1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation  ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MSP430TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MSP430ISelLowering.h"
15 #include "MSP430.h"
16 #include "MSP430MachineFunctionInfo.h"
17 #include "MSP430Subtarget.h"
18 #include "MSP430TargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGISel.h"
25 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "msp430-lower"
40 
41 typedef enum {
42   NoHWMult,
43   HWMultIntr,
44   HWMultNoIntr
45 } HWMultUseMode;
46 
47 static cl::opt<HWMultUseMode>
48 HWMultMode("msp430-hwmult-mode", cl::Hidden,
49            cl::desc("Hardware multiplier use mode"),
50            cl::init(HWMultNoIntr),
51            cl::values(
52              clEnumValN(NoHWMult, "no",
53                 "Do not use hardware multiplier"),
54              clEnumValN(HWMultIntr, "interrupts",
55                 "Assume hardware multiplier can be used inside interrupts"),
56              clEnumValN(HWMultNoIntr, "use",
57                 "Assume hardware multiplier cannot be used inside interrupts"),
58              clEnumValEnd));
59 
MSP430TargetLowering(const TargetMachine & TM)60 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM)
61     : TargetLowering(TM) {
62 
63   // Set up the register classes.
64   addRegisterClass(MVT::i8,  &MSP430::GR8RegClass);
65   addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
66 
67   // Compute derived properties from the register classes
68   computeRegisterProperties();
69 
70   // Provide all sorts of operation actions
71 
72   // Division is expensive
73   setIntDivIsCheap(false);
74 
75   setStackPointerRegisterToSaveRestore(MSP430::SP);
76   setBooleanContents(ZeroOrOneBooleanContent);
77   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
78 
79   // We have post-incremented loads / stores.
80   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
81   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
82 
83   for (MVT VT : MVT::integer_valuetypes()) {
84     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
85     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
86     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
87     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8,  Expand);
88     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
89   }
90 
91   // We don't have any truncstores
92   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
93 
94   setOperationAction(ISD::SRA,              MVT::i8,    Custom);
95   setOperationAction(ISD::SHL,              MVT::i8,    Custom);
96   setOperationAction(ISD::SRL,              MVT::i8,    Custom);
97   setOperationAction(ISD::SRA,              MVT::i16,   Custom);
98   setOperationAction(ISD::SHL,              MVT::i16,   Custom);
99   setOperationAction(ISD::SRL,              MVT::i16,   Custom);
100   setOperationAction(ISD::ROTL,             MVT::i8,    Expand);
101   setOperationAction(ISD::ROTR,             MVT::i8,    Expand);
102   setOperationAction(ISD::ROTL,             MVT::i16,   Expand);
103   setOperationAction(ISD::ROTR,             MVT::i16,   Expand);
104   setOperationAction(ISD::GlobalAddress,    MVT::i16,   Custom);
105   setOperationAction(ISD::ExternalSymbol,   MVT::i16,   Custom);
106   setOperationAction(ISD::BlockAddress,     MVT::i16,   Custom);
107   setOperationAction(ISD::BR_JT,            MVT::Other, Expand);
108   setOperationAction(ISD::BR_CC,            MVT::i8,    Custom);
109   setOperationAction(ISD::BR_CC,            MVT::i16,   Custom);
110   setOperationAction(ISD::BRCOND,           MVT::Other, Expand);
111   setOperationAction(ISD::SETCC,            MVT::i8,    Custom);
112   setOperationAction(ISD::SETCC,            MVT::i16,   Custom);
113   setOperationAction(ISD::SELECT,           MVT::i8,    Expand);
114   setOperationAction(ISD::SELECT,           MVT::i16,   Expand);
115   setOperationAction(ISD::SELECT_CC,        MVT::i8,    Custom);
116   setOperationAction(ISD::SELECT_CC,        MVT::i16,   Custom);
117   setOperationAction(ISD::SIGN_EXTEND,      MVT::i16,   Custom);
118   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
119   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
120 
121   setOperationAction(ISD::CTTZ,             MVT::i8,    Expand);
122   setOperationAction(ISD::CTTZ,             MVT::i16,   Expand);
123   setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::i8,    Expand);
124   setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::i16,   Expand);
125   setOperationAction(ISD::CTLZ,             MVT::i8,    Expand);
126   setOperationAction(ISD::CTLZ,             MVT::i16,   Expand);
127   setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::i8,    Expand);
128   setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::i16,   Expand);
129   setOperationAction(ISD::CTPOP,            MVT::i8,    Expand);
130   setOperationAction(ISD::CTPOP,            MVT::i16,   Expand);
131 
132   setOperationAction(ISD::SHL_PARTS,        MVT::i8,    Expand);
133   setOperationAction(ISD::SHL_PARTS,        MVT::i16,   Expand);
134   setOperationAction(ISD::SRL_PARTS,        MVT::i8,    Expand);
135   setOperationAction(ISD::SRL_PARTS,        MVT::i16,   Expand);
136   setOperationAction(ISD::SRA_PARTS,        MVT::i8,    Expand);
137   setOperationAction(ISD::SRA_PARTS,        MVT::i16,   Expand);
138 
139   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,   Expand);
140 
141   // FIXME: Implement efficiently multiplication by a constant
142   setOperationAction(ISD::MUL,              MVT::i8,    Expand);
143   setOperationAction(ISD::MULHS,            MVT::i8,    Expand);
144   setOperationAction(ISD::MULHU,            MVT::i8,    Expand);
145   setOperationAction(ISD::SMUL_LOHI,        MVT::i8,    Expand);
146   setOperationAction(ISD::UMUL_LOHI,        MVT::i8,    Expand);
147   setOperationAction(ISD::MUL,              MVT::i16,   Expand);
148   setOperationAction(ISD::MULHS,            MVT::i16,   Expand);
149   setOperationAction(ISD::MULHU,            MVT::i16,   Expand);
150   setOperationAction(ISD::SMUL_LOHI,        MVT::i16,   Expand);
151   setOperationAction(ISD::UMUL_LOHI,        MVT::i16,   Expand);
152 
153   setOperationAction(ISD::UDIV,             MVT::i8,    Expand);
154   setOperationAction(ISD::UDIVREM,          MVT::i8,    Expand);
155   setOperationAction(ISD::UREM,             MVT::i8,    Expand);
156   setOperationAction(ISD::SDIV,             MVT::i8,    Expand);
157   setOperationAction(ISD::SDIVREM,          MVT::i8,    Expand);
158   setOperationAction(ISD::SREM,             MVT::i8,    Expand);
159   setOperationAction(ISD::UDIV,             MVT::i16,   Expand);
160   setOperationAction(ISD::UDIVREM,          MVT::i16,   Expand);
161   setOperationAction(ISD::UREM,             MVT::i16,   Expand);
162   setOperationAction(ISD::SDIV,             MVT::i16,   Expand);
163   setOperationAction(ISD::SDIVREM,          MVT::i16,   Expand);
164   setOperationAction(ISD::SREM,             MVT::i16,   Expand);
165 
166   // varargs support
167   setOperationAction(ISD::VASTART,          MVT::Other, Custom);
168   setOperationAction(ISD::VAARG,            MVT::Other, Expand);
169   setOperationAction(ISD::VAEND,            MVT::Other, Expand);
170   setOperationAction(ISD::VACOPY,           MVT::Other, Expand);
171   setOperationAction(ISD::JumpTable,        MVT::i16,   Custom);
172 
173   // Libcalls names.
174   if (HWMultMode == HWMultIntr) {
175     setLibcallName(RTLIB::MUL_I8,  "__mulqi3hw");
176     setLibcallName(RTLIB::MUL_I16, "__mulhi3hw");
177   } else if (HWMultMode == HWMultNoIntr) {
178     setLibcallName(RTLIB::MUL_I8,  "__mulqi3hw_noint");
179     setLibcallName(RTLIB::MUL_I16, "__mulhi3hw_noint");
180   }
181 
182   setMinFunctionAlignment(1);
183   setPrefFunctionAlignment(2);
184 }
185 
LowerOperation(SDValue Op,SelectionDAG & DAG) const186 SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
187                                              SelectionDAG &DAG) const {
188   switch (Op.getOpcode()) {
189   case ISD::SHL: // FALLTHROUGH
190   case ISD::SRL:
191   case ISD::SRA:              return LowerShifts(Op, DAG);
192   case ISD::GlobalAddress:    return LowerGlobalAddress(Op, DAG);
193   case ISD::BlockAddress:     return LowerBlockAddress(Op, DAG);
194   case ISD::ExternalSymbol:   return LowerExternalSymbol(Op, DAG);
195   case ISD::SETCC:            return LowerSETCC(Op, DAG);
196   case ISD::BR_CC:            return LowerBR_CC(Op, DAG);
197   case ISD::SELECT_CC:        return LowerSELECT_CC(Op, DAG);
198   case ISD::SIGN_EXTEND:      return LowerSIGN_EXTEND(Op, DAG);
199   case ISD::RETURNADDR:       return LowerRETURNADDR(Op, DAG);
200   case ISD::FRAMEADDR:        return LowerFRAMEADDR(Op, DAG);
201   case ISD::VASTART:          return LowerVASTART(Op, DAG);
202   case ISD::JumpTable:        return LowerJumpTable(Op, DAG);
203   default:
204     llvm_unreachable("unimplemented operand");
205   }
206 }
207 
208 //===----------------------------------------------------------------------===//
209 //                       MSP430 Inline Assembly Support
210 //===----------------------------------------------------------------------===//
211 
212 /// getConstraintType - Given a constraint letter, return the type of
213 /// constraint it is for this target.
214 TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const215 MSP430TargetLowering::getConstraintType(const std::string &Constraint) const {
216   if (Constraint.size() == 1) {
217     switch (Constraint[0]) {
218     case 'r':
219       return C_RegisterClass;
220     default:
221       break;
222     }
223   }
224   return TargetLowering::getConstraintType(Constraint);
225 }
226 
227 std::pair<unsigned, const TargetRegisterClass*>
228 MSP430TargetLowering::
getRegForInlineAsmConstraint(const std::string & Constraint,MVT VT) const229 getRegForInlineAsmConstraint(const std::string &Constraint,
230                              MVT VT) const {
231   if (Constraint.size() == 1) {
232     // GCC Constraint Letters
233     switch (Constraint[0]) {
234     default: break;
235     case 'r':   // GENERAL_REGS
236       if (VT == MVT::i8)
237         return std::make_pair(0U, &MSP430::GR8RegClass);
238 
239       return std::make_pair(0U, &MSP430::GR16RegClass);
240     }
241   }
242 
243   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
244 }
245 
246 //===----------------------------------------------------------------------===//
247 //                      Calling Convention Implementation
248 //===----------------------------------------------------------------------===//
249 
250 #include "MSP430GenCallingConv.inc"
251 
252 /// For each argument in a function store the number of pieces it is composed
253 /// of.
254 template<typename ArgT>
ParseFunctionArgs(const SmallVectorImpl<ArgT> & Args,SmallVectorImpl<unsigned> & Out)255 static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
256                               SmallVectorImpl<unsigned> &Out) {
257   unsigned CurrentArgIndex = ~0U;
258   for (unsigned i = 0, e = Args.size(); i != e; i++) {
259     if (CurrentArgIndex == Args[i].OrigArgIndex) {
260       Out.back()++;
261     } else {
262       Out.push_back(1);
263       CurrentArgIndex++;
264     }
265   }
266 }
267 
AnalyzeVarArgs(CCState & State,const SmallVectorImpl<ISD::OutputArg> & Outs)268 static void AnalyzeVarArgs(CCState &State,
269                            const SmallVectorImpl<ISD::OutputArg> &Outs) {
270   State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
271 }
272 
AnalyzeVarArgs(CCState & State,const SmallVectorImpl<ISD::InputArg> & Ins)273 static void AnalyzeVarArgs(CCState &State,
274                            const SmallVectorImpl<ISD::InputArg> &Ins) {
275   State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
276 }
277 
278 /// Analyze incoming and outgoing function arguments. We need custom C++ code
279 /// to handle special constraints in the ABI like reversing the order of the
280 /// pieces of splitted arguments. In addition, all pieces of a certain argument
281 /// have to be passed either using registers or the stack but never mixing both.
282 template<typename ArgT>
AnalyzeArguments(CCState & State,SmallVectorImpl<CCValAssign> & ArgLocs,const SmallVectorImpl<ArgT> & Args)283 static void AnalyzeArguments(CCState &State,
284                              SmallVectorImpl<CCValAssign> &ArgLocs,
285                              const SmallVectorImpl<ArgT> &Args) {
286   static const MCPhysReg RegList[] = {
287     MSP430::R15, MSP430::R14, MSP430::R13, MSP430::R12
288   };
289   static const unsigned NbRegs = array_lengthof(RegList);
290 
291   if (State.isVarArg()) {
292     AnalyzeVarArgs(State, Args);
293     return;
294   }
295 
296   SmallVector<unsigned, 4> ArgsParts;
297   ParseFunctionArgs(Args, ArgsParts);
298 
299   unsigned RegsLeft = NbRegs;
300   bool UseStack = false;
301   unsigned ValNo = 0;
302 
303   for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
304     MVT ArgVT = Args[ValNo].VT;
305     ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
306     MVT LocVT = ArgVT;
307     CCValAssign::LocInfo LocInfo = CCValAssign::Full;
308 
309     // Promote i8 to i16
310     if (LocVT == MVT::i8) {
311       LocVT = MVT::i16;
312       if (ArgFlags.isSExt())
313           LocInfo = CCValAssign::SExt;
314       else if (ArgFlags.isZExt())
315           LocInfo = CCValAssign::ZExt;
316       else
317           LocInfo = CCValAssign::AExt;
318     }
319 
320     // Handle byval arguments
321     if (ArgFlags.isByVal()) {
322       State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags);
323       continue;
324     }
325 
326     unsigned Parts = ArgsParts[i];
327 
328     if (!UseStack && Parts <= RegsLeft) {
329       unsigned FirstVal = ValNo;
330       for (unsigned j = 0; j < Parts; j++) {
331         unsigned Reg = State.AllocateReg(RegList, NbRegs);
332         State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
333         RegsLeft--;
334       }
335 
336       // Reverse the order of the pieces to agree with the "big endian" format
337       // required in the calling convention ABI.
338       SmallVectorImpl<CCValAssign>::iterator B = ArgLocs.begin() + FirstVal;
339       std::reverse(B, B + Parts);
340     } else {
341       UseStack = true;
342       for (unsigned j = 0; j < Parts; j++)
343         CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
344     }
345   }
346 }
347 
AnalyzeRetResult(CCState & State,const SmallVectorImpl<ISD::InputArg> & Ins)348 static void AnalyzeRetResult(CCState &State,
349                              const SmallVectorImpl<ISD::InputArg> &Ins) {
350   State.AnalyzeCallResult(Ins, RetCC_MSP430);
351 }
352 
AnalyzeRetResult(CCState & State,const SmallVectorImpl<ISD::OutputArg> & Outs)353 static void AnalyzeRetResult(CCState &State,
354                              const SmallVectorImpl<ISD::OutputArg> &Outs) {
355   State.AnalyzeReturn(Outs, RetCC_MSP430);
356 }
357 
358 template<typename ArgT>
AnalyzeReturnValues(CCState & State,SmallVectorImpl<CCValAssign> & RVLocs,const SmallVectorImpl<ArgT> & Args)359 static void AnalyzeReturnValues(CCState &State,
360                                 SmallVectorImpl<CCValAssign> &RVLocs,
361                                 const SmallVectorImpl<ArgT> &Args) {
362   AnalyzeRetResult(State, Args);
363 
364   // Reverse splitted return values to get the "big endian" format required
365   // to agree with the calling convention ABI.
366   std::reverse(RVLocs.begin(), RVLocs.end());
367 }
368 
369 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const370 MSP430TargetLowering::LowerFormalArguments(SDValue Chain,
371                                            CallingConv::ID CallConv,
372                                            bool isVarArg,
373                                            const SmallVectorImpl<ISD::InputArg>
374                                              &Ins,
375                                            SDLoc dl,
376                                            SelectionDAG &DAG,
377                                            SmallVectorImpl<SDValue> &InVals)
378                                              const {
379 
380   switch (CallConv) {
381   default:
382     llvm_unreachable("Unsupported calling convention");
383   case CallingConv::C:
384   case CallingConv::Fast:
385     return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
386   case CallingConv::MSP430_INTR:
387     if (Ins.empty())
388       return Chain;
389     report_fatal_error("ISRs cannot have arguments");
390   }
391 }
392 
393 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const394 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
395                                 SmallVectorImpl<SDValue> &InVals) const {
396   SelectionDAG &DAG                     = CLI.DAG;
397   SDLoc &dl                             = CLI.DL;
398   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
399   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
400   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
401   SDValue Chain                         = CLI.Chain;
402   SDValue Callee                        = CLI.Callee;
403   bool &isTailCall                      = CLI.IsTailCall;
404   CallingConv::ID CallConv              = CLI.CallConv;
405   bool isVarArg                         = CLI.IsVarArg;
406 
407   // MSP430 target does not yet support tail call optimization.
408   isTailCall = false;
409 
410   switch (CallConv) {
411   default:
412     llvm_unreachable("Unsupported calling convention");
413   case CallingConv::Fast:
414   case CallingConv::C:
415     return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
416                           Outs, OutVals, Ins, dl, DAG, InVals);
417   case CallingConv::MSP430_INTR:
418     report_fatal_error("ISRs cannot be called directly");
419   }
420 }
421 
422 /// LowerCCCArguments - transform physical registers into virtual registers and
423 /// generate load operations for arguments places on the stack.
424 // FIXME: struct return stuff
425 SDValue
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const426 MSP430TargetLowering::LowerCCCArguments(SDValue Chain,
427                                         CallingConv::ID CallConv,
428                                         bool isVarArg,
429                                         const SmallVectorImpl<ISD::InputArg>
430                                           &Ins,
431                                         SDLoc dl,
432                                         SelectionDAG &DAG,
433                                         SmallVectorImpl<SDValue> &InVals)
434                                           const {
435   MachineFunction &MF = DAG.getMachineFunction();
436   MachineFrameInfo *MFI = MF.getFrameInfo();
437   MachineRegisterInfo &RegInfo = MF.getRegInfo();
438   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
439 
440   // Assign locations to all of the incoming arguments.
441   SmallVector<CCValAssign, 16> ArgLocs;
442   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
443                  *DAG.getContext());
444   AnalyzeArguments(CCInfo, ArgLocs, Ins);
445 
446   // Create frame index for the start of the first vararg value
447   if (isVarArg) {
448     unsigned Offset = CCInfo.getNextStackOffset();
449     FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, Offset, true));
450   }
451 
452   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
453     CCValAssign &VA = ArgLocs[i];
454     if (VA.isRegLoc()) {
455       // Arguments passed in registers
456       EVT RegVT = VA.getLocVT();
457       switch (RegVT.getSimpleVT().SimpleTy) {
458       default:
459         {
460 #ifndef NDEBUG
461           errs() << "LowerFormalArguments Unhandled argument type: "
462                << RegVT.getSimpleVT().SimpleTy << "\n";
463 #endif
464           llvm_unreachable(nullptr);
465         }
466       case MVT::i16:
467         unsigned VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
468         RegInfo.addLiveIn(VA.getLocReg(), VReg);
469         SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
470 
471         // If this is an 8-bit value, it is really passed promoted to 16
472         // bits. Insert an assert[sz]ext to capture this, then truncate to the
473         // right size.
474         if (VA.getLocInfo() == CCValAssign::SExt)
475           ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
476                                  DAG.getValueType(VA.getValVT()));
477         else if (VA.getLocInfo() == CCValAssign::ZExt)
478           ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
479                                  DAG.getValueType(VA.getValVT()));
480 
481         if (VA.getLocInfo() != CCValAssign::Full)
482           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
483 
484         InVals.push_back(ArgValue);
485       }
486     } else {
487       // Sanity check
488       assert(VA.isMemLoc());
489 
490       SDValue InVal;
491       ISD::ArgFlagsTy Flags = Ins[i].Flags;
492 
493       if (Flags.isByVal()) {
494         int FI = MFI->CreateFixedObject(Flags.getByValSize(),
495                                         VA.getLocMemOffset(), true);
496         InVal = DAG.getFrameIndex(FI, getPointerTy());
497       } else {
498         // Load the argument to a virtual register
499         unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
500         if (ObjSize > 2) {
501             errs() << "LowerFormalArguments Unhandled argument type: "
502                 << EVT(VA.getLocVT()).getEVTString()
503                 << "\n";
504         }
505         // Create the frame index object for this incoming parameter...
506         int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
507 
508         // Create the SelectionDAG nodes corresponding to a load
509         //from this parameter
510         SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
511         InVal = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
512                             MachinePointerInfo::getFixedStack(FI),
513                             false, false, false, 0);
514       }
515 
516       InVals.push_back(InVal);
517     }
518   }
519 
520   return Chain;
521 }
522 
523 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc dl,SelectionDAG & DAG) const524 MSP430TargetLowering::LowerReturn(SDValue Chain,
525                                   CallingConv::ID CallConv, bool isVarArg,
526                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
527                                   const SmallVectorImpl<SDValue> &OutVals,
528                                   SDLoc dl, SelectionDAG &DAG) const {
529 
530   // CCValAssign - represent the assignment of the return value to a location
531   SmallVector<CCValAssign, 16> RVLocs;
532 
533   // ISRs cannot return any value.
534   if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
535     report_fatal_error("ISRs cannot return any value");
536 
537   // CCState - Info about the registers and stack slot.
538   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
539                  *DAG.getContext());
540 
541   // Analize return values.
542   AnalyzeReturnValues(CCInfo, RVLocs, Outs);
543 
544   SDValue Flag;
545   SmallVector<SDValue, 4> RetOps(1, Chain);
546 
547   // Copy the result values into the output registers.
548   for (unsigned i = 0; i != RVLocs.size(); ++i) {
549     CCValAssign &VA = RVLocs[i];
550     assert(VA.isRegLoc() && "Can only return in registers!");
551 
552     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
553                              OutVals[i], Flag);
554 
555     // Guarantee that all emitted copies are stuck together,
556     // avoiding something bad.
557     Flag = Chain.getValue(1);
558     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
559   }
560 
561   unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
562                   MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
563 
564   RetOps[0] = Chain;  // Update chain.
565 
566   // Add the flag if we have it.
567   if (Flag.getNode())
568     RetOps.push_back(Flag);
569 
570   return DAG.getNode(Opc, dl, MVT::Other, RetOps);
571 }
572 
573 /// LowerCCCCallTo - functions arguments are copied from virtual regs to
574 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
575 // TODO: sret.
576 SDValue
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const577 MSP430TargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
578                                      CallingConv::ID CallConv, bool isVarArg,
579                                      bool isTailCall,
580                                      const SmallVectorImpl<ISD::OutputArg>
581                                        &Outs,
582                                      const SmallVectorImpl<SDValue> &OutVals,
583                                      const SmallVectorImpl<ISD::InputArg> &Ins,
584                                      SDLoc dl, SelectionDAG &DAG,
585                                      SmallVectorImpl<SDValue> &InVals) const {
586   // Analyze operands of the call, assigning locations to each operand.
587   SmallVector<CCValAssign, 16> ArgLocs;
588   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
589                  *DAG.getContext());
590   AnalyzeArguments(CCInfo, ArgLocs, Outs);
591 
592   // Get a count of how many bytes are to be pushed on the stack.
593   unsigned NumBytes = CCInfo.getNextStackOffset();
594 
595   Chain = DAG.getCALLSEQ_START(Chain ,DAG.getConstant(NumBytes,
596                                                       getPointerTy(), true),
597                                dl);
598 
599   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
600   SmallVector<SDValue, 12> MemOpChains;
601   SDValue StackPtr;
602 
603   // Walk the register/memloc assignments, inserting copies/loads.
604   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
605     CCValAssign &VA = ArgLocs[i];
606 
607     SDValue Arg = OutVals[i];
608 
609     // Promote the value if needed.
610     switch (VA.getLocInfo()) {
611       default: llvm_unreachable("Unknown loc info!");
612       case CCValAssign::Full: break;
613       case CCValAssign::SExt:
614         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
615         break;
616       case CCValAssign::ZExt:
617         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
618         break;
619       case CCValAssign::AExt:
620         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
621         break;
622     }
623 
624     // Arguments that can be passed on register must be kept at RegsToPass
625     // vector
626     if (VA.isRegLoc()) {
627       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
628     } else {
629       assert(VA.isMemLoc());
630 
631       if (!StackPtr.getNode())
632         StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, getPointerTy());
633 
634       SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(),
635                                    StackPtr,
636                                    DAG.getIntPtrConstant(VA.getLocMemOffset()));
637 
638       SDValue MemOp;
639       ISD::ArgFlagsTy Flags = Outs[i].Flags;
640 
641       if (Flags.isByVal()) {
642         SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i16);
643         MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
644                               Flags.getByValAlign(),
645                               /*isVolatile*/false,
646                               /*AlwaysInline=*/true,
647                               MachinePointerInfo(),
648                               MachinePointerInfo());
649       } else {
650         MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(),
651                              false, false, 0);
652       }
653 
654       MemOpChains.push_back(MemOp);
655     }
656   }
657 
658   // Transform all store nodes into one single node because all store nodes are
659   // independent of each other.
660   if (!MemOpChains.empty())
661     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
662 
663   // Build a sequence of copy-to-reg nodes chained together with token chain and
664   // flag operands which copy the outgoing args into registers.  The InFlag in
665   // necessary since all emitted instructions must be stuck together.
666   SDValue InFlag;
667   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
668     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
669                              RegsToPass[i].second, InFlag);
670     InFlag = Chain.getValue(1);
671   }
672 
673   // If the callee is a GlobalAddress node (quite common, every direct call is)
674   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
675   // Likewise ExternalSymbol -> TargetExternalSymbol.
676   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
677     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
678   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
679     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
680 
681   // Returns a chain & a flag for retval copy to use.
682   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
683   SmallVector<SDValue, 8> Ops;
684   Ops.push_back(Chain);
685   Ops.push_back(Callee);
686 
687   // Add argument registers to the end of the list so that they are
688   // known live into the call.
689   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
690     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
691                                   RegsToPass[i].second.getValueType()));
692 
693   if (InFlag.getNode())
694     Ops.push_back(InFlag);
695 
696   Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
697   InFlag = Chain.getValue(1);
698 
699   // Create the CALLSEQ_END node.
700   Chain = DAG.getCALLSEQ_END(Chain,
701                              DAG.getConstant(NumBytes, getPointerTy(), true),
702                              DAG.getConstant(0, getPointerTy(), true),
703                              InFlag, dl);
704   InFlag = Chain.getValue(1);
705 
706   // Handle result values, copying them out of physregs into vregs that we
707   // return.
708   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
709                          DAG, InVals);
710 }
711 
712 /// LowerCallResult - Lower the result values of a call into the
713 /// appropriate copies out of appropriate physical registers.
714 ///
715 SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const716 MSP430TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
717                                       CallingConv::ID CallConv, bool isVarArg,
718                                       const SmallVectorImpl<ISD::InputArg> &Ins,
719                                       SDLoc dl, SelectionDAG &DAG,
720                                       SmallVectorImpl<SDValue> &InVals) const {
721 
722   // Assign locations to each value returned by this call.
723   SmallVector<CCValAssign, 16> RVLocs;
724   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
725                  *DAG.getContext());
726 
727   AnalyzeReturnValues(CCInfo, RVLocs, Ins);
728 
729   // Copy all of the result registers out of their specified physreg.
730   for (unsigned i = 0; i != RVLocs.size(); ++i) {
731     Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
732                                RVLocs[i].getValVT(), InFlag).getValue(1);
733     InFlag = Chain.getValue(2);
734     InVals.push_back(Chain.getValue(0));
735   }
736 
737   return Chain;
738 }
739 
LowerShifts(SDValue Op,SelectionDAG & DAG) const740 SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
741                                           SelectionDAG &DAG) const {
742   unsigned Opc = Op.getOpcode();
743   SDNode* N = Op.getNode();
744   EVT VT = Op.getValueType();
745   SDLoc dl(N);
746 
747   // Expand non-constant shifts to loops:
748   if (!isa<ConstantSDNode>(N->getOperand(1)))
749     switch (Opc) {
750     default: llvm_unreachable("Invalid shift opcode!");
751     case ISD::SHL:
752       return DAG.getNode(MSP430ISD::SHL, dl,
753                          VT, N->getOperand(0), N->getOperand(1));
754     case ISD::SRA:
755       return DAG.getNode(MSP430ISD::SRA, dl,
756                          VT, N->getOperand(0), N->getOperand(1));
757     case ISD::SRL:
758       return DAG.getNode(MSP430ISD::SRL, dl,
759                          VT, N->getOperand(0), N->getOperand(1));
760     }
761 
762   uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
763 
764   // Expand the stuff into sequence of shifts.
765   // FIXME: for some shift amounts this might be done better!
766   // E.g.: foo >> (8 + N) => sxt(swpb(foo)) >> N
767   SDValue Victim = N->getOperand(0);
768 
769   if (Opc == ISD::SRL && ShiftAmount) {
770     // Emit a special goodness here:
771     // srl A, 1 => clrc; rrc A
772     Victim = DAG.getNode(MSP430ISD::RRC, dl, VT, Victim);
773     ShiftAmount -= 1;
774   }
775 
776   while (ShiftAmount--)
777     Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
778                          dl, VT, Victim);
779 
780   return Victim;
781 }
782 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const783 SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
784                                                  SelectionDAG &DAG) const {
785   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
786   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
787 
788   // Create the TargetGlobalAddress node, folding in the constant offset.
789   SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
790                                               getPointerTy(), Offset);
791   return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op),
792                      getPointerTy(), Result);
793 }
794 
LowerExternalSymbol(SDValue Op,SelectionDAG & DAG) const795 SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
796                                                   SelectionDAG &DAG) const {
797   SDLoc dl(Op);
798   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
799   SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
800 
801   return DAG.getNode(MSP430ISD::Wrapper, dl, getPointerTy(), Result);
802 }
803 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const804 SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
805                                                 SelectionDAG &DAG) const {
806   SDLoc dl(Op);
807   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
808   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
809 
810   return DAG.getNode(MSP430ISD::Wrapper, dl, getPointerTy(), Result);
811 }
812 
EmitCMP(SDValue & LHS,SDValue & RHS,SDValue & TargetCC,ISD::CondCode CC,SDLoc dl,SelectionDAG & DAG)813 static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
814                        ISD::CondCode CC,
815                        SDLoc dl, SelectionDAG &DAG) {
816   // FIXME: Handle bittests someday
817   assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
818 
819   // FIXME: Handle jump negative someday
820   MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
821   switch (CC) {
822   default: llvm_unreachable("Invalid integer condition!");
823   case ISD::SETEQ:
824     TCC = MSP430CC::COND_E;     // aka COND_Z
825     // Minor optimization: if LHS is a constant, swap operands, then the
826     // constant can be folded into comparison.
827     if (LHS.getOpcode() == ISD::Constant)
828       std::swap(LHS, RHS);
829     break;
830   case ISD::SETNE:
831     TCC = MSP430CC::COND_NE;    // aka COND_NZ
832     // Minor optimization: if LHS is a constant, swap operands, then the
833     // constant can be folded into comparison.
834     if (LHS.getOpcode() == ISD::Constant)
835       std::swap(LHS, RHS);
836     break;
837   case ISD::SETULE:
838     std::swap(LHS, RHS);        // FALLTHROUGH
839   case ISD::SETUGE:
840     // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
841     // fold constant into instruction.
842     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
843       LHS = RHS;
844       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
845       TCC = MSP430CC::COND_LO;
846       break;
847     }
848     TCC = MSP430CC::COND_HS;    // aka COND_C
849     break;
850   case ISD::SETUGT:
851     std::swap(LHS, RHS);        // FALLTHROUGH
852   case ISD::SETULT:
853     // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
854     // fold constant into instruction.
855     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
856       LHS = RHS;
857       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
858       TCC = MSP430CC::COND_HS;
859       break;
860     }
861     TCC = MSP430CC::COND_LO;    // aka COND_NC
862     break;
863   case ISD::SETLE:
864     std::swap(LHS, RHS);        // FALLTHROUGH
865   case ISD::SETGE:
866     // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
867     // fold constant into instruction.
868     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
869       LHS = RHS;
870       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
871       TCC = MSP430CC::COND_L;
872       break;
873     }
874     TCC = MSP430CC::COND_GE;
875     break;
876   case ISD::SETGT:
877     std::swap(LHS, RHS);        // FALLTHROUGH
878   case ISD::SETLT:
879     // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
880     // fold constant into instruction.
881     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
882       LHS = RHS;
883       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
884       TCC = MSP430CC::COND_GE;
885       break;
886     }
887     TCC = MSP430CC::COND_L;
888     break;
889   }
890 
891   TargetCC = DAG.getConstant(TCC, MVT::i8);
892   return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
893 }
894 
895 
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const896 SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
897   SDValue Chain = Op.getOperand(0);
898   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
899   SDValue LHS   = Op.getOperand(2);
900   SDValue RHS   = Op.getOperand(3);
901   SDValue Dest  = Op.getOperand(4);
902   SDLoc dl  (Op);
903 
904   SDValue TargetCC;
905   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
906 
907   return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
908                      Chain, Dest, TargetCC, Flag);
909 }
910 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const911 SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
912   SDValue LHS   = Op.getOperand(0);
913   SDValue RHS   = Op.getOperand(1);
914   SDLoc dl  (Op);
915 
916   // If we are doing an AND and testing against zero, then the CMP
917   // will not be generated.  The AND (or BIT) will generate the condition codes,
918   // but they are different from CMP.
919   // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
920   // lowering & isel wouldn't diverge.
921   bool andCC = false;
922   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
923     if (RHSC->isNullValue() && LHS.hasOneUse() &&
924         (LHS.getOpcode() == ISD::AND ||
925          (LHS.getOpcode() == ISD::TRUNCATE &&
926           LHS.getOperand(0).getOpcode() == ISD::AND))) {
927       andCC = true;
928     }
929   }
930   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
931   SDValue TargetCC;
932   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
933 
934   // Get the condition codes directly from the status register, if its easy.
935   // Otherwise a branch will be generated.  Note that the AND and BIT
936   // instructions generate different flags than CMP, the carry bit can be used
937   // for NE/EQ.
938   bool Invert = false;
939   bool Shift = false;
940   bool Convert = true;
941   switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
942    default:
943     Convert = false;
944     break;
945    case MSP430CC::COND_HS:
946      // Res = SR & 1, no processing is required
947      break;
948    case MSP430CC::COND_LO:
949      // Res = ~(SR & 1)
950      Invert = true;
951      break;
952    case MSP430CC::COND_NE:
953      if (andCC) {
954        // C = ~Z, thus Res = SR & 1, no processing is required
955      } else {
956        // Res = ~((SR >> 1) & 1)
957        Shift = true;
958        Invert = true;
959      }
960      break;
961    case MSP430CC::COND_E:
962      Shift = true;
963      // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
964      // Res = (SR >> 1) & 1 is 1 word shorter.
965      break;
966   }
967   EVT VT = Op.getValueType();
968   SDValue One  = DAG.getConstant(1, VT);
969   if (Convert) {
970     SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
971                                     MVT::i16, Flag);
972     if (Shift)
973       // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
974       SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
975     SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
976     if (Invert)
977       SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
978     return SR;
979   } else {
980     SDValue Zero = DAG.getConstant(0, VT);
981     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
982     SmallVector<SDValue, 4> Ops;
983     Ops.push_back(One);
984     Ops.push_back(Zero);
985     Ops.push_back(TargetCC);
986     Ops.push_back(Flag);
987     return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
988   }
989 }
990 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const991 SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
992                                              SelectionDAG &DAG) const {
993   SDValue LHS    = Op.getOperand(0);
994   SDValue RHS    = Op.getOperand(1);
995   SDValue TrueV  = Op.getOperand(2);
996   SDValue FalseV = Op.getOperand(3);
997   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
998   SDLoc dl   (Op);
999 
1000   SDValue TargetCC;
1001   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1002 
1003   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1004   SmallVector<SDValue, 4> Ops;
1005   Ops.push_back(TrueV);
1006   Ops.push_back(FalseV);
1007   Ops.push_back(TargetCC);
1008   Ops.push_back(Flag);
1009 
1010   return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
1011 }
1012 
LowerSIGN_EXTEND(SDValue Op,SelectionDAG & DAG) const1013 SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
1014                                                SelectionDAG &DAG) const {
1015   SDValue Val = Op.getOperand(0);
1016   EVT VT      = Op.getValueType();
1017   SDLoc dl(Op);
1018 
1019   assert(VT == MVT::i16 && "Only support i16 for now!");
1020 
1021   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
1022                      DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
1023                      DAG.getValueType(Val.getValueType()));
1024 }
1025 
1026 SDValue
getReturnAddressFrameIndex(SelectionDAG & DAG) const1027 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
1028   MachineFunction &MF = DAG.getMachineFunction();
1029   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1030   int ReturnAddrIndex = FuncInfo->getRAIndex();
1031 
1032   if (ReturnAddrIndex == 0) {
1033     // Set up a frame object for the return address.
1034     uint64_t SlotSize = getDataLayout()->getPointerSize();
1035     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
1036                                                            true);
1037     FuncInfo->setRAIndex(ReturnAddrIndex);
1038   }
1039 
1040   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1041 }
1042 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1043 SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
1044                                               SelectionDAG &DAG) const {
1045   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1046   MFI->setReturnAddressIsTaken(true);
1047 
1048   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1049     return SDValue();
1050 
1051   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1052   SDLoc dl(Op);
1053 
1054   if (Depth > 0) {
1055     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1056     SDValue Offset =
1057         DAG.getConstant(getDataLayout()->getPointerSize(), MVT::i16);
1058     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
1059                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
1060                                    FrameAddr, Offset),
1061                        MachinePointerInfo(), false, false, false, 0);
1062   }
1063 
1064   // Just load the return address.
1065   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
1066   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
1067                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
1068 }
1069 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1070 SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
1071                                              SelectionDAG &DAG) const {
1072   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1073   MFI->setFrameAddressIsTaken(true);
1074 
1075   EVT VT = Op.getValueType();
1076   SDLoc dl(Op);  // FIXME probably not meaningful
1077   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1078   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1079                                          MSP430::FP, VT);
1080   while (Depth--)
1081     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1082                             MachinePointerInfo(),
1083                             false, false, false, 0);
1084   return FrameAddr;
1085 }
1086 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const1087 SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
1088                                            SelectionDAG &DAG) const {
1089   MachineFunction &MF = DAG.getMachineFunction();
1090   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1091 
1092   // Frame index of first vararg argument
1093   SDValue FrameIndex = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1094                                          getPointerTy());
1095   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1096 
1097   // Create a store of the frame index to the location operand
1098   return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex,
1099                       Op.getOperand(1), MachinePointerInfo(SV),
1100                       false, false, 0);
1101 }
1102 
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1103 SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
1104                                              SelectionDAG &DAG) const {
1105     JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1106     SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
1107     return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT),
1108                        getPointerTy(), Result);
1109 }
1110 
1111 /// getPostIndexedAddressParts - returns true by value, base pointer and
1112 /// offset pointer and addressing mode by reference if this node can be
1113 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const1114 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
1115                                                       SDValue &Base,
1116                                                       SDValue &Offset,
1117                                                       ISD::MemIndexedMode &AM,
1118                                                       SelectionDAG &DAG) const {
1119 
1120   LoadSDNode *LD = cast<LoadSDNode>(N);
1121   if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1122     return false;
1123 
1124   EVT VT = LD->getMemoryVT();
1125   if (VT != MVT::i8 && VT != MVT::i16)
1126     return false;
1127 
1128   if (Op->getOpcode() != ISD::ADD)
1129     return false;
1130 
1131   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1132     uint64_t RHSC = RHS->getZExtValue();
1133     if ((VT == MVT::i16 && RHSC != 2) ||
1134         (VT == MVT::i8 && RHSC != 1))
1135       return false;
1136 
1137     Base = Op->getOperand(0);
1138     Offset = DAG.getConstant(RHSC, VT);
1139     AM = ISD::POST_INC;
1140     return true;
1141   }
1142 
1143   return false;
1144 }
1145 
1146 
getTargetNodeName(unsigned Opcode) const1147 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
1148   switch (Opcode) {
1149   default: return nullptr;
1150   case MSP430ISD::RET_FLAG:           return "MSP430ISD::RET_FLAG";
1151   case MSP430ISD::RETI_FLAG:          return "MSP430ISD::RETI_FLAG";
1152   case MSP430ISD::RRA:                return "MSP430ISD::RRA";
1153   case MSP430ISD::RLA:                return "MSP430ISD::RLA";
1154   case MSP430ISD::RRC:                return "MSP430ISD::RRC";
1155   case MSP430ISD::CALL:               return "MSP430ISD::CALL";
1156   case MSP430ISD::Wrapper:            return "MSP430ISD::Wrapper";
1157   case MSP430ISD::BR_CC:              return "MSP430ISD::BR_CC";
1158   case MSP430ISD::CMP:                return "MSP430ISD::CMP";
1159   case MSP430ISD::SELECT_CC:          return "MSP430ISD::SELECT_CC";
1160   case MSP430ISD::SHL:                return "MSP430ISD::SHL";
1161   case MSP430ISD::SRA:                return "MSP430ISD::SRA";
1162   }
1163 }
1164 
isTruncateFree(Type * Ty1,Type * Ty2) const1165 bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
1166                                           Type *Ty2) const {
1167   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1168     return false;
1169 
1170   return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits());
1171 }
1172 
isTruncateFree(EVT VT1,EVT VT2) const1173 bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1174   if (!VT1.isInteger() || !VT2.isInteger())
1175     return false;
1176 
1177   return (VT1.getSizeInBits() > VT2.getSizeInBits());
1178 }
1179 
isZExtFree(Type * Ty1,Type * Ty2) const1180 bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
1181   // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1182   return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
1183 }
1184 
isZExtFree(EVT VT1,EVT VT2) const1185 bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
1186   // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1187   return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
1188 }
1189 
isZExtFree(SDValue Val,EVT VT2) const1190 bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1191   return isZExtFree(Val.getValueType(), VT2);
1192 }
1193 
1194 //===----------------------------------------------------------------------===//
1195 //  Other Lowering Code
1196 //===----------------------------------------------------------------------===//
1197 
1198 MachineBasicBlock*
EmitShiftInstr(MachineInstr * MI,MachineBasicBlock * BB) const1199 MSP430TargetLowering::EmitShiftInstr(MachineInstr *MI,
1200                                      MachineBasicBlock *BB) const {
1201   MachineFunction *F = BB->getParent();
1202   MachineRegisterInfo &RI = F->getRegInfo();
1203   DebugLoc dl = MI->getDebugLoc();
1204   const TargetInstrInfo &TII =
1205       *getTargetMachine().getSubtargetImpl()->getInstrInfo();
1206 
1207   unsigned Opc;
1208   const TargetRegisterClass * RC;
1209   switch (MI->getOpcode()) {
1210   default: llvm_unreachable("Invalid shift opcode!");
1211   case MSP430::Shl8:
1212    Opc = MSP430::SHL8r1;
1213    RC = &MSP430::GR8RegClass;
1214    break;
1215   case MSP430::Shl16:
1216    Opc = MSP430::SHL16r1;
1217    RC = &MSP430::GR16RegClass;
1218    break;
1219   case MSP430::Sra8:
1220    Opc = MSP430::SAR8r1;
1221    RC = &MSP430::GR8RegClass;
1222    break;
1223   case MSP430::Sra16:
1224    Opc = MSP430::SAR16r1;
1225    RC = &MSP430::GR16RegClass;
1226    break;
1227   case MSP430::Srl8:
1228    Opc = MSP430::SAR8r1c;
1229    RC = &MSP430::GR8RegClass;
1230    break;
1231   case MSP430::Srl16:
1232    Opc = MSP430::SAR16r1c;
1233    RC = &MSP430::GR16RegClass;
1234    break;
1235   }
1236 
1237   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1238   MachineFunction::iterator I = BB;
1239   ++I;
1240 
1241   // Create loop block
1242   MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1243   MachineBasicBlock *RemBB  = F->CreateMachineBasicBlock(LLVM_BB);
1244 
1245   F->insert(I, LoopBB);
1246   F->insert(I, RemBB);
1247 
1248   // Update machine-CFG edges by transferring all successors of the current
1249   // block to the block containing instructions after shift.
1250   RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1251                 BB->end());
1252   RemBB->transferSuccessorsAndUpdatePHIs(BB);
1253 
1254   // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
1255   BB->addSuccessor(LoopBB);
1256   BB->addSuccessor(RemBB);
1257   LoopBB->addSuccessor(RemBB);
1258   LoopBB->addSuccessor(LoopBB);
1259 
1260   unsigned ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
1261   unsigned ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
1262   unsigned ShiftReg = RI.createVirtualRegister(RC);
1263   unsigned ShiftReg2 = RI.createVirtualRegister(RC);
1264   unsigned ShiftAmtSrcReg = MI->getOperand(2).getReg();
1265   unsigned SrcReg = MI->getOperand(1).getReg();
1266   unsigned DstReg = MI->getOperand(0).getReg();
1267 
1268   // BB:
1269   // cmp 0, N
1270   // je RemBB
1271   BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
1272     .addReg(ShiftAmtSrcReg).addImm(0);
1273   BuildMI(BB, dl, TII.get(MSP430::JCC))
1274     .addMBB(RemBB)
1275     .addImm(MSP430CC::COND_E);
1276 
1277   // LoopBB:
1278   // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1279   // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB]
1280   // ShiftReg2 = shift ShiftReg
1281   // ShiftAmt2 = ShiftAmt - 1;
1282   BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
1283     .addReg(SrcReg).addMBB(BB)
1284     .addReg(ShiftReg2).addMBB(LoopBB);
1285   BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
1286     .addReg(ShiftAmtSrcReg).addMBB(BB)
1287     .addReg(ShiftAmtReg2).addMBB(LoopBB);
1288   BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1289     .addReg(ShiftReg);
1290   BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
1291     .addReg(ShiftAmtReg).addImm(1);
1292   BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
1293     .addMBB(LoopBB)
1294     .addImm(MSP430CC::COND_NE);
1295 
1296   // RemBB:
1297   // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1298   BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
1299     .addReg(SrcReg).addMBB(BB)
1300     .addReg(ShiftReg2).addMBB(LoopBB);
1301 
1302   MI->eraseFromParent();   // The pseudo instruction is gone now.
1303   return RemBB;
1304 }
1305 
1306 MachineBasicBlock*
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const1307 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1308                                                   MachineBasicBlock *BB) const {
1309   unsigned Opc = MI->getOpcode();
1310 
1311   if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
1312       Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
1313       Opc == MSP430::Srl8 || Opc == MSP430::Srl16)
1314     return EmitShiftInstr(MI, BB);
1315 
1316   const TargetInstrInfo &TII =
1317       *getTargetMachine().getSubtargetImpl()->getInstrInfo();
1318   DebugLoc dl = MI->getDebugLoc();
1319 
1320   assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
1321          "Unexpected instr type to insert");
1322 
1323   // To "insert" a SELECT instruction, we actually have to insert the diamond
1324   // control-flow pattern.  The incoming instruction knows the destination vreg
1325   // to set, the condition code register to branch on, the true/false values to
1326   // select between, and a branch opcode to use.
1327   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1328   MachineFunction::iterator I = BB;
1329   ++I;
1330 
1331   //  thisMBB:
1332   //  ...
1333   //   TrueVal = ...
1334   //   cmpTY ccX, r1, r2
1335   //   jCC copy1MBB
1336   //   fallthrough --> copy0MBB
1337   MachineBasicBlock *thisMBB = BB;
1338   MachineFunction *F = BB->getParent();
1339   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1340   MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
1341   F->insert(I, copy0MBB);
1342   F->insert(I, copy1MBB);
1343   // Update machine-CFG edges by transferring all successors of the current
1344   // block to the new block which will contain the Phi node for the select.
1345   copy1MBB->splice(copy1MBB->begin(), BB,
1346                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
1347   copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
1348   // Next, add the true and fallthrough blocks as its successors.
1349   BB->addSuccessor(copy0MBB);
1350   BB->addSuccessor(copy1MBB);
1351 
1352   BuildMI(BB, dl, TII.get(MSP430::JCC))
1353     .addMBB(copy1MBB)
1354     .addImm(MI->getOperand(3).getImm());
1355 
1356   //  copy0MBB:
1357   //   %FalseValue = ...
1358   //   # fallthrough to copy1MBB
1359   BB = copy0MBB;
1360 
1361   // Update machine-CFG edges
1362   BB->addSuccessor(copy1MBB);
1363 
1364   //  copy1MBB:
1365   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1366   //  ...
1367   BB = copy1MBB;
1368   BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI),
1369           MI->getOperand(0).getReg())
1370     .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
1371     .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
1372 
1373   MI->eraseFromParent();   // The pseudo instruction is gone now.
1374   return BB;
1375 }
1376