1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget.is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget.is64Bit()">;
29
30// HasV9 - This predicate is true when the target processor supports V9
31// instructions.  Note that the machine may be running in 32-bit mode.
32def HasV9   : Predicate<"Subtarget.isV9()">,
33              AssemblerPredicate<"FeatureV9">;
34
35// HasNoV9 - This predicate is true when the target doesn't have V9
36// instructions.  Use of this is just a hack for the isel not having proper
37// costs for V8 instructions that are more expensive than their V9 ones.
38def HasNoV9 : Predicate<"!Subtarget.isV9()">;
39
40// HasVIS - This is true when the target processor has VIS extensions.
41def HasVIS : Predicate<"Subtarget.isVIS()">,
42             AssemblerPredicate<"FeatureVIS">;
43def HasVIS2 : Predicate<"Subtarget.isVIS2()">,
44             AssemblerPredicate<"FeatureVIS2">;
45def HasVIS3 : Predicate<"Subtarget.isVIS3()">,
46             AssemblerPredicate<"FeatureVIS3">;
47
48// HasHardQuad - This is true when the target processor supports quad floating
49// point instructions.
50def HasHardQuad : Predicate<"Subtarget.hasHardQuad()">;
51
52// UseDeprecatedInsts - This predicate is true when the target processor is a
53// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
54// to use when appropriate.  In either of these cases, the instruction selector
55// will pick deprecated instructions.
56def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
57
58//===----------------------------------------------------------------------===//
59// Instruction Pattern Stuff
60//===----------------------------------------------------------------------===//
61
62def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
63
64def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
65
66def LO10 : SDNodeXForm<imm, [{
67  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
68                                   MVT::i32);
69}]>;
70
71def HI22 : SDNodeXForm<imm, [{
72  // Transformation function: shift the immediate value down into the low bits.
73  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
74}]>;
75
76def SETHIimm : PatLeaf<(imm), [{
77  return isShiftedUInt<22, 10>(N->getZExtValue());
78}], HI22>;
79
80// Addressing modes.
81def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
82def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
83
84// Address operands
85def SparcMEMrrAsmOperand : AsmOperandClass {
86  let Name = "MEMrr";
87  let ParserMethod = "parseMEMOperand";
88}
89
90def SparcMEMriAsmOperand : AsmOperandClass {
91  let Name = "MEMri";
92  let ParserMethod = "parseMEMOperand";
93}
94
95def MEMrr : Operand<iPTR> {
96  let PrintMethod = "printMemOperand";
97  let MIOperandInfo = (ops ptr_rc, ptr_rc);
98  let ParserMatchClass = SparcMEMrrAsmOperand;
99}
100def MEMri : Operand<iPTR> {
101  let PrintMethod = "printMemOperand";
102  let MIOperandInfo = (ops ptr_rc, i32imm);
103  let ParserMatchClass = SparcMEMriAsmOperand;
104}
105
106def TLSSym : Operand<iPTR>;
107
108// Branch targets have OtherVT type.
109def brtarget : Operand<OtherVT> {
110  let EncoderMethod = "getBranchTargetOpValue";
111}
112
113def bprtarget : Operand<OtherVT> {
114  let EncoderMethod = "getBranchPredTargetOpValue";
115}
116
117def bprtarget16 : Operand<OtherVT> {
118  let EncoderMethod = "getBranchOnRegTargetOpValue";
119}
120
121def calltarget : Operand<i32> {
122  let EncoderMethod = "getCallTargetOpValue";
123  let DecoderMethod = "DecodeCall";
124}
125
126def simm13Op : Operand<i32> {
127  let DecoderMethod = "DecodeSIMM13";
128}
129
130// Operand for printing out a condition code.
131let PrintMethod = "printCCOperand" in
132  def CCOp : Operand<i32>;
133
134def SDTSPcmpicc :
135SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
136def SDTSPcmpfcc :
137SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
138def SDTSPbrcc :
139SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
140def SDTSPselectcc :
141SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
142def SDTSPFTOI :
143SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
144def SDTSPITOF :
145SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
146def SDTSPFTOX :
147SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
148def SDTSPXTOF :
149SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
150
151def SDTSPtlsadd :
152SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
153def SDTSPtlsld :
154SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
155
156def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
157def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
158def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
159def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
160def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
161
162def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
163def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
164
165def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
166def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
167def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
168def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
169
170def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
171def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
172def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
173
174//  These are target-independent nodes, but have target-specific formats.
175def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
176def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
177                                        SDTCisVT<1, i32> ]>;
178
179def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
180                           [SDNPHasChain, SDNPOutGlue]>;
181def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
182                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
183
184def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
185def call          : SDNode<"SPISD::CALL", SDT_SPCall,
186                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
187                            SDNPVariadic]>;
188
189def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
190def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
191                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
192
193def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
194                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
195
196def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
197def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
198def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
199                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
200                             SDNPVariadic]>;
201
202def getPCX        : Operand<iPTR> {
203  let PrintMethod = "printGetPCX";
204}
205
206//===----------------------------------------------------------------------===//
207// SPARC Flag Conditions
208//===----------------------------------------------------------------------===//
209
210// Note that these values must be kept in sync with the CCOp::CondCode enum
211// values.
212class ICC_VAL<int N> : PatLeaf<(i32 N)>;
213def ICC_NE  : ICC_VAL< 9>;  // Not Equal
214def ICC_E   : ICC_VAL< 1>;  // Equal
215def ICC_G   : ICC_VAL<10>;  // Greater
216def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
217def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
218def ICC_L   : ICC_VAL< 3>;  // Less
219def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
220def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
221def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
222def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
223def ICC_POS : ICC_VAL<14>;  // Positive
224def ICC_NEG : ICC_VAL< 6>;  // Negative
225def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
226def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
227
228class FCC_VAL<int N> : PatLeaf<(i32 N)>;
229def FCC_U   : FCC_VAL<23>;  // Unordered
230def FCC_G   : FCC_VAL<22>;  // Greater
231def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
232def FCC_L   : FCC_VAL<20>;  // Less
233def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
234def FCC_LG  : FCC_VAL<18>;  // Less or Greater
235def FCC_NE  : FCC_VAL<17>;  // Not Equal
236def FCC_E   : FCC_VAL<25>;  // Equal
237def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
238def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
239def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
240def FCC_LE  : FCC_VAL<27>;  // Less or Equal
241def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
242def FCC_O   : FCC_VAL<29>;  // Ordered
243
244//===----------------------------------------------------------------------===//
245// Instruction Class Templates
246//===----------------------------------------------------------------------===//
247
248/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
249multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
250                 RegisterClass RC, ValueType Ty, Operand immOp> {
251  def rr  : F3_1<2, Op3Val,
252                 (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
253                 !strconcat(OpcStr, " $rs1, $rs2, $rd"),
254                 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))]>;
255  def ri  : F3_2<2, Op3Val,
256                 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
257                 !strconcat(OpcStr, " $rs1, $simm13, $rd"),
258                 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))]>;
259}
260
261/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
262/// pattern.
263multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
264  def rr  : F3_1<2, Op3Val,
265                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
266                 !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
267  def ri  : F3_2<2, Op3Val,
268                 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
269                 !strconcat(OpcStr, " $rs1, $simm13, $rd"), []>;
270}
271
272// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
273multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
274           RegisterClass RC, ValueType Ty> {
275  def rr  : F3_1<3, Op3Val,
276                 (outs RC:$dst), (ins MEMrr:$addr),
277                 !strconcat(OpcStr, " [$addr], $dst"),
278                 [(set Ty:$dst, (OpNode ADDRrr:$addr))]>;
279  def ri  : F3_2<3, Op3Val,
280                 (outs RC:$dst), (ins MEMri:$addr),
281                 !strconcat(OpcStr, " [$addr], $dst"),
282                 [(set Ty:$dst, (OpNode ADDRri:$addr))]>;
283}
284
285// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
286multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
287           RegisterClass RC, ValueType Ty> {
288  def rr  : F3_1<3, Op3Val,
289                 (outs), (ins MEMrr:$addr, RC:$rd),
290                 !strconcat(OpcStr, " $rd, [$addr]"),
291                 [(OpNode Ty:$rd, ADDRrr:$addr)]>;
292  def ri  : F3_2<3, Op3Val,
293                 (outs), (ins MEMri:$addr, RC:$rd),
294                 !strconcat(OpcStr, " $rd, [$addr]"),
295                 [(OpNode Ty:$rd, ADDRri:$addr)]>;
296}
297
298//===----------------------------------------------------------------------===//
299// Instructions
300//===----------------------------------------------------------------------===//
301
302// Pseudo instructions.
303class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
304   : InstSP<outs, ins, asmstr, pattern> {
305  let isCodeGenOnly = 1;
306  let isPseudo = 1;
307}
308
309// GETPCX for PIC
310let Defs = [O7] in {
311  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
312}
313
314let Defs = [O6], Uses = [O6] in {
315def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
316                               "!ADJCALLSTACKDOWN $amt",
317                               [(callseq_start timm:$amt)]>;
318def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
319                            "!ADJCALLSTACKUP $amt1",
320                            [(callseq_end timm:$amt1, timm:$amt2)]>;
321}
322
323let hasSideEffects = 1, mayStore = 1 in {
324  let rd = 0, rs1 = 0, rs2 = 0 in
325    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
326                      "flushw",
327                      [(flushw)]>, Requires<[HasV9]>;
328  let rd = 0, rs1 = 1, simm13 = 3 in
329    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
330                   "ta 3",
331                   [(flushw)]>;
332}
333
334let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
335  def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
336
337let rd = 0 in
338  def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
339                  "unimp $imm22", []>;
340
341// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
342// instruction selection into a branch sequence.  This has to handle all
343// permutations of selection between i32/f32/f64 on ICC and FCC.
344// Expanded after instruction selection.
345let Uses = [ICC], usesCustomInserter = 1 in {
346  def SELECT_CC_Int_ICC
347   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
348            "; SELECT_CC_Int_ICC PSEUDO!",
349            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
350  def SELECT_CC_FP_ICC
351   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
352            "; SELECT_CC_FP_ICC PSEUDO!",
353            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
354
355  def SELECT_CC_DFP_ICC
356   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
357            "; SELECT_CC_DFP_ICC PSEUDO!",
358            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
359
360  def SELECT_CC_QFP_ICC
361   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
362            "; SELECT_CC_QFP_ICC PSEUDO!",
363            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
364}
365
366let usesCustomInserter = 1, Uses = [FCC0] in {
367
368  def SELECT_CC_Int_FCC
369   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
370            "; SELECT_CC_Int_FCC PSEUDO!",
371            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
372
373  def SELECT_CC_FP_FCC
374   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
375            "; SELECT_CC_FP_FCC PSEUDO!",
376            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
377  def SELECT_CC_DFP_FCC
378   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
379            "; SELECT_CC_DFP_FCC PSEUDO!",
380            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
381  def SELECT_CC_QFP_FCC
382   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
383            "; SELECT_CC_QFP_FCC PSEUDO!",
384            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
385}
386
387// JMPL Instruction.
388let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
389    DecoderMethod = "DecodeJMPL" in {
390  def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr),
391                  "jmpl $addr, $dst", []>;
392  def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr),
393                  "jmpl $addr, $dst", []>;
394}
395
396// Section A.3 - Synthetic Instructions, p. 85
397// special cases of JMPL:
398let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
399    isCodeGenOnly = 1 in {
400  let rd = 0, rs1 = 15 in
401    def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
402                   "jmp %o7+$val", [(retflag simm13:$val)]>;
403
404  let rd = 0, rs1 = 31 in
405    def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
406                  "jmp %i7+$val", []>;
407}
408
409let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
410     isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
411  def RETTrr : F3_1<2, 0b111001, (outs), (ins MEMrr:$addr),
412                       "rett $addr", []>;
413  def RETTri : F3_2<2, 0b111001, (outs), (ins MEMri:$addr),
414                       "rett $addr", []>;
415}
416
417// Section B.1 - Load Integer Instructions, p. 90
418let DecoderMethod = "DecodeLoadInt" in {
419  defm LDSB : Load<"ldsb", 0b001001, sextloadi8,  IntRegs, i32>;
420  defm LDSH : Load<"ldsh", 0b001010, sextloadi16, IntRegs, i32>;
421  defm LDUB : Load<"ldub", 0b000001, zextloadi8,  IntRegs, i32>;
422  defm LDUH : Load<"lduh", 0b000010, zextloadi16, IntRegs, i32>;
423  defm LD   : Load<"ld",   0b000000, load,        IntRegs, i32>;
424}
425
426// Section B.2 - Load Floating-point Instructions, p. 92
427let DecoderMethod = "DecodeLoadFP" in
428  defm LDF   : Load<"ld",  0b100000, load, FPRegs,  f32>;
429let DecoderMethod = "DecodeLoadDFP" in
430  defm LDDF  : Load<"ldd", 0b100011, load, DFPRegs, f64>;
431let DecoderMethod = "DecodeLoadQFP" in
432  defm LDQF  : Load<"ldq", 0b100010, load, QFPRegs, f128>,
433               Requires<[HasV9, HasHardQuad]>;
434
435// Section B.4 - Store Integer Instructions, p. 95
436let DecoderMethod = "DecodeStoreInt" in {
437  defm STB   : Store<"stb", 0b000101, truncstorei8,  IntRegs, i32>;
438  defm STH   : Store<"sth", 0b000110, truncstorei16, IntRegs, i32>;
439  defm ST    : Store<"st",  0b000100, store,         IntRegs, i32>;
440}
441
442// Section B.5 - Store Floating-point Instructions, p. 97
443let DecoderMethod = "DecodeStoreFP" in
444  defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
445let DecoderMethod = "DecodeStoreDFP" in
446  defm STDF  : Store<"std", 0b100111, store,         DFPRegs, f64>;
447let DecoderMethod = "DecodeStoreQFP" in
448  defm STQF  : Store<"stq", 0b100110, store,         QFPRegs, f128>,
449               Requires<[HasV9, HasHardQuad]>;
450
451// Section B.9 - SETHI Instruction, p. 104
452def SETHIi: F2_1<0b100,
453                 (outs IntRegs:$rd), (ins i32imm:$imm22),
454                 "sethi $imm22, $rd",
455                 [(set i32:$rd, SETHIimm:$imm22)]>;
456
457// Section B.10 - NOP Instruction, p. 105
458// (It's a special case of SETHI)
459let rd = 0, imm22 = 0 in
460  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
461
462// Section B.11 - Logical Instructions, p. 106
463defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
464
465def ANDNrr  : F3_1<2, 0b000101,
466                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
467                   "andn $rs1, $rs2, $rd",
468                   [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
469def ANDNri  : F3_2<2, 0b000101,
470                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
471                   "andn $rs1, $simm13, $rd", []>;
472
473defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
474
475def ORNrr   : F3_1<2, 0b000110,
476                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
477                   "orn $rs1, $rs2, $rd",
478                   [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
479def ORNri   : F3_2<2, 0b000110,
480                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
481                   "orn $rs1, $simm13, $rd", []>;
482defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
483
484def XNORrr  : F3_1<2, 0b000111,
485                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
486                   "xnor $rs1, $rs2, $rd",
487                   [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
488def XNORri  : F3_2<2, 0b000111,
489                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
490                   "xnor $rs1, $simm13, $rd", []>;
491
492let Defs = [ICC] in {
493  defm ANDCC  : F3_12np<"andcc",  0b010001>;
494  defm ANDNCC : F3_12np<"andncc", 0b010101>;
495  defm ORCC   : F3_12np<"orcc",   0b010010>;
496  defm ORNCC  : F3_12np<"orncc",  0b010110>;
497  defm XORCC  : F3_12np<"xorcc",  0b010011>;
498  defm XNORCC : F3_12np<"xnorcc", 0b010111>;
499}
500
501// Section B.12 - Shift Instructions, p. 107
502defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
503defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
504defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;
505
506// Section B.13 - Add Instructions, p. 108
507defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
508
509// "LEA" forms of add (patterns to make tblgen happy)
510let Predicates = [Is32Bit], isCodeGenOnly = 1 in
511  def LEA_ADDri   : F3_2<2, 0b000000,
512                     (outs IntRegs:$dst), (ins MEMri:$addr),
513                     "add ${addr:arith}, $dst",
514                     [(set iPTR:$dst, ADDRri:$addr)]>;
515
516let Defs = [ICC] in
517  defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
518
519let Uses = [ICC] in
520  defm ADDC   : F3_12np<"addx", 0b001000>;
521
522let Uses = [ICC], Defs = [ICC] in
523  defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
524
525// Section B.15 - Subtract Instructions, p. 110
526defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>;
527let Uses = [ICC], Defs = [ICC] in
528  defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
529
530let Defs = [ICC] in
531  defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
532
533let Uses = [ICC] in
534  defm SUBC   : F3_12np <"subx", 0b001100>;
535
536let Defs = [ICC], rd = 0 in {
537  def CMPrr   : F3_1<2, 0b010100,
538                     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
539                     "cmp $rs1, $rs2",
540                     [(SPcmpicc i32:$rs1, i32:$rs2)]>;
541  def CMPri   : F3_2<2, 0b010100,
542                     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
543                     "cmp $rs1, $simm13",
544                     [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
545}
546
547// Section B.18 - Multiply Instructions, p. 113
548let Defs = [Y] in {
549  defm UMUL : F3_12np<"umul", 0b001010>;
550  defm SMUL : F3_12  <"smul", 0b001011, mul, IntRegs, i32, simm13Op>;
551}
552
553let Defs = [Y, ICC] in {
554  defm UMULCC : F3_12np<"umulcc", 0b011010>;
555  defm SMULCC : F3_12np<"smulcc", 0b011011>;
556}
557
558// Section B.19 - Divide Instructions, p. 115
559let Defs = [Y] in {
560  defm UDIV : F3_12np<"udiv", 0b001110>;
561  defm SDIV : F3_12np<"sdiv", 0b001111>;
562}
563
564let Defs = [Y, ICC] in {
565  defm UDIVCC : F3_12np<"udivcc", 0b011110>;
566  defm SDIVCC : F3_12np<"sdivcc", 0b011111>;
567}
568
569// Section B.20 - SAVE and RESTORE, p. 117
570defm SAVE    : F3_12np<"save"   , 0b111100>;
571defm RESTORE : F3_12np<"restore", 0b111101>;
572
573// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
574
575// unconditional branch class.
576class BranchAlways<dag ins, string asmstr, list<dag> pattern>
577  : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
578  let isBranch     = 1;
579  let isTerminator = 1;
580  let hasDelaySlot = 1;
581  let isBarrier    = 1;
582}
583
584let cond = 8 in
585  def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
586
587
588let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
589
590// conditional branch class:
591class BranchSP<dag ins, string asmstr, list<dag> pattern>
592 : F2_2<0b010, 0, (outs), ins, asmstr, pattern>;
593
594// conditional branch with annul class:
595class BranchSPA<dag ins, string asmstr, list<dag> pattern>
596 : F2_2<0b010, 1, (outs), ins, asmstr, pattern>;
597
598// Conditional branch class on %icc|%xcc with predication:
599multiclass IPredBranch<string regstr, list<dag> CCPattern> {
600  def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
601                  !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
602                   CCPattern>;
603  def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
604                  !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
605                   []>;
606  def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
607                   !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
608                   []>;
609  def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
610                   !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
611                   []>;
612}
613
614} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
615
616
617// Indirect branch instructions.
618let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
619     isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
620  def BINDrr  : F3_1<2, 0b111000,
621                   (outs), (ins MEMrr:$ptr),
622                   "jmp $ptr",
623                   [(brind ADDRrr:$ptr)]>;
624  def BINDri  : F3_2<2, 0b111000,
625                   (outs), (ins MEMri:$ptr),
626                   "jmp $ptr",
627                   [(brind ADDRri:$ptr)]>;
628}
629
630let Uses = [ICC] in {
631  def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
632                         "b$cond $imm22",
633                        [(SPbricc bb:$imm22, imm:$cond)]>;
634  def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
635                         "b$cond,a $imm22", []>;
636
637  let Predicates = [HasV9], cc = 0b00 in
638    defm BPI : IPredBranch<"%icc", []>;
639}
640
641// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
642
643let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
644
645// floating-point conditional branch class:
646class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
647 : F2_2<0b110, 0, (outs), ins, asmstr, pattern>;
648
649// floating-point conditional branch with annul class:
650class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
651 : F2_2<0b110, 1, (outs), ins, asmstr, pattern>;
652
653// Conditional branch class on %fcc0-%fcc3 with predication:
654multiclass FPredBranch {
655  def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
656                                         FCCRegs:$cc),
657                  "fb$cond $cc, $imm19", []>;
658  def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
659                                         FCCRegs:$cc),
660                  "fb$cond,a $cc, $imm19", []>;
661  def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
662                                         FCCRegs:$cc),
663                  "fb$cond,pn $cc, $imm19", []>;
664  def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
665                                         FCCRegs:$cc),
666                  "fb$cond,a,pn $cc, $imm19", []>;
667}
668} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
669
670let Uses = [FCC0] in {
671  def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
672                              "fb$cond $imm22",
673                              [(SPbrfcc bb:$imm22, imm:$cond)]>;
674  def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
675                             "fb$cond,a $imm22", []>;
676}
677
678let Predicates = [HasV9] in
679  defm BPF : FPredBranch;
680
681
682// Section B.24 - Call and Link Instruction, p. 125
683// This is the only Format 1 instruction
684let Uses = [O6],
685    hasDelaySlot = 1, isCall = 1 in {
686  def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
687                    "call $disp", []> {
688    bits<30> disp;
689    let op = 1;
690    let Inst{29-0} = disp;
691  }
692
693  // indirect calls: special cases of JMPL.
694  let isCodeGenOnly = 1, rd = 15 in {
695    def CALLrr : F3_1<2, 0b111000,
696                      (outs), (ins MEMrr:$ptr, variable_ops),
697                      "call $ptr",
698                      [(call ADDRrr:$ptr)]>;
699    def CALLri : F3_2<2, 0b111000,
700                      (outs), (ins MEMri:$ptr, variable_ops),
701                      "call $ptr",
702                      [(call ADDRri:$ptr)]>;
703  }
704}
705
706// Section B.28 - Read State Register Instructions
707let Uses = [Y], rs1 = 0, rs2 = 0 in
708  def RDY : F3_1<2, 0b101000,
709                 (outs IntRegs:$dst), (ins),
710                 "rd %y, $dst", []>;
711
712// Section B.29 - Write State Register Instructions
713let Defs = [Y], rd = 0 in {
714  def WRYrr : F3_1<2, 0b110000,
715                   (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
716                   "wr $rs1, $rs2, %y", []>;
717  def WRYri : F3_2<2, 0b110000,
718                   (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
719                   "wr $rs1, $simm13, %y", []>;
720}
721// Convert Integer to Floating-point Instructions, p. 141
722def FITOS : F3_3u<2, 0b110100, 0b011000100,
723                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
724                 "fitos $rs2, $rd",
725                 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))]>;
726def FITOD : F3_3u<2, 0b110100, 0b011001000,
727                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
728                 "fitod $rs2, $rd",
729                 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))]>;
730def FITOQ : F3_3u<2, 0b110100, 0b011001100,
731                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
732                 "fitoq $rs2, $rd",
733                 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
734                 Requires<[HasHardQuad]>;
735
736// Convert Floating-point to Integer Instructions, p. 142
737def FSTOI : F3_3u<2, 0b110100, 0b011010001,
738                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
739                 "fstoi $rs2, $rd",
740                 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))]>;
741def FDTOI : F3_3u<2, 0b110100, 0b011010010,
742                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
743                 "fdtoi $rs2, $rd",
744                 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))]>;
745def FQTOI : F3_3u<2, 0b110100, 0b011010011,
746                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
747                 "fqtoi $rs2, $rd",
748                 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
749                 Requires<[HasHardQuad]>;
750
751// Convert between Floating-point Formats Instructions, p. 143
752def FSTOD : F3_3u<2, 0b110100, 0b011001001,
753                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
754                 "fstod $rs2, $rd",
755                 [(set f64:$rd, (fextend f32:$rs2))]>;
756def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
757                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
758                 "fstoq $rs2, $rd",
759                 [(set f128:$rd, (fextend f32:$rs2))]>,
760                 Requires<[HasHardQuad]>;
761def FDTOS : F3_3u<2, 0b110100, 0b011000110,
762                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
763                 "fdtos $rs2, $rd",
764                 [(set f32:$rd, (fround f64:$rs2))]>;
765def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
766                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
767                 "fdtoq $rs2, $rd",
768                 [(set f128:$rd, (fextend f64:$rs2))]>,
769                 Requires<[HasHardQuad]>;
770def FQTOS : F3_3u<2, 0b110100, 0b011000111,
771                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
772                 "fqtos $rs2, $rd",
773                 [(set f32:$rd, (fround f128:$rs2))]>,
774                 Requires<[HasHardQuad]>;
775def FQTOD : F3_3u<2, 0b110100, 0b011001011,
776                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
777                 "fqtod $rs2, $rd",
778                 [(set f64:$rd, (fround f128:$rs2))]>,
779                 Requires<[HasHardQuad]>;
780
781// Floating-point Move Instructions, p. 144
782def FMOVS : F3_3u<2, 0b110100, 0b000000001,
783                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
784                 "fmovs $rs2, $rd", []>;
785def FNEGS : F3_3u<2, 0b110100, 0b000000101,
786                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
787                 "fnegs $rs2, $rd",
788                 [(set f32:$rd, (fneg f32:$rs2))]>;
789def FABSS : F3_3u<2, 0b110100, 0b000001001,
790                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
791                 "fabss $rs2, $rd",
792                 [(set f32:$rd, (fabs f32:$rs2))]>;
793
794
795// Floating-point Square Root Instructions, p.145
796def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
797                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
798                  "fsqrts $rs2, $rd",
799                  [(set f32:$rd, (fsqrt f32:$rs2))]>;
800def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
801                  (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
802                  "fsqrtd $rs2, $rd",
803                  [(set f64:$rd, (fsqrt f64:$rs2))]>;
804def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
805                  (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
806                  "fsqrtq $rs2, $rd",
807                  [(set f128:$rd, (fsqrt f128:$rs2))]>,
808                  Requires<[HasHardQuad]>;
809
810
811
812// Floating-point Add and Subtract Instructions, p. 146
813def FADDS  : F3_3<2, 0b110100, 0b001000001,
814                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
815                  "fadds $rs1, $rs2, $rd",
816                  [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))]>;
817def FADDD  : F3_3<2, 0b110100, 0b001000010,
818                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
819                  "faddd $rs1, $rs2, $rd",
820                  [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))]>;
821def FADDQ  : F3_3<2, 0b110100, 0b001000011,
822                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
823                  "faddq $rs1, $rs2, $rd",
824                  [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
825                  Requires<[HasHardQuad]>;
826
827def FSUBS  : F3_3<2, 0b110100, 0b001000101,
828                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
829                  "fsubs $rs1, $rs2, $rd",
830                  [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))]>;
831def FSUBD  : F3_3<2, 0b110100, 0b001000110,
832                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
833                  "fsubd $rs1, $rs2, $rd",
834                  [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))]>;
835def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
836                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
837                  "fsubq $rs1, $rs2, $rd",
838                  [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
839                  Requires<[HasHardQuad]>;
840
841
842// Floating-point Multiply and Divide Instructions, p. 147
843def FMULS  : F3_3<2, 0b110100, 0b001001001,
844                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
845                  "fmuls $rs1, $rs2, $rd",
846                  [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))]>;
847def FMULD  : F3_3<2, 0b110100, 0b001001010,
848                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
849                  "fmuld $rs1, $rs2, $rd",
850                  [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))]>;
851def FMULQ  : F3_3<2, 0b110100, 0b001001011,
852                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
853                  "fmulq $rs1, $rs2, $rd",
854                  [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
855                  Requires<[HasHardQuad]>;
856
857def FSMULD : F3_3<2, 0b110100, 0b001101001,
858                  (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
859                  "fsmuld $rs1, $rs2, $rd",
860                  [(set f64:$rd, (fmul (fextend f32:$rs1),
861                                        (fextend f32:$rs2)))]>;
862def FDMULQ : F3_3<2, 0b110100, 0b001101110,
863                  (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
864                  "fdmulq $rs1, $rs2, $rd",
865                  [(set f128:$rd, (fmul (fextend f64:$rs1),
866                                         (fextend f64:$rs2)))]>,
867                  Requires<[HasHardQuad]>;
868
869def FDIVS  : F3_3<2, 0b110100, 0b001001101,
870                 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
871                 "fdivs $rs1, $rs2, $rd",
872                 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))]>;
873def FDIVD  : F3_3<2, 0b110100, 0b001001110,
874                 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
875                 "fdivd $rs1, $rs2, $rd",
876                 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))]>;
877def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
878                 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
879                 "fdivq $rs1, $rs2, $rd",
880                 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
881                 Requires<[HasHardQuad]>;
882
883// Floating-point Compare Instructions, p. 148
884// Note: the 2nd template arg is different for these guys.
885// Note 2: the result of a FCMP is not available until the 2nd cycle
886// after the instr is retired, but there is no interlock in Sparc V8.
887// This behavior is modeled with a forced noop after the instruction in
888// DelaySlotFiller.
889
890let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
891  def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
892                   (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
893                   "fcmps $rs1, $rs2",
894                   [(SPcmpfcc f32:$rs1, f32:$rs2)]>;
895  def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
896                   (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
897                   "fcmpd $rs1, $rs2",
898                   [(SPcmpfcc f64:$rs1, f64:$rs2)]>;
899  def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
900                   (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
901                   "fcmpq $rs1, $rs2",
902                   [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
903                   Requires<[HasHardQuad]>;
904}
905
906//===----------------------------------------------------------------------===//
907// Instructions for Thread Local Storage(TLS).
908//===----------------------------------------------------------------------===//
909let isCodeGenOnly = 1, isAsmParserOnly = 1 in {
910def TLS_ADDrr : F3_1<2, 0b000000,
911                    (outs IntRegs:$rd),
912                    (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
913                    "add $rs1, $rs2, $rd, $sym",
914                    [(set i32:$rd,
915                        (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
916
917let mayLoad = 1 in
918  def TLS_LDrr : F3_1<3, 0b000000,
919                      (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
920                      "ld [$addr], $dst, $sym",
921                      [(set i32:$dst,
922                          (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
923
924let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
925  def TLS_CALL : InstSP<(outs),
926                        (ins calltarget:$disp, TLSSym:$sym, variable_ops),
927                        "call $disp, $sym",
928                        [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)]> {
929  bits<30> disp;
930  let op = 1;
931  let Inst{29-0} = disp;
932}
933}
934
935//===----------------------------------------------------------------------===//
936// V9 Instructions
937//===----------------------------------------------------------------------===//
938
939// V9 Conditional Moves.
940let Predicates = [HasV9], Constraints = "$f = $rd" in {
941  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
942  let Uses = [ICC], intcc = 1, cc = 0b00 in {
943    def MOVICCrr
944      : F4_1<0b101100, (outs IntRegs:$rd),
945             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
946             "mov$cond %icc, $rs2, $rd",
947             [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
948
949    def MOVICCri
950      : F4_2<0b101100, (outs IntRegs:$rd),
951             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
952             "mov$cond %icc, $simm11, $rd",
953             [(set i32:$rd,
954                    (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
955  }
956
957  let Uses = [FCC0], intcc = 0, cc = 0b00 in {
958    def MOVFCCrr
959      : F4_1<0b101100, (outs IntRegs:$rd),
960             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
961             "mov$cond %fcc0, $rs2, $rd",
962             [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
963    def MOVFCCri
964      : F4_2<0b101100, (outs IntRegs:$rd),
965             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
966             "mov$cond %fcc0, $simm11, $rd",
967             [(set i32:$rd,
968                    (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
969  }
970
971  let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
972    def FMOVS_ICC
973      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
974             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
975             "fmovs$cond %icc, $rs2, $rd",
976             [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
977    def FMOVD_ICC
978      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
979               (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
980               "fmovd$cond %icc, $rs2, $rd",
981               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
982    def FMOVQ_ICC
983      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
984               (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
985               "fmovq$cond %icc, $rs2, $rd",
986               [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
987               Requires<[HasHardQuad]>;
988  }
989
990  let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
991    def FMOVS_FCC
992      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
993             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
994             "fmovs$cond %fcc0, $rs2, $rd",
995             [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
996    def FMOVD_FCC
997      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
998             (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
999             "fmovd$cond %fcc0, $rs2, $rd",
1000             [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
1001    def FMOVQ_FCC
1002      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1003             (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1004             "fmovq$cond %fcc0, $rs2, $rd",
1005             [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
1006             Requires<[HasHardQuad]>;
1007  }
1008
1009}
1010
1011// Floating-Point Move Instructions, p. 164 of the V9 manual.
1012let Predicates = [HasV9] in {
1013  def FMOVD : F3_3u<2, 0b110100, 0b000000010,
1014                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1015                   "fmovd $rs2, $rd", []>;
1016  def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
1017                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1018                   "fmovq $rs2, $rd", []>,
1019                   Requires<[HasHardQuad]>;
1020  def FNEGD : F3_3u<2, 0b110100, 0b000000110,
1021                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1022                   "fnegd $rs2, $rd",
1023                   [(set f64:$rd, (fneg f64:$rs2))]>;
1024  def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
1025                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1026                   "fnegq $rs2, $rd",
1027                   [(set f128:$rd, (fneg f128:$rs2))]>,
1028                   Requires<[HasHardQuad]>;
1029  def FABSD : F3_3u<2, 0b110100, 0b000001010,
1030                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1031                   "fabsd $rs2, $rd",
1032                   [(set f64:$rd, (fabs f64:$rs2))]>;
1033  def FABSQ : F3_3u<2, 0b110100, 0b000001011,
1034                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1035                   "fabsq $rs2, $rd",
1036                   [(set f128:$rd, (fabs f128:$rs2))]>,
1037                   Requires<[HasHardQuad]>;
1038}
1039
1040// Floating-point compare instruction with %fcc0-%fcc3.
1041def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001,
1042               (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1043               "fcmps $rd, $rs1, $rs2", []>;
1044def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010,
1045                (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1046                "fcmpd $rd, $rs1, $rs2", []>;
1047def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
1048                (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1049                "fcmpq $rd, $rs1, $rs2", []>,
1050                 Requires<[HasHardQuad]>;
1051
1052let hasSideEffects = 1 in {
1053  def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101,
1054                   (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1055                   "fcmpes $rd, $rs1, $rs2", []>;
1056  def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110,
1057                   (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1058                   "fcmped $rd, $rs1, $rs2", []>;
1059  def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111,
1060                   (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1061                   "fcmpeq $rd, $rs1, $rs2", []>,
1062                   Requires<[HasHardQuad]>;
1063}
1064
1065// Floating point conditional move instrucitons with %fcc0-%fcc3.
1066let Predicates = [HasV9] in {
1067  let Constraints = "$f = $rd", intcc = 0 in {
1068    def V9MOVFCCrr
1069      : F4_1<0b101100, (outs IntRegs:$rd),
1070             (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1071             "mov$cond $cc, $rs2, $rd", []>;
1072    def V9MOVFCCri
1073      : F4_2<0b101100, (outs IntRegs:$rd),
1074             (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1075             "mov$cond $cc, $simm11, $rd", []>;
1076    def V9FMOVS_FCC
1077      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1078             (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1079             "fmovs$cond $opf_cc, $rs2, $rd", []>;
1080    def V9FMOVD_FCC
1081      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1082             (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1083             "fmovd$cond $opf_cc, $rs2, $rd", []>;
1084    def V9FMOVQ_FCC
1085      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1086             (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1087             "fmovq$cond $opf_cc, $rs2, $rd", []>,
1088             Requires<[HasHardQuad]>;
1089  } // Constraints = "$f = $rd", ...
1090} // let Predicates = [hasV9]
1091
1092
1093// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
1094// the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
1095let rs1 = 0 in
1096  def POPCrr : F3_1<2, 0b101110,
1097                    (outs IntRegs:$dst), (ins IntRegs:$src),
1098                    "popc $src, $dst", []>, Requires<[HasV9]>;
1099def : Pat<(ctpop i32:$src),
1100          (POPCrr (SRLri $src, 0))>;
1101
1102// Atomic swap.
1103let hasSideEffects =1, rd = 0, rs1 = 0b01111, rs2 = 0 in
1104  def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
1105
1106let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
1107 def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13),
1108                    "membar $simm13", []>;
1109
1110let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
1111  def SWAPrr : F3_1<3, 0b001111,
1112                 (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
1113                 "swap [$addr], $dst",
1114                 [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
1115  def SWAPri : F3_2<3, 0b001111,
1116                 (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
1117                 "swap [$addr], $dst",
1118                 [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
1119}
1120
1121let Predicates = [HasV9], Constraints = "$swap = $rd" in
1122  def CASrr: F3_1_asi<3, 0b111100, 0b10000000,
1123                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1124                                     IntRegs:$swap),
1125                 "cas [$rs1], $rs2, $rd",
1126                 [(set i32:$rd,
1127                     (atomic_cmp_swap iPTR:$rs1, i32:$rs2, i32:$swap))]>;
1128
1129let Defs = [ICC] in {
1130defm TADDCC   : F3_12np<"taddcc",   0b100000>;
1131defm TSUBCC   : F3_12np<"tsubcc",   0b100001>;
1132
1133let hasSideEffects = 1 in {
1134  defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
1135  defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
1136}
1137}
1138
1139multiclass TRAP<string regStr> {
1140  def rr : TRAPSPrr<0b111010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2,
1141                                       CCOp:$cond),
1142              !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), []>;
1143  def ri : TRAPSPri<0b111010, (outs), (ins IntRegs:$rs1, i32imm:$imm,
1144                                      CCOp:$cond),
1145              !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), []>;
1146}
1147
1148let hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
1149  defm TICC : TRAP<"%icc">;
1150
1151//===----------------------------------------------------------------------===//
1152// Non-Instruction Patterns
1153//===----------------------------------------------------------------------===//
1154
1155// Small immediates.
1156def : Pat<(i32 simm13:$val),
1157          (ORri (i32 G0), imm:$val)>;
1158// Arbitrary immediates.
1159def : Pat<(i32 imm:$val),
1160          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
1161
1162
1163// Global addresses, constant pool entries
1164let Predicates = [Is32Bit] in {
1165
1166def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
1167def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
1168def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
1169def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
1170
1171// GlobalTLS addresses
1172def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
1173def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
1174def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1175          (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1176def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1177          (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1178
1179// Blockaddress
1180def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
1181def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
1182
1183// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
1184def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
1185def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
1186def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
1187                        (ADDri $r, tblockaddress:$in)>;
1188}
1189
1190// Calls:
1191def : Pat<(call tglobaladdr:$dst),
1192          (CALL tglobaladdr:$dst)>;
1193def : Pat<(call texternalsym:$dst),
1194          (CALL texternalsym:$dst)>;
1195
1196// Map integer extload's to zextloads.
1197def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1198def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1199def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1200def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1201def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1202def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1203
1204// zextload bool -> zextload byte
1205def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1206def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1207
1208// store 0, addr -> store %g0, addr
1209def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
1210def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
1211
1212// store bar for all atomic_fence in V8.
1213let Predicates = [HasNoV9] in
1214  def : Pat<(atomic_fence imm, imm), (STBAR)>;
1215
1216// atomic_load_32 addr -> load addr
1217def : Pat<(i32 (atomic_load ADDRrr:$src)), (LDrr ADDRrr:$src)>;
1218def : Pat<(i32 (atomic_load ADDRri:$src)), (LDri ADDRri:$src)>;
1219
1220// atomic_store_32 val, addr -> store val, addr
1221def : Pat<(atomic_store ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
1222def : Pat<(atomic_store ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
1223
1224
1225include "SparcInstr64Bit.td"
1226include "SparcInstrVIS.td"
1227include "SparcInstrAliases.td"
1228