1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19  // Transformation function: get the low 32 bits.
20  return getI32Imm((unsigned)N->getZExtValue());
21}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24  // Transformation function: get the low 8 bits.
25  return getI8Imm((uint8_t)N->getZExtValue());
26}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction.  This expands to code that looks like this:
33//     call  $next_inst
34//     popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37                      "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
47                           "#ADJCALLSTACKDOWN",
48                           [(X86callseq_start timm:$amt)]>,
49                          Requires<[NotLP64]>;
50def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51                           "#ADJCALLSTACKUP",
52                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53                          Requires<[NotLP64]>;
54}
55
56// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
57// a stack adjustment and the codegen must know that they may modify the stack
58// pointer before prolog-epilog rewriting occurs.
59// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
60// sub / add which can clobber EFLAGS.
61let Defs = [RSP, EFLAGS], Uses = [RSP] in {
62def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
63                           "#ADJCALLSTACKDOWN",
64                           [(X86callseq_start timm:$amt)]>,
65                          Requires<[IsLP64]>;
66def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
67                           "#ADJCALLSTACKUP",
68                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
69                          Requires<[IsLP64]>;
70}
71
72
73
74// x86-64 va_start lowering magic.
75let usesCustomInserter = 1, Defs = [EFLAGS] in {
76def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
77                              (outs),
78                              (ins GR8:$al,
79                                   i64imm:$regsavefi, i64imm:$offset,
80                                   variable_ops),
81                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
82                              [(X86vastart_save_xmm_regs GR8:$al,
83                                                         imm:$regsavefi,
84                                                         imm:$offset),
85                               (implicit EFLAGS)]>;
86
87// The VAARG_64 pseudo-instruction takes the address of the va_list,
88// and places the address of the next argument into a register.
89let Defs = [EFLAGS] in
90def VAARG_64 : I<0, Pseudo,
91                 (outs GR64:$dst),
92                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
93                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
94                 [(set GR64:$dst,
95                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
96                  (implicit EFLAGS)]>;
97
98// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
99// targets.  These calls are needed to probe the stack when allocating more than
100// 4k bytes in one go. Touching the stack at 4K increments is necessary to
101// ensure that the guard pages used by the OS virtual memory manager are
102// allocated in correct sequence.
103// The main point of having separate instruction are extra unmodelled effects
104// (compared to ordinary calls) like stack pointer change.
105
106let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
107  def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
108                     "# dynamic stack allocation",
109                     [(X86WinAlloca)]>;
110
111// When using segmented stacks these are lowered into instructions which first
112// check if the current stacklet has enough free memory. If it does, memory is
113// allocated by bumping the stack pointer. Otherwise memory is allocated from
114// the heap.
115
116let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
117def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
118                      "# variable sized alloca for segmented stacks",
119                      [(set GR32:$dst,
120                         (X86SegAlloca GR32:$size))]>,
121                    Requires<[NotLP64]>;
122
123let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
124def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
125                      "# variable sized alloca for segmented stacks",
126                      [(set GR64:$dst,
127                         (X86SegAlloca GR64:$size))]>,
128                    Requires<[In64BitMode]>;
129}
130
131// The MSVC runtime contains an _ftol2 routine for converting floating-point
132// to integer values. It has a strange calling convention: the input is
133// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
134// used as a temporary register. No other registers (aside from flags) are
135// touched.
136// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
137// variant is unnecessary.
138
139let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
140  def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
141                      "# win32 fptoui",
142                      [(X86WinFTOL RFP32:$src)]>,
143                    Requires<[Not64BitMode]>;
144
145  def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
146                      "# win32 fptoui",
147                      [(X86WinFTOL RFP64:$src)]>,
148                    Requires<[Not64BitMode]>;
149}
150
151//===----------------------------------------------------------------------===//
152// EH Pseudo Instructions
153//
154let SchedRW = [WriteSystem] in {
155let isTerminator = 1, isReturn = 1, isBarrier = 1,
156    hasCtrlDep = 1, isCodeGenOnly = 1 in {
157def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
158                    "ret\t#eh_return, addr: $addr",
159                    [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
160
161}
162
163let isTerminator = 1, isReturn = 1, isBarrier = 1,
164    hasCtrlDep = 1, isCodeGenOnly = 1 in {
165def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
166                     "ret\t#eh_return, addr: $addr",
167                     [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
168
169}
170
171let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
172    usesCustomInserter = 1 in {
173  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
174                            "#EH_SJLJ_SETJMP32",
175                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
176                          Requires<[Not64BitMode]>;
177  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
178                            "#EH_SJLJ_SETJMP64",
179                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
180                          Requires<[In64BitMode]>;
181  let isTerminator = 1 in {
182  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
183                            "#EH_SJLJ_LONGJMP32",
184                            [(X86eh_sjlj_longjmp addr:$buf)]>,
185                          Requires<[Not64BitMode]>;
186  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
187                            "#EH_SJLJ_LONGJMP64",
188                            [(X86eh_sjlj_longjmp addr:$buf)]>,
189                          Requires<[In64BitMode]>;
190  }
191}
192} // SchedRW
193
194let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
195  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
196                        "#EH_SjLj_Setup\t$dst", []>;
197}
198
199//===----------------------------------------------------------------------===//
200// Pseudo instructions used by unwind info.
201//
202let isPseudo = 1 in {
203  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
204                            "#SEH_PushReg $reg", []>;
205  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
206                            "#SEH_SaveReg $reg, $dst", []>;
207  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
208                            "#SEH_SaveXMM $reg, $dst", []>;
209  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
210                            "#SEH_StackAlloc $size", []>;
211  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
212                            "#SEH_SetFrame $reg, $offset", []>;
213  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
214                            "#SEH_PushFrame $mode", []>;
215  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
216                            "#SEH_EndPrologue", []>;
217  def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
218                            "#SEH_Epilogue", []>;
219}
220
221//===----------------------------------------------------------------------===//
222// Pseudo instructions used by segmented stacks.
223//
224
225// This is lowered into a RET instruction by MCInstLower.  We need
226// this so that we don't have to have a MachineBasicBlock which ends
227// with a RET and also has successors.
228let isPseudo = 1 in {
229def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
230                          "", []>;
231
232// This instruction is lowered to a RET followed by a MOV.  The two
233// instructions are not generated on a higher level since then the
234// verifier sees a MachineBasicBlock ending with a non-terminator.
235def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
236                                  "", []>;
237}
238
239//===----------------------------------------------------------------------===//
240// Alias Instructions
241//===----------------------------------------------------------------------===//
242
243// Alias instruction mapping movr0 to xor.
244// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
245let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
246    isPseudo = 1 in
247def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
248                 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
249
250// Other widths can also make use of the 32-bit xor, which may have a smaller
251// encoding and avoid partial register updates.
252def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
253def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
254def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
255  let AddedComplexity = 20;
256}
257
258// Materialize i64 constant where top 32-bits are zero. This could theoretically
259// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
260// that would make it more difficult to rematerialize.
261let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
262    isCodeGenOnly = 1, hasSideEffects = 0 in
263def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
264                     "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
265
266// This 64-bit pseudo-move can be used for both a 64-bit constant that is
267// actually the zero-extension of a 32-bit constant, and for labels in the
268// x86-64 small code model.
269def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
270
271let AddedComplexity = 1 in
272def : Pat<(i64 mov64imm32:$src),
273          (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
274
275// Use sbb to materialize carry bit.
276let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
277// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
278// However, Pat<> can't replicate the destination reg into the inputs of the
279// result.
280def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
281                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
282def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
283                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
284def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
285                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
286def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
287                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
288} // isCodeGenOnly
289
290
291def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
292          (SETB_C16r)>;
293def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
294          (SETB_C32r)>;
295def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
296          (SETB_C64r)>;
297
298def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
299          (SETB_C16r)>;
300def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
301          (SETB_C32r)>;
302def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
303          (SETB_C64r)>;
304
305// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
306// will be eliminated and that the sbb can be extended up to a wider type.  When
307// this happens, it is great.  However, if we are left with an 8-bit sbb and an
308// and, we might as well just match it as a setb.
309def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
310          (SETBr)>;
311
312// (add OP, SETB) -> (adc OP, 0)
313def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
314          (ADC8ri GR8:$op, 0)>;
315def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
316          (ADC32ri8 GR32:$op, 0)>;
317def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
318          (ADC64ri8 GR64:$op, 0)>;
319
320// (sub OP, SETB) -> (sbb OP, 0)
321def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
322          (SBB8ri GR8:$op, 0)>;
323def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
324          (SBB32ri8 GR32:$op, 0)>;
325def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
326          (SBB64ri8 GR64:$op, 0)>;
327
328// (sub OP, SETCC_CARRY) -> (adc OP, 0)
329def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
330          (ADC8ri GR8:$op, 0)>;
331def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
332          (ADC32ri8 GR32:$op, 0)>;
333def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
334          (ADC64ri8 GR64:$op, 0)>;
335
336//===----------------------------------------------------------------------===//
337// String Pseudo Instructions
338//
339let SchedRW = [WriteMicrocoded] in {
340let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
341def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
342                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
343                   Requires<[Not64BitMode]>;
344def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
345                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
346                   Requires<[Not64BitMode]>;
347def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
348                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
349                   Requires<[Not64BitMode]>;
350}
351
352let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
353def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
354                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
355                   Requires<[In64BitMode]>;
356def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
357                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
358                   Requires<[In64BitMode]>;
359def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
360                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
361                   Requires<[In64BitMode]>;
362def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
363                    [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
364                   Requires<[In64BitMode]>;
365}
366
367// FIXME: Should use "(X86rep_stos AL)" as the pattern.
368let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
369  let Uses = [AL,ECX,EDI] in
370  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
371                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
372                     Requires<[Not64BitMode]>;
373  let Uses = [AX,ECX,EDI] in
374  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
375                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
376                     Requires<[Not64BitMode]>;
377  let Uses = [EAX,ECX,EDI] in
378  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
379                      [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
380                     Requires<[Not64BitMode]>;
381}
382
383let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
384  let Uses = [AL,RCX,RDI] in
385  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
386                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
387                     Requires<[In64BitMode]>;
388  let Uses = [AX,RCX,RDI] in
389  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
390                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
391                     Requires<[In64BitMode]>;
392  let Uses = [RAX,RCX,RDI] in
393  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
394                      [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
395                     Requires<[In64BitMode]>;
396
397  let Uses = [RAX,RCX,RDI] in
398  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
399                      [(X86rep_stos i64)], IIC_REP_STOS>, REP,
400                     Requires<[In64BitMode]>;
401}
402} // SchedRW
403
404//===----------------------------------------------------------------------===//
405// Thread Local Storage Instructions
406//
407
408// ELF TLS Support
409// All calls clobber the non-callee saved registers. ESP is marked as
410// a use to prevent stack-pointer assignments that appear immediately
411// before calls from potentially appearing dead.
412let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
413            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
414            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
415            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
416            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
417    Uses = [ESP] in {
418def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
419                  "# TLS_addr32",
420                  [(X86tlsaddr tls32addr:$sym)]>,
421                  Requires<[Not64BitMode]>;
422def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
423                  "# TLS_base_addr32",
424                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
425                  Requires<[Not64BitMode]>;
426}
427
428// All calls clobber the non-callee saved registers. RSP is marked as
429// a use to prevent stack-pointer assignments that appear immediately
430// before calls from potentially appearing dead.
431let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
432            FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
433            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
434            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
435            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
436            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
437    Uses = [RSP] in {
438def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
439                   "# TLS_addr64",
440                  [(X86tlsaddr tls64addr:$sym)]>,
441                  Requires<[In64BitMode]>;
442def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
443                   "# TLS_base_addr64",
444                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
445                  Requires<[In64BitMode]>;
446}
447
448// Darwin TLS Support
449// For i386, the address of the thunk is passed on the stack, on return the
450// address of the variable is in %eax.  %ecx is trashed during the function
451// call.  All other registers are preserved.
452let Defs = [EAX, ECX, EFLAGS],
453    Uses = [ESP],
454    usesCustomInserter = 1 in
455def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
456                "# TLSCall_32",
457                [(X86TLSCall addr:$sym)]>,
458                Requires<[Not64BitMode]>;
459
460// For x86_64, the address of the thunk is passed in %rdi, on return
461// the address of the variable is in %rax.  All other registers are preserved.
462let Defs = [RAX, EFLAGS],
463    Uses = [RSP, RDI],
464    usesCustomInserter = 1 in
465def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
466                  "# TLSCall_64",
467                  [(X86TLSCall addr:$sym)]>,
468                  Requires<[In64BitMode]>;
469
470
471//===----------------------------------------------------------------------===//
472// Conditional Move Pseudo Instructions
473
474// X86 doesn't have 8-bit conditional moves. Use a customInserter to
475// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
476// however that requires promoting the operands, and can induce additional
477// i8 register pressure.
478let usesCustomInserter = 1, Uses = [EFLAGS] in {
479def CMOV_GR8 : I<0, Pseudo,
480                 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
481                 "#CMOV_GR8 PSEUDO!",
482                 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
483                                          imm:$cond, EFLAGS))]>;
484
485let Predicates = [NoCMov] in {
486def CMOV_GR32 : I<0, Pseudo,
487                    (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
488                    "#CMOV_GR32* PSEUDO!",
489                    [(set GR32:$dst,
490                      (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
491def CMOV_GR16 : I<0, Pseudo,
492                    (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
493                    "#CMOV_GR16* PSEUDO!",
494                    [(set GR16:$dst,
495                      (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
496} // Predicates = [NoCMov]
497
498// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
499// SSE1.
500let Predicates = [FPStackf32] in
501def CMOV_RFP32 : I<0, Pseudo,
502                    (outs RFP32:$dst),
503                    (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
504                    "#CMOV_RFP32 PSEUDO!",
505                    [(set RFP32:$dst,
506                      (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
507                                                  EFLAGS))]>;
508// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
509// SSE2.
510let Predicates = [FPStackf64] in
511def CMOV_RFP64 : I<0, Pseudo,
512                    (outs RFP64:$dst),
513                    (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
514                    "#CMOV_RFP64 PSEUDO!",
515                    [(set RFP64:$dst,
516                      (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
517                                                  EFLAGS))]>;
518def CMOV_RFP80 : I<0, Pseudo,
519                    (outs RFP80:$dst),
520                    (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
521                    "#CMOV_RFP80 PSEUDO!",
522                    [(set RFP80:$dst,
523                      (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
524                                                  EFLAGS))]>;
525} // UsesCustomInserter = 1, Uses = [EFLAGS]
526
527
528//===----------------------------------------------------------------------===//
529// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
530//===----------------------------------------------------------------------===//
531
532// FIXME: Use normal instructions and add lock prefix dynamically.
533
534// Memory barriers
535
536// TODO: Get this to fold the constant into the instruction.
537let isCodeGenOnly = 1, Defs = [EFLAGS] in
538def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
539                      "or{l}\t{$zero, $dst|$dst, $zero}",
540                      [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
541                    Sched<[WriteALULd, WriteRMW]>;
542
543let hasSideEffects = 1 in
544def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
545                     "#MEMBARRIER",
546                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;
547
548// RegOpc corresponds to the mr version of the instruction
549// ImmOpc corresponds to the mi version of the instruction
550// ImmOpc8 corresponds to the mi8 version of the instruction
551// ImmMod corresponds to the instruction format of the mi and mi8 versions
552multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
553                           Format ImmMod, string mnemonic> {
554let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
555    SchedRW = [WriteALULd, WriteRMW] in {
556
557def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
558                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
559                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
560                  !strconcat(mnemonic, "{b}\t",
561                             "{$src2, $dst|$dst, $src2}"),
562                  [], IIC_ALU_NONMEM>, LOCK;
563def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
564                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
565                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
566                   !strconcat(mnemonic, "{w}\t",
567                              "{$src2, $dst|$dst, $src2}"),
568                   [], IIC_ALU_NONMEM>, OpSize16, LOCK;
569def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
570                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
571                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
572                   !strconcat(mnemonic, "{l}\t",
573                              "{$src2, $dst|$dst, $src2}"),
574                   [], IIC_ALU_NONMEM>, OpSize32, LOCK;
575def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
576                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
577                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
578                    !strconcat(mnemonic, "{q}\t",
579                               "{$src2, $dst|$dst, $src2}"),
580                    [], IIC_ALU_NONMEM>, LOCK;
581
582def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
583                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
584                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
585                    !strconcat(mnemonic, "{b}\t",
586                               "{$src2, $dst|$dst, $src2}"),
587                    [], IIC_ALU_MEM>, LOCK;
588
589def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
590                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
591                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
592                      !strconcat(mnemonic, "{w}\t",
593                                 "{$src2, $dst|$dst, $src2}"),
594                      [], IIC_ALU_MEM>, OpSize16, LOCK;
595
596def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
597                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
598                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
599                      !strconcat(mnemonic, "{l}\t",
600                                 "{$src2, $dst|$dst, $src2}"),
601                      [], IIC_ALU_MEM>, OpSize32, LOCK;
602
603def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
604                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
605                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
606                          !strconcat(mnemonic, "{q}\t",
607                                     "{$src2, $dst|$dst, $src2}"),
608                          [], IIC_ALU_MEM>, LOCK;
609
610def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
611                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
612                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
613                      !strconcat(mnemonic, "{w}\t",
614                                 "{$src2, $dst|$dst, $src2}"),
615                      [], IIC_ALU_MEM>, OpSize16, LOCK;
616def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
617                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
618                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
619                      !strconcat(mnemonic, "{l}\t",
620                                 "{$src2, $dst|$dst, $src2}"),
621                      [], IIC_ALU_MEM>, OpSize32, LOCK;
622def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
623                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
624                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
625                       !strconcat(mnemonic, "{q}\t",
626                                  "{$src2, $dst|$dst, $src2}"),
627                       [], IIC_ALU_MEM>, LOCK;
628
629}
630
631}
632
633defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
634defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
635defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
636defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
637defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
638
639// Optimized codegen when the non-memory output is not used.
640multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
641                          string mnemonic> {
642let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
643    SchedRW = [WriteALULd, WriteRMW] in {
644
645def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
646                 !strconcat(mnemonic, "{b}\t$dst"),
647                 [], IIC_UNARY_MEM>, LOCK;
648def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
649                 !strconcat(mnemonic, "{w}\t$dst"),
650                 [], IIC_UNARY_MEM>, OpSize16, LOCK;
651def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
652                 !strconcat(mnemonic, "{l}\t$dst"),
653                 [], IIC_UNARY_MEM>, OpSize32, LOCK;
654def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
655                  !strconcat(mnemonic, "{q}\t$dst"),
656                  [], IIC_UNARY_MEM>, LOCK;
657}
658}
659
660defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
661defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
662
663// Atomic compare and swap.
664multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
665                         SDPatternOperator frag, X86MemOperand x86memop,
666                         InstrItinClass itin> {
667let isCodeGenOnly = 1 in {
668  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
669               !strconcat(mnemonic, "\t$ptr"),
670               [(frag addr:$ptr)], itin>, TB, LOCK;
671}
672}
673
674multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
675                          string mnemonic, SDPatternOperator frag,
676                          InstrItinClass itin8, InstrItinClass itin> {
677let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
678  let Defs = [AL, EFLAGS], Uses = [AL] in
679  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
680                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
681                  [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
682  let Defs = [AX, EFLAGS], Uses = [AX] in
683  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
684                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
685                  [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
686  let Defs = [EAX, EFLAGS], Uses = [EAX] in
687  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
688                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
689                  [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
690  let Defs = [RAX, EFLAGS], Uses = [RAX] in
691  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
692                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
693                   [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
694}
695}
696
697let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
698    SchedRW = [WriteALULd, WriteRMW] in {
699defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
700                                X86cas8, i64mem,
701                                IIC_CMPX_LOCK_8B>;
702}
703
704let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
705    Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
706defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
707                                 X86cas16, i128mem,
708                                 IIC_CMPX_LOCK_16B>, REX_W;
709}
710
711defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
712                               X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
713
714// Atomic exchange and add
715multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
716                             string frag,
717                             InstrItinClass itin8, InstrItinClass itin> {
718  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
719      SchedRW = [WriteALULd, WriteRMW] in {
720    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
721                    (ins GR8:$val, i8mem:$ptr),
722                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
723                    [(set GR8:$dst,
724                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
725                    itin8>;
726    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
727                    (ins GR16:$val, i16mem:$ptr),
728                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
729                    [(set
730                       GR16:$dst,
731                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
732                    itin>, OpSize16;
733    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
734                    (ins GR32:$val, i32mem:$ptr),
735                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
736                    [(set
737                       GR32:$dst,
738                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
739                    itin>, OpSize32;
740    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
741                     (ins GR64:$val, i64mem:$ptr),
742                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
743                     [(set
744                        GR64:$dst,
745                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
746                     itin>;
747  }
748}
749
750defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
751                               IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
752             TB, LOCK;
753
754/* The following multiclass tries to make sure that in code like
755 *    x.store (immediate op x.load(acquire), release)
756 * an operation directly on memory is generated instead of wasting a register.
757 * It is not automatic as atomic_store/load are only lowered to MOV instructions
758 * extremely late to prevent them from being accidentally reordered in the backend
759 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
760 */
761multiclass RELEASE_BINOP_MI<string op> {
762    def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
763        "#RELEASE_BINOP PSEUDO!",
764        [(atomic_store_8 addr:$dst, (!cast<PatFrag>(op)
765            (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
766    // NAME#16 is not generated as 16-bit arithmetic instructions are considered
767    // costly and avoided as far as possible by this backend anyway
768    def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
769        "#RELEASE_BINOP PSEUDO!",
770        [(atomic_store_32 addr:$dst, (!cast<PatFrag>(op)
771            (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
772    def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
773        "#RELEASE_BINOP PSEUDO!",
774        [(atomic_store_64 addr:$dst, (!cast<PatFrag>(op)
775            (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
776}
777defm RELEASE_ADD : RELEASE_BINOP_MI<"add">;
778defm RELEASE_AND : RELEASE_BINOP_MI<"and">;
779defm RELEASE_OR  : RELEASE_BINOP_MI<"or">;
780defm RELEASE_XOR : RELEASE_BINOP_MI<"xor">;
781// Note: we don't deal with sub, because substractions of constants are
782// optimized into additions before this code can run
783
784multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
785    def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
786        "#RELEASE_UNOP PSEUDO!",
787        [(atomic_store_8 addr:$dst, dag8)]>;
788    def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
789        "#RELEASE_UNOP PSEUDO!",
790        [(atomic_store_16 addr:$dst, dag16)]>;
791    def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
792        "#RELEASE_UNOP PSEUDO!",
793        [(atomic_store_32 addr:$dst, dag32)]>;
794    def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
795        "#RELEASE_UNOP PSEUDO!",
796        [(atomic_store_64 addr:$dst, dag64)]>;
797}
798
799defm RELEASE_INC : RELEASE_UNOP<
800    (add (atomic_load_8  addr:$dst), (i8 1)),
801    (add (atomic_load_16 addr:$dst), (i16 1)),
802    (add (atomic_load_32 addr:$dst), (i32 1)),
803    (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
804defm RELEASE_DEC : RELEASE_UNOP<
805    (add (atomic_load_8  addr:$dst), (i8 -1)),
806    (add (atomic_load_16 addr:$dst), (i16 -1)),
807    (add (atomic_load_32 addr:$dst), (i32 -1)),
808    (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
809/*
810TODO: These don't work because the type inference of TableGen fails.
811TODO: find a way to fix it.
812defm RELEASE_NEG : RELEASE_UNOP<
813    (ineg (atomic_load_8  addr:$dst)),
814    (ineg (atomic_load_16 addr:$dst)),
815    (ineg (atomic_load_32 addr:$dst)),
816    (ineg (atomic_load_64 addr:$dst))>;
817defm RELEASE_NOT : RELEASE_UNOP<
818    (not (atomic_load_8  addr:$dst)),
819    (not (atomic_load_16 addr:$dst)),
820    (not (atomic_load_32 addr:$dst)),
821    (not (atomic_load_64 addr:$dst))>;
822*/
823
824def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
825			"#RELEASE_MOV PSEUDO !",
826			[(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
827def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
828			"#RELEASE_MOV PSEUDO !",
829			[(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
830def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
831			"#RELEASE_MOV PSEUDO !",
832			[(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
833def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
834			"#RELEASE_MOV PSEUDO !",
835			[(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
836
837def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
838                        "#RELEASE_MOV PSEUDO!",
839                        [(atomic_store_8  addr:$dst, GR8 :$src)]>;
840def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
841                        "#RELEASE_MOV PSEUDO!",
842                        [(atomic_store_16 addr:$dst, GR16:$src)]>;
843def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
844                        "#RELEASE_MOV PSEUDO!",
845                        [(atomic_store_32 addr:$dst, GR32:$src)]>;
846def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
847                        "#RELEASE_MOV PSEUDO!",
848                        [(atomic_store_64 addr:$dst, GR64:$src)]>;
849
850def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
851                      "#ACQUIRE_MOV PSEUDO!",
852                      [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
853def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
854                      "#ACQUIRE_MOV PSEUDO!",
855                      [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
856def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
857                      "#ACQUIRE_MOV PSEUDO!",
858                      [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
859def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
860                      "#ACQUIRE_MOV PSEUDO!",
861                      [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
862//===----------------------------------------------------------------------===//
863// Conditional Move Pseudo Instructions.
864//===----------------------------------------------------------------------===//
865
866// CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded after
867// instruction selection into a branch sequence.
868let Uses = [EFLAGS], usesCustomInserter = 1 in {
869  def CMOV_FR32 : I<0, Pseudo,
870                    (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
871                    "#CMOV_FR32 PSEUDO!",
872                    [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
873                                                  EFLAGS))]>;
874  def CMOV_FR64 : I<0, Pseudo,
875                    (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
876                    "#CMOV_FR64 PSEUDO!",
877                    [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
878                                                  EFLAGS))]>;
879  def CMOV_V4F32 : I<0, Pseudo,
880                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
881                    "#CMOV_V4F32 PSEUDO!",
882                    [(set VR128:$dst,
883                      (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
884                                          EFLAGS)))]>;
885  def CMOV_V2F64 : I<0, Pseudo,
886                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
887                    "#CMOV_V2F64 PSEUDO!",
888                    [(set VR128:$dst,
889                      (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
890                                          EFLAGS)))]>;
891  def CMOV_V2I64 : I<0, Pseudo,
892                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
893                    "#CMOV_V2I64 PSEUDO!",
894                    [(set VR128:$dst,
895                      (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
896                                          EFLAGS)))]>;
897  def CMOV_V8F32 : I<0, Pseudo,
898                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
899                    "#CMOV_V8F32 PSEUDO!",
900                    [(set VR256:$dst,
901                      (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
902                                          EFLAGS)))]>;
903  def CMOV_V4F64 : I<0, Pseudo,
904                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
905                    "#CMOV_V4F64 PSEUDO!",
906                    [(set VR256:$dst,
907                      (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
908                                          EFLAGS)))]>;
909  def CMOV_V4I64 : I<0, Pseudo,
910                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
911                    "#CMOV_V4I64 PSEUDO!",
912                    [(set VR256:$dst,
913                      (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
914                                          EFLAGS)))]>;
915  def CMOV_V8I64 : I<0, Pseudo,
916                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
917                    "#CMOV_V8I64 PSEUDO!",
918                    [(set VR512:$dst,
919                      (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
920                                          EFLAGS)))]>;
921  def CMOV_V8F64 : I<0, Pseudo,
922                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
923                    "#CMOV_V8F64 PSEUDO!",
924                    [(set VR512:$dst,
925                      (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
926                                          EFLAGS)))]>;
927  def CMOV_V16F32 : I<0, Pseudo,
928                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
929                    "#CMOV_V16F32 PSEUDO!",
930                    [(set VR512:$dst,
931                      (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond,
932                                          EFLAGS)))]>;
933}
934
935
936//===----------------------------------------------------------------------===//
937// DAG Pattern Matching Rules
938//===----------------------------------------------------------------------===//
939
940// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
941def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
942def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
943def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
944def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
945def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
946def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
947
948def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
949          (ADD32ri GR32:$src1, tconstpool:$src2)>;
950def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
951          (ADD32ri GR32:$src1, tjumptable:$src2)>;
952def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
953          (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
954def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
955          (ADD32ri GR32:$src1, texternalsym:$src2)>;
956def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
957          (ADD32ri GR32:$src1, tblockaddress:$src2)>;
958
959def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
960          (MOV32mi addr:$dst, tglobaladdr:$src)>;
961def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
962          (MOV32mi addr:$dst, texternalsym:$src)>;
963def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
964          (MOV32mi addr:$dst, tblockaddress:$src)>;
965
966// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
967// code model mode, should use 'movabs'.  FIXME: This is really a hack, the
968//  'movabs' predicate should handle this sort of thing.
969def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
970          (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
971def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
972          (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
973def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
974          (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
975def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
976          (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
977def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
978          (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
979
980// In kernel code model, we can get the address of a label
981// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
982// the MOV64ri32 should accept these.
983def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
984          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
985def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
986          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
987def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
988          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
989def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
990          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
991def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
992          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
993
994// If we have small model and -static mode, it is safe to store global addresses
995// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
996// for MOV64mi32 should handle this sort of thing.
997def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
998          (MOV64mi32 addr:$dst, tconstpool:$src)>,
999          Requires<[NearData, IsStatic]>;
1000def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1001          (MOV64mi32 addr:$dst, tjumptable:$src)>,
1002          Requires<[NearData, IsStatic]>;
1003def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1004          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1005          Requires<[NearData, IsStatic]>;
1006def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1007          (MOV64mi32 addr:$dst, texternalsym:$src)>,
1008          Requires<[NearData, IsStatic]>;
1009def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1010          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1011          Requires<[NearData, IsStatic]>;
1012
1013def : Pat<(i32 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
1014def : Pat<(i64 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV64ri texternalsym:$dst)>;
1015
1016// Calls
1017
1018// tls has some funny stuff here...
1019// This corresponds to movabs $foo@tpoff, %rax
1020def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1021          (MOV64ri32 tglobaltlsaddr :$dst)>;
1022// This corresponds to add $foo@tpoff, %rax
1023def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1024          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1025
1026
1027// Direct PC relative function call for small code model. 32-bit displacement
1028// sign extended to 64-bit.
1029def : Pat<(X86call (i64 tglobaladdr:$dst)),
1030          (CALL64pcrel32 tglobaladdr:$dst)>;
1031def : Pat<(X86call (i64 texternalsym:$dst)),
1032          (CALL64pcrel32 texternalsym:$dst)>;
1033
1034// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1035// can never use callee-saved registers. That is the purpose of the GR64_TC
1036// register classes.
1037//
1038// The only volatile register that is never used by the calling convention is
1039// %r11. This happens when calling a vararg function with 6 arguments.
1040//
1041// Match an X86tcret that uses less than 7 volatile registers.
1042def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1043                             (X86tcret node:$ptr, node:$off), [{
1044  // X86tcret args: (*chain, ptr, imm, regs..., glue)
1045  unsigned NumRegs = 0;
1046  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1047    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1048      return false;
1049  return true;
1050}]>;
1051
1052def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1053          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1054          Requires<[Not64BitMode]>;
1055
1056// FIXME: This is disabled for 32-bit PIC mode because the global base
1057// register which is part of the address mode may be assigned a
1058// callee-saved register.
1059def : Pat<(X86tcret (load addr:$dst), imm:$off),
1060          (TCRETURNmi addr:$dst, imm:$off)>,
1061          Requires<[Not64BitMode, IsNotPIC]>;
1062
1063def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1064          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1065          Requires<[Not64BitMode]>;
1066
1067def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1068          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1069          Requires<[Not64BitMode]>;
1070
1071def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1072          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1073          Requires<[In64BitMode]>;
1074
1075// Don't fold loads into X86tcret requiring more than 6 regs.
1076// There wouldn't be enough scratch registers for base+index.
1077def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1078          (TCRETURNmi64 addr:$dst, imm:$off)>,
1079          Requires<[In64BitMode]>;
1080
1081def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1082          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1083          Requires<[In64BitMode]>;
1084
1085def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1086          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1087          Requires<[In64BitMode]>;
1088
1089// Normal calls, with various flavors of addresses.
1090def : Pat<(X86call (i32 tglobaladdr:$dst)),
1091          (CALLpcrel32 tglobaladdr:$dst)>;
1092def : Pat<(X86call (i32 texternalsym:$dst)),
1093          (CALLpcrel32 texternalsym:$dst)>;
1094def : Pat<(X86call (i32 imm:$dst)),
1095          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1096
1097// Comparisons.
1098
1099// TEST R,R is smaller than CMP R,0
1100def : Pat<(X86cmp GR8:$src1, 0),
1101          (TEST8rr GR8:$src1, GR8:$src1)>;
1102def : Pat<(X86cmp GR16:$src1, 0),
1103          (TEST16rr GR16:$src1, GR16:$src1)>;
1104def : Pat<(X86cmp GR32:$src1, 0),
1105          (TEST32rr GR32:$src1, GR32:$src1)>;
1106def : Pat<(X86cmp GR64:$src1, 0),
1107          (TEST64rr GR64:$src1, GR64:$src1)>;
1108
1109// Conditional moves with folded loads with operands swapped and conditions
1110// inverted.
1111multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1112                  Instruction Inst64> {
1113  let Predicates = [HasCMov] in {
1114    def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1115              (Inst16 GR16:$src2, addr:$src1)>;
1116    def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1117              (Inst32 GR32:$src2, addr:$src1)>;
1118    def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1119              (Inst64 GR64:$src2, addr:$src1)>;
1120  }
1121}
1122
1123defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1124defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1125defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1126defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1127defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1128defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1129defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1130defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1131defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1132defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1133defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1134defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1135defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1136defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1137defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1138defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1139
1140// zextload bool -> zextload byte
1141def : Pat<(zextloadi8i1  addr:$src), (MOV8rm     addr:$src)>;
1142def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1143def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1144def : Pat<(zextloadi64i1 addr:$src),
1145          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1146
1147// extload bool -> extload byte
1148// When extloading from 16-bit and smaller memory locations into 64-bit
1149// registers, use zero-extending loads so that the entire 64-bit register is
1150// defined, avoiding partial-register updates.
1151
1152def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1153def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
1154def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1155def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
1156def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1157def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1158
1159// For other extloads, use subregs, since the high contents of the register are
1160// defined after an extload.
1161def : Pat<(extloadi64i1 addr:$src),
1162          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1163def : Pat<(extloadi64i8 addr:$src),
1164          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1165def : Pat<(extloadi64i16 addr:$src),
1166          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1167def : Pat<(extloadi64i32 addr:$src),
1168          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1169
1170// anyext. Define these to do an explicit zero-extend to
1171// avoid partial-register updates.
1172def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1173                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1174def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1175
1176// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1177def : Pat<(i32 (anyext GR16:$src)),
1178          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1179
1180def : Pat<(i64 (anyext GR8 :$src)),
1181          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1182def : Pat<(i64 (anyext GR16:$src)),
1183          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1184def : Pat<(i64 (anyext GR32:$src)),
1185          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1186
1187
1188// Any instruction that defines a 32-bit result leaves the high half of the
1189// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1190// be copying from a truncate. And x86's cmov doesn't do anything if the
1191// condition is false. But any other 32-bit operation will zero-extend
1192// up to 64 bits.
1193def def32 : PatLeaf<(i32 GR32:$src), [{
1194  return N->getOpcode() != ISD::TRUNCATE &&
1195         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1196         N->getOpcode() != ISD::CopyFromReg &&
1197         N->getOpcode() != ISD::AssertSext &&
1198         N->getOpcode() != X86ISD::CMOV;
1199}]>;
1200
1201// In the case of a 32-bit def that is known to implicitly zero-extend,
1202// we can use a SUBREG_TO_REG.
1203def : Pat<(i64 (zext def32:$src)),
1204          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1205
1206//===----------------------------------------------------------------------===//
1207// Pattern match OR as ADD
1208//===----------------------------------------------------------------------===//
1209
1210// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1211// 3-addressified into an LEA instruction to avoid copies.  However, we also
1212// want to finally emit these instructions as an or at the end of the code
1213// generator to make the generated code easier to read.  To do this, we select
1214// into "disjoint bits" pseudo ops.
1215
1216// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1217def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1218  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1219    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1220
1221  APInt KnownZero0, KnownOne0;
1222  CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1223  APInt KnownZero1, KnownOne1;
1224  CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1225  return (~KnownZero0 & ~KnownZero1) == 0;
1226}]>;
1227
1228
1229// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1230// Try this before the selecting to OR.
1231let AddedComplexity = 5, SchedRW = [WriteALU] in {
1232
1233let isConvertibleToThreeAddress = 1,
1234    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1235let isCommutable = 1 in {
1236def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1237                    "", // orw/addw REG, REG
1238                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1239def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1240                    "", // orl/addl REG, REG
1241                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1242def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1243                    "", // orq/addq REG, REG
1244                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1245} // isCommutable
1246
1247// NOTE: These are order specific, we want the ri8 forms to be listed
1248// first so that they are slightly preferred to the ri forms.
1249
1250def ADD16ri8_DB : I<0, Pseudo,
1251                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1252                    "", // orw/addw REG, imm8
1253                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1254def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1255                    "", // orw/addw REG, imm
1256                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1257
1258def ADD32ri8_DB : I<0, Pseudo,
1259                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1260                    "", // orl/addl REG, imm8
1261                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1262def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1263                    "", // orl/addl REG, imm
1264                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1265
1266
1267def ADD64ri8_DB : I<0, Pseudo,
1268                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1269                    "", // orq/addq REG, imm8
1270                    [(set GR64:$dst, (or_is_add GR64:$src1,
1271                                                i64immSExt8:$src2))]>;
1272def ADD64ri32_DB : I<0, Pseudo,
1273                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1274                      "", // orq/addq REG, imm
1275                      [(set GR64:$dst, (or_is_add GR64:$src1,
1276                                                  i64immSExt32:$src2))]>;
1277}
1278} // AddedComplexity, SchedRW
1279
1280
1281//===----------------------------------------------------------------------===//
1282// Some peepholes
1283//===----------------------------------------------------------------------===//
1284
1285// Odd encoding trick: -128 fits into an 8-bit immediate field while
1286// +128 doesn't, so in this special case use a sub instead of an add.
1287def : Pat<(add GR16:$src1, 128),
1288          (SUB16ri8 GR16:$src1, -128)>;
1289def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1290          (SUB16mi8 addr:$dst, -128)>;
1291
1292def : Pat<(add GR32:$src1, 128),
1293          (SUB32ri8 GR32:$src1, -128)>;
1294def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1295          (SUB32mi8 addr:$dst, -128)>;
1296
1297def : Pat<(add GR64:$src1, 128),
1298          (SUB64ri8 GR64:$src1, -128)>;
1299def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1300          (SUB64mi8 addr:$dst, -128)>;
1301
1302// The same trick applies for 32-bit immediate fields in 64-bit
1303// instructions.
1304def : Pat<(add GR64:$src1, 0x0000000080000000),
1305          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1306def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1307          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1308
1309// To avoid needing to materialize an immediate in a register, use a 32-bit and
1310// with implicit zero-extension instead of a 64-bit and if the immediate has at
1311// least 32 bits of leading zeros. If in addition the last 32 bits can be
1312// represented with a sign extension of a 8 bit constant, use that.
1313
1314def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1315          (SUBREG_TO_REG
1316            (i64 0),
1317            (AND32ri8
1318              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1319              (i32 (GetLo8XForm imm:$imm))),
1320            sub_32bit)>;
1321
1322def : Pat<(and GR64:$src, i64immZExt32:$imm),
1323          (SUBREG_TO_REG
1324            (i64 0),
1325            (AND32ri
1326              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1327              (i32 (GetLo32XForm imm:$imm))),
1328            sub_32bit)>;
1329
1330
1331// r & (2^16-1) ==> movz
1332def : Pat<(and GR32:$src1, 0xffff),
1333          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1334// r & (2^8-1) ==> movz
1335def : Pat<(and GR32:$src1, 0xff),
1336          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1337                                                             GR32_ABCD)),
1338                                      sub_8bit))>,
1339      Requires<[Not64BitMode]>;
1340// r & (2^8-1) ==> movz
1341def : Pat<(and GR16:$src1, 0xff),
1342           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1343            (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1344             sub_16bit)>,
1345      Requires<[Not64BitMode]>;
1346
1347// r & (2^32-1) ==> movz
1348def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1349          (SUBREG_TO_REG (i64 0),
1350                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1351                         sub_32bit)>;
1352// r & (2^16-1) ==> movz
1353def : Pat<(and GR64:$src, 0xffff),
1354          (SUBREG_TO_REG (i64 0),
1355                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1356                      sub_32bit)>;
1357// r & (2^8-1) ==> movz
1358def : Pat<(and GR64:$src, 0xff),
1359          (SUBREG_TO_REG (i64 0),
1360                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1361                         sub_32bit)>;
1362// r & (2^8-1) ==> movz
1363def : Pat<(and GR32:$src1, 0xff),
1364           (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1365      Requires<[In64BitMode]>;
1366// r & (2^8-1) ==> movz
1367def : Pat<(and GR16:$src1, 0xff),
1368           (EXTRACT_SUBREG (MOVZX32rr8 (i8
1369            (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1370      Requires<[In64BitMode]>;
1371
1372
1373// sext_inreg patterns
1374def : Pat<(sext_inreg GR32:$src, i16),
1375          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1376def : Pat<(sext_inreg GR32:$src, i8),
1377          (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1378                                                             GR32_ABCD)),
1379                                      sub_8bit))>,
1380      Requires<[Not64BitMode]>;
1381
1382def : Pat<(sext_inreg GR16:$src, i8),
1383           (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1384            (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1385             sub_16bit)>,
1386      Requires<[Not64BitMode]>;
1387
1388def : Pat<(sext_inreg GR64:$src, i32),
1389          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1390def : Pat<(sext_inreg GR64:$src, i16),
1391          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1392def : Pat<(sext_inreg GR64:$src, i8),
1393          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1394def : Pat<(sext_inreg GR32:$src, i8),
1395          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1396      Requires<[In64BitMode]>;
1397def : Pat<(sext_inreg GR16:$src, i8),
1398           (EXTRACT_SUBREG (MOVSX32rr8
1399            (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1400      Requires<[In64BitMode]>;
1401
1402// sext, sext_load, zext, zext_load
1403def: Pat<(i16 (sext GR8:$src)),
1404          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1405def: Pat<(sextloadi16i8 addr:$src),
1406          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1407def: Pat<(i16 (zext GR8:$src)),
1408          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1409def: Pat<(zextloadi16i8 addr:$src),
1410          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1411
1412// trunc patterns
1413def : Pat<(i16 (trunc GR32:$src)),
1414          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1415def : Pat<(i8 (trunc GR32:$src)),
1416          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1417                          sub_8bit)>,
1418      Requires<[Not64BitMode]>;
1419def : Pat<(i8 (trunc GR16:$src)),
1420          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1421                          sub_8bit)>,
1422      Requires<[Not64BitMode]>;
1423def : Pat<(i32 (trunc GR64:$src)),
1424          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1425def : Pat<(i16 (trunc GR64:$src)),
1426          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1427def : Pat<(i8 (trunc GR64:$src)),
1428          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1429def : Pat<(i8 (trunc GR32:$src)),
1430          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1431      Requires<[In64BitMode]>;
1432def : Pat<(i8 (trunc GR16:$src)),
1433          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1434      Requires<[In64BitMode]>;
1435
1436// h-register tricks
1437def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1438          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1439                          sub_8bit_hi)>,
1440      Requires<[Not64BitMode]>;
1441def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1442          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1443                          sub_8bit_hi)>,
1444      Requires<[Not64BitMode]>;
1445def : Pat<(srl GR16:$src, (i8 8)),
1446          (EXTRACT_SUBREG
1447            (MOVZX32rr8
1448              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1449                              sub_8bit_hi)),
1450            sub_16bit)>,
1451      Requires<[Not64BitMode]>;
1452def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1453          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1454                                                             GR16_ABCD)),
1455                                      sub_8bit_hi))>,
1456      Requires<[Not64BitMode]>;
1457def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1458          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1459                                                             GR16_ABCD)),
1460                                      sub_8bit_hi))>,
1461      Requires<[Not64BitMode]>;
1462def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1463          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1464                                                             GR32_ABCD)),
1465                                      sub_8bit_hi))>,
1466      Requires<[Not64BitMode]>;
1467def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1468          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1469                                                             GR32_ABCD)),
1470                                      sub_8bit_hi))>,
1471      Requires<[Not64BitMode]>;
1472
1473// h-register tricks.
1474// For now, be conservative on x86-64 and use an h-register extract only if the
1475// value is immediately zero-extended or stored, which are somewhat common
1476// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1477// from being allocated in the same instruction as the h register, as there's
1478// currently no way to describe this requirement to the register allocator.
1479
1480// h-register extract and zero-extend.
1481def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1482          (SUBREG_TO_REG
1483            (i64 0),
1484            (MOVZX32_NOREXrr8
1485              (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1486                              sub_8bit_hi)),
1487            sub_32bit)>;
1488def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1489          (MOVZX32_NOREXrr8
1490            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1491                            sub_8bit_hi))>,
1492      Requires<[In64BitMode]>;
1493def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1494          (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1495                                                                   GR32_ABCD)),
1496                                             sub_8bit_hi))>,
1497      Requires<[In64BitMode]>;
1498def : Pat<(srl GR16:$src, (i8 8)),
1499          (EXTRACT_SUBREG
1500            (MOVZX32_NOREXrr8
1501              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1502                              sub_8bit_hi)),
1503            sub_16bit)>,
1504      Requires<[In64BitMode]>;
1505def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1506          (MOVZX32_NOREXrr8
1507            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1508                            sub_8bit_hi))>,
1509      Requires<[In64BitMode]>;
1510def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1511          (MOVZX32_NOREXrr8
1512            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1513                            sub_8bit_hi))>,
1514      Requires<[In64BitMode]>;
1515def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1516          (SUBREG_TO_REG
1517            (i64 0),
1518            (MOVZX32_NOREXrr8
1519              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1520                              sub_8bit_hi)),
1521            sub_32bit)>;
1522def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1523          (SUBREG_TO_REG
1524            (i64 0),
1525            (MOVZX32_NOREXrr8
1526              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1527                              sub_8bit_hi)),
1528            sub_32bit)>;
1529
1530// h-register extract and store.
1531def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1532          (MOV8mr_NOREX
1533            addr:$dst,
1534            (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1535                            sub_8bit_hi))>;
1536def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1537          (MOV8mr_NOREX
1538            addr:$dst,
1539            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1540                            sub_8bit_hi))>,
1541      Requires<[In64BitMode]>;
1542def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1543          (MOV8mr_NOREX
1544            addr:$dst,
1545            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1546                            sub_8bit_hi))>,
1547      Requires<[In64BitMode]>;
1548
1549
1550// (shl x, 1) ==> (add x, x)
1551// Note that if x is undef (immediate or otherwise), we could theoretically
1552// end up with the two uses of x getting different values, producing a result
1553// where the least significant bit is not 0. However, the probability of this
1554// happening is considered low enough that this is officially not a
1555// "real problem".
1556def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1557def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1558def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1559def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1560
1561// Helper imms that check if a mask doesn't change significant shift bits.
1562def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
1563def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
1564
1565// Shift amount is implicitly masked.
1566multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1567  // (shift x (and y, 31)) ==> (shift x, y)
1568  def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1569            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1570  def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1571            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1572  def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1573            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1574  def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1575            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1576  def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1577            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1578  def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1579            (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1580
1581  // (shift x (and y, 63)) ==> (shift x, y)
1582  def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1583            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1584  def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1585            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1586}
1587
1588defm : MaskedShiftAmountPats<shl, "SHL">;
1589defm : MaskedShiftAmountPats<srl, "SHR">;
1590defm : MaskedShiftAmountPats<sra, "SAR">;
1591defm : MaskedShiftAmountPats<rotl, "ROL">;
1592defm : MaskedShiftAmountPats<rotr, "ROR">;
1593
1594// (anyext (setcc_carry)) -> (setcc_carry)
1595def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1596          (SETB_C16r)>;
1597def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1598          (SETB_C32r)>;
1599def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1600          (SETB_C32r)>;
1601
1602
1603
1604
1605//===----------------------------------------------------------------------===//
1606// EFLAGS-defining Patterns
1607//===----------------------------------------------------------------------===//
1608
1609// add reg, reg
1610def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1611def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1612def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1613
1614// add reg, mem
1615def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1616          (ADD8rm GR8:$src1, addr:$src2)>;
1617def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1618          (ADD16rm GR16:$src1, addr:$src2)>;
1619def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1620          (ADD32rm GR32:$src1, addr:$src2)>;
1621
1622// add reg, imm
1623def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1624def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1625def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1626def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1627          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1628def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1629          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1630
1631// sub reg, reg
1632def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1633def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1634def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1635
1636// sub reg, mem
1637def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1638          (SUB8rm GR8:$src1, addr:$src2)>;
1639def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1640          (SUB16rm GR16:$src1, addr:$src2)>;
1641def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1642          (SUB32rm GR32:$src1, addr:$src2)>;
1643
1644// sub reg, imm
1645def : Pat<(sub GR8:$src1, imm:$src2),
1646          (SUB8ri GR8:$src1, imm:$src2)>;
1647def : Pat<(sub GR16:$src1, imm:$src2),
1648          (SUB16ri GR16:$src1, imm:$src2)>;
1649def : Pat<(sub GR32:$src1, imm:$src2),
1650          (SUB32ri GR32:$src1, imm:$src2)>;
1651def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1652          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1653def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1654          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1655
1656// sub 0, reg
1657def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
1658def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1659def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1660def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1661
1662// mul reg, reg
1663def : Pat<(mul GR16:$src1, GR16:$src2),
1664          (IMUL16rr GR16:$src1, GR16:$src2)>;
1665def : Pat<(mul GR32:$src1, GR32:$src2),
1666          (IMUL32rr GR32:$src1, GR32:$src2)>;
1667
1668// mul reg, mem
1669def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1670          (IMUL16rm GR16:$src1, addr:$src2)>;
1671def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1672          (IMUL32rm GR32:$src1, addr:$src2)>;
1673
1674// mul reg, imm
1675def : Pat<(mul GR16:$src1, imm:$src2),
1676          (IMUL16rri GR16:$src1, imm:$src2)>;
1677def : Pat<(mul GR32:$src1, imm:$src2),
1678          (IMUL32rri GR32:$src1, imm:$src2)>;
1679def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1680          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1681def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1682          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1683
1684// reg = mul mem, imm
1685def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1686          (IMUL16rmi addr:$src1, imm:$src2)>;
1687def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1688          (IMUL32rmi addr:$src1, imm:$src2)>;
1689def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1690          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1691def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1692          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1693
1694// Patterns for nodes that do not produce flags, for instructions that do.
1695
1696// addition
1697def : Pat<(add GR64:$src1, GR64:$src2),
1698          (ADD64rr GR64:$src1, GR64:$src2)>;
1699def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1700          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1701def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1702          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1703def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1704          (ADD64rm GR64:$src1, addr:$src2)>;
1705
1706// subtraction
1707def : Pat<(sub GR64:$src1, GR64:$src2),
1708          (SUB64rr GR64:$src1, GR64:$src2)>;
1709def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1710          (SUB64rm GR64:$src1, addr:$src2)>;
1711def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1712          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1713def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1714          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1715
1716// Multiply
1717def : Pat<(mul GR64:$src1, GR64:$src2),
1718          (IMUL64rr GR64:$src1, GR64:$src2)>;
1719def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1720          (IMUL64rm GR64:$src1, addr:$src2)>;
1721def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1722          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1723def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1724          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1725def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1726          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1727def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1728          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1729
1730// Increment/Decrement reg.
1731// Do not make INC/DEC if it is slow
1732let Predicates = [NotSlowIncDec] in {
1733  def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
1734  def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
1735  def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
1736  def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
1737  def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
1738  def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1739  def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1740  def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1741}
1742
1743// or reg/reg.
1744def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1745def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1746def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1747def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1748
1749// or reg/mem
1750def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1751          (OR8rm GR8:$src1, addr:$src2)>;
1752def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1753          (OR16rm GR16:$src1, addr:$src2)>;
1754def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1755          (OR32rm GR32:$src1, addr:$src2)>;
1756def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1757          (OR64rm GR64:$src1, addr:$src2)>;
1758
1759// or reg/imm
1760def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1761def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1762def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1763def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1764          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1765def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1766          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1767def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1768          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1769def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1770          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1771
1772// xor reg/reg
1773def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
1774def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1775def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1776def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1777
1778// xor reg/mem
1779def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1780          (XOR8rm GR8:$src1, addr:$src2)>;
1781def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1782          (XOR16rm GR16:$src1, addr:$src2)>;
1783def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1784          (XOR32rm GR32:$src1, addr:$src2)>;
1785def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1786          (XOR64rm GR64:$src1, addr:$src2)>;
1787
1788// xor reg/imm
1789def : Pat<(xor GR8:$src1, imm:$src2),
1790          (XOR8ri GR8:$src1, imm:$src2)>;
1791def : Pat<(xor GR16:$src1, imm:$src2),
1792          (XOR16ri GR16:$src1, imm:$src2)>;
1793def : Pat<(xor GR32:$src1, imm:$src2),
1794          (XOR32ri GR32:$src1, imm:$src2)>;
1795def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1796          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1797def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1798          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1799def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1800          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1801def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1802          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1803
1804// and reg/reg
1805def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
1806def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1807def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1808def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1809
1810// and reg/mem
1811def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1812          (AND8rm GR8:$src1, addr:$src2)>;
1813def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1814          (AND16rm GR16:$src1, addr:$src2)>;
1815def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1816          (AND32rm GR32:$src1, addr:$src2)>;
1817def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1818          (AND64rm GR64:$src1, addr:$src2)>;
1819
1820// and reg/imm
1821def : Pat<(and GR8:$src1, imm:$src2),
1822          (AND8ri GR8:$src1, imm:$src2)>;
1823def : Pat<(and GR16:$src1, imm:$src2),
1824          (AND16ri GR16:$src1, imm:$src2)>;
1825def : Pat<(and GR32:$src1, imm:$src2),
1826          (AND32ri GR32:$src1, imm:$src2)>;
1827def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1828          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1829def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1830          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1831def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1832          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1833def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1834          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1835
1836// Bit scan instruction patterns to match explicit zero-undef behavior.
1837def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1838def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1839def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1840def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1841def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1842def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1843
1844// When HasMOVBE is enabled it is possible to get a non-legalized
1845// register-register 16 bit bswap. This maps it to a ROL instruction.
1846let Predicates = [HasMOVBE] in {
1847 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1848}
1849