE, L4_iand_memopb_io, and>;
2581  // Byte - setbit
2582  defm : MemOpi_bitPats<ldOpByte, truncstorei8, Set3ImmPred,  u6ExtPred,
2583                       ADDRriU6_0, SETMEMIMM_BYTE, L4_ior_memopb_io, or>;
2584  // Half Word - clrbit
2585  defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Clr4ImmPred, u6_1ExtPred,
2586                       ADDRriU6_1, CLRMEMIMM_SHORT, L4_iand_memoph_io, and>;
2587  // Half Word - setbit
2588  defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Set4ImmPred, u6_1ExtPred,
2589                       ADDRriU6_1, SETMEMIMM_SHORT, L4_ior_memoph_io, or>;
2590}
2591
2592let Predicates = [HasV4T, UseMEMOP] in {
2593  // mem[bh](Rs+#0) = [clrbit|setbit](#U5)
2594  // mem[bh](Rs+#u6:[01]) = [clrbit|setbit](#U5)
2595  defm : MemOpi_bitExtType<zextloadi8, zextloadi16>; // zero extend
2596  defm : MemOpi_bitExtType<sextloadi8, sextloadi16>; // sign extend
2597  defm : MemOpi_bitExtType<extloadi8,  extloadi16>;  // any extend
2598
2599  // memw(Rs+#0) = [clrbit|setbit](#U5)
2600  // memw(Rs+#u6:2) = [clrbit|setbit](#U5)
2601  defm : MemOpi_bitPats<load, store, Clr5ImmPred, u6_2ExtPred, ADDRriU6_2,
2602                       CLRMEMIMM, L4_iand_memopw_io, and>;
2603  defm : MemOpi_bitPats<load, store, Set5ImmPred, u6_2ExtPred, ADDRriU6_2,
2604                       SETMEMIMM, L4_ior_memopw_io, or>;
2605}
2606
2607//===----------------------------------------------------------------------===//
2608// Multiclass to define 'def Pats' for ALU operations on the memory
2609// where addend is a register.
2610// mem[bhw](Rs+#0) [+-&|]= Rt
2611// mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
2612//===----------------------------------------------------------------------===//
2613
2614multiclass MemOpr_Pats <PatFrag ldOp, PatFrag stOp, ComplexPattern addrPred,
2615                     PatLeaf extPred, InstHexagon MI, SDNode OpNode> {
2616  let AddedComplexity = 141 in
2617  // mem[bhw](Rs+#0) [+-&|]= Rt
2618  def : Pat <(stOp (OpNode (ldOp (addrPred IntRegs:$addr, extPred:$offset)),
2619                           (i32 IntRegs:$addend)),
2620                   (addrPred (i32 IntRegs:$addr), extPred:$offset)),
2621             (MI IntRegs:$addr, extPred:$offset, (i32 IntRegs:$addend) )>;
2622
2623  // mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
2624  let AddedComplexity = 150 in
2625  def : Pat <(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
2626                           (i32 IntRegs:$orend)),
2627                   (add IntRegs:$base, extPred:$offset)),
2628             (MI IntRegs:$base, extPred:$offset, (i32 IntRegs:$orend) )>;
2629}
2630
2631multiclass MemOPr_ALUOp<PatFrag ldOp, PatFrag stOp,
2632                        ComplexPattern addrPred, PatLeaf extPred,
2633                        InstHexagon addMI, InstHexagon subMI,
2634                        InstHexagon andMI, InstHexagon orMI > {
2635
2636  defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, addMI, add>;
2637  defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, subMI, sub>;
2638  defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, andMI, and>;
2639  defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, orMI,  or>;
2640}
2641
2642multiclass MemOPr_ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
2643  // Half Word
2644  defm : MemOPr_ALUOp <ldOpHalf, truncstorei16, ADDRriU6_1, u6_1ExtPred,
2645                       L4_add_memoph_io, L4_sub_memoph_io,
2646                       L4_and_memoph_io, L4_or_memoph_io>;
2647  // Byte
2648  defm : MemOPr_ALUOp <ldOpByte, truncstorei8, ADDRriU6_0, u6ExtPred,
2649                       L4_add_memopb_io, L4_sub_memopb_io,
2650                       L4_and_memopb_io, L4_or_memopb_io>;
2651}
2652
2653// Define 'def Pats' for MemOps with register addend.
2654let Predicates = [HasV4T, UseMEMOP] in {
2655  // Byte, Half Word
2656  defm : MemOPr_ExtType<zextloadi8, zextloadi16>; // zero extend
2657  defm : MemOPr_ExtType<sextloadi8, sextloadi16>; // sign extend
2658  defm : MemOPr_ExtType<extloadi8,  extloadi16>;  // any extend
2659  // Word
2660  defm : MemOPr_ALUOp <load, store, ADDRriU6_2, u6_2ExtPred, L4_add_memopw_io,
2661                       L4_sub_memopw_io, L4_and_memopw_io, L4_or_memopw_io >;
2662}
2663
2664//===----------------------------------------------------------------------===//
2665// XTYPE/PRED +
2666//===----------------------------------------------------------------------===//
2667
2668// Hexagon V4 only supports these flavors of byte/half compare instructions:
2669// EQ/GT/GTU. Other flavors like GE/GEU/LT/LTU/LE/LEU are not supported by
2670// hardware. However, compiler can still implement these patterns through
2671// appropriate patterns combinations based on current implemented patterns.
2672// The implemented patterns are: EQ/GT/GTU.
2673// Missing patterns are: GE/GEU/LT/LTU/LE/LEU.
2674
2675// Following instruction is not being extended as it results into the
2676// incorrect code for negative numbers.
2677// Pd=cmpb.eq(Rs,#u8)
2678
2679let isCompare = 1, isExtendable = 1, opExtendable = 2, hasSideEffects = 0,
2680    validSubTargets = HasV4SubT in
2681class CMP_NOT_REG_IMM<string OpName, bits<2> op, Operand ImmOp,
2682                      list<dag> Pattern>
2683  : ALU32Inst <(outs PredRegs:$dst), (ins IntRegs:$src1, ImmOp:$src2),
2684    "$dst = !cmp."#OpName#"($src1, #$src2)",
2685    Pattern,
2686    "", ALU32_2op_tc_2early_SLOT0123> {
2687    bits<2> dst;
2688    bits<5> src1;
2689    bits<10> src2;
2690
2691    let IClass = 0b0111;
2692    let Inst{27-24} = 0b0101;
2693    let Inst{23-22} = op;
2694    let Inst{20-16} = src1;
2695    let Inst{21} = !if (!eq(OpName, "gtu"), 0b0, src2{9});
2696    let Inst{13-5} = src2{8-0};
2697    let Inst{4-2} = 0b100;
2698    let Inst{1-0} = dst;
2699}
2700
2701let opExtentBits = 10, isExtentSigned = 1 in {
2702def C4_cmpneqi : CMP_NOT_REG_IMM <"eq", 0b00, s10Ext, [(set (i1 PredRegs:$dst),
2703                 (setne (i32 IntRegs:$src1), s10ExtPred:$src2))]>;
2704
2705def C4_cmpltei : CMP_NOT_REG_IMM <"gt", 0b01, s10Ext, [(set (i1 PredRegs:$dst),
2706                 (not (setgt (i32 IntRegs:$src1), s10ExtPred:$src2)))]>;
2707
2708}
2709let opExtentBits = 9 in
2710def C4_cmplteui : CMP_NOT_REG_IMM <"gtu", 0b10, u9Ext, [(set (i1 PredRegs:$dst),
2711                  (not (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)))]>;
2712
2713
2714
2715// p=!cmp.eq(r1,r2)
2716let isCompare = 1, validSubTargets = HasV4SubT in
2717def CMPnotEQ_rr : ALU32_rr<(outs PredRegs:$dst),
2718                           (ins IntRegs:$src1, IntRegs:$src2),
2719      "$dst = !cmp.eq($src1, $src2)",
2720      [(set (i1 PredRegs:$dst),
2721            (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>,
2722      Requires<[HasV4T]>;
2723
2724// p=!cmp.gt(r1,r2)
2725let isCompare = 1, validSubTargets = HasV4SubT in
2726def CMPnotGT_rr : ALU32_rr<(outs PredRegs:$dst),
2727                           (ins IntRegs:$src1, IntRegs:$src2),
2728      "$dst = !cmp.gt($src1, $src2)",
2729      [(set (i1 PredRegs:$dst),
2730            (not (setgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
2731      Requires<[HasV4T]>;
2732
2733
2734// p=!cmp.gtu(r1,r2)
2735let isCompare = 1, validSubTargets = HasV4SubT in
2736def CMPnotGTU_rr : ALU32_rr<(outs PredRegs:$dst),
2737                            (ins IntRegs:$src1, IntRegs:$src2),
2738      "$dst = !cmp.gtu($src1, $src2)",
2739      [(set (i1 PredRegs:$dst),
2740            (not (setugt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
2741      Requires<[HasV4T]>;
2742
2743let isCompare = 1, validSubTargets = HasV4SubT in
2744def CMPbEQri_V4 : MInst<(outs PredRegs:$dst),
2745            (ins IntRegs:$src1, u8Imm:$src2),
2746            "$dst = cmpb.eq($src1, #$src2)",
2747            [(set (i1 PredRegs:$dst),
2748                  (seteq (and (i32 IntRegs:$src1), 255), u8ImmPred:$src2))]>,
2749            Requires<[HasV4T]>;
2750
2751def : Pat <(brcond (i1 (setne (and (i32 IntRegs:$src1), 255), u8ImmPred:$src2)),
2752                       bb:$offset),
2753      (J2_jumpf (CMPbEQri_V4 (i32 IntRegs:$src1), u8ImmPred:$src2),
2754                bb:$offset)>,
2755      Requires<[HasV4T]>;
2756
2757// Pd=cmpb.eq(Rs,Rt)
2758let isCompare = 1, validSubTargets = HasV4SubT in
2759def CMPbEQrr_ubub_V4 : MInst<(outs PredRegs:$dst),
2760            (ins IntRegs:$src1, IntRegs:$src2),
2761            "$dst = cmpb.eq($src1, $src2)",
2762            [(set (i1 PredRegs:$dst),
2763                  (seteq (and (xor (i32 IntRegs:$src1),
2764                                   (i32 IntRegs:$src2)), 255), 0))]>,
2765            Requires<[HasV4T]>;
2766
2767// Pd=cmpb.eq(Rs,Rt)
2768let isCompare = 1, validSubTargets = HasV4SubT in
2769def CMPbEQrr_sbsb_V4 : MInst<(outs PredRegs:$dst),
2770            (ins IntRegs:$src1, IntRegs:$src2),
2771            "$dst = cmpb.eq($src1, $src2)",
2772            [(set (i1 PredRegs:$dst),
2773                  (seteq (shl (i32 IntRegs:$src1), (i32 24)),
2774                         (shl (i32 IntRegs:$src2), (i32 24))))]>,
2775            Requires<[HasV4T]>;
2776
2777// Pd=cmpb.gt(Rs,Rt)
2778let isCompare = 1, validSubTargets = HasV4SubT in
2779def CMPbGTrr_V4 : MInst<(outs PredRegs:$dst),
2780            (ins IntRegs:$src1, IntRegs:$src2),
2781            "$dst = cmpb.gt($src1, $src2)",
2782            [(set (i1 PredRegs:$dst),
2783                  (setgt (shl (i32 IntRegs:$src1), (i32 24)),
2784                         (shl (i32 IntRegs:$src2), (i32 24))))]>,
2785            Requires<[HasV4T]>;
2786
2787// Pd=cmpb.gtu(Rs,#u7)
2788let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 7,
2789isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPbGTU", InputType = "imm" in
2790def CMPbGTUri_V4 : MInst<(outs PredRegs:$dst),
2791            (ins IntRegs:$src1, u7Ext:$src2),
2792            "$dst = cmpb.gtu($src1, #$src2)",
2793            [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 255),
2794                                              u7ExtPred:$src2))]>,
2795            Requires<[HasV4T]>, ImmRegRel;
2796
2797// SDNode for converting immediate C to C-1.
2798def DEC_CONST_BYTE : SDNodeXForm<imm, [{
2799   // Return the byte immediate const-1 as an SDNode.
2800   int32_t imm = N->getSExtValue();
2801   return XformU7ToU7M1Imm(imm);
2802}]>;
2803
2804// For the sequence
2805//   zext( seteq ( and(Rs, 255), u8))
2806// Generate
2807//   Pd=cmpb.eq(Rs, #u8)
2808//   if (Pd.new) Rd=#1
2809//   if (!Pd.new) Rd=#0
2810def : Pat <(i32 (zext (i1 (seteq (i32 (and (i32 IntRegs:$Rs), 255)),
2811                                           u8ExtPred:$u8)))),
2812           (i32 (TFR_condset_ii (i1 (CMPbEQri_V4 (i32 IntRegs:$Rs),
2813                                                 (u8ExtPred:$u8))),
2814                                1, 0))>,
2815           Requires<[HasV4T]>;
2816
2817// For the sequence
2818//   zext( setne ( and(Rs, 255), u8))
2819// Generate
2820//   Pd=cmpb.eq(Rs, #u8)
2821//   if (Pd.new) Rd=#0
2822//   if (!Pd.new) Rd=#1
2823def : Pat <(i32 (zext (i1 (setne (i32 (and (i32 IntRegs:$Rs), 255)),
2824                                           u8ExtPred:$u8)))),
2825           (i32 (TFR_condset_ii (i1 (CMPbEQri_V4 (i32 IntRegs:$Rs),
2826                                                 (u8ExtPred:$u8))),
2827                                0, 1))>,
2828           Requires<[HasV4T]>;
2829
2830// For the sequence
2831//   zext( seteq (Rs, and(Rt, 255)))
2832// Generate
2833//   Pd=cmpb.eq(Rs, Rt)
2834//   if (Pd.new) Rd=#1
2835//   if (!Pd.new) Rd=#0
2836def : Pat <(i32 (zext (i1 (seteq (i32 IntRegs:$Rt),
2837                                 (i32 (and (i32 IntRegs:$Rs), 255)))))),
2838           (i32 (TFR_condset_ii (i1 (CMPbEQrr_ubub_V4 (i32 IntRegs:$Rs),
2839                                                      (i32 IntRegs:$Rt))),
2840                                1, 0))>,
2841           Requires<[HasV4T]>;
2842
2843// For the sequence
2844//   zext( setne (Rs, and(Rt, 255)))
2845// Generate
2846//   Pd=cmpb.eq(Rs, Rt)
2847//   if (Pd.new) Rd=#0
2848//   if (!Pd.new) Rd=#1
2849def : Pat <(i32 (zext (i1 (setne (i32 IntRegs:$Rt),
2850                                 (i32 (and (i32 IntRegs:$Rs), 255)))))),
2851           (i32 (TFR_condset_ii (i1 (CMPbEQrr_ubub_V4 (i32 IntRegs:$Rs),
2852                                                      (i32 IntRegs:$Rt))),
2853                                0, 1))>,
2854           Requires<[HasV4T]>;
2855
2856// For the sequence
2857//   zext( setugt ( and(Rs, 255), u8))
2858// Generate
2859//   Pd=cmpb.gtu(Rs, #u8)
2860//   if (Pd.new) Rd=#1
2861//   if (!Pd.new) Rd=#0
2862def : Pat <(i32 (zext (i1 (setugt (i32 (and (i32 IntRegs:$Rs), 255)),
2863                                            u8ExtPred:$u8)))),
2864           (i32 (TFR_condset_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$Rs),
2865                                                  (u8ExtPred:$u8))),
2866                                1, 0))>,
2867           Requires<[HasV4T]>;
2868
2869// For the sequence
2870//   zext( setugt ( and(Rs, 254), u8))
2871// Generate
2872//   Pd=cmpb.gtu(Rs, #u8)
2873//   if (Pd.new) Rd=#1
2874//   if (!Pd.new) Rd=#0
2875def : Pat <(i32 (zext (i1 (setugt (i32 (and (i32 IntRegs:$Rs), 254)),
2876                                            u8ExtPred:$u8)))),
2877           (i32 (TFR_condset_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$Rs),
2878                                                  (u8ExtPred:$u8))),
2879                                1, 0))>,
2880           Requires<[HasV4T]>;
2881
2882// For the sequence
2883//   zext( setult ( Rs, Rt))
2884// Generate
2885//   Pd=cmp.ltu(Rs, Rt)
2886//   if (Pd.new) Rd=#1
2887//   if (!Pd.new) Rd=#0
2888// cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
2889def : Pat <(i32 (zext (i1 (setult (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2890           (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rt),
2891                                              (i32 IntRegs:$Rs))),
2892                                1, 0))>,
2893           Requires<[HasV4T]>;
2894
2895// For the sequence
2896//   zext( setlt ( Rs, Rt))
2897// Generate
2898//   Pd=cmp.lt(Rs, Rt)
2899//   if (Pd.new) Rd=#1
2900//   if (!Pd.new) Rd=#0
2901// cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
2902def : Pat <(i32 (zext (i1 (setlt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2903           (i32 (TFR_condset_ii (i1 (C2_cmpgt (i32 IntRegs:$Rt),
2904                                             (i32 IntRegs:$Rs))),
2905                                1, 0))>,
2906           Requires<[HasV4T]>;
2907
2908// For the sequence
2909//   zext( setugt ( Rs, Rt))
2910// Generate
2911//   Pd=cmp.gtu(Rs, Rt)
2912//   if (Pd.new) Rd=#1
2913//   if (!Pd.new) Rd=#0
2914def : Pat <(i32 (zext (i1 (setugt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2915           (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rs),
2916                                              (i32 IntRegs:$Rt))),
2917                                1, 0))>,
2918           Requires<[HasV4T]>;
2919
2920// This pattern interefers with coremark performance, not implementing at this
2921// time.
2922// For the sequence
2923//   zext( setgt ( Rs, Rt))
2924// Generate
2925//   Pd=cmp.gt(Rs, Rt)
2926//   if (Pd.new) Rd=#1
2927//   if (!Pd.new) Rd=#0
2928
2929// For the sequence
2930//   zext( setuge ( Rs, Rt))
2931// Generate
2932//   Pd=cmp.ltu(Rs, Rt)
2933//   if (Pd.new) Rd=#0
2934//   if (!Pd.new) Rd=#1
2935// cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
2936def : Pat <(i32 (zext (i1 (setuge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2937           (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rt),
2938                                              (i32 IntRegs:$Rs))),
2939                                0, 1))>,
2940           Requires<[HasV4T]>;
2941
2942// For the sequence
2943//   zext( setge ( Rs, Rt))
2944// Generate
2945//   Pd=cmp.lt(Rs, Rt)
2946//   if (Pd.new) Rd=#0
2947//   if (!Pd.new) Rd=#1
2948// cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
2949def : Pat <(i32 (zext (i1 (setge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2950           (i32 (TFR_condset_ii (i1 (C2_cmpgt (i32 IntRegs:$Rt),
2951                                             (i32 IntRegs:$Rs))),
2952                                0, 1))>,
2953           Requires<[HasV4T]>;
2954
2955// For the sequence
2956//   zext( setule ( Rs, Rt))
2957// Generate
2958//   Pd=cmp.gtu(Rs, Rt)
2959//   if (Pd.new) Rd=#0
2960//   if (!Pd.new) Rd=#1
2961def : Pat <(i32 (zext (i1 (setule (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2962           (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rs),
2963                                              (i32 IntRegs:$Rt))),
2964                                0, 1))>,
2965           Requires<[HasV4T]>;
2966
2967// For the sequence
2968//   zext( setle ( Rs, Rt))
2969// Generate
2970//   Pd=cmp.gt(Rs, Rt)
2971//   if (Pd.new) Rd=#0
2972//   if (!Pd.new) Rd=#1
2973def : Pat <(i32 (zext (i1 (setle (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
2974           (i32 (TFR_condset_ii (i1 (C2_cmpgt (i32 IntRegs:$Rs),
2975                                             (i32 IntRegs:$Rt))),
2976                                0, 1))>,
2977           Requires<[HasV4T]>;
2978
2979// For the sequence
2980//   zext( setult ( and(Rs, 255), u8))
2981// Use the isdigit transformation below
2982
2983// Generate code of the form 'mux_ii(cmpbgtu(Rdd, C-1),0,1)'
2984// for C code of the form r = ((c>='0') & (c<='9')) ? 1 : 0;.
2985// The isdigit transformation relies on two 'clever' aspects:
2986// 1) The data type is unsigned which allows us to eliminate a zero test after
2987//    biasing the expression by 48. We are depending on the representation of
2988//    the unsigned types, and semantics.
2989// 2) The front end has converted <= 9 into < 10 on entry to LLVM
2990//
2991// For the C code:
2992//   retval = ((c>='0') & (c<='9')) ? 1 : 0;
2993// The code is transformed upstream of llvm into
2994//   retval = (c-48) < 10 ? 1 : 0;
2995let AddedComplexity = 139 in
2996def : Pat <(i32 (zext (i1 (setult (i32 (and (i32 IntRegs:$src1), 255)),
2997                                  u7StrictPosImmPred:$src2)))),
2998  (i32 (C2_muxii (i1 (CMPbGTUri_V4 (i32 IntRegs:$src1),
2999                                 (DEC_CONST_BYTE u7StrictPosImmPred:$src2))),
3000                   0, 1))>,
3001                   Requires<[HasV4T]>;
3002
3003// Pd=cmpb.gtu(Rs,Rt)
3004let isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPbGTU",
3005InputType = "reg" in
3006def CMPbGTUrr_V4 : MInst<(outs PredRegs:$dst),
3007            (ins IntRegs:$src1, IntRegs:$src2),
3008            "$dst = cmpb.gtu($src1, $src2)",
3009            [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 255),
3010                                             (and (i32 IntRegs:$src2), 255)))]>,
3011            Requires<[HasV4T]>, ImmRegRel;
3012
3013// Following instruction is not being extended as it results into the incorrect
3014// code for negative numbers.
3015
3016// Signed half compare(.eq) ri.
3017// Pd=cmph.eq(Rs,#s8)
3018let isCompare = 1, validSubTargets = HasV4SubT in
3019def CMPhEQri_V4 : MInst<(outs PredRegs:$dst),
3020            (ins IntRegs:$src1, s8Imm:$src2),
3021            "$dst = cmph.eq($src1, #$src2)",
3022            [(set (i1 PredRegs:$dst), (seteq (and (i32 IntRegs:$src1), 65535),
3023                                             s8ImmPred:$src2))]>,
3024            Requires<[HasV4T]>;
3025
3026// Signed half compare(.eq) rr.
3027// Case 1: xor + and, then compare:
3028//   r0=xor(r0,r1)
3029//   r0=and(r0,#0xffff)
3030//   p0=cmp.eq(r0,#0)
3031// Pd=cmph.eq(Rs,Rt)
3032let isCompare = 1, validSubTargets = HasV4SubT in
3033def CMPhEQrr_xor_V4 : MInst<(outs PredRegs:$dst),
3034            (ins IntRegs:$src1, IntRegs:$src2),
3035            "$dst = cmph.eq($src1, $src2)",
3036            [(set (i1 PredRegs:$dst), (seteq (and (xor (i32 IntRegs:$src1),
3037                                                       (i32 IntRegs:$src2)),
3038                                                  65535), 0))]>,
3039            Requires<[HasV4T]>;
3040
3041// Signed half compare(.eq) rr.
3042// Case 2: shift left 16 bits then compare:
3043//   r0=asl(r0,16)
3044//   r1=asl(r1,16)
3045//   p0=cmp.eq(r0,r1)
3046// Pd=cmph.eq(Rs,Rt)
3047let isCompare = 1, validSubTargets = HasV4SubT in
3048def CMPhEQrr_shl_V4 : MInst<(outs PredRegs:$dst),
3049            (ins IntRegs:$src1, IntRegs:$src2),
3050            "$dst = cmph.eq($src1, $src2)",
3051            [(set (i1 PredRegs:$dst),
3052                  (seteq (shl (i32 IntRegs:$src1), (i32 16)),
3053                         (shl (i32 IntRegs:$src2), (i32 16))))]>,
3054            Requires<[HasV4T]>;
3055
3056/* Incorrect Pattern -- immediate should be right shifted before being
3057used in the cmph.gt instruction.
3058// Signed half compare(.gt) ri.
3059// Pd=cmph.gt(Rs,#s8)
3060
3061let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
3062isCompare = 1, validSubTargets = HasV4SubT in
3063def CMPhGTri_V4 : MInst<(outs PredRegs:$dst),
3064            (ins IntRegs:$src1, s8Ext:$src2),
3065            "$dst = cmph.gt($src1, #$src2)",
3066            [(set (i1 PredRegs:$dst),
3067                  (setgt (shl (i32 IntRegs:$src1), (i32 16)),
3068                         s8ExtPred:$src2))]>,
3069            Requires<[HasV4T]>;
3070*/
3071
3072// Signed half compare(.gt) rr.
3073// Pd=cmph.gt(Rs,Rt)
3074let isCompare = 1, validSubTargets = HasV4SubT in
3075def CMPhGTrr_shl_V4 : MInst<(outs PredRegs:$dst),
3076            (ins IntRegs:$src1, IntRegs:$src2),
3077            "$dst = cmph.gt($src1, $src2)",
3078            [(set (i1 PredRegs:$dst),
3079                  (setgt (shl (i32 IntRegs:$src1), (i32 16)),
3080                         (shl (i32 IntRegs:$src2), (i32 16))))]>,
3081            Requires<[HasV4T]>;
3082
3083// Unsigned half compare rr (.gtu).
3084// Pd=cmph.gtu(Rs,Rt)
3085let isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPhGTU",
3086InputType = "reg" in
3087def CMPhGTUrr_V4 : MInst<(outs PredRegs:$dst),
3088            (ins IntRegs:$src1, IntRegs:$src2),
3089            "$dst = cmph.gtu($src1, $src2)",
3090            [(set (i1 PredRegs:$dst),
3091                  (setugt (and (i32 IntRegs:$src1), 65535),
3092                          (and (i32 IntRegs:$src2), 65535)))]>,
3093            Requires<[HasV4T]>, ImmRegRel;
3094
3095// Unsigned half compare ri (.gtu).
3096// Pd=cmph.gtu(Rs,#u7)
3097let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 7,
3098isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPhGTU",
3099InputType = "imm" in
3100def CMPhGTUri_V4 : MInst<(outs PredRegs:$dst),
3101            (ins IntRegs:$src1, u7Ext:$src2),
3102            "$dst = cmph.gtu($src1, #$src2)",
3103            [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 65535),
3104                                              u7ExtPred:$src2))]>,
3105            Requires<[HasV4T]>, ImmRegRel;
3106
3107let validSubTargets = HasV4SubT in
3108def NTSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
3109    "$dst = !tstbit($src1, $src2)",
3110    [(set (i1 PredRegs:$dst),
3111          (seteq (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>,
3112    Requires<[HasV4T]>;
3113
3114let validSubTargets = HasV4SubT in
3115def NTSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
3116    "$dst = !tstbit($src1, $src2)",
3117    [(set (i1 PredRegs:$dst),
3118          (seteq (and (shl 1, u5ImmPred:$src2), (i32 IntRegs:$src1)), 0))]>,
3119    Requires<[HasV4T]>;
3120
3121//===----------------------------------------------------------------------===//
3122// XTYPE/PRED -
3123//===----------------------------------------------------------------------===//
3124
3125//===----------------------------------------------------------------------===//
3126// Multiclass for DeallocReturn
3127//===----------------------------------------------------------------------===//
3128class L4_RETURN<string mnemonic, bit isNot, bit isPredNew, bit isTak>
3129  : LD0Inst<(outs), (ins PredRegs:$src),
3130  !if(isNot, "if (!$src", "if ($src")#
3131  !if(isPredNew, ".new) ", ") ")#mnemonic#
3132  !if(isPredNew, #!if(isTak,":t", ":nt"),""),
3133  [], "", LD_tc_3or4stall_SLOT0> {
3134
3135    bits<2> src;
3136    let BaseOpcode = "L4_RETURN";
3137    let isPredicatedFalse = isNot;
3138    let isPredicatedNew = isPredNew;
3139    let isTaken = isTak;
3140    let IClass = 0b1001;
3141
3142    let Inst{27-16} = 0b011000011110;
3143
3144    let Inst{13} = isNot;
3145    let Inst{12} = isTak;
3146    let Inst{11} = isPredNew;
3147    let Inst{10} = 0b0;
3148    let Inst{9-8} = src;
3149    let Inst{4-0} = 0b11110;
3150  }
3151
3152// Produce all predicated forms, p, !p, p.new, !p.new, :t, :nt
3153multiclass L4_RETURN_PRED<string mnemonic, bit PredNot> {
3154  let isPredicated = 1 in {
3155    def _#NAME# : L4_RETURN <mnemonic, PredNot, 0, 1>;
3156    def _#NAME#new_pnt : L4_RETURN <mnemonic, PredNot, 1, 0>;
3157    def _#NAME#new_pt : L4_RETURN <mnemonic, PredNot, 1, 1>;
3158  }
3159}
3160
3161multiclass LD_MISC_L4_RETURN<string mnemonic> {
3162  let isBarrier = 1, isPredicable = 1 in
3163    def NAME : LD0Inst <(outs), (ins), mnemonic, [], "",
3164                        LD_tc_3or4stall_SLOT0> {
3165      let BaseOpcode = "L4_RETURN";
3166      let IClass = 0b1001;
3167      let Inst{27-16} = 0b011000011110;
3168      let Inst{13-10} = 0b0000;
3169      let Inst{4-0} = 0b11110;
3170    }
3171  defm t : L4_RETURN_PRED<mnemonic, 0 >;
3172  defm f : L4_RETURN_PRED<mnemonic, 1 >;
3173}
3174
3175let isReturn = 1, isTerminator = 1,
3176    Defs = [R29, R30, R31, PC], Uses = [R30], hasSideEffects = 0,
3177    validSubTargets = HasV4SubT, isCodeGenOnly = 0 in
3178defm L4_return: LD_MISC_L4_RETURN <"dealloc_return">, PredNewRel;
3179
3180// Restore registers and dealloc return function call.
3181let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
3182  Defs = [R29, R30, R31, PC] in {
3183let validSubTargets = HasV4SubT in
3184  def RESTORE_DEALLOC_RET_JMP_V4 : JInst<(outs),
3185                                   (ins calltarget:$dst),
3186             "jump $dst",
3187             []>,
3188             Requires<[HasV4T]>;
3189}
3190
3191// Restore registers and dealloc frame before a tail call.
3192let isCall = 1, isBarrier = 1,
3193  Defs = [R29, R30, R31, PC] in {
3194let validSubTargets = HasV4SubT in
3195  def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : JInst<(outs),
3196                                           (ins calltarget:$dst),
3197             "call $dst",
3198             []>,
3199             Requires<[HasV4T]>;
3200}
3201
3202// Save registers function call.
3203let isCall = 1, isBarrier = 1,
3204  Uses = [R29, R31] in {
3205  def SAVE_REGISTERS_CALL_V4 : JInst<(outs),
3206                               (ins calltarget:$dst),
3207             "call $dst // Save_calle_saved_registers",
3208             []>,
3209             Requires<[HasV4T]>;
3210}
3211
3212//===----------------------------------------------------------------------===//
3213// Template class for non predicated store instructions with
3214// GP-Relative or absolute addressing.
3215//===----------------------------------------------------------------------===//
3216let hasSideEffects = 0, isPredicable = 1, isNVStorable = 1 in
3217class T_StoreAbsGP <string mnemonic, RegisterClass RC, Operand ImmOp,
3218                    bits<2>MajOp, Operand AddrOp, bit isAbs, bit isHalf>
3219  : STInst<(outs), (ins AddrOp:$addr, RC:$src),
3220  mnemonic # !if(isAbs, "(##", "(#")#"$addr) = $src"#!if(isHalf, ".h",""),
3221  [], "", V2LDST_tc_st_SLOT01> {
3222    bits<19> addr;
3223    bits<5> src;
3224    bits<16> offsetBits;
3225
3226    string ImmOpStr = !cast<string>(ImmOp);
3227    let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
3228                     !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
3229                     !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
3230                                      /* u16_0Imm */ addr{15-0})));
3231    let IClass = 0b0100;
3232    let Inst{27} = 1;
3233    let Inst{26-25} = offsetBits{15-14};
3234    let Inst{24}    = 0b0;
3235    let Inst{23-22} = MajOp;
3236    let Inst{21}    = isHalf;
3237    let Inst{20-16} = offsetBits{13-9};
3238    let Inst{13}    = offsetBits{8};
3239    let Inst{12-8}  = src;
3240    let Inst{7-0}   = offsetBits{7-0};
3241  }
3242
3243//===----------------------------------------------------------------------===//
3244// Template class for predicated store instructions with
3245// GP-Relative or absolute addressing.
3246//===----------------------------------------------------------------------===//
3247let hasSideEffects = 0, isPredicated = 1, isNVStorable = 1, opExtentBits = 6,
3248    opExtendable = 1 in
3249class T_StoreAbs_Pred <string mnemonic, RegisterClass RC, bits<2> MajOp,
3250                       bit isHalf, bit isNot, bit isNew>
3251  : STInst<(outs), (ins PredRegs:$src1, u6Ext:$absaddr, RC: $src2),
3252  !if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ",
3253  ") ")#mnemonic#"(#$absaddr) = $src2"#!if(isHalf, ".h",""),
3254  [], "", ST_tc_st_SLOT01>, AddrModeRel {
3255    bits<2> src1;
3256    bits<6> absaddr;
3257    bits<5> src2;
3258
3259    let isPredicatedNew = isNew;
3260    let isPredicatedFalse = isNot;
3261
3262    let IClass = 0b1010;
3263
3264    let Inst{27-24} = 0b1111;
3265    let Inst{23-22} = MajOp;
3266    let Inst{21}    = isHalf;
3267    let Inst{17-16} = absaddr{5-4};
3268    let Inst{13}    = isNew;
3269    let Inst{12-8}  = src2;
3270    let Inst{7}     = 0b1;
3271    let Inst{6-3}   = absaddr{3-0};
3272    let Inst{2}     = isNot;
3273    let Inst{1-0}   = src1;
3274  }
3275
3276//===----------------------------------------------------------------------===//
3277// Template class for predicated store instructions with absolute addressing.
3278//===----------------------------------------------------------------------===//
3279class T_StoreAbs <string mnemonic, RegisterClass RC, Operand ImmOp,
3280                 bits<2> MajOp, bit isHalf>
3281  : T_StoreAbsGP <mnemonic, RC, ImmOp, MajOp, u0AlwaysExt, 1, isHalf>,
3282                  AddrModeRel {
3283  string ImmOpStr = !cast<string>(ImmOp);
3284  let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
3285                     !if (!eq(ImmOpStr, "u16_2Imm"), 18,
3286                     !if (!eq(ImmOpStr, "u16_1Imm"), 17,
3287                                      /* u16_0Imm */ 16)));
3288
3289  let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
3290                      !if (!eq(ImmOpStr, "u16_2Imm"), 2,
3291                      !if (!eq(ImmOpStr, "u16_1Imm"), 1,
3292                                       /* u16_0Imm */ 0)));
3293}
3294
3295//===----------------------------------------------------------------------===//
3296// Multiclass for store instructions with absolute addressing.
3297//===----------------------------------------------------------------------===//
3298let validSubTargets = HasV4SubT, addrMode = Absolute, isExtended = 1 in
3299multiclass ST_Abs<string mnemonic, string CextOp, RegisterClass RC,
3300                  Operand ImmOp, bits<2> MajOp, bit isHalf = 0> {
3301  let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
3302    let opExtendable = 0, isPredicable = 1 in
3303    def S2_#NAME#abs : T_StoreAbs <mnemonic, RC, ImmOp, MajOp, isHalf>;
3304
3305    // Predicated
3306    def S4_p#NAME#t_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 0, 0>;
3307    def S4_p#NAME#f_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 1, 0>;
3308
3309    // .new Predicated
3310    def S4_p#NAME#tnew_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 0, 1>;
3311    def S4_p#NAME#fnew_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 1, 1>;
3312  }
3313}
3314
3315//===----------------------------------------------------------------------===//
3316// Template class for non predicated new-value store instructions with
3317// GP-Relative or absolute addressing.
3318//===----------------------------------------------------------------------===//
3319let hasSideEffects = 0, isPredicable = 1, mayStore = 1, isNVStore = 1,
3320    isNewValue = 1, opNewValue = 1 in
3321class T_StoreAbsGP_NV <string mnemonic, Operand ImmOp, bits<2>MajOp, bit isAbs>
3322  : NVInst_V4<(outs), (ins u0AlwaysExt:$addr, IntRegs:$src),
3323  mnemonic # !if(isAbs, "(##", "(#")#"$addr) = $src.new",
3324  [], "", V2LDST_tc_st_SLOT0> {
3325    bits<19> addr;
3326    bits<3> src;
3327    bits<16> offsetBits;
3328
3329    string ImmOpStr = !cast<string>(ImmOp);
3330    let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
3331                     !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
3332                     !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
3333                                      /* u16_0Imm */ addr{15-0})));
3334    let IClass = 0b0100;
3335
3336    let Inst{27} = 1;
3337    let Inst{26-25} = offsetBits{15-14};
3338    let Inst{24-21} = 0b0101;
3339    let Inst{20-16} = offsetBits{13-9};
3340    let Inst{13}    = offsetBits{8};
3341    let Inst{12-11} = MajOp;
3342    let Inst{10-8}  = src;
3343    let Inst{7-0}   = offsetBits{7-0};
3344  }
3345
3346//===----------------------------------------------------------------------===//
3347// Template class for predicated new-value store instructions with
3348// absolute addressing.
3349//===----------------------------------------------------------------------===//
3350let hasSideEffects = 0, isPredicated = 1, mayStore = 1, isNVStore = 1,
3351    isNewValue = 1, opNewValue = 2, opExtentBits = 6, opExtendable = 1 in
3352class T_StoreAbs_NV_Pred <string mnemonic, bits<2> MajOp, bit isNot, bit isNew>
3353  : NVInst_V4<(outs), (ins PredRegs:$src1, u6Ext:$absaddr, IntRegs:$src2),
3354  !if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ",
3355  ") ")#mnemonic#"(#$absaddr) = $src2.new",
3356  [], "", ST_tc_st_SLOT0>, AddrModeRel {
3357    bits<2> src1;
3358    bits<6> absaddr;
3359    bits<3> src2;
3360
3361    let isPredicatedNew = isNew;
3362    let isPredicatedFalse = isNot;
3363
3364    let IClass = 0b1010;
3365
3366    let Inst{27-24} = 0b1111;
3367    let Inst{23-21} = 0b101;
3368    let Inst{17-16} = absaddr{5-4};
3369    let Inst{13}    = isNew;
3370    let Inst{12-11} = MajOp;
3371    let Inst{10-8}  = src2;
3372    let Inst{7}     = 0b1;
3373    let Inst{6-3}   = absaddr{3-0};
3374    let Inst{2}     = isNot;
3375    let Inst{1-0}   = src1;
3376}
3377
3378//===----------------------------------------------------------------------===//
3379// Template class for non-predicated new-value store instructions with
3380// absolute addressing.
3381//===----------------------------------------------------------------------===//
3382class T_StoreAbs_NV <string mnemonic, Operand ImmOp, bits<2> MajOp>
3383  : T_StoreAbsGP_NV <mnemonic, ImmOp, MajOp, 1>, AddrModeRel {
3384
3385  string ImmOpStr = !cast<string>(ImmOp);
3386  let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
3387                     !if (!eq(ImmOpStr, "u16_2Imm"), 18,
3388                     !if (!eq(ImmOpStr, "u16_1Imm"), 17,
3389                                      /* u16_0Imm */ 16)));
3390
3391  let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
3392                      !if (!eq(ImmOpStr, "u16_2Imm"), 2,
3393                      !if (!eq(ImmOpStr, "u16_1Imm"), 1,
3394                                       /* u16_0Imm */ 0)));
3395}
3396
3397//===----------------------------------------------------------------------===//
3398// Multiclass for new-value store instructions with absolute addressing.
3399//===----------------------------------------------------------------------===//
3400let validSubTargets = HasV4SubT, addrMode = Absolute, isExtended = 1  in
3401multiclass ST_Abs_NV <string mnemonic, string CextOp, Operand ImmOp,
3402                   bits<2> MajOp> {
3403  let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
3404    let opExtendable = 0, isPredicable = 1 in
3405    def S2_#NAME#newabs : T_StoreAbs_NV <mnemonic, ImmOp, MajOp>;
3406
3407    // Predicated
3408    def S4_p#NAME#newt_abs  : T_StoreAbs_NV_Pred <mnemonic, MajOp, 0, 0>;
3409    def S4_p#NAME#newf_abs  : T_StoreAbs_NV_Pred <mnemonic, MajOp, 1, 0>;
3410
3411    // .new Predicated
3412    def S4_p#NAME#newtnew_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 0, 1>;
3413    def S4_p#NAME#newfnew_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 1, 1>;
3414  }
3415}
3416
3417//===----------------------------------------------------------------------===//
3418// Stores with absolute addressing
3419//===----------------------------------------------------------------------===//
3420let accessSize = ByteAccess, isCodeGenOnly = 0 in
3421defm storerb : ST_Abs    <"memb", "STrib", IntRegs, u16_0Imm, 0b00>,
3422               ST_Abs_NV <"memb", "STrib", u16_0Imm, 0b00>;
3423
3424let accessSize = HalfWordAccess, isCodeGenOnly = 0 in
3425defm storerh : ST_Abs    <"memh", "STrih", IntRegs, u16_1Imm, 0b01>,
3426               ST_Abs_NV <"memh", "STrih", u16_1Imm, 0b01>;
3427
3428let accessSize = WordAccess, isCodeGenOnly = 0 in
3429defm storeri : ST_Abs    <"memw", "STriw", IntRegs, u16_2Imm, 0b10>,
3430               ST_Abs_NV <"memw", "STriw", u16_2Imm, 0b10>;
3431
3432let isNVStorable = 0, accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
3433defm storerd : ST_Abs <"memd", "STrid", DoubleRegs, u16_3Imm, 0b11>;
3434
3435let isNVStorable = 0, accessSize = HalfWordAccess, isCodeGenOnly = 0 in
3436defm storerf : ST_Abs <"memh", "STrif", IntRegs, u16_1Imm, 0b01, 1>;
3437
3438//===----------------------------------------------------------------------===//
3439// GP-relative stores.
3440// mem[bhwd](#global)=Rt
3441// Once predicated, these instructions map to absolute addressing mode.
3442// if ([!]Pv[.new]) mem[bhwd](##global)=Rt
3443//===----------------------------------------------------------------------===//
3444
3445let validSubTargets = HasV4SubT in
3446class T_StoreGP <string mnemonic, string BaseOp, RegisterClass RC,
3447                 Operand ImmOp, bits<2> MajOp, bit isHalf = 0>
3448  : T_StoreAbsGP <mnemonic, RC, ImmOp, MajOp, globaladdress, 0, isHalf> {
3449    // Set BaseOpcode same as absolute addressing instructions so that
3450    // non-predicated GP-Rel instructions can have relate with predicated
3451    // Absolute instruction.
3452    let BaseOpcode = BaseOp#_abs;
3453  }
3454
3455let validSubTargets = HasV4SubT in
3456multiclass ST_GP <string mnemonic, string BaseOp, Operand ImmOp,
3457                  bits<2> MajOp, bit isHalf = 0> {
3458  // Set BaseOpcode same as absolute addressing instructions so that
3459  // non-predicated GP-Rel instructions can have relate with predicated
3460  // Absolute instruction.
3461  let BaseOpcode = BaseOp#_abs in {
3462    def NAME#gp : T_StoreAbsGP <mnemonic, IntRegs, ImmOp, MajOp,
3463                                globaladdress, 0, isHalf>;
3464    // New-value store
3465    def NAME#newgp : T_StoreAbsGP_NV <mnemonic, ImmOp, MajOp, 0> ;
3466  }
3467}
3468
3469let accessSize = ByteAccess in
3470defm S2_storerb : ST_GP<"memb", "STrib", u16_0Imm, 0b00>, NewValueRel;
3471
3472let accessSize = HalfWordAccess in
3473defm S2_storerh : ST_GP<"memh", "STrih", u16_1Imm, 0b01>, NewValueRel;
3474
3475let accessSize = WordAccess in
3476defm S2_storeri : ST_GP<"memw", "STriw", u16_2Imm, 0b10>, NewValueRel;
3477
3478let isNVStorable = 0, accessSize = DoubleWordAccess in
3479def S2_storerdgp : T_StoreGP <"memd", "STrid", DoubleRegs,
3480                              u16_3Imm, 0b11>, PredNewRel;
3481
3482let isNVStorable = 0, accessSize = HalfWordAccess in
3483def S2_storerfgp : T_StoreGP <"memh", "STrif", IntRegs,
3484                              u16_1Imm, 0b01, 1>, PredNewRel;
3485
3486let Predicates = [HasV4T], AddedComplexity = 30 in {
3487def : Pat<(truncstorei8 (i32 IntRegs:$src1),
3488                        (HexagonCONST32 tglobaladdr:$absaddr)),
3489          (S2_storerbabs tglobaladdr: $absaddr, IntRegs: $src1)>;
3490
3491def : Pat<(truncstorei16 (i32 IntRegs:$src1),
3492                          (HexagonCONST32 tglobaladdr:$absaddr)),
3493          (S2_storerhabs tglobaladdr: $absaddr, IntRegs: $src1)>;
3494
3495def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32 tglobaladdr:$absaddr)),
3496          (S2_storeriabs tglobaladdr: $absaddr, IntRegs: $src1)>;
3497
3498def : Pat<(store (i64 DoubleRegs:$src1),
3499                 (HexagonCONST32 tglobaladdr:$absaddr)),
3500          (S2_storerdabs tglobaladdr: $absaddr, DoubleRegs: $src1)>;
3501}
3502
3503// 64 bit atomic store
3504def : Pat <(atomic_store_64 (HexagonCONST32_GP tglobaladdr:$global),
3505                            (i64 DoubleRegs:$src1)),
3506           (S2_storerdgp tglobaladdr:$global, (i64 DoubleRegs:$src1))>,
3507           Requires<[HasV4T]>;
3508
3509// Map from store(globaladdress) -> memd(#foo)
3510let AddedComplexity = 100 in
3511def : Pat <(store (i64 DoubleRegs:$src1),
3512                  (HexagonCONST32_GP tglobaladdr:$global)),
3513           (S2_storerdgp tglobaladdr:$global, (i64 DoubleRegs:$src1))>;
3514
3515// 8 bit atomic store
3516def : Pat < (atomic_store_8 (HexagonCONST32_GP tglobaladdr:$global),
3517                            (i32 IntRegs:$src1)),
3518            (S2_storerbgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3519
3520// Map from store(globaladdress) -> memb(#foo)
3521let AddedComplexity = 100 in
3522def : Pat<(truncstorei8 (i32 IntRegs:$src1),
3523          (HexagonCONST32_GP tglobaladdr:$global)),
3524          (S2_storerbgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3525
3526// Map from "i1 = constant<-1>; memw(CONST32(#foo)) = i1"
3527//       to "r0 = 1; memw(#foo) = r0"
3528let AddedComplexity = 100 in
3529def : Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)),
3530          (S2_storerbgp tglobaladdr:$global, (A2_tfrsi 1))>;
3531
3532def : Pat<(atomic_store_16 (HexagonCONST32_GP tglobaladdr:$global),
3533                           (i32 IntRegs:$src1)),
3534          (S2_storerhgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3535
3536// Map from store(globaladdress) -> memh(#foo)
3537let AddedComplexity = 100 in
3538def : Pat<(truncstorei16 (i32 IntRegs:$src1),
3539                         (HexagonCONST32_GP tglobaladdr:$global)),
3540          (S2_storerhgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3541
3542// 32 bit atomic store
3543def : Pat<(atomic_store_32 (HexagonCONST32_GP tglobaladdr:$global),
3544                           (i32 IntRegs:$src1)),
3545          (S2_storerigp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3546
3547// Map from store(globaladdress) -> memw(#foo)
3548let AddedComplexity = 100 in
3549def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)),
3550          (S2_storerigp tglobaladdr:$global, (i32 IntRegs:$src1))>;
3551
3552//===----------------------------------------------------------------------===//
3553// Template class for non predicated load instructions with
3554// absolute addressing mode.
3555//===----------------------------------------------------------------------===//
3556let isPredicable = 1, hasSideEffects = 0, validSubTargets = HasV4SubT in
3557class T_LoadAbsGP <string mnemonic, RegisterClass RC, Operand ImmOp,
3558                   bits<3> MajOp, Operand AddrOp, bit isAbs>
3559  : LDInst <(outs RC:$dst), (ins AddrOp:$addr),
3560  "$dst = "#mnemonic# !if(isAbs, "(##", "(#")#"$addr)",
3561  [], "", V2LDST_tc_ld_SLOT01> {
3562    bits<5> dst;
3563    bits<19> addr;
3564    bits<16> offsetBits;
3565
3566    string ImmOpStr = !cast<string>(ImmOp);
3567    let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
3568                     !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
3569                     !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
3570                                      /* u16_0Imm */ addr{15-0})));
3571
3572    let IClass = 0b0100;
3573
3574    let Inst{27}    = 0b1;
3575    let Inst{26-25} = offsetBits{15-14};
3576    let Inst{24}    = 0b1;
3577    let Inst{23-21} = MajOp;
3578    let Inst{20-16} = offsetBits{13-9};
3579    let Inst{13-5}  = offsetBits{8-0};
3580    let Inst{4-0}   = dst;
3581  }
3582
3583class T_LoadAbs <string mnemonic, RegisterClass RC, Operand ImmOp,
3584                 bits<3> MajOp>
3585  : T_LoadAbsGP <mnemonic, RC, ImmOp, MajOp, u0AlwaysExt, 1>, AddrModeRel {
3586
3587    string ImmOpStr = !cast<string>(ImmOp);
3588    let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
3589                       !if (!eq(ImmOpStr, "u16_2Imm"), 18,
3590                       !if (!eq(ImmOpStr, "u16_1Imm"), 17,
3591                                        /* u16_0Imm */ 16)));
3592
3593    let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
3594                        !if (!eq(ImmOpStr, "u16_2Imm"), 2,
3595                        !if (!eq(ImmOpStr, "u16_1Imm"), 1,
3596                                        /* u16_0Imm */ 0)));
3597  }
3598//===----------------------------------------------------------------------===//
3599// Template class for predicated load instructions with
3600// absolute addressing mode.
3601//===----------------------------------------------------------------------===//
3602let isPredicated = 1, hasNewValue = 1, opExtentBits = 6, opExtendable = 2 in
3603class T_LoadAbs_Pred <string mnemonic, RegisterClass RC, bits<3> MajOp,
3604                      bit isPredNot, bit isPredNew>
3605  : LDInst <(outs RC:$dst), (ins PredRegs:$src1, u6Ext:$absaddr),
3606  !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
3607  ") ")#"$dst = "#mnemonic#"(#$absaddr)">, AddrModeRel {
3608    bits<5> dst;
3609    bits<2> src1;
3610    bits<6> absaddr;
3611
3612    let isPredicatedNew = isPredNew;
3613    let isPredicatedFalse = isPredNot;
3614
3615    let IClass = 0b1001;
3616
3617    let Inst{27-24} = 0b1111;
3618    let Inst{23-21} = MajOp;
3619    let Inst{20-16} = absaddr{5-1};
3620    let Inst{13} = 0b1;
3621    let Inst{12} = isPredNew;
3622    let Inst{11} = isPredNot;
3623    let Inst{10-9} = src1;
3624    let Inst{8} = absaddr{0};
3625    let Inst{7} = 0b1;
3626    let Inst{4-0} = dst;
3627  }
3628
3629//===----------------------------------------------------------------------===//
3630// Multiclass for the load instructions with absolute addressing mode.
3631//===----------------------------------------------------------------------===//
3632multiclass LD_Abs_Pred<string mnemonic, RegisterClass RC, bits<3> MajOp,
3633                       bit PredNot> {
3634  def _abs : T_LoadAbs_Pred <mnemonic, RC, MajOp, PredNot, 0>;
3635  // Predicate new
3636  def new_abs : T_LoadAbs_Pred <mnemonic, RC, MajOp, PredNot, 1>;
3637}
3638
3639let addrMode = Absolute, isExtended = 1 in
3640multiclass LD_Abs<string mnemonic, string CextOp, RegisterClass RC,
3641                  Operand ImmOp, bits<3> MajOp> {
3642  let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
3643    let opExtendable = 1, isPredicable = 1 in
3644    def L4_#NAME#_abs: T_LoadAbs <mnemonic, RC, ImmOp, MajOp>;
3645
3646    // Predicated
3647    defm L4_p#NAME#t : LD_Abs_Pred<mnemonic, RC, MajOp, 0>;
3648    defm L4_p#NAME#f : LD_Abs_Pred<mnemonic, RC, MajOp, 1>;
3649  }
3650}
3651
3652let accessSize = ByteAccess, hasNewValue = 1, isCodeGenOnly = 0 in {
3653  defm loadrb  : LD_Abs<"memb",  "LDrib",  IntRegs, u16_0Imm, 0b000>;
3654  defm loadrub : LD_Abs<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>;
3655}
3656
3657let accessSize = HalfWordAccess, hasNewValue = 1, isCodeGenOnly = 0 in {
3658  defm loadrh  : LD_Abs<"memh",  "LDrih",  IntRegs, u16_1Imm, 0b010>;
3659  defm loadruh : LD_Abs<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>;
3660}
3661
3662let accessSize = WordAccess, hasNewValue = 1, isCodeGenOnly = 0 in
3663defm loadri  : LD_Abs<"memw",  "LDriw",  IntRegs, u16_2Imm, 0b100>;
3664
3665let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
3666defm loadrd  : LD_Abs<"memd",  "LDrid", DoubleRegs, u16_3Imm, 0b110>;
3667
3668//===----------------------------------------------------------------------===//
3669// multiclass for load instructions with GP-relative addressing mode.
3670// Rx=mem[bhwd](##global)
3671// Once predicated, these instructions map to absolute addressing mode.
3672// if ([!]Pv[.new]) Rx=mem[bhwd](##global)
3673//===----------------------------------------------------------------------===//
3674
3675class T_LoadGP <string mnemonic, string BaseOp, RegisterClass RC, Operand ImmOp,
3676                bits<3> MajOp>
3677  : T_LoadAbsGP <mnemonic, RC, ImmOp, MajOp, globaladdress, 0>, PredNewRel {
3678    let BaseOpcode = BaseOp#_abs;
3679  }
3680
3681let accessSize = ByteAccess, hasNewValue = 1 in {
3682  def L2_loadrbgp  : T_LoadGP<"memb",  "LDrib",  IntRegs, u16_0Imm, 0b000>;
3683  def L2_loadrubgp : T_LoadGP<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>;
3684}
3685
3686let accessSize = HalfWordAccess, hasNewValue = 1 in {
3687  def L2_loadrhgp  : T_LoadGP<"memh",  "LDrih",  IntRegs, u16_1Imm, 0b010>;
3688  def L2_loadruhgp : T_LoadGP<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>;
3689}
3690
3691let accessSize = WordAccess, hasNewValue = 1 in
3692def L2_loadrigp  : T_LoadGP<"memw",  "LDriw",  IntRegs, u16_2Imm, 0b100>;
3693
3694let accessSize = DoubleWordAccess in
3695def L2_loadrdgp  : T_LoadGP<"memd", "LDrid", DoubleRegs, u16_3Imm, 0b110>;
3696
3697let Predicates = [HasV4T], AddedComplexity  = 30 in {
3698def : Pat<(i32 (load (HexagonCONST32 tglobaladdr:$absaddr))),
3699          (L4_loadri_abs tglobaladdr: $absaddr)>;
3700
3701def : Pat<(i32 (sextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
3702          (L4_loadrb_abs tglobaladdr:$absaddr)>;
3703
3704def : Pat<(i32 (zextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
3705          (L4_loadrub_abs tglobaladdr:$absaddr)>;
3706
3707def : Pat<(i32 (sextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
3708          (L4_loadrh_abs tglobaladdr:$absaddr)>;
3709
3710def : Pat<(i32 (zextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
3711          (L4_loadruh_abs tglobaladdr:$absaddr)>;
3712}
3713
3714def : Pat <(atomic_load_64 (HexagonCONST32_GP tglobaladdr:$global)),
3715           (i64 (L2_loadrdgp tglobaladdr:$global))>;
3716
3717def : Pat <(atomic_load_32 (HexagonCONST32_GP tglobaladdr:$global)),
3718           (i32 (L2_loadrigp tglobaladdr:$global))>;
3719
3720def : Pat <(atomic_load_16 (HexagonCONST32_GP tglobaladdr:$global)),
3721           (i32 (L2_loadruhgp tglobaladdr:$global))>;
3722
3723def : Pat <(atomic_load_8 (HexagonCONST32_GP tglobaladdr:$global)),
3724           (i32 (L2_loadrubgp tglobaladdr:$global))>;
3725
3726// Map from load(globaladdress) -> memw(#foo + 0)
3727let AddedComplexity = 100 in
3728def : Pat <(i64 (load (HexagonCONST32_GP tglobaladdr:$global))),
3729           (i64 (L2_loadrdgp tglobaladdr:$global))>;
3730
3731// Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd
3732let AddedComplexity = 100 in
3733def : Pat <(i1 (load (HexagonCONST32_GP tglobaladdr:$global))),
3734           (i1 (C2_tfrrp (i32 (L2_loadrbgp tglobaladdr:$global))))>;
3735
3736// When the Interprocedural Global Variable optimizer realizes that a certain
3737// global variable takes only two constant values, it shrinks the global to
3738// a boolean. Catch those loads here in the following 3 patterns.
3739let AddedComplexity = 100 in
3740def : Pat <(i32 (extloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
3741           (i32 (L2_loadrbgp tglobaladdr:$global))>;
3742
3743let AddedComplexity = 100 in
3744def : Pat <(i32 (sextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
3745           (i32 (L2_loadrbgp tglobaladdr:$global))>;
3746
3747// Map from load(globaladdress) -> memb(#foo)
3748let AddedComplexity = 100 in
3749def : Pat <(i32 (extloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
3750           (i32 (L2_loadrbgp tglobaladdr:$global))>;
3751
3752// Map from load(globaladdress) -> memb(#foo)
3753let AddedComplexity = 100 in
3754def : Pat <(i32 (sextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
3755           (i32 (L2_loadrbgp tglobaladdr:$global))>;
3756
3757let AddedComplexity = 100 in
3758def : Pat <(i32 (zextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
3759           (i32 (L2_loadrubgp tglobaladdr:$global))>;
3760
3761// Map from load(globaladdress) -> memub(#foo)
3762let AddedComplexity = 100 in
3763def : Pat <(i32 (zextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
3764           (i32 (L2_loadrubgp tglobaladdr:$global))>;
3765
3766// Map from load(globaladdress) -> memh(#foo)
3767let AddedComplexity = 100 in
3768def : Pat <(i32 (extloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
3769           (i32 (L2_loadrhgp tglobaladdr:$global))>;
3770
3771// Map from load(globaladdress) -> memh(#foo)
3772let AddedComplexity = 100 in
3773def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
3774           (i32 (L2_loadrhgp tglobaladdr:$global))>;
3775
3776// Map from load(globaladdress) -> memuh(#foo)
3777let AddedComplexity = 100 in
3778def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
3779           (i32 (L2_loadruhgp tglobaladdr:$global))>;
3780
3781// Map from load(globaladdress) -> memw(#foo)
3782let AddedComplexity = 100 in
3783def : Pat <(i32 (load (HexagonCONST32_GP tglobaladdr:$global))),
3784           (i32 (L2_loadrigp tglobaladdr:$global))>;
3785
3786
3787// Transfer global address into a register
3788let isExtended = 1, opExtendable = 1, AddedComplexity=50, isMoveImm = 1,
3789isAsCheapAsAMove = 1, isReMaterializable = 1, validSubTargets = HasV4SubT in
3790def TFRI_V4 : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1),
3791           "$dst = #$src1",
3792           [(set IntRegs:$dst, (HexagonCONST32 tglobaladdr:$src1))]>,
3793           Requires<[HasV4T]>;
3794
3795// Transfer a block address into a register
3796def : Pat<(HexagonCONST32_GP tblockaddress:$src1),
3797          (TFRI_V4 tblockaddress:$src1)>,
3798          Requires<[HasV4T]>;
3799
3800let isExtended = 1, opExtendable = 2, AddedComplexity=50,
3801hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
3802def TFRI_cPt_V4 : ALU32_ri<(outs IntRegs:$dst),
3803                           (ins PredRegs:$src1, s16Ext:$src2),
3804           "if($src1) $dst = #$src2",
3805           []>,
3806           Requires<[HasV4T]>;
3807
3808let isExtended = 1, opExtendable = 2, AddedComplexity=50, isPredicatedFalse = 1,
3809hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
3810def TFRI_cNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
3811                              (ins PredRegs:$src1, s16Ext:$src2),
3812           "if(!$src1) $dst = #$src2",
3813           []>,
3814           Requires<[HasV4T]>;
3815
3816let isExtended = 1, opExtendable = 2, AddedComplexity=50,
3817hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
3818def TFRI_cdnPt_V4 : ALU32_ri<(outs IntRegs:$dst),
3819                             (ins PredRegs:$src1, s16Ext:$src2),
3820           "if($src1.new) $dst = #$src2",
3821           []>,
3822           Requires<[HasV4T]>;
3823
3824let isExtended = 1, opExtendable = 2, AddedComplexity=50, isPredicatedFalse = 1,
3825hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
3826def TFRI_cdnNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
3827                                (ins PredRegs:$src1, s16Ext:$src2),
3828           "if(!$src1.new) $dst = #$src2",
3829           []>,
3830           Requires<[HasV4T]>;
3831
3832let AddedComplexity = 50, Predicates = [HasV4T] in
3833def : Pat<(HexagonCONST32_GP tglobaladdr:$src1),
3834           (TFRI_V4 tglobaladdr:$src1)>,
3835           Requires<[HasV4T]>;
3836
3837
3838// Load - Indirect with long offset: These instructions take global address
3839// as an operand
3840let isExtended = 1, opExtendable = 3, AddedComplexity = 40,
3841validSubTargets = HasV4SubT in
3842def LDrid_ind_lo_V4 : LDInst<(outs DoubleRegs:$dst),
3843            (ins IntRegs:$src1, u2Imm:$src2, globaladdressExt:$offset),
3844            "$dst=memd($src1<<#$src2+##$offset)",
3845            [(set (i64 DoubleRegs:$dst),
3846                  (load (add (shl IntRegs:$src1, u2ImmPred:$src2),
3847                        (HexagonCONST32 tglobaladdr:$offset))))]>,
3848            Requires<[HasV4T]>;
3849
3850let AddedComplexity = 40 in
3851multiclass LD_indirect_lo<string OpcStr, PatFrag OpNode> {
3852let isExtended = 1, opExtendable = 3, validSubTargets = HasV4SubT in
3853  def _lo_V4 : LDInst<(outs IntRegs:$dst),
3854            (ins IntRegs:$src1, u2Imm:$src2, globaladdressExt:$offset),
3855            !strconcat("$dst = ",
3856            !strconcat(OpcStr, "($src1<<#$src2+##$offset)")),
3857            [(set IntRegs:$dst,
3858                  (i32 (OpNode (add (shl IntRegs:$src1, u2ImmPred:$src2),
3859                          (HexagonCONST32 tglobaladdr:$offset)))))]>,
3860            Requires<[HasV4T]>;
3861}
3862
3863defm LDrib_ind : LD_indirect_lo<"memb", sextloadi8>;
3864defm LDriub_ind : LD_indirect_lo<"memub", zextloadi8>;
3865defm LDriub_ind_anyext : LD_indirect_lo<"memub", extloadi8>;
3866defm LDrih_ind : LD_indirect_lo<"memh", sextloadi16>;
3867defm LDriuh_ind : LD_indirect_lo<"memuh", zextloadi16>;
3868defm LDriuh_ind_anyext : LD_indirect_lo<"memuh", extloadi16>;
3869defm LDriw_ind : LD_indirect_lo<"memw", load>;
3870
3871let AddedComplexity = 40 in
3872def : Pat <(i32 (sextloadi8 (add IntRegs:$src1,
3873                                 (NumUsesBelowThresCONST32 tglobaladdr:$offset)))),
3874           (i32 (LDrib_ind_lo_V4 IntRegs:$src1, 0, tglobaladdr:$offset))>,
3875           Requires<[HasV4T]>;
3876
3877let AddedComplexity = 40 in
3878def : Pat <(i32 (zextloadi8 (add IntRegs:$src1,
3879                                 (NumUsesBelowThresCONST32 tglobaladdr:$offset)))),
3880           (i32 (LDriub_ind_lo_V4 IntRegs:$src1, 0, tglobaladdr:$offset))>,
3881           Requires<[HasV4T]>;
3882
3883let Predicates = [HasV4T], AddedComplexity  = 30 in {
3884def : Pat<(truncstorei8 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
3885          (S2_storerbabs u0AlwaysExtPred:$src2, IntRegs: $src1)>;
3886
3887def : Pat<(truncstorei16 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
3888          (S2_storerhabs u0AlwaysExtPred:$src2, IntRegs: $src1)>;
3889
3890def : Pat<(store (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
3891          (S2_storeriabs u0AlwaysExtPred:$src2, IntRegs: $src1)>;
3892}
3893
3894let Predicates = [HasV4T], AddedComplexity  = 30 in {
3895def : Pat<(i32 (load u0AlwaysExtPred:$src)),
3896          (L4_loadri_abs u0AlwaysExtPred:$src)>;
3897
3898def : Pat<(i32 (sextloadi8 u0AlwaysExtPred:$src)),
3899          (L4_loadrb_abs u0AlwaysExtPred:$src)>;
3900
3901def : Pat<(i32 (zextloadi8 u0AlwaysExtPred:$src)),
3902          (L4_loadrub_abs u0AlwaysExtPred:$src)>;
3903
3904def : Pat<(i32 (sextloadi16 u0AlwaysExtPred:$src)),
3905          (L4_loadrh_abs u0AlwaysExtPred:$src)>;
3906
3907def : Pat<(i32 (zextloadi16 u0AlwaysExtPred:$src)),
3908          (L4_loadruh_abs u0AlwaysExtPred:$src)>;
3909}
3910
3911// Indexed store word - global address.
3912// memw(Rs+#u6:2)=#S8
3913let AddedComplexity = 10 in
3914def STriw_offset_ext_V4 : STInst<(outs),
3915            (ins IntRegs:$src1, u6_2Imm:$src2, globaladdress:$src3),
3916            "memw($src1+#$src2) = ##$src3",
3917            [(store (HexagonCONST32 tglobaladdr:$src3),
3918                    (add IntRegs:$src1, u6_2ImmPred:$src2))]>,
3919            Requires<[HasV4T]>;
3920
3921def : Pat<(i64 (ctlz (i64 DoubleRegs:$src1))),
3922          (i64 (A4_combineir (i32 0), (i32 (CTLZ64_rr DoubleRegs:$src1))))>,
3923          Requires<[HasV4T]>;
3924
3925def : Pat<(i64 (cttz (i64 DoubleRegs:$src1))),
3926          (i64 (A4_combineir (i32 0), (i32 (CTTZ64_rr DoubleRegs:$src1))))>,
3927          Requires<[HasV4T]>;
3928
3929
3930// i8 -> i64 loads
3931// We need a complexity of 120 here to override preceding handling of
3932// zextloadi8.
3933let Predicates = [HasV4T], AddedComplexity = 120 in {
3934def:  Pat <(i64 (extloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3935      (i64 (A4_combineir 0, (L4_loadrb_abs tglobaladdr:$addr)))>;
3936
3937def:  Pat <(i64 (zextloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3938      (i64 (A4_combineir 0, (L4_loadrub_abs tglobaladdr:$addr)))>;
3939
3940def:  Pat <(i64 (sextloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3941      (i64 (A2_sxtw (L4_loadrb_abs tglobaladdr:$addr)))>;
3942
3943def:  Pat <(i64 (extloadi8 FoldGlobalAddr:$addr)),
3944      (i64 (A4_combineir 0, (L4_loadrb_abs FoldGlobalAddr:$addr)))>;
3945
3946def:  Pat <(i64 (zextloadi8 FoldGlobalAddr:$addr)),
3947      (i64 (A4_combineir 0, (L4_loadrub_abs FoldGlobalAddr:$addr)))>;
3948
3949def:  Pat <(i64 (sextloadi8 FoldGlobalAddr:$addr)),
3950      (i64 (A2_sxtw (L4_loadrb_abs FoldGlobalAddr:$addr)))>;
3951}
3952// i16 -> i64 loads
3953// We need a complexity of 120 here to override preceding handling of
3954// zextloadi16.
3955let AddedComplexity = 120 in {
3956def:  Pat <(i64 (extloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3957      (i64 (A4_combineir 0, (L4_loadrh_abs tglobaladdr:$addr)))>,
3958      Requires<[HasV4T]>;
3959
3960def:  Pat <(i64 (zextloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3961      (i64 (A4_combineir 0, (L4_loadruh_abs tglobaladdr:$addr)))>,
3962      Requires<[HasV4T]>;
3963
3964def:  Pat <(i64 (sextloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3965      (i64 (A2_sxtw (L4_loadrh_abs tglobaladdr:$addr)))>,
3966      Requires<[HasV4T]>;
3967
3968def:  Pat <(i64 (extloadi16 FoldGlobalAddr:$addr)),
3969      (i64 (A4_combineir 0, (L4_loadrh_abs FoldGlobalAddr:$addr)))>,
3970      Requires<[HasV4T]>;
3971
3972def:  Pat <(i64 (zextloadi16 FoldGlobalAddr:$addr)),
3973      (i64 (A4_combineir 0, (L4_loadruh_abs FoldGlobalAddr:$addr)))>,
3974      Requires<[HasV4T]>;
3975
3976def:  Pat <(i64 (sextloadi16 FoldGlobalAddr:$addr)),
3977      (i64 (A2_sxtw (L4_loadrh_abs FoldGlobalAddr:$addr)))>,
3978      Requires<[HasV4T]>;
3979}
3980// i32->i64 loads
3981// We need a complexity of 120 here to override preceding handling of
3982// zextloadi32.
3983let AddedComplexity = 120 in {
3984def:  Pat <(i64 (extloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3985      (i64 (A4_combineir 0, (L4_loadri_abs tglobaladdr:$addr)))>,
3986      Requires<[HasV4T]>;
3987
3988def:  Pat <(i64 (zextloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3989      (i64 (A4_combineir 0, (L4_loadri_abs tglobaladdr:$addr)))>,
3990      Requires<[HasV4T]>;
3991
3992def:  Pat <(i64 (sextloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
3993      (i64 (A2_sxtw (L4_loadri_abs tglobaladdr:$addr)))>,
3994      Requires<[HasV4T]>;
3995
3996def:  Pat <(i64 (extloadi32 FoldGlobalAddr:$addr)),
3997      (i64 (A4_combineir 0, (L4_loadri_abs FoldGlobalAddr:$addr)))>,
3998      Requires<[HasV4T]>;
3999
4000def:  Pat <(i64 (zextloadi32 FoldGlobalAddr:$addr)),
4001      (i64 (A4_combineir 0, (L4_loadri_abs FoldGlobalAddr:$addr)))>,
4002      Requires<[HasV4T]>;
4003
4004def:  Pat <(i64 (sextloadi32 FoldGlobalAddr:$addr)),
4005      (i64 (A2_sxtw (L4_loadri_abs FoldGlobalAddr:$addr)))>,
4006      Requires<[HasV4T]>;
4007}
4008
4009// Indexed store double word - global address.
4010// memw(Rs+#u6:2)=#S8
4011let AddedComplexity = 10 in
4012def STrih_offset_ext_V4 : STInst<(outs),
4013            (ins IntRegs:$src1, u6_1Imm:$src2, globaladdress:$src3),
4014            "memh($src1+#$src2) = ##$src3",
4015            [(truncstorei16 (HexagonCONST32 tglobaladdr:$src3),
4016                    (add IntRegs:$src1, u6_1ImmPred:$src2))]>,
4017            Requires<[HasV4T]>;
4018// Map from store(globaladdress + x) -> memd(#foo + x)
4019let AddedComplexity = 100 in
4020def : Pat<(store (i64 DoubleRegs:$src1),
4021                 FoldGlobalAddrGP:$addr),
4022          (S2_storerdabs FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
4023          Requires<[HasV4T]>;
4024
4025def : Pat<(atomic_store_64 FoldGlobalAddrGP:$addr,
4026                           (i64 DoubleRegs:$src1)),
4027          (S2_storerdabs FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
4028          Requires<[HasV4T]>;
4029
4030// Map from store(globaladdress + x) -> memb(#foo + x)
4031let AddedComplexity = 100 in
4032def : Pat<(truncstorei8 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
4033          (S2_storerbabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4034            Requires<[HasV4T]>;
4035
4036def : Pat<(atomic_store_8 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
4037          (S2_storerbabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4038            Requires<[HasV4T]>;
4039
4040// Map from store(globaladdress + x) -> memh(#foo + x)
4041let AddedComplexity = 100 in
4042def : Pat<(truncstorei16 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
4043          (S2_storerhabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4044            Requires<[HasV4T]>;
4045
4046def : Pat<(atomic_store_16 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
4047          (S2_storerhabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4048            Requires<[HasV4T]>;
4049
4050// Map from store(globaladdress + x) -> memw(#foo + x)
4051let AddedComplexity = 100 in
4052def : Pat<(store (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
4053          (S2_storeriabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4054           Requires<[HasV4T]>;
4055
4056def : Pat<(atomic_store_32 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
4057          (S2_storeriabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
4058            Requires<[HasV4T]>;
4059
4060// Map from load(globaladdress + x) -> memd(#foo + x)
4061let AddedComplexity = 100 in
4062def : Pat<(i64 (load FoldGlobalAddrGP:$addr)),
4063          (i64 (L4_loadrd_abs FoldGlobalAddrGP:$addr))>,
4064           Requires<[HasV4T]>;
4065
4066def : Pat<(atomic_load_64 FoldGlobalAddrGP:$addr),
4067          (i64 (L4_loadrd_abs FoldGlobalAddrGP:$addr))>,
4068           Requires<[HasV4T]>;
4069
4070// Map from load(globaladdress + x) -> memb(#foo + x)
4071let AddedComplexity = 100 in
4072def : Pat<(i32 (extloadi8 FoldGlobalAddrGP:$addr)),
4073          (i32 (L4_loadrb_abs FoldGlobalAddrGP:$addr))>,
4074           Requires<[HasV4T]>;
4075
4076// Map from load(globaladdress + x) -> memb(#foo + x)
4077let AddedComplexity = 100 in
4078def : Pat<(i32 (sextloadi8 FoldGlobalAddrGP:$addr)),
4079          (i32 (L4_loadrb_abs FoldGlobalAddrGP:$addr))>,
4080           Requires<[HasV4T]>;
4081
4082//let AddedComplexity = 100 in
4083let AddedComplexity = 100 in
4084def : Pat<(i32 (extloadi16 FoldGlobalAddrGP:$addr)),
4085          (i32 (L4_loadrh_abs FoldGlobalAddrGP:$addr))>,
4086           Requires<[HasV4T]>;
4087
4088// Map from load(globaladdress + x) -> memh(#foo + x)
4089let AddedComplexity = 100 in
4090def : Pat<(i32 (sextloadi16 FoldGlobalAddrGP:$addr)),
4091          (i32 (L4_loadrh_abs FoldGlobalAddrGP:$addr))>,
4092           Requires<[HasV4T]>;
4093
4094// Map from load(globaladdress + x) -> memuh(#foo + x)
4095let AddedComplexity = 100 in
4096def : Pat<(i32 (zextloadi16 FoldGlobalAddrGP:$addr)),
4097          (i32 (L4_loadruh_abs FoldGlobalAddrGP:$addr))>,
4098           Requires<[HasV4T]>;
4099
4100def : Pat<(atomic_load_16 FoldGlobalAddrGP:$addr),
4101          (i32 (L4_loadruh_abs FoldGlobalAddrGP:$addr))>,
4102           Requires<[HasV4T]>;
4103
4104// Map from load(globaladdress + x) -> memub(#foo + x)
4105let AddedComplexity = 100 in
4106def : Pat<(i32 (zextloadi8 FoldGlobalAddrGP:$addr)),
4107          (i32 (L4_loadrub_abs FoldGlobalAddrGP:$addr))>,
4108           Requires<[HasV4T]>;
4109
4110def : Pat<(atomic_load_8 FoldGlobalAddrGP:$addr),
4111          (i32 (L4_loadrub_abs FoldGlobalAddrGP:$addr))>,
4112           Requires<[HasV4T]>;
4113
4114// Map from load(globaladdress + x) -> memw(#foo + x)
4115let AddedComplexity = 100 in
4116def : Pat<(i32 (load FoldGlobalAddrGP:$addr)),
4117          (i32 (L4_loadri_abs FoldGlobalAddrGP:$addr))>,
4118           Requires<[HasV4T]>;
4119
4120def : Pat<(atomic_load_32 FoldGlobalAddrGP:$addr),
4121          (i32 (L4_loadri_abs FoldGlobalAddrGP:$addr))>,
4122           Requires<[HasV4T]>;
4123
4124//===----------------------------------------------------------------------===//
4125// :raw for of boundscheck:hi:lo insns
4126//===----------------------------------------------------------------------===//
4127
4128// A4_boundscheck_lo: Detect if a register is within bounds.
4129let hasSideEffects = 0, isCodeGenOnly = 0 in
4130def A4_boundscheck_lo: ALU64Inst <
4131  (outs PredRegs:$Pd),
4132  (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
4133  "$Pd = boundscheck($Rss, $Rtt):raw:lo"> {
4134    bits<2> Pd;
4135    bits<5> Rss;
4136    bits<5> Rtt;
4137
4138    let IClass = 0b1101;
4139
4140    let Inst{27-23} = 0b00100;
4141    let Inst{13} = 0b1;
4142    let Inst{7-5} = 0b100;
4143    let Inst{1-0} = Pd;
4144    let Inst{20-16} = Rss;
4145    let Inst{12-8} = Rtt;
4146  }
4147
4148// A4_boundscheck_hi: Detect if a register is within bounds.
4149let hasSideEffects = 0, isCodeGenOnly = 0 in
4150def A4_boundscheck_hi: ALU64Inst <
4151  (outs PredRegs:$Pd),
4152  (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
4153  "$Pd = boundscheck($Rss, $Rtt):raw:hi"> {
4154    bits<2> Pd;
4155    bits<5> Rss;
4156    bits<5> Rtt;
4157
4158    let IClass = 0b1101;
4159
4160    let Inst{27-23} = 0b00100;
4161    let Inst{13} = 0b1;
4162    let Inst{7-5} = 0b101;
4163    let Inst{1-0} = Pd;
4164    let Inst{20-16} = Rss;
4165    let Inst{12-8} = Rtt;
4166  }
4167
4168let hasSideEffects = 0 in
4169def A4_boundscheck : MInst <
4170  (outs PredRegs:$Pd), (ins IntRegs:$Rs, DoubleRegs:$Rtt),
4171  "$Pd=boundscheck($Rs,$Rtt)">;
4172
4173// A4_tlbmatch: Detect if a VA/ASID matches a TLB entry.
4174let isPredicateLate = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
4175def A4_tlbmatch : ALU64Inst<(outs PredRegs:$Pd),
4176  (ins DoubleRegs:$Rs, IntRegs:$Rt),
4177  "$Pd = tlbmatch($Rs, $Rt)",
4178  [], "", ALU64_tc_2early_SLOT23> {
4179    bits<2> Pd;
4180    bits<5> Rs;
4181    bits<5> Rt;
4182
4183    let IClass = 0b1101;
4184    let Inst{27-23} = 0b00100;
4185    let Inst{20-16} = Rs;
4186    let Inst{13} = 0b1;
4187    let Inst{12-8} = Rt;
4188    let Inst{7-5} = 0b011;
4189    let Inst{1-0} = Pd;
4190  }
4191
4192// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
4193// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
4194// We don't really want either one here.
4195def SDTHexagonDCFETCH : SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
4196def HexagonDCFETCH : SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
4197                            [SDNPHasChain]>;
4198
4199// Use LD0Inst for dcfetch, but set "mayLoad" to 0 because this doesn't
4200// really do a load.
4201let hasSideEffects = 1, mayLoad = 0, isCodeGenOnly = 0 in
4202def Y2_dcfetchbo : LD0Inst<(outs), (ins IntRegs:$Rs, u11_3Imm:$u11_3),
4203      "dcfetch($Rs + #$u11_3)",
4204      [(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3)],
4205      "", LD_tc_ld_SLOT0> {
4206  bits<5> Rs;
4207  bits<14> u11_3;
4208
4209  let IClass = 0b1001;
4210  let Inst{27-21} = 0b0100000;
4211  let Inst{20-16} = Rs;
4212  let Inst{13} = 0b0;
4213  let Inst{10-0} = u11_3{13-3};
4214}
4215
4216//===----------------------------------------------------------------------===//
4217// Compound instructions
4218//===----------------------------------------------------------------------===//
4219
4220let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
4221    isPredicated = 1, isPredicatedNew = 1, isExtendable = 1,
4222    opExtentBits = 11, opExtentAlign = 2, opExtendable = 1,
4223    isTerminator = 1, validSubTargets = HasV4SubT in
4224class CJInst_tstbit_R0<string px, bit np, string tnt>
4225  : InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2),
4226  ""#px#" = tstbit($Rs, #0); if ("
4227    #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4228  [], "", COMPOUND, TypeCOMPOUND> {
4229  bits<4> Rs;
4230  bits<11> r9_2;
4231
4232  // np: !p[01]
4233  let isPredicatedFalse = np;
4234  // tnt: Taken/Not Taken
4235  let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4236  let isTaken   = !if (!eq(tnt, "t"), 1, 0);
4237
4238  let IClass = 0b0001;
4239  let Inst{27-26} = 0b00;
4240  let Inst{25} = !if (!eq(px, "!p1"), 1,
4241                 !if (!eq(px,  "p1"), 1, 0));
4242  let Inst{24-23} = 0b11;
4243  let Inst{22} = np;
4244  let Inst{21-20} = r9_2{10-9};
4245  let Inst{19-16} = Rs;
4246  let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4247  let Inst{9-8} = 0b11;
4248  let Inst{7-1} = r9_2{8-2};
4249}
4250
4251let Defs = [PC, P0], Uses = [P0], isCodeGenOnly = 0 in {
4252  def J4_tstbit0_tp0_jump_nt : CJInst_tstbit_R0<"p0", 0, "nt">;
4253  def J4_tstbit0_tp0_jump_t : CJInst_tstbit_R0<"p0", 0, "t">;
4254  def J4_tstbit0_fp0_jump_nt : CJInst_tstbit_R0<"p0", 1, "nt">;
4255  def J4_tstbit0_fp0_jump_t : CJInst_tstbit_R0<"p0", 1, "t">;
4256}
4257
4258let Defs = [PC, P1], Uses = [P1], isCodeGenOnly = 0 in {
4259  def J4_tstbit0_tp1_jump_nt : CJInst_tstbit_R0<"p1", 0, "nt">;
4260  def J4_tstbit0_tp1_jump_t : CJInst_tstbit_R0<"p1", 0, "t">;
4261  def J4_tstbit0_fp1_jump_nt : CJInst_tstbit_R0<"p1", 1, "nt">;
4262  def J4_tstbit0_fp1_jump_t : CJInst_tstbit_R0<"p1", 1, "t">;
4263}
4264
4265
4266let isBranch = 1, hasSideEffects = 0,
4267    isExtentSigned = 1, isPredicated = 1, isPredicatedNew = 1,
4268    isExtendable = 1, opExtentBits = 11, opExtentAlign = 2,
4269    opExtendable = 2, isTerminator = 1, validSubTargets = HasV4SubT in
4270class CJInst_RR<string px, string op, bit np, string tnt>
4271  : InstHexagon<(outs), (ins IntRegs:$Rs, IntRegs:$Rt, brtarget:$r9_2),
4272  ""#px#" = cmp."#op#"($Rs, $Rt); if ("
4273   #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4274  [], "", COMPOUND, TypeCOMPOUND> {
4275  bits<4> Rs;
4276  bits<4> Rt;
4277  bits<11> r9_2;
4278
4279  // np: !p[01]
4280  let isPredicatedFalse = np;
4281  // tnt: Taken/Not Taken
4282  let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4283  let isTaken   = !if (!eq(tnt, "t"), 1, 0);
4284
4285  let IClass = 0b0001;
4286  let Inst{27-23} = !if (!eq(op, "eq"),  0b01000,
4287                    !if (!eq(op, "gt"),  0b01001,
4288                    !if (!eq(op, "gtu"), 0b01010, 0)));
4289  let Inst{22} = np;
4290  let Inst{21-20} = r9_2{10-9};
4291  let Inst{19-16} = Rs;
4292  let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4293  // px: Predicate reg 0/1
4294  let Inst{12} = !if (!eq(px, "!p1"), 1,
4295                 !if (!eq(px,  "p1"), 1, 0));
4296  let Inst{11-8} = Rt;
4297  let Inst{7-1} = r9_2{8-2};
4298}
4299
4300// P[10] taken/not taken.
4301multiclass T_tnt_CJInst_RR<string op, bit np> {
4302  let Defs = [PC, P0], Uses = [P0] in {
4303    def NAME#p0_jump_nt : CJInst_RR<"p0", op, np, "nt">;
4304    def NAME#p0_jump_t : CJInst_RR<"p0", op, np, "t">;
4305  }
4306  let Defs = [PC, P1], Uses = [P1] in {
4307    def NAME#p1_jump_nt : CJInst_RR<"p1", op, np, "nt">;
4308    def NAME#p1_jump_t : CJInst_RR<"p1", op, np, "t">;
4309  }
4310}
4311// Predicate / !Predicate
4312multiclass T_pnp_CJInst_RR<string op>{
4313  defm J4_cmp#NAME#_t : T_tnt_CJInst_RR<op, 0>;
4314  defm J4_cmp#NAME#_f : T_tnt_CJInst_RR<op, 1>;
4315}
4316// TypeCJ Instructions compare RR and jump
4317let isCodeGenOnly = 0 in {
4318defm eq : T_pnp_CJInst_RR<"eq">;
4319defm gt : T_pnp_CJInst_RR<"gt">;
4320defm gtu : T_pnp_CJInst_RR<"gtu">;
4321}
4322
4323let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
4324    isPredicated = 1, isPredicatedNew = 1, isExtendable = 1, opExtentBits = 11,
4325    opExtentAlign = 2, opExtendable = 2, isTerminator = 1,
4326    validSubTargets = HasV4SubT in
4327class CJInst_RU5<string px, string op, bit np, string tnt>
4328  : InstHexagon<(outs), (ins IntRegs:$Rs, u5Imm:$U5, brtarget:$r9_2),
4329  ""#px#" = cmp."#op#"($Rs, #$U5); if ("
4330    #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4331  [], "", COMPOUND, TypeCOMPOUND> {
4332  bits<4> Rs;
4333  bits<5> U5;
4334  bits<11> r9_2;
4335
4336  // np: !p[01]
4337  let isPredicatedFalse = np;
4338  // tnt: Taken/Not Taken
4339  let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4340  let isTaken   = !if (!eq(tnt, "t"), 1, 0);
4341
4342  let IClass = 0b0001;
4343  let Inst{27-26} = 0b00;
4344  // px: Predicate reg 0/1
4345  let Inst{25} = !if (!eq(px, "!p1"), 1,
4346                 !if (!eq(px,  "p1"), 1, 0));
4347  let Inst{24-23} = !if (!eq(op, "eq"),  0b00,
4348                    !if (!eq(op, "gt"),  0b01,
4349                    !if (!eq(op, "gtu"), 0b10, 0)));
4350  let Inst{22} = np;
4351  let Inst{21-20} = r9_2{10-9};
4352  let Inst{19-16} = Rs;
4353  let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4354  let Inst{12-8} = U5;
4355  let Inst{7-1} = r9_2{8-2};
4356}
4357// P[10] taken/not taken.
4358multiclass T_tnt_CJInst_RU5<string op, bit np> {
4359  let Defs = [PC, P0], Uses = [P0] in {
4360    def NAME#p0_jump_nt : CJInst_RU5<"p0", op, np, "nt">;
4361    def NAME#p0_jump_t : CJInst_RU5<"p0", op, np, "t">;
4362  }
4363  let Defs = [PC, P1], Uses = [P1] in {
4364    def NAME#p1_jump_nt : CJInst_RU5<"p1", op, np, "nt">;
4365    def NAME#p1_jump_t : CJInst_RU5<"p1", op, np, "t">;
4366  }
4367}
4368// Predicate / !Predicate
4369multiclass T_pnp_CJInst_RU5<string op>{
4370  defm J4_cmp#NAME#i_t : T_tnt_CJInst_RU5<op, 0>;
4371  defm J4_cmp#NAME#i_f : T_tnt_CJInst_RU5<op, 1>;
4372}
4373// TypeCJ Instructions compare RI and jump
4374let isCodeGenOnly = 0 in {
4375defm eq : T_pnp_CJInst_RU5<"eq">;
4376defm gt : T_pnp_CJInst_RU5<"gt">;
4377defm gtu : T_pnp_CJInst_RU5<"gtu">;
4378}
4379
4380let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
4381    isPredicated = 1, isPredicatedFalse = 1, isPredicatedNew = 1,
4382    isExtendable = 1, opExtentBits = 11, opExtentAlign = 2, opExtendable = 1,
4383    isTerminator = 1, validSubTargets = HasV4SubT in
4384class CJInst_Rn1<string px, string op, bit np, string tnt>
4385  : InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2),
4386  ""#px#" = cmp."#op#"($Rs,#-1); if ("
4387  #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
4388  [], "", COMPOUND, TypeCOMPOUND> {
4389  bits<4> Rs;
4390  bits<11> r9_2;
4391
4392  // np: !p[01]
4393  let isPredicatedFalse = np;
4394  // tnt: Taken/Not Taken
4395  let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
4396  let isTaken   = !if (!eq(tnt, "t"), 1, 0);
4397
4398  let IClass = 0b0001;
4399  let Inst{27-26} = 0b00;
4400  let Inst{25} = !if (!eq(px, "!p1"), 1,
4401                 !if (!eq(px,  "p1"), 1, 0));
4402
4403  let Inst{24-23} = 0b11;
4404  let Inst{22} = np;
4405  let Inst{21-20} = r9_2{10-9};
4406  let Inst{19-16} = Rs;
4407  let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
4408  let Inst{9-8} = !if (!eq(op, "eq"),  0b00,
4409                  !if (!eq(op, "gt"),  0b01, 0));
4410  let Inst{7-1} = r9_2{8-2};
4411}
4412
4413// P[10] taken/not taken.
4414multiclass T_tnt_CJInst_Rn1<string op, bit np> {
4415  let Defs = [PC, P0], Uses = [P0] in {
4416    def NAME#p0_jump_nt : CJInst_Rn1<"p0", op, np, "nt">;
4417    def NAME#p0_jump_t : CJInst_Rn1<"p0", op, np, "t">;
4418  }
4419  let Defs = [PC, P1], Uses = [P1] in {
4420    def NAME#p1_jump_nt : CJInst_Rn1<"p1", op, np, "nt">;
4421    def NAME#p1_jump_t : CJInst_Rn1<"p1", op, np, "t">;
4422  }
4423}
4424// Predicate / !Predicate
4425multiclass T_pnp_CJInst_Rn1<string op>{
4426  defm J4_cmp#NAME#n1_t : T_tnt_CJInst_Rn1<op, 0>;
4427  defm J4_cmp#NAME#n1_f : T_tnt_CJInst_Rn1<op, 1>;
4428}
4429// TypeCJ Instructions compare -1 and jump
4430let isCodeGenOnly = 0 in {
4431defm eq : T_pnp_CJInst_Rn1<"eq">;
4432defm gt : T_pnp_CJInst_Rn1<"gt">;
4433}
4434
4435// J4_jumpseti: Direct unconditional jump and set register to immediate.
4436let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1,
4437    isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11,
4438    opExtentAlign = 2, opExtendable = 2, validSubTargets = HasV4SubT,
4439    isCodeGenOnly = 0 in
4440def J4_jumpseti: CJInst <
4441  (outs IntRegs:$Rd),
4442  (ins u6Imm:$U6, brtarget:$r9_2),
4443  "$Rd = #$U6 ; jump $r9_2"> {
4444    bits<4> Rd;
4445    bits<6> U6;
4446    bits<11> r9_2;
4447
4448    let IClass = 0b0001;
4449    let Inst{27-24} = 0b0110;
4450    let Inst{21-20} = r9_2{10-9};
4451    let Inst{19-16} = Rd;
4452    let Inst{13-8} = U6;
4453    let Inst{7-1} = r9_2{8-2};
4454  }
4455
4456// J4_jumpsetr: Direct unconditional jump and transfer register.
4457let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1,
4458    isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11,
4459    opExtentAlign = 2, opExtendable = 2, validSubTargets = HasV4SubT,
4460    isCodeGenOnly = 0 in
4461def J4_jumpsetr: CJInst <
4462  (outs IntRegs:$Rd),
4463  (ins IntRegs:$Rs, brtarget:$r9_2),
4464  "$Rd = $Rs ; jump $r9_2"> {
4465    bits<4> Rd;
4466    bits<4> Rs;
4467    bits<11> r9_2;
4468
4469    let IClass = 0b0001;
4470    let Inst{27-24} = 0b0111;
4471    let Inst{21-20} = r9_2{10-9};
4472    let Inst{11-8} = Rd;
4473    let Inst{19-16} = Rs;
4474    let Inst{7-1} = r9_2{8-2};
4475  }
4476