1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitCall and visitInvoke functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombine.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/MemoryBuiltins.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/IR/Statepoint.h"
22 #include "llvm/Transforms/Utils/BuildLibCalls.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 using namespace llvm;
25 using namespace PatternMatch;
26 
27 #define DEBUG_TYPE "instcombine"
28 
29 STATISTIC(NumSimplified, "Number of library calls simplified");
30 
31 /// getPromotedType - Return the specified type promoted as it would be to pass
32 /// though a va_arg area.
getPromotedType(Type * Ty)33 static Type *getPromotedType(Type *Ty) {
34   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
35     if (ITy->getBitWidth() < 32)
36       return Type::getInt32Ty(Ty->getContext());
37   }
38   return Ty;
39 }
40 
41 /// reduceToSingleValueType - Given an aggregate type which ultimately holds a
42 /// single scalar element, like {{{type}}} or [1 x type], return type.
reduceToSingleValueType(Type * T)43 static Type *reduceToSingleValueType(Type *T) {
44   while (!T->isSingleValueType()) {
45     if (StructType *STy = dyn_cast<StructType>(T)) {
46       if (STy->getNumElements() == 1)
47         T = STy->getElementType(0);
48       else
49         break;
50     } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
51       if (ATy->getNumElements() == 1)
52         T = ATy->getElementType();
53       else
54         break;
55     } else
56       break;
57   }
58 
59   return T;
60 }
61 
SimplifyMemTransfer(MemIntrinsic * MI)62 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
63   unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, AC, MI, DT);
64   unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, AC, MI, DT);
65   unsigned MinAlign = std::min(DstAlign, SrcAlign);
66   unsigned CopyAlign = MI->getAlignment();
67 
68   if (CopyAlign < MinAlign) {
69     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
70                                              MinAlign, false));
71     return MI;
72   }
73 
74   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
75   // load/store.
76   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
77   if (!MemOpLength) return nullptr;
78 
79   // Source and destination pointer types are always "i8*" for intrinsic.  See
80   // if the size is something we can handle with a single primitive load/store.
81   // A single load+store correctly handles overlapping memory in the memmove
82   // case.
83   uint64_t Size = MemOpLength->getLimitedValue();
84   assert(Size && "0-sized memory transferring should be removed already.");
85 
86   if (Size > 8 || (Size&(Size-1)))
87     return nullptr;  // If not 1/2/4/8 bytes, exit.
88 
89   // Use an integer load+store unless we can find something better.
90   unsigned SrcAddrSp =
91     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
92   unsigned DstAddrSp =
93     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
94 
95   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
96   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
97   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
98 
99   // Memcpy forces the use of i8* for the source and destination.  That means
100   // that if you're using memcpy to move one double around, you'll get a cast
101   // from double* to i8*.  We'd much rather use a double load+store rather than
102   // an i64 load+store, here because this improves the odds that the source or
103   // dest address will be promotable.  See if we can find a better type than the
104   // integer datatype.
105   Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
106   MDNode *CopyMD = nullptr;
107   if (StrippedDest != MI->getArgOperand(0)) {
108     Type *SrcETy = cast<PointerType>(StrippedDest->getType())
109                                     ->getElementType();
110     if (DL && SrcETy->isSized() && DL->getTypeStoreSize(SrcETy) == Size) {
111       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
112       // down through these levels if so.
113       SrcETy = reduceToSingleValueType(SrcETy);
114 
115       if (SrcETy->isSingleValueType()) {
116         NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
117         NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
118 
119         // If the memcpy has metadata describing the members, see if we can
120         // get the TBAA tag describing our copy.
121         if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
122           if (M->getNumOperands() == 3 && M->getOperand(0) &&
123               mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
124               mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
125               M->getOperand(1) &&
126               mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
127               mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
128                   Size &&
129               M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
130             CopyMD = cast<MDNode>(M->getOperand(2));
131         }
132       }
133     }
134   }
135 
136   // If the memcpy/memmove provides better alignment info than we can
137   // infer, use it.
138   SrcAlign = std::max(SrcAlign, CopyAlign);
139   DstAlign = std::max(DstAlign, CopyAlign);
140 
141   Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
142   Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
143   LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
144   L->setAlignment(SrcAlign);
145   if (CopyMD)
146     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
147   StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
148   S->setAlignment(DstAlign);
149   if (CopyMD)
150     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
151 
152   // Set the size of the copy to 0, it will be deleted on the next iteration.
153   MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
154   return MI;
155 }
156 
SimplifyMemSet(MemSetInst * MI)157 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
158   unsigned Alignment = getKnownAlignment(MI->getDest(), DL, AC, MI, DT);
159   if (MI->getAlignment() < Alignment) {
160     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
161                                              Alignment, false));
162     return MI;
163   }
164 
165   // Extract the length and alignment and fill if they are constant.
166   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
167   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
168   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
169     return nullptr;
170   uint64_t Len = LenC->getLimitedValue();
171   Alignment = MI->getAlignment();
172   assert(Len && "0-sized memory setting should be removed already.");
173 
174   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
175   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
176     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
177 
178     Value *Dest = MI->getDest();
179     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
180     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
181     Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
182 
183     // Alignment 0 is identity for alignment 1 for memset, but not store.
184     if (Alignment == 0) Alignment = 1;
185 
186     // Extract the fill value and store.
187     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
188     StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
189                                         MI->isVolatile());
190     S->setAlignment(Alignment);
191 
192     // Set the size of the copy to 0, it will be deleted on the next iteration.
193     MI->setLength(Constant::getNullValue(LenC->getType()));
194     return MI;
195   }
196 
197   return nullptr;
198 }
199 
200 /// visitCallInst - CallInst simplification.  This mostly only handles folding
201 /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
202 /// the heavy lifting.
203 ///
visitCallInst(CallInst & CI)204 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
205   if (isFreeCall(&CI, TLI))
206     return visitFree(CI);
207 
208   // If the caller function is nounwind, mark the call as nounwind, even if the
209   // callee isn't.
210   if (CI.getParent()->getParent()->doesNotThrow() &&
211       !CI.doesNotThrow()) {
212     CI.setDoesNotThrow();
213     return &CI;
214   }
215 
216   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
217   if (!II) return visitCallSite(&CI);
218 
219   // Intrinsics cannot occur in an invoke, so handle them here instead of in
220   // visitCallSite.
221   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
222     bool Changed = false;
223 
224     // memmove/cpy/set of zero bytes is a noop.
225     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
226       if (NumBytes->isNullValue())
227         return EraseInstFromFunction(CI);
228 
229       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
230         if (CI->getZExtValue() == 1) {
231           // Replace the instruction with just byte operations.  We would
232           // transform other cases to loads/stores, but we don't know if
233           // alignment is sufficient.
234         }
235     }
236 
237     // No other transformations apply to volatile transfers.
238     if (MI->isVolatile())
239       return nullptr;
240 
241     // If we have a memmove and the source operation is a constant global,
242     // then the source and dest pointers can't alias, so we can change this
243     // into a call to memcpy.
244     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
245       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
246         if (GVSrc->isConstant()) {
247           Module *M = CI.getParent()->getParent()->getParent();
248           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
249           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
250                            CI.getArgOperand(1)->getType(),
251                            CI.getArgOperand(2)->getType() };
252           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
253           Changed = true;
254         }
255     }
256 
257     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
258       // memmove(x,x,size) -> noop.
259       if (MTI->getSource() == MTI->getDest())
260         return EraseInstFromFunction(CI);
261     }
262 
263     // If we can determine a pointer alignment that is bigger than currently
264     // set, update the alignment.
265     if (isa<MemTransferInst>(MI)) {
266       if (Instruction *I = SimplifyMemTransfer(MI))
267         return I;
268     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
269       if (Instruction *I = SimplifyMemSet(MSI))
270         return I;
271     }
272 
273     if (Changed) return II;
274   }
275 
276   switch (II->getIntrinsicID()) {
277   default: break;
278   case Intrinsic::objectsize: {
279     uint64_t Size;
280     if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
281       return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
282     return nullptr;
283   }
284   case Intrinsic::bswap: {
285     Value *IIOperand = II->getArgOperand(0);
286     Value *X = nullptr;
287 
288     // bswap(bswap(x)) -> x
289     if (match(IIOperand, m_BSwap(m_Value(X))))
290         return ReplaceInstUsesWith(CI, X);
291 
292     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
293     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
294       unsigned C = X->getType()->getPrimitiveSizeInBits() -
295         IIOperand->getType()->getPrimitiveSizeInBits();
296       Value *CV = ConstantInt::get(X->getType(), C);
297       Value *V = Builder->CreateLShr(X, CV);
298       return new TruncInst(V, IIOperand->getType());
299     }
300     break;
301   }
302 
303   case Intrinsic::powi:
304     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
305       // powi(x, 0) -> 1.0
306       if (Power->isZero())
307         return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
308       // powi(x, 1) -> x
309       if (Power->isOne())
310         return ReplaceInstUsesWith(CI, II->getArgOperand(0));
311       // powi(x, -1) -> 1/x
312       if (Power->isAllOnesValue())
313         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
314                                           II->getArgOperand(0));
315     }
316     break;
317   case Intrinsic::cttz: {
318     // If all bits below the first known one are known zero,
319     // this value is constant.
320     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
321     // FIXME: Try to simplify vectors of integers.
322     if (!IT) break;
323     uint32_t BitWidth = IT->getBitWidth();
324     APInt KnownZero(BitWidth, 0);
325     APInt KnownOne(BitWidth, 0);
326     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
327     unsigned TrailingZeros = KnownOne.countTrailingZeros();
328     APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
329     if ((Mask & KnownZero) == Mask)
330       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
331                                  APInt(BitWidth, TrailingZeros)));
332 
333     }
334     break;
335   case Intrinsic::ctlz: {
336     // If all bits above the first known one are known zero,
337     // this value is constant.
338     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
339     // FIXME: Try to simplify vectors of integers.
340     if (!IT) break;
341     uint32_t BitWidth = IT->getBitWidth();
342     APInt KnownZero(BitWidth, 0);
343     APInt KnownOne(BitWidth, 0);
344     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
345     unsigned LeadingZeros = KnownOne.countLeadingZeros();
346     APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
347     if ((Mask & KnownZero) == Mask)
348       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
349                                  APInt(BitWidth, LeadingZeros)));
350 
351     }
352     break;
353   case Intrinsic::uadd_with_overflow: {
354     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
355     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, II);
356     if (OR == OverflowResult::NeverOverflows)
357       return CreateOverflowTuple(II, Builder->CreateNUWAdd(LHS, RHS), false);
358     if (OR == OverflowResult::AlwaysOverflows)
359       return CreateOverflowTuple(II, Builder->CreateAdd(LHS, RHS), true);
360   }
361   // FALL THROUGH uadd into sadd
362   case Intrinsic::sadd_with_overflow:
363     // Canonicalize constants into the RHS.
364     if (isa<Constant>(II->getArgOperand(0)) &&
365         !isa<Constant>(II->getArgOperand(1))) {
366       Value *LHS = II->getArgOperand(0);
367       II->setArgOperand(0, II->getArgOperand(1));
368       II->setArgOperand(1, LHS);
369       return II;
370     }
371 
372     // X + undef -> undef
373     if (isa<UndefValue>(II->getArgOperand(1)))
374       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
375 
376     if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
377       // X + 0 -> {X, false}
378       if (RHS->isZero()) {
379         return CreateOverflowTuple(II, II->getArgOperand(0), false,
380                                     /*ReUseName*/false);
381       }
382     }
383 
384     // We can strength reduce reduce this signed add into a regular add if we
385     // can prove that it will never overflow.
386     if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow) {
387       Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
388       if (WillNotOverflowSignedAdd(LHS, RHS, II)) {
389         return CreateOverflowTuple(II, Builder->CreateNSWAdd(LHS, RHS), false);
390       }
391     }
392 
393     break;
394   case Intrinsic::usub_with_overflow:
395   case Intrinsic::ssub_with_overflow: {
396     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
397     // undef - X -> undef
398     // X - undef -> undef
399     if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
400       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
401 
402     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
403       // X - 0 -> {X, false}
404       if (ConstRHS->isZero()) {
405         return CreateOverflowTuple(II, LHS, false, /*ReUseName*/false);
406       }
407     }
408     if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
409       if (WillNotOverflowSignedSub(LHS, RHS, II)) {
410         return CreateOverflowTuple(II, Builder->CreateNSWSub(LHS, RHS), false);
411       }
412     } else {
413       if (WillNotOverflowUnsignedSub(LHS, RHS, II)) {
414         return CreateOverflowTuple(II, Builder->CreateNUWSub(LHS, RHS), false);
415       }
416     }
417     break;
418   }
419   case Intrinsic::umul_with_overflow: {
420     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
421     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, II);
422     if (OR == OverflowResult::NeverOverflows)
423       return CreateOverflowTuple(II, Builder->CreateNUWMul(LHS, RHS), false);
424     if (OR == OverflowResult::AlwaysOverflows)
425       return CreateOverflowTuple(II, Builder->CreateMul(LHS, RHS), true);
426   } // FALL THROUGH
427   case Intrinsic::smul_with_overflow:
428     // Canonicalize constants into the RHS.
429     if (isa<Constant>(II->getArgOperand(0)) &&
430         !isa<Constant>(II->getArgOperand(1))) {
431       Value *LHS = II->getArgOperand(0);
432       II->setArgOperand(0, II->getArgOperand(1));
433       II->setArgOperand(1, LHS);
434       return II;
435     }
436 
437     // X * undef -> undef
438     if (isa<UndefValue>(II->getArgOperand(1)))
439       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
440 
441     if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
442       // X*0 -> {0, false}
443       if (RHSI->isZero())
444         return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
445 
446       // X * 1 -> {X, false}
447       if (RHSI->equalsInt(1)) {
448         return CreateOverflowTuple(II, II->getArgOperand(0), false,
449                                     /*ReUseName*/false);
450       }
451     }
452     if (II->getIntrinsicID() == Intrinsic::smul_with_overflow) {
453       Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
454       if (WillNotOverflowSignedMul(LHS, RHS, II)) {
455         return CreateOverflowTuple(II, Builder->CreateNSWMul(LHS, RHS), false);
456       }
457     }
458     break;
459   case Intrinsic::minnum:
460   case Intrinsic::maxnum: {
461     Value *Arg0 = II->getArgOperand(0);
462     Value *Arg1 = II->getArgOperand(1);
463 
464     // fmin(x, x) -> x
465     if (Arg0 == Arg1)
466       return ReplaceInstUsesWith(CI, Arg0);
467 
468     const ConstantFP *C0 = dyn_cast<ConstantFP>(Arg0);
469     const ConstantFP *C1 = dyn_cast<ConstantFP>(Arg1);
470 
471     // Canonicalize constants into the RHS.
472     if (C0 && !C1) {
473       II->setArgOperand(0, Arg1);
474       II->setArgOperand(1, Arg0);
475       return II;
476     }
477 
478     // fmin(x, nan) -> x
479     if (C1 && C1->isNaN())
480       return ReplaceInstUsesWith(CI, Arg0);
481 
482     // This is the value because if undef were NaN, we would return the other
483     // value and cannot return a NaN unless both operands are.
484     //
485     // fmin(undef, x) -> x
486     if (isa<UndefValue>(Arg0))
487       return ReplaceInstUsesWith(CI, Arg1);
488 
489     // fmin(x, undef) -> x
490     if (isa<UndefValue>(Arg1))
491       return ReplaceInstUsesWith(CI, Arg0);
492 
493     Value *X = nullptr;
494     Value *Y = nullptr;
495     if (II->getIntrinsicID() == Intrinsic::minnum) {
496       // fmin(x, fmin(x, y)) -> fmin(x, y)
497       // fmin(y, fmin(x, y)) -> fmin(x, y)
498       if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
499         if (Arg0 == X || Arg0 == Y)
500           return ReplaceInstUsesWith(CI, Arg1);
501       }
502 
503       // fmin(fmin(x, y), x) -> fmin(x, y)
504       // fmin(fmin(x, y), y) -> fmin(x, y)
505       if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
506         if (Arg1 == X || Arg1 == Y)
507           return ReplaceInstUsesWith(CI, Arg0);
508       }
509 
510       // TODO: fmin(nnan x, inf) -> x
511       // TODO: fmin(nnan ninf x, flt_max) -> x
512       if (C1 && C1->isInfinity()) {
513         // fmin(x, -inf) -> -inf
514         if (C1->isNegative())
515           return ReplaceInstUsesWith(CI, Arg1);
516       }
517     } else {
518       assert(II->getIntrinsicID() == Intrinsic::maxnum);
519       // fmax(x, fmax(x, y)) -> fmax(x, y)
520       // fmax(y, fmax(x, y)) -> fmax(x, y)
521       if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
522         if (Arg0 == X || Arg0 == Y)
523           return ReplaceInstUsesWith(CI, Arg1);
524       }
525 
526       // fmax(fmax(x, y), x) -> fmax(x, y)
527       // fmax(fmax(x, y), y) -> fmax(x, y)
528       if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
529         if (Arg1 == X || Arg1 == Y)
530           return ReplaceInstUsesWith(CI, Arg0);
531       }
532 
533       // TODO: fmax(nnan x, -inf) -> x
534       // TODO: fmax(nnan ninf x, -flt_max) -> x
535       if (C1 && C1->isInfinity()) {
536         // fmax(x, inf) -> inf
537         if (!C1->isNegative())
538           return ReplaceInstUsesWith(CI, Arg1);
539       }
540     }
541     break;
542   }
543   case Intrinsic::ppc_altivec_lvx:
544   case Intrinsic::ppc_altivec_lvxl:
545     // Turn PPC lvx -> load if the pointer is known aligned.
546     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, AC, II, DT) >=
547         16) {
548       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
549                                          PointerType::getUnqual(II->getType()));
550       return new LoadInst(Ptr);
551     }
552     break;
553   case Intrinsic::ppc_vsx_lxvw4x:
554   case Intrinsic::ppc_vsx_lxvd2x: {
555     // Turn PPC VSX loads into normal loads.
556     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
557                                         PointerType::getUnqual(II->getType()));
558     return new LoadInst(Ptr, Twine(""), false, 1);
559   }
560   case Intrinsic::ppc_altivec_stvx:
561   case Intrinsic::ppc_altivec_stvxl:
562     // Turn stvx -> store if the pointer is known aligned.
563     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, AC, II, DT) >=
564         16) {
565       Type *OpPtrTy =
566         PointerType::getUnqual(II->getArgOperand(0)->getType());
567       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
568       return new StoreInst(II->getArgOperand(0), Ptr);
569     }
570     break;
571   case Intrinsic::ppc_vsx_stxvw4x:
572   case Intrinsic::ppc_vsx_stxvd2x: {
573     // Turn PPC VSX stores into normal stores.
574     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
575     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
576     return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
577   }
578   case Intrinsic::x86_sse_storeu_ps:
579   case Intrinsic::x86_sse2_storeu_pd:
580   case Intrinsic::x86_sse2_storeu_dq:
581     // Turn X86 storeu -> store if the pointer is known aligned.
582     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, AC, II, DT) >=
583         16) {
584       Type *OpPtrTy =
585         PointerType::getUnqual(II->getArgOperand(1)->getType());
586       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
587       return new StoreInst(II->getArgOperand(1), Ptr);
588     }
589     break;
590 
591   case Intrinsic::x86_sse_cvtss2si:
592   case Intrinsic::x86_sse_cvtss2si64:
593   case Intrinsic::x86_sse_cvttss2si:
594   case Intrinsic::x86_sse_cvttss2si64:
595   case Intrinsic::x86_sse2_cvtsd2si:
596   case Intrinsic::x86_sse2_cvtsd2si64:
597   case Intrinsic::x86_sse2_cvttsd2si:
598   case Intrinsic::x86_sse2_cvttsd2si64: {
599     // These intrinsics only demand the 0th element of their input vectors. If
600     // we can simplify the input based on that, do so now.
601     unsigned VWidth =
602       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
603     APInt DemandedElts(VWidth, 1);
604     APInt UndefElts(VWidth, 0);
605     if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
606                                               DemandedElts, UndefElts)) {
607       II->setArgOperand(0, V);
608       return II;
609     }
610     break;
611   }
612 
613   // Constant fold <A x Bi> << Ci.
614   // FIXME: We don't handle _dq because it's a shift of an i128, but is
615   // represented in the IR as <2 x i64>. A per element shift is wrong.
616   case Intrinsic::x86_sse2_psll_d:
617   case Intrinsic::x86_sse2_psll_q:
618   case Intrinsic::x86_sse2_psll_w:
619   case Intrinsic::x86_sse2_pslli_d:
620   case Intrinsic::x86_sse2_pslli_q:
621   case Intrinsic::x86_sse2_pslli_w:
622   case Intrinsic::x86_avx2_psll_d:
623   case Intrinsic::x86_avx2_psll_q:
624   case Intrinsic::x86_avx2_psll_w:
625   case Intrinsic::x86_avx2_pslli_d:
626   case Intrinsic::x86_avx2_pslli_q:
627   case Intrinsic::x86_avx2_pslli_w:
628   case Intrinsic::x86_sse2_psrl_d:
629   case Intrinsic::x86_sse2_psrl_q:
630   case Intrinsic::x86_sse2_psrl_w:
631   case Intrinsic::x86_sse2_psrli_d:
632   case Intrinsic::x86_sse2_psrli_q:
633   case Intrinsic::x86_sse2_psrli_w:
634   case Intrinsic::x86_avx2_psrl_d:
635   case Intrinsic::x86_avx2_psrl_q:
636   case Intrinsic::x86_avx2_psrl_w:
637   case Intrinsic::x86_avx2_psrli_d:
638   case Intrinsic::x86_avx2_psrli_q:
639   case Intrinsic::x86_avx2_psrli_w: {
640     // Simplify if count is constant. To 0 if >= BitWidth,
641     // otherwise to shl/lshr.
642     auto CDV = dyn_cast<ConstantDataVector>(II->getArgOperand(1));
643     auto CInt = dyn_cast<ConstantInt>(II->getArgOperand(1));
644     if (!CDV && !CInt)
645       break;
646     ConstantInt *Count;
647     if (CDV)
648       Count = cast<ConstantInt>(CDV->getElementAsConstant(0));
649     else
650       Count = CInt;
651 
652     auto Vec = II->getArgOperand(0);
653     auto VT = cast<VectorType>(Vec->getType());
654     if (Count->getZExtValue() >
655         VT->getElementType()->getPrimitiveSizeInBits() - 1)
656       return ReplaceInstUsesWith(
657           CI, ConstantAggregateZero::get(Vec->getType()));
658 
659     bool isPackedShiftLeft = true;
660     switch (II->getIntrinsicID()) {
661     default : break;
662     case Intrinsic::x86_sse2_psrl_d:
663     case Intrinsic::x86_sse2_psrl_q:
664     case Intrinsic::x86_sse2_psrl_w:
665     case Intrinsic::x86_sse2_psrli_d:
666     case Intrinsic::x86_sse2_psrli_q:
667     case Intrinsic::x86_sse2_psrli_w:
668     case Intrinsic::x86_avx2_psrl_d:
669     case Intrinsic::x86_avx2_psrl_q:
670     case Intrinsic::x86_avx2_psrl_w:
671     case Intrinsic::x86_avx2_psrli_d:
672     case Intrinsic::x86_avx2_psrli_q:
673     case Intrinsic::x86_avx2_psrli_w: isPackedShiftLeft = false; break;
674     }
675 
676     unsigned VWidth = VT->getNumElements();
677     // Get a constant vector of the same type as the first operand.
678     auto VTCI = ConstantInt::get(VT->getElementType(), Count->getZExtValue());
679     if (isPackedShiftLeft)
680       return BinaryOperator::CreateShl(Vec,
681           Builder->CreateVectorSplat(VWidth, VTCI));
682 
683     return BinaryOperator::CreateLShr(Vec,
684         Builder->CreateVectorSplat(VWidth, VTCI));
685   }
686 
687   case Intrinsic::x86_sse41_pmovsxbw:
688   case Intrinsic::x86_sse41_pmovsxwd:
689   case Intrinsic::x86_sse41_pmovsxdq:
690   case Intrinsic::x86_sse41_pmovzxbw:
691   case Intrinsic::x86_sse41_pmovzxwd:
692   case Intrinsic::x86_sse41_pmovzxdq: {
693     // pmov{s|z}x ignores the upper half of their input vectors.
694     unsigned VWidth =
695       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
696     unsigned LowHalfElts = VWidth / 2;
697     APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
698     APInt UndefElts(VWidth, 0);
699     if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
700                                                  InputDemandedElts,
701                                                  UndefElts)) {
702       II->setArgOperand(0, TmpV);
703       return II;
704     }
705     break;
706   }
707 
708   case Intrinsic::x86_sse4a_insertqi: {
709     // insertqi x, y, 64, 0 can just copy y's lower bits and leave the top
710     // ones undef
711     // TODO: eventually we should lower this intrinsic to IR
712     if (auto CIWidth = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
713       if (auto CIStart = dyn_cast<ConstantInt>(II->getArgOperand(3))) {
714         unsigned Index = CIStart->getZExtValue();
715         // From AMD documentation: "a value of zero in the field length is
716         // defined as length of 64".
717         unsigned Length = CIWidth->equalsInt(0) ? 64 : CIWidth->getZExtValue();
718 
719         // From AMD documentation: "If the sum of the bit index + length field
720         // is greater than 64, the results are undefined".
721 
722         // Note that both field index and field length are 8-bit quantities.
723         // Since variables 'Index' and 'Length' are unsigned values
724         // obtained from zero-extending field index and field length
725         // respectively, their sum should never wrap around.
726         if ((Index + Length) > 64)
727           return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
728 
729         if (Length == 64 && Index == 0) {
730           Value *Vec = II->getArgOperand(1);
731           Value *Undef = UndefValue::get(Vec->getType());
732           const uint32_t Mask[] = { 0, 2 };
733           return ReplaceInstUsesWith(
734               CI,
735               Builder->CreateShuffleVector(
736                   Vec, Undef, ConstantDataVector::get(
737                                   II->getContext(), makeArrayRef(Mask))));
738 
739         } else if (auto Source =
740                        dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
741           if (Source->hasOneUse() &&
742               Source->getArgOperand(1) == II->getArgOperand(1)) {
743             // If the source of the insert has only one use and it's another
744             // insert (and they're both inserting from the same vector), try to
745             // bundle both together.
746             auto CISourceWidth =
747                 dyn_cast<ConstantInt>(Source->getArgOperand(2));
748             auto CISourceStart =
749                 dyn_cast<ConstantInt>(Source->getArgOperand(3));
750             if (CISourceStart && CISourceWidth) {
751               unsigned Start = CIStart->getZExtValue();
752               unsigned Width = CIWidth->getZExtValue();
753               unsigned End = Start + Width;
754               unsigned SourceStart = CISourceStart->getZExtValue();
755               unsigned SourceWidth = CISourceWidth->getZExtValue();
756               unsigned SourceEnd = SourceStart + SourceWidth;
757               unsigned NewStart, NewWidth;
758               bool ShouldReplace = false;
759               if (Start <= SourceStart && SourceStart <= End) {
760                 NewStart = Start;
761                 NewWidth = std::max(End, SourceEnd) - NewStart;
762                 ShouldReplace = true;
763               } else if (SourceStart <= Start && Start <= SourceEnd) {
764                 NewStart = SourceStart;
765                 NewWidth = std::max(SourceEnd, End) - NewStart;
766                 ShouldReplace = true;
767               }
768 
769               if (ShouldReplace) {
770                 Constant *ConstantWidth = ConstantInt::get(
771                     II->getArgOperand(2)->getType(), NewWidth, false);
772                 Constant *ConstantStart = ConstantInt::get(
773                     II->getArgOperand(3)->getType(), NewStart, false);
774                 Value *Args[4] = { Source->getArgOperand(0),
775                                    II->getArgOperand(1), ConstantWidth,
776                                    ConstantStart };
777                 Module *M = CI.getParent()->getParent()->getParent();
778                 Value *F =
779                     Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
780                 return ReplaceInstUsesWith(CI, Builder->CreateCall(F, Args));
781               }
782             }
783           }
784         }
785       }
786     }
787     break;
788   }
789 
790   case Intrinsic::x86_sse41_pblendvb:
791   case Intrinsic::x86_sse41_blendvps:
792   case Intrinsic::x86_sse41_blendvpd:
793   case Intrinsic::x86_avx_blendv_ps_256:
794   case Intrinsic::x86_avx_blendv_pd_256:
795   case Intrinsic::x86_avx2_pblendvb: {
796     // Convert blendv* to vector selects if the mask is constant.
797     // This optimization is convoluted because the intrinsic is defined as
798     // getting a vector of floats or doubles for the ps and pd versions.
799     // FIXME: That should be changed.
800     Value *Mask = II->getArgOperand(2);
801     if (auto C = dyn_cast<ConstantDataVector>(Mask)) {
802       auto Tyi1 = Builder->getInt1Ty();
803       auto SelectorType = cast<VectorType>(Mask->getType());
804       auto EltTy = SelectorType->getElementType();
805       unsigned Size = SelectorType->getNumElements();
806       unsigned BitWidth =
807           EltTy->isFloatTy()
808               ? 32
809               : (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth());
810       assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) &&
811              "Wrong arguments for variable blend intrinsic");
812       SmallVector<Constant *, 32> Selectors;
813       for (unsigned I = 0; I < Size; ++I) {
814         // The intrinsics only read the top bit
815         uint64_t Selector;
816         if (BitWidth == 8)
817           Selector = C->getElementAsInteger(I);
818         else
819           Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue();
820         Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1)));
821       }
822       auto NewSelector = ConstantVector::get(Selectors);
823       return SelectInst::Create(NewSelector, II->getArgOperand(1),
824                                 II->getArgOperand(0), "blendv");
825     } else {
826       break;
827     }
828   }
829 
830   case Intrinsic::x86_avx_vpermilvar_ps:
831   case Intrinsic::x86_avx_vpermilvar_ps_256:
832   case Intrinsic::x86_avx_vpermilvar_pd:
833   case Intrinsic::x86_avx_vpermilvar_pd_256: {
834     // Convert vpermil* to shufflevector if the mask is constant.
835     Value *V = II->getArgOperand(1);
836     unsigned Size = cast<VectorType>(V->getType())->getNumElements();
837     assert(Size == 8 || Size == 4 || Size == 2);
838     uint32_t Indexes[8];
839     if (auto C = dyn_cast<ConstantDataVector>(V)) {
840       // The intrinsics only read one or two bits, clear the rest.
841       for (unsigned I = 0; I < Size; ++I) {
842         uint32_t Index = C->getElementAsInteger(I) & 0x3;
843         if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
844             II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
845           Index >>= 1;
846         Indexes[I] = Index;
847       }
848     } else if (isa<ConstantAggregateZero>(V)) {
849       for (unsigned I = 0; I < Size; ++I)
850         Indexes[I] = 0;
851     } else {
852       break;
853     }
854     // The _256 variants are a bit trickier since the mask bits always index
855     // into the corresponding 128 half. In order to convert to a generic
856     // shuffle, we have to make that explicit.
857     if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
858         II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
859       for (unsigned I = Size / 2; I < Size; ++I)
860         Indexes[I] += Size / 2;
861     }
862     auto NewC =
863         ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
864     auto V1 = II->getArgOperand(0);
865     auto V2 = UndefValue::get(V1->getType());
866     auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
867     return ReplaceInstUsesWith(CI, Shuffle);
868   }
869 
870   case Intrinsic::ppc_altivec_vperm:
871     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
872     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
873     // a vectorshuffle for little endian, we must undo the transformation
874     // performed on vec_perm in altivec.h.  That is, we must complement
875     // the permutation mask with respect to 31 and reverse the order of
876     // V1 and V2.
877     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
878       assert(Mask->getType()->getVectorNumElements() == 16 &&
879              "Bad type for intrinsic!");
880 
881       // Check that all of the elements are integer constants or undefs.
882       bool AllEltsOk = true;
883       for (unsigned i = 0; i != 16; ++i) {
884         Constant *Elt = Mask->getAggregateElement(i);
885         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
886           AllEltsOk = false;
887           break;
888         }
889       }
890 
891       if (AllEltsOk) {
892         // Cast the input vectors to byte vectors.
893         Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
894                                             Mask->getType());
895         Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
896                                             Mask->getType());
897         Value *Result = UndefValue::get(Op0->getType());
898 
899         // Only extract each element once.
900         Value *ExtractedElts[32];
901         memset(ExtractedElts, 0, sizeof(ExtractedElts));
902 
903         for (unsigned i = 0; i != 16; ++i) {
904           if (isa<UndefValue>(Mask->getAggregateElement(i)))
905             continue;
906           unsigned Idx =
907             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
908           Idx &= 31;  // Match the hardware behavior.
909           if (DL && DL->isLittleEndian())
910             Idx = 31 - Idx;
911 
912           if (!ExtractedElts[Idx]) {
913             Value *Op0ToUse = (DL && DL->isLittleEndian()) ? Op1 : Op0;
914             Value *Op1ToUse = (DL && DL->isLittleEndian()) ? Op0 : Op1;
915             ExtractedElts[Idx] =
916               Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
917                                             Builder->getInt32(Idx&15));
918           }
919 
920           // Insert this value into the result vector.
921           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
922                                                 Builder->getInt32(i));
923         }
924         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
925       }
926     }
927     break;
928 
929   case Intrinsic::arm_neon_vld1:
930   case Intrinsic::arm_neon_vld2:
931   case Intrinsic::arm_neon_vld3:
932   case Intrinsic::arm_neon_vld4:
933   case Intrinsic::arm_neon_vld2lane:
934   case Intrinsic::arm_neon_vld3lane:
935   case Intrinsic::arm_neon_vld4lane:
936   case Intrinsic::arm_neon_vst1:
937   case Intrinsic::arm_neon_vst2:
938   case Intrinsic::arm_neon_vst3:
939   case Intrinsic::arm_neon_vst4:
940   case Intrinsic::arm_neon_vst2lane:
941   case Intrinsic::arm_neon_vst3lane:
942   case Intrinsic::arm_neon_vst4lane: {
943     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, AC, II, DT);
944     unsigned AlignArg = II->getNumArgOperands() - 1;
945     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
946     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
947       II->setArgOperand(AlignArg,
948                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
949                                          MemAlign, false));
950       return II;
951     }
952     break;
953   }
954 
955   case Intrinsic::arm_neon_vmulls:
956   case Intrinsic::arm_neon_vmullu:
957   case Intrinsic::aarch64_neon_smull:
958   case Intrinsic::aarch64_neon_umull: {
959     Value *Arg0 = II->getArgOperand(0);
960     Value *Arg1 = II->getArgOperand(1);
961 
962     // Handle mul by zero first:
963     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
964       return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
965     }
966 
967     // Check for constant LHS & RHS - in this case we just simplify.
968     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
969                  II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
970     VectorType *NewVT = cast<VectorType>(II->getType());
971     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
972       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
973         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
974         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
975 
976         return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
977       }
978 
979       // Couldn't simplify - canonicalize constant to the RHS.
980       std::swap(Arg0, Arg1);
981     }
982 
983     // Handle mul by one:
984     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
985       if (ConstantInt *Splat =
986               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
987         if (Splat->isOne())
988           return CastInst::CreateIntegerCast(Arg0, II->getType(),
989                                              /*isSigned=*/!Zext);
990 
991     break;
992   }
993 
994   case Intrinsic::AMDGPU_rcp: {
995     if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
996       const APFloat &ArgVal = C->getValueAPF();
997       APFloat Val(ArgVal.getSemantics(), 1.0);
998       APFloat::opStatus Status = Val.divide(ArgVal,
999                                             APFloat::rmNearestTiesToEven);
1000       // Only do this if it was exact and therefore not dependent on the
1001       // rounding mode.
1002       if (Status == APFloat::opOK)
1003         return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
1004     }
1005 
1006     break;
1007   }
1008   case Intrinsic::stackrestore: {
1009     // If the save is right next to the restore, remove the restore.  This can
1010     // happen when variable allocas are DCE'd.
1011     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1012       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
1013         BasicBlock::iterator BI = SS;
1014         if (&*++BI == II)
1015           return EraseInstFromFunction(CI);
1016       }
1017     }
1018 
1019     // Scan down this block to see if there is another stack restore in the
1020     // same block without an intervening call/alloca.
1021     BasicBlock::iterator BI = II;
1022     TerminatorInst *TI = II->getParent()->getTerminator();
1023     bool CannotRemove = false;
1024     for (++BI; &*BI != TI; ++BI) {
1025       if (isa<AllocaInst>(BI)) {
1026         CannotRemove = true;
1027         break;
1028       }
1029       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
1030         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
1031           // If there is a stackrestore below this one, remove this one.
1032           if (II->getIntrinsicID() == Intrinsic::stackrestore)
1033             return EraseInstFromFunction(CI);
1034           // Otherwise, ignore the intrinsic.
1035         } else {
1036           // If we found a non-intrinsic call, we can't remove the stack
1037           // restore.
1038           CannotRemove = true;
1039           break;
1040         }
1041       }
1042     }
1043 
1044     // If the stack restore is in a return, resume, or unwind block and if there
1045     // are no allocas or calls between the restore and the return, nuke the
1046     // restore.
1047     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
1048       return EraseInstFromFunction(CI);
1049     break;
1050   }
1051   case Intrinsic::assume: {
1052     // Canonicalize assume(a && b) -> assume(a); assume(b);
1053     // Note: New assumption intrinsics created here are registered by
1054     // the InstCombineIRInserter object.
1055     Value *IIOperand = II->getArgOperand(0), *A, *B,
1056           *AssumeIntrinsic = II->getCalledValue();
1057     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
1058       Builder->CreateCall(AssumeIntrinsic, A, II->getName());
1059       Builder->CreateCall(AssumeIntrinsic, B, II->getName());
1060       return EraseInstFromFunction(*II);
1061     }
1062     // assume(!(a || b)) -> assume(!a); assume(!b);
1063     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
1064       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
1065                           II->getName());
1066       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
1067                           II->getName());
1068       return EraseInstFromFunction(*II);
1069     }
1070 
1071     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
1072     // (if assume is valid at the load)
1073     if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
1074       Value *LHS = ICmp->getOperand(0);
1075       Value *RHS = ICmp->getOperand(1);
1076       if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
1077           isa<LoadInst>(LHS) &&
1078           isa<Constant>(RHS) &&
1079           RHS->getType()->isPointerTy() &&
1080           cast<Constant>(RHS)->isNullValue()) {
1081         LoadInst* LI = cast<LoadInst>(LHS);
1082         if (isValidAssumeForContext(II, LI, DL, DT)) {
1083           MDNode *MD = MDNode::get(II->getContext(), None);
1084           LI->setMetadata(LLVMContext::MD_nonnull, MD);
1085           return EraseInstFromFunction(*II);
1086         }
1087       }
1088       // TODO: apply nonnull return attributes to calls and invokes
1089       // TODO: apply range metadata for range check patterns?
1090     }
1091     // If there is a dominating assume with the same condition as this one,
1092     // then this one is redundant, and should be removed.
1093     APInt KnownZero(1, 0), KnownOne(1, 0);
1094     computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
1095     if (KnownOne.isAllOnesValue())
1096       return EraseInstFromFunction(*II);
1097 
1098     break;
1099   }
1100   case Intrinsic::experimental_gc_relocate: {
1101     // Translate facts known about a pointer before relocating into
1102     // facts about the relocate value, while being careful to
1103     // preserve relocation semantics.
1104     GCRelocateOperands Operands(II);
1105     Value *DerivedPtr = Operands.derivedPtr();
1106 
1107     // Remove the relocation if unused, note that this check is required
1108     // to prevent the cases below from looping forever.
1109     if (II->use_empty())
1110       return EraseInstFromFunction(*II);
1111 
1112     // Undef is undef, even after relocation.
1113     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
1114     // most practical collectors, but there was discussion in the review thread
1115     // about whether it was legal for all possible collectors.
1116     if (isa<UndefValue>(DerivedPtr))
1117       return ReplaceInstUsesWith(*II, DerivedPtr);
1118 
1119     // The relocation of null will be null for most any collector.
1120     // TODO: provide a hook for this in GCStrategy.  There might be some weird
1121     // collector this property does not hold for.
1122     if (isa<ConstantPointerNull>(DerivedPtr))
1123       return ReplaceInstUsesWith(*II, DerivedPtr);
1124 
1125     // isKnownNonNull -> nonnull attribute
1126     if (isKnownNonNull(DerivedPtr))
1127       II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
1128 
1129     // TODO: dereferenceable -> deref attribute
1130 
1131     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
1132     // Canonicalize on the type from the uses to the defs
1133 
1134     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
1135   }
1136   }
1137 
1138   return visitCallSite(II);
1139 }
1140 
1141 // InvokeInst simplification
1142 //
visitInvokeInst(InvokeInst & II)1143 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
1144   return visitCallSite(&II);
1145 }
1146 
1147 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
1148 /// passed through the varargs area, we can eliminate the use of the cast.
isSafeToEliminateVarargsCast(const CallSite CS,const CastInst * const CI,const DataLayout * const DL,const int ix)1149 static bool isSafeToEliminateVarargsCast(const CallSite CS,
1150                                          const CastInst * const CI,
1151                                          const DataLayout * const DL,
1152                                          const int ix) {
1153   if (!CI->isLosslessCast())
1154     return false;
1155 
1156   // If this is a GC intrinsic, avoid munging types.  We need types for
1157   // statepoint reconstruction in SelectionDAG.
1158   // TODO: This is probably something which should be expanded to all
1159   // intrinsics since the entire point of intrinsics is that
1160   // they are understandable by the optimizer.
1161   if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
1162     return false;
1163 
1164   // The size of ByVal or InAlloca arguments is derived from the type, so we
1165   // can't change to a type with a different size.  If the size were
1166   // passed explicitly we could avoid this check.
1167   if (!CS.isByValOrInAllocaArgument(ix))
1168     return true;
1169 
1170   Type* SrcTy =
1171             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
1172   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
1173   if (!SrcTy->isSized() || !DstTy->isSized())
1174     return false;
1175   if (!DL || DL->getTypeAllocSize(SrcTy) != DL->getTypeAllocSize(DstTy))
1176     return false;
1177   return true;
1178 }
1179 
1180 // Try to fold some different type of calls here.
1181 // Currently we're only working with the checking functions, memcpy_chk,
1182 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
1183 // strcat_chk and strncat_chk.
tryOptimizeCall(CallInst * CI,const DataLayout * DL)1184 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const DataLayout *DL) {
1185   if (!CI->getCalledFunction()) return nullptr;
1186 
1187   if (Value *With = Simplifier->optimizeCall(CI)) {
1188     ++NumSimplified;
1189     return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
1190   }
1191 
1192   return nullptr;
1193 }
1194 
FindInitTrampolineFromAlloca(Value * TrampMem)1195 static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
1196   // Strip off at most one level of pointer casts, looking for an alloca.  This
1197   // is good enough in practice and simpler than handling any number of casts.
1198   Value *Underlying = TrampMem->stripPointerCasts();
1199   if (Underlying != TrampMem &&
1200       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
1201     return nullptr;
1202   if (!isa<AllocaInst>(Underlying))
1203     return nullptr;
1204 
1205   IntrinsicInst *InitTrampoline = nullptr;
1206   for (User *U : TrampMem->users()) {
1207     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1208     if (!II)
1209       return nullptr;
1210     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
1211       if (InitTrampoline)
1212         // More than one init_trampoline writes to this value.  Give up.
1213         return nullptr;
1214       InitTrampoline = II;
1215       continue;
1216     }
1217     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
1218       // Allow any number of calls to adjust.trampoline.
1219       continue;
1220     return nullptr;
1221   }
1222 
1223   // No call to init.trampoline found.
1224   if (!InitTrampoline)
1225     return nullptr;
1226 
1227   // Check that the alloca is being used in the expected way.
1228   if (InitTrampoline->getOperand(0) != TrampMem)
1229     return nullptr;
1230 
1231   return InitTrampoline;
1232 }
1233 
FindInitTrampolineFromBB(IntrinsicInst * AdjustTramp,Value * TrampMem)1234 static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
1235                                                Value *TrampMem) {
1236   // Visit all the previous instructions in the basic block, and try to find a
1237   // init.trampoline which has a direct path to the adjust.trampoline.
1238   for (BasicBlock::iterator I = AdjustTramp,
1239        E = AdjustTramp->getParent()->begin(); I != E; ) {
1240     Instruction *Inst = --I;
1241     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1242       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
1243           II->getOperand(0) == TrampMem)
1244         return II;
1245     if (Inst->mayWriteToMemory())
1246       return nullptr;
1247   }
1248   return nullptr;
1249 }
1250 
1251 // Given a call to llvm.adjust.trampoline, find and return the corresponding
1252 // call to llvm.init.trampoline if the call to the trampoline can be optimized
1253 // to a direct call to a function.  Otherwise return NULL.
1254 //
FindInitTrampoline(Value * Callee)1255 static IntrinsicInst *FindInitTrampoline(Value *Callee) {
1256   Callee = Callee->stripPointerCasts();
1257   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
1258   if (!AdjustTramp ||
1259       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
1260     return nullptr;
1261 
1262   Value *TrampMem = AdjustTramp->getOperand(0);
1263 
1264   if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
1265     return IT;
1266   if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
1267     return IT;
1268   return nullptr;
1269 }
1270 
1271 // visitCallSite - Improvements for call and invoke instructions.
1272 //
visitCallSite(CallSite CS)1273 Instruction *InstCombiner::visitCallSite(CallSite CS) {
1274   if (isAllocLikeFn(CS.getInstruction(), TLI))
1275     return visitAllocSite(*CS.getInstruction());
1276 
1277   bool Changed = false;
1278 
1279   // If the callee is a pointer to a function, attempt to move any casts to the
1280   // arguments of the call/invoke.
1281   Value *Callee = CS.getCalledValue();
1282   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
1283     return nullptr;
1284 
1285   if (Function *CalleeF = dyn_cast<Function>(Callee))
1286     // If the call and callee calling conventions don't match, this call must
1287     // be unreachable, as the call is undefined.
1288     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
1289         // Only do this for calls to a function with a body.  A prototype may
1290         // not actually end up matching the implementation's calling conv for a
1291         // variety of reasons (e.g. it may be written in assembly).
1292         !CalleeF->isDeclaration()) {
1293       Instruction *OldCall = CS.getInstruction();
1294       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1295                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1296                                   OldCall);
1297       // If OldCall does not return void then replaceAllUsesWith undef.
1298       // This allows ValueHandlers and custom metadata to adjust itself.
1299       if (!OldCall->getType()->isVoidTy())
1300         ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
1301       if (isa<CallInst>(OldCall))
1302         return EraseInstFromFunction(*OldCall);
1303 
1304       // We cannot remove an invoke, because it would change the CFG, just
1305       // change the callee to a null pointer.
1306       cast<InvokeInst>(OldCall)->setCalledFunction(
1307                                     Constant::getNullValue(CalleeF->getType()));
1308       return nullptr;
1309     }
1310 
1311   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1312     // If CS does not return void then replaceAllUsesWith undef.
1313     // This allows ValueHandlers and custom metadata to adjust itself.
1314     if (!CS.getInstruction()->getType()->isVoidTy())
1315       ReplaceInstUsesWith(*CS.getInstruction(),
1316                           UndefValue::get(CS.getInstruction()->getType()));
1317 
1318     if (isa<InvokeInst>(CS.getInstruction())) {
1319       // Can't remove an invoke because we cannot change the CFG.
1320       return nullptr;
1321     }
1322 
1323     // This instruction is not reachable, just remove it.  We insert a store to
1324     // undef so that we know that this code is not reachable, despite the fact
1325     // that we can't modify the CFG here.
1326     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1327                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1328                   CS.getInstruction());
1329 
1330     return EraseInstFromFunction(*CS.getInstruction());
1331   }
1332 
1333   if (IntrinsicInst *II = FindInitTrampoline(Callee))
1334     return transformCallThroughTrampoline(CS, II);
1335 
1336   PointerType *PTy = cast<PointerType>(Callee->getType());
1337   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1338   if (FTy->isVarArg()) {
1339     int ix = FTy->getNumParams();
1340     // See if we can optimize any arguments passed through the varargs area of
1341     // the call.
1342     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
1343            E = CS.arg_end(); I != E; ++I, ++ix) {
1344       CastInst *CI = dyn_cast<CastInst>(*I);
1345       if (CI && isSafeToEliminateVarargsCast(CS, CI, DL, ix)) {
1346         *I = CI->getOperand(0);
1347         Changed = true;
1348       }
1349     }
1350   }
1351 
1352   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
1353     // Inline asm calls cannot throw - mark them 'nounwind'.
1354     CS.setDoesNotThrow();
1355     Changed = true;
1356   }
1357 
1358   // Try to optimize the call if possible, we require DataLayout for most of
1359   // this.  None of these calls are seen as possibly dead so go ahead and
1360   // delete the instruction now.
1361   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1362     Instruction *I = tryOptimizeCall(CI, DL);
1363     // If we changed something return the result, etc. Otherwise let
1364     // the fallthrough check.
1365     if (I) return EraseInstFromFunction(*I);
1366   }
1367 
1368   return Changed ? CS.getInstruction() : nullptr;
1369 }
1370 
1371 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
1372 // attempt to move the cast to the arguments of the call/invoke.
1373 //
transformConstExprCastCall(CallSite CS)1374 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
1375   Function *Callee =
1376     dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1377   if (!Callee)
1378     return false;
1379   // The prototype of thunks are a lie, don't try to directly call such
1380   // functions.
1381   if (Callee->hasFnAttribute("thunk"))
1382     return false;
1383   Instruction *Caller = CS.getInstruction();
1384   const AttributeSet &CallerPAL = CS.getAttributes();
1385 
1386   // Okay, this is a cast from a function to a different type.  Unless doing so
1387   // would cause a type conversion of one of our arguments, change this call to
1388   // be a direct call with arguments casted to the appropriate types.
1389   //
1390   FunctionType *FT = Callee->getFunctionType();
1391   Type *OldRetTy = Caller->getType();
1392   Type *NewRetTy = FT->getReturnType();
1393 
1394   // Check to see if we are changing the return type...
1395   if (OldRetTy != NewRetTy) {
1396 
1397     if (NewRetTy->isStructTy())
1398       return false; // TODO: Handle multiple return values.
1399 
1400     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
1401       if (Callee->isDeclaration())
1402         return false;   // Cannot transform this return value.
1403 
1404       if (!Caller->use_empty() &&
1405           // void -> non-void is handled specially
1406           !NewRetTy->isVoidTy())
1407         return false;   // Cannot transform this return value.
1408     }
1409 
1410     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1411       AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
1412       if (RAttrs.
1413           hasAttributes(AttributeFuncs::
1414                         typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
1415                         AttributeSet::ReturnIndex))
1416         return false;   // Attribute not compatible with transformed value.
1417     }
1418 
1419     // If the callsite is an invoke instruction, and the return value is used by
1420     // a PHI node in a successor, we cannot change the return type of the call
1421     // because there is no place to put the cast instruction (without breaking
1422     // the critical edge).  Bail out in this case.
1423     if (!Caller->use_empty())
1424       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1425         for (User *U : II->users())
1426           if (PHINode *PN = dyn_cast<PHINode>(U))
1427             if (PN->getParent() == II->getNormalDest() ||
1428                 PN->getParent() == II->getUnwindDest())
1429               return false;
1430   }
1431 
1432   unsigned NumActualArgs = CS.arg_size();
1433   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1434 
1435   // Prevent us turning:
1436   // declare void @takes_i32_inalloca(i32* inalloca)
1437   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
1438   //
1439   // into:
1440   //  call void @takes_i32_inalloca(i32* null)
1441   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
1442     return false;
1443 
1444   CallSite::arg_iterator AI = CS.arg_begin();
1445   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1446     Type *ParamTy = FT->getParamType(i);
1447     Type *ActTy = (*AI)->getType();
1448 
1449     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
1450       return false;   // Cannot transform this parameter value.
1451 
1452     if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
1453           hasAttributes(AttributeFuncs::
1454                         typeIncompatible(ParamTy, i + 1), i + 1))
1455       return false;   // Attribute not compatible with transformed value.
1456 
1457     if (CS.isInAllocaArgument(i))
1458       return false;   // Cannot transform to and from inalloca.
1459 
1460     // If the parameter is passed as a byval argument, then we have to have a
1461     // sized type and the sized type has to have the same size as the old type.
1462     if (ParamTy != ActTy &&
1463         CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
1464                                                          Attribute::ByVal)) {
1465       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
1466       if (!ParamPTy || !ParamPTy->getElementType()->isSized() || !DL)
1467         return false;
1468 
1469       Type *CurElTy = ActTy->getPointerElementType();
1470       if (DL->getTypeAllocSize(CurElTy) !=
1471           DL->getTypeAllocSize(ParamPTy->getElementType()))
1472         return false;
1473     }
1474   }
1475 
1476   if (Callee->isDeclaration()) {
1477     // Do not delete arguments unless we have a function body.
1478     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1479       return false;
1480 
1481     // If the callee is just a declaration, don't change the varargsness of the
1482     // call.  We don't want to introduce a varargs call where one doesn't
1483     // already exist.
1484     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1485     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1486       return false;
1487 
1488     // If both the callee and the cast type are varargs, we still have to make
1489     // sure the number of fixed parameters are the same or we have the same
1490     // ABI issues as if we introduce a varargs call.
1491     if (FT->isVarArg() &&
1492         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
1493         FT->getNumParams() !=
1494         cast<FunctionType>(APTy->getElementType())->getNumParams())
1495       return false;
1496   }
1497 
1498   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1499       !CallerPAL.isEmpty())
1500     // In this case we have more arguments than the new function type, but we
1501     // won't be dropping them.  Check that these extra arguments have attributes
1502     // that are compatible with being a vararg call argument.
1503     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1504       unsigned Index = CallerPAL.getSlotIndex(i - 1);
1505       if (Index <= FT->getNumParams())
1506         break;
1507 
1508       // Check if it has an attribute that's incompatible with varargs.
1509       AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
1510       if (PAttrs.hasAttribute(Index, Attribute::StructRet))
1511         return false;
1512     }
1513 
1514 
1515   // Okay, we decided that this is a safe thing to do: go ahead and start
1516   // inserting cast instructions as necessary.
1517   std::vector<Value*> Args;
1518   Args.reserve(NumActualArgs);
1519   SmallVector<AttributeSet, 8> attrVec;
1520   attrVec.reserve(NumCommonArgs);
1521 
1522   // Get any return attributes.
1523   AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
1524 
1525   // If the return value is not being used, the type may not be compatible
1526   // with the existing attributes.  Wipe out any problematic attributes.
1527   RAttrs.
1528     removeAttributes(AttributeFuncs::
1529                      typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
1530                      AttributeSet::ReturnIndex);
1531 
1532   // Add the new return attributes.
1533   if (RAttrs.hasAttributes())
1534     attrVec.push_back(AttributeSet::get(Caller->getContext(),
1535                                         AttributeSet::ReturnIndex, RAttrs));
1536 
1537   AI = CS.arg_begin();
1538   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1539     Type *ParamTy = FT->getParamType(i);
1540 
1541     if ((*AI)->getType() == ParamTy) {
1542       Args.push_back(*AI);
1543     } else {
1544       Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
1545     }
1546 
1547     // Add any parameter attributes.
1548     AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
1549     if (PAttrs.hasAttributes())
1550       attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
1551                                           PAttrs));
1552   }
1553 
1554   // If the function takes more arguments than the call was taking, add them
1555   // now.
1556   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1557     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1558 
1559   // If we are removing arguments to the function, emit an obnoxious warning.
1560   if (FT->getNumParams() < NumActualArgs) {
1561     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
1562     if (FT->isVarArg()) {
1563       // Add all of the arguments in their promoted form to the arg list.
1564       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1565         Type *PTy = getPromotedType((*AI)->getType());
1566         if (PTy != (*AI)->getType()) {
1567           // Must promote to pass through va_arg area!
1568           Instruction::CastOps opcode =
1569             CastInst::getCastOpcode(*AI, false, PTy, false);
1570           Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
1571         } else {
1572           Args.push_back(*AI);
1573         }
1574 
1575         // Add any parameter attributes.
1576         AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
1577         if (PAttrs.hasAttributes())
1578           attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
1579                                               PAttrs));
1580       }
1581     }
1582   }
1583 
1584   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
1585   if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
1586     attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
1587 
1588   if (NewRetTy->isVoidTy())
1589     Caller->setName("");   // Void type should not have a name.
1590 
1591   const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
1592                                                        attrVec);
1593 
1594   Instruction *NC;
1595   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1596     NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1597                                II->getUnwindDest(), Args);
1598     NC->takeName(II);
1599     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1600     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1601   } else {
1602     CallInst *CI = cast<CallInst>(Caller);
1603     NC = Builder->CreateCall(Callee, Args);
1604     NC->takeName(CI);
1605     if (CI->isTailCall())
1606       cast<CallInst>(NC)->setTailCall();
1607     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1608     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1609   }
1610 
1611   // Insert a cast of the return type as necessary.
1612   Value *NV = NC;
1613   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1614     if (!NV->getType()->isVoidTy()) {
1615       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
1616       NC->setDebugLoc(Caller->getDebugLoc());
1617 
1618       // If this is an invoke instruction, we should insert it after the first
1619       // non-phi, instruction in the normal successor block.
1620       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1621         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
1622         InsertNewInstBefore(NC, *I);
1623       } else {
1624         // Otherwise, it's a call, just insert cast right after the call.
1625         InsertNewInstBefore(NC, *Caller);
1626       }
1627       Worklist.AddUsersToWorkList(*Caller);
1628     } else {
1629       NV = UndefValue::get(Caller->getType());
1630     }
1631   }
1632 
1633   if (!Caller->use_empty())
1634     ReplaceInstUsesWith(*Caller, NV);
1635   else if (Caller->hasValueHandle()) {
1636     if (OldRetTy == NV->getType())
1637       ValueHandleBase::ValueIsRAUWd(Caller, NV);
1638     else
1639       // We cannot call ValueIsRAUWd with a different type, and the
1640       // actual tracked value will disappear.
1641       ValueHandleBase::ValueIsDeleted(Caller);
1642   }
1643 
1644   EraseInstFromFunction(*Caller);
1645   return true;
1646 }
1647 
1648 // transformCallThroughTrampoline - Turn a call to a function created by
1649 // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
1650 // underlying function.
1651 //
1652 Instruction *
transformCallThroughTrampoline(CallSite CS,IntrinsicInst * Tramp)1653 InstCombiner::transformCallThroughTrampoline(CallSite CS,
1654                                              IntrinsicInst *Tramp) {
1655   Value *Callee = CS.getCalledValue();
1656   PointerType *PTy = cast<PointerType>(Callee->getType());
1657   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1658   const AttributeSet &Attrs = CS.getAttributes();
1659 
1660   // If the call already has the 'nest' attribute somewhere then give up -
1661   // otherwise 'nest' would occur twice after splicing in the chain.
1662   if (Attrs.hasAttrSomewhere(Attribute::Nest))
1663     return nullptr;
1664 
1665   assert(Tramp &&
1666          "transformCallThroughTrampoline called with incorrect CallSite.");
1667 
1668   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1669   PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1670   FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1671 
1672   const AttributeSet &NestAttrs = NestF->getAttributes();
1673   if (!NestAttrs.isEmpty()) {
1674     unsigned NestIdx = 1;
1675     Type *NestTy = nullptr;
1676     AttributeSet NestAttr;
1677 
1678     // Look for a parameter marked with the 'nest' attribute.
1679     for (FunctionType::param_iterator I = NestFTy->param_begin(),
1680          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1681       if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
1682         // Record the parameter type and any other attributes.
1683         NestTy = *I;
1684         NestAttr = NestAttrs.getParamAttributes(NestIdx);
1685         break;
1686       }
1687 
1688     if (NestTy) {
1689       Instruction *Caller = CS.getInstruction();
1690       std::vector<Value*> NewArgs;
1691       NewArgs.reserve(CS.arg_size() + 1);
1692 
1693       SmallVector<AttributeSet, 8> NewAttrs;
1694       NewAttrs.reserve(Attrs.getNumSlots() + 1);
1695 
1696       // Insert the nest argument into the call argument list, which may
1697       // mean appending it.  Likewise for attributes.
1698 
1699       // Add any result attributes.
1700       if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
1701         NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1702                                              Attrs.getRetAttributes()));
1703 
1704       {
1705         unsigned Idx = 1;
1706         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1707         do {
1708           if (Idx == NestIdx) {
1709             // Add the chain argument and attributes.
1710             Value *NestVal = Tramp->getArgOperand(2);
1711             if (NestVal->getType() != NestTy)
1712               NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1713             NewArgs.push_back(NestVal);
1714             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1715                                                  NestAttr));
1716           }
1717 
1718           if (I == E)
1719             break;
1720 
1721           // Add the original argument and attributes.
1722           NewArgs.push_back(*I);
1723           AttributeSet Attr = Attrs.getParamAttributes(Idx);
1724           if (Attr.hasAttributes(Idx)) {
1725             AttrBuilder B(Attr, Idx);
1726             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1727                                                  Idx + (Idx >= NestIdx), B));
1728           }
1729 
1730           ++Idx, ++I;
1731         } while (1);
1732       }
1733 
1734       // Add any function attributes.
1735       if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
1736         NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
1737                                              Attrs.getFnAttributes()));
1738 
1739       // The trampoline may have been bitcast to a bogus type (FTy).
1740       // Handle this by synthesizing a new function type, equal to FTy
1741       // with the chain parameter inserted.
1742 
1743       std::vector<Type*> NewTypes;
1744       NewTypes.reserve(FTy->getNumParams()+1);
1745 
1746       // Insert the chain's type into the list of parameter types, which may
1747       // mean appending it.
1748       {
1749         unsigned Idx = 1;
1750         FunctionType::param_iterator I = FTy->param_begin(),
1751           E = FTy->param_end();
1752 
1753         do {
1754           if (Idx == NestIdx)
1755             // Add the chain's type.
1756             NewTypes.push_back(NestTy);
1757 
1758           if (I == E)
1759             break;
1760 
1761           // Add the original type.
1762           NewTypes.push_back(*I);
1763 
1764           ++Idx, ++I;
1765         } while (1);
1766       }
1767 
1768       // Replace the trampoline call with a direct call.  Let the generic
1769       // code sort out any function type mismatches.
1770       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1771                                                 FTy->isVarArg());
1772       Constant *NewCallee =
1773         NestF->getType() == PointerType::getUnqual(NewFTy) ?
1774         NestF : ConstantExpr::getBitCast(NestF,
1775                                          PointerType::getUnqual(NewFTy));
1776       const AttributeSet &NewPAL =
1777           AttributeSet::get(FTy->getContext(), NewAttrs);
1778 
1779       Instruction *NewCaller;
1780       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1781         NewCaller = InvokeInst::Create(NewCallee,
1782                                        II->getNormalDest(), II->getUnwindDest(),
1783                                        NewArgs);
1784         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1785         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1786       } else {
1787         NewCaller = CallInst::Create(NewCallee, NewArgs);
1788         if (cast<CallInst>(Caller)->isTailCall())
1789           cast<CallInst>(NewCaller)->setTailCall();
1790         cast<CallInst>(NewCaller)->
1791           setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1792         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1793       }
1794 
1795       return NewCaller;
1796     }
1797   }
1798 
1799   // Replace the trampoline call with a direct call.  Since there is no 'nest'
1800   // parameter, there is no need to adjust the argument list.  Let the generic
1801   // code sort out any function type mismatches.
1802   Constant *NewCallee =
1803     NestF->getType() == PTy ? NestF :
1804                               ConstantExpr::getBitCast(NestF, PTy);
1805   CS.setCalledFunction(NewCallee);
1806   return CS.getInstruction();
1807 }
1808