1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 //    of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 //    widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 //    of vectorization. It decides on the optimal vector width, which
27 //    can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // Other ideas/concepts are from:
38 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39 //
40 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41 //  Vectorizing Compilers.
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #define LV_NAME "loop-vectorize"
46 #define DEBUG_TYPE LV_NAME
47 
48 #include "llvm/Transforms/Vectorize.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/EquivalenceClasses.h"
51 #include "llvm/ADT/Hashing.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/Analysis/AliasAnalysis.h"
59 #include "llvm/Analysis/Dominators.h"
60 #include "llvm/Analysis/LoopInfo.h"
61 #include "llvm/Analysis/LoopIterator.h"
62 #include "llvm/Analysis/LoopPass.h"
63 #include "llvm/Analysis/ScalarEvolution.h"
64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
65 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
66 #include "llvm/Analysis/TargetTransformInfo.h"
67 #include "llvm/Analysis/ValueTracking.h"
68 #include "llvm/Analysis/Verifier.h"
69 #include "llvm/IR/Constants.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/LLVMContext.h"
77 #include "llvm/IR/Module.h"
78 #include "llvm/IR/Type.h"
79 #include "llvm/IR/Value.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/PatternMatch.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Support/ValueHandle.h"
86 #include "llvm/Target/TargetLibraryInfo.h"
87 #include "llvm/Transforms/Scalar.h"
88 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
89 #include "llvm/Transforms/Utils/Local.h"
90 #include <algorithm>
91 #include <map>
92 
93 using namespace llvm;
94 using namespace llvm::PatternMatch;
95 
96 static cl::opt<unsigned>
97 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
98                     cl::desc("Sets the SIMD width. Zero is autoselect."));
99 
100 static cl::opt<unsigned>
101 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
102                     cl::desc("Sets the vectorization unroll count. "
103                              "Zero is autoselect."));
104 
105 static cl::opt<bool>
106 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
107                    cl::desc("Enable if-conversion during vectorization."));
108 
109 /// We don't vectorize loops with a known constant trip count below this number.
110 static cl::opt<unsigned>
111 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
112                              cl::Hidden,
113                              cl::desc("Don't vectorize loops with a constant "
114                                       "trip count that is smaller than this "
115                                       "value."));
116 
117 /// We don't unroll loops with a known constant trip count below this number.
118 static const unsigned TinyTripCountUnrollThreshold = 128;
119 
120 /// When performing memory disambiguation checks at runtime do not make more
121 /// than this number of comparisons.
122 static const unsigned RuntimeMemoryCheckThreshold = 8;
123 
124 /// Maximum simd width.
125 static const unsigned MaxVectorWidth = 64;
126 
127 /// Maximum vectorization unroll count.
128 static const unsigned MaxUnrollFactor = 16;
129 
130 /// The cost of a loop that is considered 'small' by the unroller.
131 static const unsigned SmallLoopCost = 20;
132 
133 namespace {
134 
135 // Forward declarations.
136 class LoopVectorizationLegality;
137 class LoopVectorizationCostModel;
138 
139 /// InnerLoopVectorizer vectorizes loops which contain only one basic
140 /// block to a specified vectorization factor (VF).
141 /// This class performs the widening of scalars into vectors, or multiple
142 /// scalars. This class also implements the following features:
143 /// * It inserts an epilogue loop for handling loops that don't have iteration
144 ///   counts that are known to be a multiple of the vectorization factor.
145 /// * It handles the code generation for reduction variables.
146 /// * Scalarization (implementation using scalars) of un-vectorizable
147 ///   instructions.
148 /// InnerLoopVectorizer does not perform any vectorization-legality
149 /// checks, and relies on the caller to check for the different legality
150 /// aspects. The InnerLoopVectorizer relies on the
151 /// LoopVectorizationLegality class to provide information about the induction
152 /// and reduction variables that were found to a given vectorization factor.
153 class InnerLoopVectorizer {
154 public:
155   InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
156                       DominatorTree *DT, DataLayout *DL,
157                       const TargetLibraryInfo *TLI, unsigned VecWidth,
158                       unsigned UnrollFactor)
159       : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
160         VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
161         OldInduction(0), WidenMap(UnrollFactor) {}
162 
163   // Perform the actual loop widening (vectorization).
164   void vectorize(LoopVectorizationLegality *Legal) {
165     // Create a new empty loop. Unlink the old loop and connect the new one.
166     createEmptyLoop(Legal);
167     // Widen each instruction in the old loop to a new one in the new loop.
168     // Use the Legality module to find the induction and reduction variables.
169     vectorizeLoop(Legal);
170     // Register the new loop and update the analysis passes.
171     updateAnalysis();
172   }
173 
174   virtual ~InnerLoopVectorizer() {}
175 
176 protected:
177   /// A small list of PHINodes.
178   typedef SmallVector<PHINode*, 4> PhiVector;
179   /// When we unroll loops we have multiple vector values for each scalar.
180   /// This data structure holds the unrolled and vectorized values that
181   /// originated from one scalar instruction.
182   typedef SmallVector<Value*, 2> VectorParts;
183 
184   // When we if-convert we need create edge masks. We have to cache values so
185   // that we don't end up with exponential recursion/IR.
186   typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
187                    VectorParts> EdgeMaskCache;
188 
189   /// Add code that checks at runtime if the accessed arrays overlap.
190   /// Returns the comparator value or NULL if no check is needed.
191   Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
192                                Instruction *Loc);
193   /// Create an empty loop, based on the loop ranges of the old loop.
194   void createEmptyLoop(LoopVectorizationLegality *Legal);
195   /// Copy and widen the instructions from the old loop.
196   virtual void vectorizeLoop(LoopVectorizationLegality *Legal);
197 
198   /// \brief The Loop exit block may have single value PHI nodes where the
199   /// incoming value is 'Undef'. While vectorizing we only handled real values
200   /// that were defined inside the loop. Here we fix the 'undef case'.
201   /// See PR14725.
202   void fixLCSSAPHIs();
203 
204   /// A helper function that computes the predicate of the block BB, assuming
205   /// that the header block of the loop is set to True. It returns the *entry*
206   /// mask for the block BB.
207   VectorParts createBlockInMask(BasicBlock *BB);
208   /// A helper function that computes the predicate of the edge between SRC
209   /// and DST.
210   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
211 
212   /// A helper function to vectorize a single BB within the innermost loop.
213   void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
214                             PhiVector *PV);
215 
216   /// Vectorize a single PHINode in a block. This method handles the induction
217   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
218   /// arbitrary length vectors.
219   void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
220                            LoopVectorizationLegality *Legal,
221                            unsigned UF, unsigned VF, PhiVector *PV);
222 
223   /// Insert the new loop to the loop hierarchy and pass manager
224   /// and update the analysis passes.
225   void updateAnalysis();
226 
227   /// This instruction is un-vectorizable. Implement it as a sequence
228   /// of scalars.
229   virtual void scalarizeInstruction(Instruction *Instr);
230 
231   /// Vectorize Load and Store instructions,
232   virtual void vectorizeMemoryInstruction(Instruction *Instr,
233                                   LoopVectorizationLegality *Legal);
234 
235   /// Create a broadcast instruction. This method generates a broadcast
236   /// instruction (shuffle) for loop invariant values and for the induction
237   /// value. If this is the induction variable then we extend it to N, N+1, ...
238   /// this is needed because each iteration in the loop corresponds to a SIMD
239   /// element.
240   virtual Value *getBroadcastInstrs(Value *V);
241 
242   /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
243   /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
244   /// The sequence starts at StartIndex.
245   virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
246 
247   /// When we go over instructions in the basic block we rely on previous
248   /// values within the current basic block or on loop invariant values.
249   /// When we widen (vectorize) values we place them in the map. If the values
250   /// are not within the map, they have to be loop invariant, so we simply
251   /// broadcast them into a vector.
252   VectorParts &getVectorValue(Value *V);
253 
254   /// Generate a shuffle sequence that will reverse the vector Vec.
255   virtual Value *reverseVector(Value *Vec);
256 
257   /// This is a helper class that holds the vectorizer state. It maps scalar
258   /// instructions to vector instructions. When the code is 'unrolled' then
259   /// then a single scalar value is mapped to multiple vector parts. The parts
260   /// are stored in the VectorPart type.
261   struct ValueMap {
262     /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
263     /// are mapped.
264     ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
265 
266     /// \return True if 'Key' is saved in the Value Map.
267     bool has(Value *Key) const { return MapStorage.count(Key); }
268 
269     /// Initializes a new entry in the map. Sets all of the vector parts to the
270     /// save value in 'Val'.
271     /// \return A reference to a vector with splat values.
272     VectorParts &splat(Value *Key, Value *Val) {
273       VectorParts &Entry = MapStorage[Key];
274       Entry.assign(UF, Val);
275       return Entry;
276     }
277 
278     ///\return A reference to the value that is stored at 'Key'.
279     VectorParts &get(Value *Key) {
280       VectorParts &Entry = MapStorage[Key];
281       if (Entry.empty())
282         Entry.resize(UF);
283       assert(Entry.size() == UF);
284       return Entry;
285     }
286 
287   private:
288     /// The unroll factor. Each entry in the map stores this number of vector
289     /// elements.
290     unsigned UF;
291 
292     /// Map storage. We use std::map and not DenseMap because insertions to a
293     /// dense map invalidates its iterators.
294     std::map<Value *, VectorParts> MapStorage;
295   };
296 
297   /// The original loop.
298   Loop *OrigLoop;
299   /// Scev analysis to use.
300   ScalarEvolution *SE;
301   /// Loop Info.
302   LoopInfo *LI;
303   /// Dominator Tree.
304   DominatorTree *DT;
305   /// Data Layout.
306   DataLayout *DL;
307   /// Target Library Info.
308   const TargetLibraryInfo *TLI;
309 
310   /// The vectorization SIMD factor to use. Each vector will have this many
311   /// vector elements.
312   unsigned VF;
313 
314 protected:
315   /// The vectorization unroll factor to use. Each scalar is vectorized to this
316   /// many different vector instructions.
317   unsigned UF;
318 
319   /// The builder that we use
320   IRBuilder<> Builder;
321 
322   // --- Vectorization state ---
323 
324   /// The vector-loop preheader.
325   BasicBlock *LoopVectorPreHeader;
326   /// The scalar-loop preheader.
327   BasicBlock *LoopScalarPreHeader;
328   /// Middle Block between the vector and the scalar.
329   BasicBlock *LoopMiddleBlock;
330   ///The ExitBlock of the scalar loop.
331   BasicBlock *LoopExitBlock;
332   ///The vector loop body.
333   BasicBlock *LoopVectorBody;
334   ///The scalar loop body.
335   BasicBlock *LoopScalarBody;
336   /// A list of all bypass blocks. The first block is the entry of the loop.
337   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
338 
339   /// The new Induction variable which was added to the new block.
340   PHINode *Induction;
341   /// The induction variable of the old basic block.
342   PHINode *OldInduction;
343   /// Holds the extended (to the widest induction type) start index.
344   Value *ExtendedIdx;
345   /// Maps scalars to widened vectors.
346   ValueMap WidenMap;
347   EdgeMaskCache MaskCache;
348 };
349 
350 class InnerLoopUnroller : public InnerLoopVectorizer {
351 public:
352   InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
353                     DominatorTree *DT, DataLayout *DL,
354                     const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
355     InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
356 
357 private:
358   virtual void scalarizeInstruction(Instruction *Instr);
359   virtual void vectorizeMemoryInstruction(Instruction *Instr,
360                                           LoopVectorizationLegality *Legal);
361   virtual Value *getBroadcastInstrs(Value *V);
362   virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
363   virtual Value *reverseVector(Value *Vec);
364 };
365 
366 /// \brief Look for a meaningful debug location on the instruction or it's
367 /// operands.
368 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
369   if (!I)
370     return I;
371 
372   DebugLoc Empty;
373   if (I->getDebugLoc() != Empty)
374     return I;
375 
376   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
377     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
378       if (OpInst->getDebugLoc() != Empty)
379         return OpInst;
380   }
381 
382   return I;
383 }
384 
385 /// \brief Set the debug location in the builder using the debug location in the
386 /// instruction.
387 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
388   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
389     B.SetCurrentDebugLocation(Inst->getDebugLoc());
390   else
391     B.SetCurrentDebugLocation(DebugLoc());
392 }
393 
394 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
395 /// to what vectorization factor.
396 /// This class does not look at the profitability of vectorization, only the
397 /// legality. This class has two main kinds of checks:
398 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
399 ///   will change the order of memory accesses in a way that will change the
400 ///   correctness of the program.
401 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
402 /// checks for a number of different conditions, such as the availability of a
403 /// single induction variable, that all types are supported and vectorize-able,
404 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
405 /// This class is also used by InnerLoopVectorizer for identifying
406 /// induction variable and the different reduction variables.
407 class LoopVectorizationLegality {
408 public:
409   LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
410                             DominatorTree *DT, TargetLibraryInfo *TLI)
411       : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI),
412         Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
413         MaxSafeDepDistBytes(-1U) {}
414 
415   /// This enum represents the kinds of reductions that we support.
416   enum ReductionKind {
417     RK_NoReduction, ///< Not a reduction.
418     RK_IntegerAdd,  ///< Sum of integers.
419     RK_IntegerMult, ///< Product of integers.
420     RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
421     RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
422     RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
423     RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
424     RK_FloatAdd,    ///< Sum of floats.
425     RK_FloatMult,   ///< Product of floats.
426     RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
427   };
428 
429   /// This enum represents the kinds of inductions that we support.
430   enum InductionKind {
431     IK_NoInduction,         ///< Not an induction variable.
432     IK_IntInduction,        ///< Integer induction variable. Step = 1.
433     IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
434     IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
435     IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
436   };
437 
438   // This enum represents the kind of minmax reduction.
439   enum MinMaxReductionKind {
440     MRK_Invalid,
441     MRK_UIntMin,
442     MRK_UIntMax,
443     MRK_SIntMin,
444     MRK_SIntMax,
445     MRK_FloatMin,
446     MRK_FloatMax
447   };
448 
449   /// This struct holds information about reduction variables.
450   struct ReductionDescriptor {
451     ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
452       Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
453 
454     ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
455                         MinMaxReductionKind MK)
456         : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
457 
458     // The starting value of the reduction.
459     // It does not have to be zero!
460     TrackingVH<Value> StartValue;
461     // The instruction who's value is used outside the loop.
462     Instruction *LoopExitInstr;
463     // The kind of the reduction.
464     ReductionKind Kind;
465     // If this a min/max reduction the kind of reduction.
466     MinMaxReductionKind MinMaxKind;
467   };
468 
469   /// This POD struct holds information about a potential reduction operation.
470   struct ReductionInstDesc {
471     ReductionInstDesc(bool IsRedux, Instruction *I) :
472       IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
473 
474     ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
475       IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
476 
477     // Is this instruction a reduction candidate.
478     bool IsReduction;
479     // The last instruction in a min/max pattern (select of the select(icmp())
480     // pattern), or the current reduction instruction otherwise.
481     Instruction *PatternLastInst;
482     // If this is a min/max pattern the comparison predicate.
483     MinMaxReductionKind MinMaxKind;
484   };
485 
486   /// This struct holds information about the memory runtime legality
487   /// check that a group of pointers do not overlap.
488   struct RuntimePointerCheck {
489     RuntimePointerCheck() : Need(false) {}
490 
491     /// Reset the state of the pointer runtime information.
492     void reset() {
493       Need = false;
494       Pointers.clear();
495       Starts.clear();
496       Ends.clear();
497       IsWritePtr.clear();
498       DependencySetId.clear();
499     }
500 
501     /// Insert a pointer and calculate the start and end SCEVs.
502     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
503                 unsigned DepSetId);
504 
505     /// This flag indicates if we need to add the runtime check.
506     bool Need;
507     /// Holds the pointers that we need to check.
508     SmallVector<TrackingVH<Value>, 2> Pointers;
509     /// Holds the pointer value at the beginning of the loop.
510     SmallVector<const SCEV*, 2> Starts;
511     /// Holds the pointer value at the end of the loop.
512     SmallVector<const SCEV*, 2> Ends;
513     /// Holds the information if this pointer is used for writing to memory.
514     SmallVector<bool, 2> IsWritePtr;
515     /// Holds the id of the set of pointers that could be dependent because of a
516     /// shared underlying object.
517     SmallVector<unsigned, 2> DependencySetId;
518   };
519 
520   /// A struct for saving information about induction variables.
521   struct InductionInfo {
522     InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
523     InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
524     /// Start value.
525     TrackingVH<Value> StartValue;
526     /// Induction kind.
527     InductionKind IK;
528   };
529 
530   /// ReductionList contains the reduction descriptors for all
531   /// of the reductions that were found in the loop.
532   typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
533 
534   /// InductionList saves induction variables and maps them to the
535   /// induction descriptor.
536   typedef MapVector<PHINode*, InductionInfo> InductionList;
537 
538   /// Returns true if it is legal to vectorize this loop.
539   /// This does not mean that it is profitable to vectorize this
540   /// loop, only that it is legal to do so.
541   bool canVectorize();
542 
543   /// Returns the Induction variable.
544   PHINode *getInduction() { return Induction; }
545 
546   /// Returns the reduction variables found in the loop.
547   ReductionList *getReductionVars() { return &Reductions; }
548 
549   /// Returns the induction variables found in the loop.
550   InductionList *getInductionVars() { return &Inductions; }
551 
552   /// Returns the widest induction type.
553   Type *getWidestInductionType() { return WidestIndTy; }
554 
555   /// Returns True if V is an induction variable in this loop.
556   bool isInductionVariable(const Value *V);
557 
558   /// Return true if the block BB needs to be predicated in order for the loop
559   /// to be vectorized.
560   bool blockNeedsPredication(BasicBlock *BB);
561 
562   /// Check if this  pointer is consecutive when vectorizing. This happens
563   /// when the last index of the GEP is the induction variable, or that the
564   /// pointer itself is an induction variable.
565   /// This check allows us to vectorize A[idx] into a wide load/store.
566   /// Returns:
567   /// 0 - Stride is unknown or non consecutive.
568   /// 1 - Address is consecutive.
569   /// -1 - Address is consecutive, and decreasing.
570   int isConsecutivePtr(Value *Ptr);
571 
572   /// Returns true if the value V is uniform within the loop.
573   bool isUniform(Value *V);
574 
575   /// Returns true if this instruction will remain scalar after vectorization.
576   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
577 
578   /// Returns the information that we collected about runtime memory check.
579   RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
580 
581   /// This function returns the identity element (or neutral element) for
582   /// the operation K.
583   static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
584 
585   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
586 
587 private:
588   /// Check if a single basic block loop is vectorizable.
589   /// At this point we know that this is a loop with a constant trip count
590   /// and we only need to check individual instructions.
591   bool canVectorizeInstrs();
592 
593   /// When we vectorize loops we may change the order in which
594   /// we read and write from memory. This method checks if it is
595   /// legal to vectorize the code, considering only memory constrains.
596   /// Returns true if the loop is vectorizable
597   bool canVectorizeMemory();
598 
599   /// Return true if we can vectorize this loop using the IF-conversion
600   /// transformation.
601   bool canVectorizeWithIfConvert();
602 
603   /// Collect the variables that need to stay uniform after vectorization.
604   void collectLoopUniforms();
605 
606   /// Return true if all of the instructions in the block can be speculatively
607   /// executed. \p SafePtrs is a list of addresses that are known to be legal
608   /// and we know that we can read from them without segfault.
609   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
610 
611   /// Returns True, if 'Phi' is the kind of reduction variable for type
612   /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
613   bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
614   /// Returns a struct describing if the instruction 'I' can be a reduction
615   /// variable of type 'Kind'. If the reduction is a min/max pattern of
616   /// select(icmp()) this function advances the instruction pointer 'I' from the
617   /// compare instruction to the select instruction and stores this pointer in
618   /// 'PatternLastInst' member of the returned struct.
619   ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
620                                      ReductionInstDesc &Desc);
621   /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
622   /// pattern corresponding to a min(X, Y) or max(X, Y).
623   static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
624                                                     ReductionInstDesc &Prev);
625   /// Returns the induction kind of Phi. This function may return NoInduction
626   /// if the PHI is not an induction variable.
627   InductionKind isInductionVariable(PHINode *Phi);
628 
629   /// The loop that we evaluate.
630   Loop *TheLoop;
631   /// Scev analysis.
632   ScalarEvolution *SE;
633   /// DataLayout analysis.
634   DataLayout *DL;
635   /// Dominators.
636   DominatorTree *DT;
637   /// Target Library Info.
638   TargetLibraryInfo *TLI;
639 
640   //  ---  vectorization state --- //
641 
642   /// Holds the integer induction variable. This is the counter of the
643   /// loop.
644   PHINode *Induction;
645   /// Holds the reduction variables.
646   ReductionList Reductions;
647   /// Holds all of the induction variables that we found in the loop.
648   /// Notice that inductions don't need to start at zero and that induction
649   /// variables can be pointers.
650   InductionList Inductions;
651   /// Holds the widest induction type encountered.
652   Type *WidestIndTy;
653 
654   /// Allowed outside users. This holds the reduction
655   /// vars which can be accessed from outside the loop.
656   SmallPtrSet<Value*, 4> AllowedExit;
657   /// This set holds the variables which are known to be uniform after
658   /// vectorization.
659   SmallPtrSet<Instruction*, 4> Uniforms;
660   /// We need to check that all of the pointers in this list are disjoint
661   /// at runtime.
662   RuntimePointerCheck PtrRtCheck;
663   /// Can we assume the absence of NaNs.
664   bool HasFunNoNaNAttr;
665 
666   unsigned MaxSafeDepDistBytes;
667 };
668 
669 /// LoopVectorizationCostModel - estimates the expected speedups due to
670 /// vectorization.
671 /// In many cases vectorization is not profitable. This can happen because of
672 /// a number of reasons. In this class we mainly attempt to predict the
673 /// expected speedup/slowdowns due to the supported instruction set. We use the
674 /// TargetTransformInfo to query the different backends for the cost of
675 /// different operations.
676 class LoopVectorizationCostModel {
677 public:
678   LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
679                              LoopVectorizationLegality *Legal,
680                              const TargetTransformInfo &TTI,
681                              DataLayout *DL, const TargetLibraryInfo *TLI)
682       : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
683 
684   /// Information about vectorization costs
685   struct VectorizationFactor {
686     unsigned Width; // Vector width with best cost
687     unsigned Cost; // Cost of the loop with that width
688   };
689   /// \return The most profitable vectorization factor and the cost of that VF.
690   /// This method checks every power of two up to VF. If UserVF is not ZERO
691   /// then this vectorization factor will be selected if vectorization is
692   /// possible.
693   VectorizationFactor selectVectorizationFactor(bool OptForSize,
694                                                 unsigned UserVF);
695 
696   /// \return The size (in bits) of the widest type in the code that
697   /// needs to be vectorized. We ignore values that remain scalar such as
698   /// 64 bit loop indices.
699   unsigned getWidestType();
700 
701   /// \return The most profitable unroll factor.
702   /// If UserUF is non-zero then this method finds the best unroll-factor
703   /// based on register pressure and other parameters.
704   /// VF and LoopCost are the selected vectorization factor and the cost of the
705   /// selected VF.
706   unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
707                               unsigned LoopCost);
708 
709   /// \brief A struct that represents some properties of the register usage
710   /// of a loop.
711   struct RegisterUsage {
712     /// Holds the number of loop invariant values that are used in the loop.
713     unsigned LoopInvariantRegs;
714     /// Holds the maximum number of concurrent live intervals in the loop.
715     unsigned MaxLocalUsers;
716     /// Holds the number of instructions in the loop.
717     unsigned NumInstructions;
718   };
719 
720   /// \return  information about the register usage of the loop.
721   RegisterUsage calculateRegisterUsage();
722 
723 private:
724   /// Returns the expected execution cost. The unit of the cost does
725   /// not matter because we use the 'cost' units to compare different
726   /// vector widths. The cost that is returned is *not* normalized by
727   /// the factor width.
728   unsigned expectedCost(unsigned VF);
729 
730   /// Returns the execution time cost of an instruction for a given vector
731   /// width. Vector width of one means scalar.
732   unsigned getInstructionCost(Instruction *I, unsigned VF);
733 
734   /// A helper function for converting Scalar types to vector types.
735   /// If the incoming type is void, we return void. If the VF is 1, we return
736   /// the scalar type.
737   static Type* ToVectorTy(Type *Scalar, unsigned VF);
738 
739   /// Returns whether the instruction is a load or store and will be a emitted
740   /// as a vector operation.
741   bool isConsecutiveLoadOrStore(Instruction *I);
742 
743   /// The loop that we evaluate.
744   Loop *TheLoop;
745   /// Scev analysis.
746   ScalarEvolution *SE;
747   /// Loop Info analysis.
748   LoopInfo *LI;
749   /// Vectorization legality.
750   LoopVectorizationLegality *Legal;
751   /// Vector target information.
752   const TargetTransformInfo &TTI;
753   /// Target data layout information.
754   DataLayout *DL;
755   /// Target Library Info.
756   const TargetLibraryInfo *TLI;
757 };
758 
759 /// Utility class for getting and setting loop vectorizer hints in the form
760 /// of loop metadata.
761 struct LoopVectorizeHints {
762   /// Vectorization width.
763   unsigned Width;
764   /// Vectorization unroll factor.
765   unsigned Unroll;
766 
767   LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
768   : Width(VectorizationFactor)
769   , Unroll(DisableUnrolling ? 1 : VectorizationUnroll)
770   , LoopID(L->getLoopID()) {
771     getHints(L);
772     // The command line options override any loop metadata except for when
773     // width == 1 which is used to indicate the loop is already vectorized.
774     if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
775       Width = VectorizationFactor;
776     if (VectorizationUnroll.getNumOccurrences() > 0)
777       Unroll = VectorizationUnroll;
778 
779     DEBUG(if (DisableUnrolling && Unroll == 1)
780             dbgs() << "LV: Unrolling disabled by the pass manager\n");
781   }
782 
783   /// Return the loop vectorizer metadata prefix.
784   static StringRef Prefix() { return "llvm.vectorizer."; }
785 
786   MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
787     SmallVector<Value*, 2> Vals;
788     Vals.push_back(MDString::get(Context, Name));
789     Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
790     return MDNode::get(Context, Vals);
791   }
792 
793   /// Mark the loop L as already vectorized by setting the width to 1.
794   void setAlreadyVectorized(Loop *L) {
795     LLVMContext &Context = L->getHeader()->getContext();
796 
797     Width = 1;
798 
799     // Create a new loop id with one more operand for the already_vectorized
800     // hint. If the loop already has a loop id then copy the existing operands.
801     SmallVector<Value*, 4> Vals(1);
802     if (LoopID)
803       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
804         Vals.push_back(LoopID->getOperand(i));
805 
806     Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
807     Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
808 
809     MDNode *NewLoopID = MDNode::get(Context, Vals);
810     // Set operand 0 to refer to the loop id itself.
811     NewLoopID->replaceOperandWith(0, NewLoopID);
812 
813     L->setLoopID(NewLoopID);
814     if (LoopID)
815       LoopID->replaceAllUsesWith(NewLoopID);
816 
817     LoopID = NewLoopID;
818   }
819 
820 private:
821   MDNode *LoopID;
822 
823   /// Find hints specified in the loop metadata.
824   void getHints(const Loop *L) {
825     if (!LoopID)
826       return;
827 
828     // First operand should refer to the loop id itself.
829     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
830     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
831 
832     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
833       const MDString *S = 0;
834       SmallVector<Value*, 4> Args;
835 
836       // The expected hint is either a MDString or a MDNode with the first
837       // operand a MDString.
838       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
839         if (!MD || MD->getNumOperands() == 0)
840           continue;
841         S = dyn_cast<MDString>(MD->getOperand(0));
842         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
843           Args.push_back(MD->getOperand(i));
844       } else {
845         S = dyn_cast<MDString>(LoopID->getOperand(i));
846         assert(Args.size() == 0 && "too many arguments for MDString");
847       }
848 
849       if (!S)
850         continue;
851 
852       // Check if the hint starts with the vectorizer prefix.
853       StringRef Hint = S->getString();
854       if (!Hint.startswith(Prefix()))
855         continue;
856       // Remove the prefix.
857       Hint = Hint.substr(Prefix().size(), StringRef::npos);
858 
859       if (Args.size() == 1)
860         getHint(Hint, Args[0]);
861     }
862   }
863 
864   // Check string hint with one operand.
865   void getHint(StringRef Hint, Value *Arg) {
866     const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
867     if (!C) return;
868     unsigned Val = C->getZExtValue();
869 
870     if (Hint == "width") {
871       if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
872         Width = Val;
873       else
874         DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
875     } else if (Hint == "unroll") {
876       if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
877         Unroll = Val;
878       else
879         DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
880     } else {
881       DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
882     }
883   }
884 };
885 
886 /// The LoopVectorize Pass.
887 struct LoopVectorize : public LoopPass {
888   /// Pass identification, replacement for typeid
889   static char ID;
890 
891   explicit LoopVectorize(bool NoUnrolling = false)
892     : LoopPass(ID), DisableUnrolling(NoUnrolling) {
893     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
894   }
895 
896   ScalarEvolution *SE;
897   DataLayout *DL;
898   LoopInfo *LI;
899   TargetTransformInfo *TTI;
900   DominatorTree *DT;
901   TargetLibraryInfo *TLI;
902   bool DisableUnrolling;
903 
904   virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
905     // We only vectorize innermost loops.
906     if (!L->empty())
907       return false;
908 
909     SE = &getAnalysis<ScalarEvolution>();
910     DL = getAnalysisIfAvailable<DataLayout>();
911     LI = &getAnalysis<LoopInfo>();
912     TTI = &getAnalysis<TargetTransformInfo>();
913     DT = &getAnalysis<DominatorTree>();
914     TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
915 
916     // If the target claims to have no vector registers don't attempt
917     // vectorization.
918     if (!TTI->getNumberOfRegisters(true))
919       return false;
920 
921     if (DL == NULL) {
922       DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout\n");
923       return false;
924     }
925 
926     DEBUG(dbgs() << "LV: Checking a loop in \"" <<
927           L->getHeader()->getParent()->getName() << "\"\n");
928 
929     LoopVectorizeHints Hints(L, DisableUnrolling);
930 
931     if (Hints.Width == 1 && Hints.Unroll == 1) {
932       DEBUG(dbgs() << "LV: Not vectorizing.\n");
933       return false;
934     }
935 
936     // Check if it is legal to vectorize the loop.
937     LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
938     if (!LVL.canVectorize()) {
939       DEBUG(dbgs() << "LV: Not vectorizing.\n");
940       return false;
941     }
942 
943     // Use the cost model.
944     LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
945 
946     // Check the function attributes to find out if this function should be
947     // optimized for size.
948     Function *F = L->getHeader()->getParent();
949     Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
950     Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
951     unsigned FnIndex = AttributeSet::FunctionIndex;
952     bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
953     bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
954 
955     if (NoFloat) {
956       DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
957             "attribute is used.\n");
958       return false;
959     }
960 
961     // Select the optimal vectorization factor.
962     LoopVectorizationCostModel::VectorizationFactor VF;
963     VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
964     // Select the unroll factor.
965     unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
966                                         VF.Cost);
967 
968     DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
969           F->getParent()->getModuleIdentifier() << '\n');
970     DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
971 
972     if (VF.Width == 1) {
973       DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
974       if (UF == 1)
975         return false;
976       // We decided not to vectorize, but we may want to unroll.
977       InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
978       Unroller.vectorize(&LVL);
979     } else {
980       // If we decided that it is *legal* to vectorize the loop then do it.
981       InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
982       LB.vectorize(&LVL);
983     }
984 
985     // Mark the loop as already vectorized to avoid vectorizing again.
986     Hints.setAlreadyVectorized(L);
987 
988     DEBUG(verifyFunction(*L->getHeader()->getParent()));
989     return true;
990   }
991 
992   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
993     LoopPass::getAnalysisUsage(AU);
994     AU.addRequiredID(LoopSimplifyID);
995     AU.addRequiredID(LCSSAID);
996     AU.addRequired<DominatorTree>();
997     AU.addRequired<LoopInfo>();
998     AU.addRequired<ScalarEvolution>();
999     AU.addRequired<TargetTransformInfo>();
1000     AU.addPreserved<LoopInfo>();
1001     AU.addPreserved<DominatorTree>();
1002   }
1003 
1004 };
1005 
1006 } // end anonymous namespace
1007 
1008 //===----------------------------------------------------------------------===//
1009 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1010 // LoopVectorizationCostModel.
1011 //===----------------------------------------------------------------------===//
1012 
1013 void
1014 LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
1015                                                        Loop *Lp, Value *Ptr,
1016                                                        bool WritePtr,
1017                                                        unsigned DepSetId) {
1018   const SCEV *Sc = SE->getSCEV(Ptr);
1019   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1020   assert(AR && "Invalid addrec expression");
1021   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1022   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1023   Pointers.push_back(Ptr);
1024   Starts.push_back(AR->getStart());
1025   Ends.push_back(ScEnd);
1026   IsWritePtr.push_back(WritePtr);
1027   DependencySetId.push_back(DepSetId);
1028 }
1029 
1030 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1031   // We need to place the broadcast of invariant variables outside the loop.
1032   Instruction *Instr = dyn_cast<Instruction>(V);
1033   bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
1034   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1035 
1036   // Place the code for broadcasting invariant variables in the new preheader.
1037   IRBuilder<>::InsertPointGuard Guard(Builder);
1038   if (Invariant)
1039     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1040 
1041   // Broadcast the scalar into all locations in the vector.
1042   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1043 
1044   return Shuf;
1045 }
1046 
1047 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1048                                                  bool Negate) {
1049   assert(Val->getType()->isVectorTy() && "Must be a vector");
1050   assert(Val->getType()->getScalarType()->isIntegerTy() &&
1051          "Elem must be an integer");
1052   // Create the types.
1053   Type *ITy = Val->getType()->getScalarType();
1054   VectorType *Ty = cast<VectorType>(Val->getType());
1055   int VLen = Ty->getNumElements();
1056   SmallVector<Constant*, 8> Indices;
1057 
1058   // Create a vector of consecutive numbers from zero to VF.
1059   for (int i = 0; i < VLen; ++i) {
1060     int64_t Idx = Negate ? (-i) : i;
1061     Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1062   }
1063 
1064   // Add the consecutive indices to the vector value.
1065   Constant *Cv = ConstantVector::get(Indices);
1066   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1067   return Builder.CreateAdd(Val, Cv, "induction");
1068 }
1069 
1070 /// \brief Find the operand of the GEP that should be checked for consecutive
1071 /// stores. This ignores trailing indices that have no effect on the final
1072 /// pointer.
1073 static unsigned getGEPInductionOperand(DataLayout *DL,
1074                                        const GetElementPtrInst *Gep) {
1075   unsigned LastOperand = Gep->getNumOperands() - 1;
1076   unsigned GEPAllocSize = DL->getTypeAllocSize(
1077       cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1078 
1079   // Walk backwards and try to peel off zeros.
1080   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1081     // Find the type we're currently indexing into.
1082     gep_type_iterator GEPTI = gep_type_begin(Gep);
1083     std::advance(GEPTI, LastOperand - 1);
1084 
1085     // If it's a type with the same allocation size as the result of the GEP we
1086     // can peel off the zero index.
1087     if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
1088       break;
1089     --LastOperand;
1090   }
1091 
1092   return LastOperand;
1093 }
1094 
1095 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1096   assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
1097   // Make sure that the pointer does not point to structs.
1098   if (Ptr->getType()->getPointerElementType()->isAggregateType())
1099     return 0;
1100 
1101   // If this value is a pointer induction variable we know it is consecutive.
1102   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1103   if (Phi && Inductions.count(Phi)) {
1104     InductionInfo II = Inductions[Phi];
1105     if (IK_PtrInduction == II.IK)
1106       return 1;
1107     else if (IK_ReversePtrInduction == II.IK)
1108       return -1;
1109   }
1110 
1111   GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1112   if (!Gep)
1113     return 0;
1114 
1115   unsigned NumOperands = Gep->getNumOperands();
1116   Value *GpPtr = Gep->getPointerOperand();
1117   // If this GEP value is a consecutive pointer induction variable and all of
1118   // the indices are constant then we know it is consecutive. We can
1119   Phi = dyn_cast<PHINode>(GpPtr);
1120   if (Phi && Inductions.count(Phi)) {
1121 
1122     // Make sure that the pointer does not point to structs.
1123     PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1124     if (GepPtrType->getElementType()->isAggregateType())
1125       return 0;
1126 
1127     // Make sure that all of the index operands are loop invariant.
1128     for (unsigned i = 1; i < NumOperands; ++i)
1129       if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1130         return 0;
1131 
1132     InductionInfo II = Inductions[Phi];
1133     if (IK_PtrInduction == II.IK)
1134       return 1;
1135     else if (IK_ReversePtrInduction == II.IK)
1136       return -1;
1137   }
1138 
1139   unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1140 
1141   // Check that all of the gep indices are uniform except for our induction
1142   // operand.
1143   for (unsigned i = 0; i != NumOperands; ++i)
1144     if (i != InductionOperand &&
1145         !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1146       return 0;
1147 
1148   // We can emit wide load/stores only if the last non-zero index is the
1149   // induction variable.
1150   const SCEV *Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1151   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1152     const SCEV *Step = AR->getStepRecurrence(*SE);
1153 
1154     // The memory is consecutive because the last index is consecutive
1155     // and all other indices are loop invariant.
1156     if (Step->isOne())
1157       return 1;
1158     if (Step->isAllOnesValue())
1159       return -1;
1160   }
1161 
1162   return 0;
1163 }
1164 
1165 bool LoopVectorizationLegality::isUniform(Value *V) {
1166   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1167 }
1168 
1169 InnerLoopVectorizer::VectorParts&
1170 InnerLoopVectorizer::getVectorValue(Value *V) {
1171   assert(V != Induction && "The new induction variable should not be used.");
1172   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1173 
1174   // If we have this scalar in the map, return it.
1175   if (WidenMap.has(V))
1176     return WidenMap.get(V);
1177 
1178   // If this scalar is unknown, assume that it is a constant or that it is
1179   // loop invariant. Broadcast V and save the value for future uses.
1180   Value *B = getBroadcastInstrs(V);
1181   return WidenMap.splat(V, B);
1182 }
1183 
1184 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1185   assert(Vec->getType()->isVectorTy() && "Invalid type");
1186   SmallVector<Constant*, 8> ShuffleMask;
1187   for (unsigned i = 0; i < VF; ++i)
1188     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1189 
1190   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1191                                      ConstantVector::get(ShuffleMask),
1192                                      "reverse");
1193 }
1194 
1195 
1196 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
1197                                              LoopVectorizationLegality *Legal) {
1198   // Attempt to issue a wide load.
1199   LoadInst *LI = dyn_cast<LoadInst>(Instr);
1200   StoreInst *SI = dyn_cast<StoreInst>(Instr);
1201 
1202   assert((LI || SI) && "Invalid Load/Store instruction");
1203 
1204   Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1205   Type *DataTy = VectorType::get(ScalarDataTy, VF);
1206   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1207   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1208   // An alignment of 0 means target abi alignment. We need to use the scalar's
1209   // target abi alignment in such a case.
1210   if (!Alignment)
1211     Alignment = DL->getABITypeAlignment(ScalarDataTy);
1212   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1213   unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1214   unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1215 
1216   if (ScalarAllocatedSize != VectorElementSize)
1217     return scalarizeInstruction(Instr);
1218 
1219   // If the pointer is loop invariant or if it is non consecutive,
1220   // scalarize the load.
1221   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1222   bool Reverse = ConsecutiveStride < 0;
1223   bool UniformLoad = LI && Legal->isUniform(Ptr);
1224   if (!ConsecutiveStride || UniformLoad)
1225     return scalarizeInstruction(Instr);
1226 
1227   Constant *Zero = Builder.getInt32(0);
1228   VectorParts &Entry = WidenMap.get(Instr);
1229 
1230   // Handle consecutive loads/stores.
1231   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1232   if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1233     setDebugLocFromInst(Builder, Gep);
1234     Value *PtrOperand = Gep->getPointerOperand();
1235     Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1236     FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1237 
1238     // Create the new GEP with the new induction variable.
1239     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1240     Gep2->setOperand(0, FirstBasePtr);
1241     Gep2->setName("gep.indvar.base");
1242     Ptr = Builder.Insert(Gep2);
1243   } else if (Gep) {
1244     setDebugLocFromInst(Builder, Gep);
1245     assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1246                                OrigLoop) && "Base ptr must be invariant");
1247 
1248     // The last index does not have to be the induction. It can be
1249     // consecutive and be a function of the index. For example A[I+1];
1250     unsigned NumOperands = Gep->getNumOperands();
1251     unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1252     // Create the new GEP with the new induction variable.
1253     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1254 
1255     for (unsigned i = 0; i < NumOperands; ++i) {
1256       Value *GepOperand = Gep->getOperand(i);
1257       Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1258 
1259       // Update last index or loop invariant instruction anchored in loop.
1260       if (i == InductionOperand ||
1261           (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1262         assert((i == InductionOperand ||
1263                SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1264                "Must be last index or loop invariant");
1265 
1266         VectorParts &GEPParts = getVectorValue(GepOperand);
1267         Value *Index = GEPParts[0];
1268         Index = Builder.CreateExtractElement(Index, Zero);
1269         Gep2->setOperand(i, Index);
1270         Gep2->setName("gep.indvar.idx");
1271       }
1272     }
1273     Ptr = Builder.Insert(Gep2);
1274   } else {
1275     // Use the induction element ptr.
1276     assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1277     setDebugLocFromInst(Builder, Ptr);
1278     VectorParts &PtrVal = getVectorValue(Ptr);
1279     Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1280   }
1281 
1282   // Handle Stores:
1283   if (SI) {
1284     assert(!Legal->isUniform(SI->getPointerOperand()) &&
1285            "We do not allow storing to uniform addresses");
1286     setDebugLocFromInst(Builder, SI);
1287     // We don't want to update the value in the map as it might be used in
1288     // another expression. So don't use a reference type for "StoredVal".
1289     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1290 
1291     for (unsigned Part = 0; Part < UF; ++Part) {
1292       // Calculate the pointer for the specific unroll-part.
1293       Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1294 
1295       if (Reverse) {
1296         // If we store to reverse consecutive memory locations then we need
1297         // to reverse the order of elements in the stored value.
1298         StoredVal[Part] = reverseVector(StoredVal[Part]);
1299         // If the address is consecutive but reversed, then the
1300         // wide store needs to start at the last vector element.
1301         PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1302         PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1303       }
1304 
1305       Value *VecPtr = Builder.CreateBitCast(PartPtr,
1306                                             DataTy->getPointerTo(AddressSpace));
1307       Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1308     }
1309     return;
1310   }
1311 
1312   // Handle loads.
1313   assert(LI && "Must have a load instruction");
1314   setDebugLocFromInst(Builder, LI);
1315   for (unsigned Part = 0; Part < UF; ++Part) {
1316     // Calculate the pointer for the specific unroll-part.
1317     Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1318 
1319     if (Reverse) {
1320       // If the address is consecutive but reversed, then the
1321       // wide store needs to start at the last vector element.
1322       PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1323       PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1324     }
1325 
1326     Value *VecPtr = Builder.CreateBitCast(PartPtr,
1327                                           DataTy->getPointerTo(AddressSpace));
1328     Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1329     cast<LoadInst>(LI)->setAlignment(Alignment);
1330     Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1331   }
1332 }
1333 
1334 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1335   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1336   // Holds vector parameters or scalars, in case of uniform vals.
1337   SmallVector<VectorParts, 4> Params;
1338 
1339   setDebugLocFromInst(Builder, Instr);
1340 
1341   // Find all of the vectorized parameters.
1342   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1343     Value *SrcOp = Instr->getOperand(op);
1344 
1345     // If we are accessing the old induction variable, use the new one.
1346     if (SrcOp == OldInduction) {
1347       Params.push_back(getVectorValue(SrcOp));
1348       continue;
1349     }
1350 
1351     // Try using previously calculated values.
1352     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1353 
1354     // If the src is an instruction that appeared earlier in the basic block
1355     // then it should already be vectorized.
1356     if (SrcInst && OrigLoop->contains(SrcInst)) {
1357       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1358       // The parameter is a vector value from earlier.
1359       Params.push_back(WidenMap.get(SrcInst));
1360     } else {
1361       // The parameter is a scalar from outside the loop. Maybe even a constant.
1362       VectorParts Scalars;
1363       Scalars.append(UF, SrcOp);
1364       Params.push_back(Scalars);
1365     }
1366   }
1367 
1368   assert(Params.size() == Instr->getNumOperands() &&
1369          "Invalid number of operands");
1370 
1371   // Does this instruction return a value ?
1372   bool IsVoidRetTy = Instr->getType()->isVoidTy();
1373 
1374   Value *UndefVec = IsVoidRetTy ? 0 :
1375     UndefValue::get(VectorType::get(Instr->getType(), VF));
1376   // Create a new entry in the WidenMap and initialize it to Undef or Null.
1377   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1378 
1379   // For each vector unroll 'part':
1380   for (unsigned Part = 0; Part < UF; ++Part) {
1381     // For each scalar that we create:
1382     for (unsigned Width = 0; Width < VF; ++Width) {
1383       Instruction *Cloned = Instr->clone();
1384       if (!IsVoidRetTy)
1385         Cloned->setName(Instr->getName() + ".cloned");
1386       // Replace the operands of the cloned instructions with extracted scalars.
1387       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1388         Value *Op = Params[op][Part];
1389         // Param is a vector. Need to extract the right lane.
1390         if (Op->getType()->isVectorTy())
1391           Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1392         Cloned->setOperand(op, Op);
1393       }
1394 
1395       // Place the cloned scalar in the new loop.
1396       Builder.Insert(Cloned);
1397 
1398       // If the original scalar returns a value we need to place it in a vector
1399       // so that future users will be able to use it.
1400       if (!IsVoidRetTy)
1401         VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1402                                                        Builder.getInt32(Width));
1403     }
1404   }
1405 }
1406 
1407 Instruction *
1408 InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1409                                      Instruction *Loc) {
1410   LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1411   Legal->getRuntimePointerCheck();
1412 
1413   if (!PtrRtCheck->Need)
1414     return NULL;
1415 
1416   unsigned NumPointers = PtrRtCheck->Pointers.size();
1417   SmallVector<TrackingVH<Value> , 2> Starts;
1418   SmallVector<TrackingVH<Value> , 2> Ends;
1419 
1420   LLVMContext &Ctx = Loc->getContext();
1421   SCEVExpander Exp(*SE, "induction");
1422 
1423   for (unsigned i = 0; i < NumPointers; ++i) {
1424     Value *Ptr = PtrRtCheck->Pointers[i];
1425     const SCEV *Sc = SE->getSCEV(Ptr);
1426 
1427     if (SE->isLoopInvariant(Sc, OrigLoop)) {
1428       DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1429             *Ptr <<"\n");
1430       Starts.push_back(Ptr);
1431       Ends.push_back(Ptr);
1432     } else {
1433       DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
1434       unsigned AS = Ptr->getType()->getPointerAddressSpace();
1435 
1436       // Use this type for pointer arithmetic.
1437       Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1438 
1439       Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1440       Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1441       Starts.push_back(Start);
1442       Ends.push_back(End);
1443     }
1444   }
1445 
1446   IRBuilder<> ChkBuilder(Loc);
1447   // Our instructions might fold to a constant.
1448   Value *MemoryRuntimeCheck = 0;
1449   for (unsigned i = 0; i < NumPointers; ++i) {
1450     for (unsigned j = i+1; j < NumPointers; ++j) {
1451       // No need to check if two readonly pointers intersect.
1452       if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1453         continue;
1454 
1455       // Only need to check pointers between two different dependency sets.
1456       if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
1457        continue;
1458 
1459       unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1460       unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1461 
1462       assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1463              (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1464              "Trying to bounds check pointers with different address spaces");
1465 
1466       Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1467       Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1468 
1469       Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1470       Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1471       Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
1472       Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
1473 
1474       Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1475       Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1476       Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1477       if (MemoryRuntimeCheck)
1478         IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1479                                          "conflict.rdx");
1480       MemoryRuntimeCheck = IsConflict;
1481     }
1482   }
1483 
1484   // We have to do this trickery because the IRBuilder might fold the check to a
1485   // constant expression in which case there is no Instruction anchored in a
1486   // the block.
1487   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1488                                                  ConstantInt::getTrue(Ctx));
1489   ChkBuilder.Insert(Check, "memcheck.conflict");
1490   return Check;
1491 }
1492 
1493 void
1494 InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1495   /*
1496    In this function we generate a new loop. The new loop will contain
1497    the vectorized instructions while the old loop will continue to run the
1498    scalar remainder.
1499 
1500        [ ] <-- vector loop bypass (may consist of multiple blocks).
1501      /  |
1502     /   v
1503    |   [ ]     <-- vector pre header.
1504    |    |
1505    |    v
1506    |   [  ] \
1507    |   [  ]_|   <-- vector loop.
1508    |    |
1509     \   v
1510       >[ ]   <--- middle-block.
1511      /  |
1512     /   v
1513    |   [ ]     <--- new preheader.
1514    |    |
1515    |    v
1516    |   [ ] \
1517    |   [ ]_|   <-- old scalar loop to handle remainder.
1518     \   |
1519      \  v
1520       >[ ]     <-- exit block.
1521    ...
1522    */
1523 
1524   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1525   BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1526   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1527   assert(ExitBlock && "Must have an exit block");
1528 
1529   // Some loops have a single integer induction variable, while other loops
1530   // don't. One example is c++ iterators that often have multiple pointer
1531   // induction variables. In the code below we also support a case where we
1532   // don't have a single induction variable.
1533   OldInduction = Legal->getInduction();
1534   Type *IdxTy = Legal->getWidestInductionType();
1535 
1536   // Find the loop boundaries.
1537   const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
1538   assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1539 
1540   ExitCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
1541   // Get the total trip count from the count by adding 1.
1542   ExitCount = SE->getAddExpr(ExitCount,
1543                              SE->getConstant(ExitCount->getType(), 1));
1544 
1545   // Expand the trip count and place the new instructions in the preheader.
1546   // Notice that the pre-header does not change, only the loop body.
1547   SCEVExpander Exp(*SE, "induction");
1548 
1549   // Count holds the overall loop count (N).
1550   Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1551                                    BypassBlock->getTerminator());
1552 
1553   // The loop index does not have to start at Zero. Find the original start
1554   // value from the induction PHI node. If we don't have an induction variable
1555   // then we know that it starts at zero.
1556   Builder.SetInsertPoint(BypassBlock->getTerminator());
1557   Value *StartIdx = ExtendedIdx = OldInduction ?
1558     Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
1559                        IdxTy):
1560     ConstantInt::get(IdxTy, 0);
1561 
1562   assert(BypassBlock && "Invalid loop structure");
1563   LoopBypassBlocks.push_back(BypassBlock);
1564 
1565   // Split the single block loop into the two loop structure described above.
1566   BasicBlock *VectorPH =
1567   BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1568   BasicBlock *VecBody =
1569   VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1570   BasicBlock *MiddleBlock =
1571   VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1572   BasicBlock *ScalarPH =
1573   MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1574 
1575   // Create and register the new vector loop.
1576   Loop* Lp = new Loop();
1577   Loop *ParentLoop = OrigLoop->getParentLoop();
1578 
1579   // Insert the new loop into the loop nest and register the new basic blocks
1580   // before calling any utilities such as SCEV that require valid LoopInfo.
1581   if (ParentLoop) {
1582     ParentLoop->addChildLoop(Lp);
1583     ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1584     ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1585     ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1586   } else {
1587     LI->addTopLevelLoop(Lp);
1588   }
1589   Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1590 
1591   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1592   // inside the loop.
1593   Builder.SetInsertPoint(VecBody->getFirstNonPHI());
1594 
1595   // Generate the induction variable.
1596   setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
1597   Induction = Builder.CreatePHI(IdxTy, 2, "index");
1598   // The loop step is equal to the vectorization factor (num of SIMD elements)
1599   // times the unroll factor (num of SIMD instructions).
1600   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1601 
1602   // This is the IR builder that we use to add all of the logic for bypassing
1603   // the new vector loop.
1604   IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1605   setDebugLocFromInst(BypassBuilder,
1606                       getDebugLocFromInstOrOperands(OldInduction));
1607 
1608   // We may need to extend the index in case there is a type mismatch.
1609   // We know that the count starts at zero and does not overflow.
1610   if (Count->getType() != IdxTy) {
1611     // The exit count can be of pointer type. Convert it to the correct
1612     // integer type.
1613     if (ExitCount->getType()->isPointerTy())
1614       Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1615     else
1616       Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1617   }
1618 
1619   // Add the start index to the loop count to get the new end index.
1620   Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1621 
1622   // Now we need to generate the expression for N - (N % VF), which is
1623   // the part that the vectorized body will execute.
1624   Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1625   Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1626   Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1627                                                      "end.idx.rnd.down");
1628 
1629   // Now, compare the new count to zero. If it is zero skip the vector loop and
1630   // jump to the scalar loop.
1631   Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1632                                           "cmp.zero");
1633 
1634   BasicBlock *LastBypassBlock = BypassBlock;
1635 
1636   // Generate the code that checks in runtime if arrays overlap. We put the
1637   // checks into a separate block to make the more common case of few elements
1638   // faster.
1639   Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1640                                                  BypassBlock->getTerminator());
1641   if (MemRuntimeCheck) {
1642     // Create a new block containing the memory check.
1643     BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1644                                                           "vector.memcheck");
1645     if (ParentLoop)
1646       ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
1647     LoopBypassBlocks.push_back(CheckBlock);
1648 
1649     // Replace the branch into the memory check block with a conditional branch
1650     // for the "few elements case".
1651     Instruction *OldTerm = BypassBlock->getTerminator();
1652     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1653     OldTerm->eraseFromParent();
1654 
1655     Cmp = MemRuntimeCheck;
1656     LastBypassBlock = CheckBlock;
1657   }
1658 
1659   LastBypassBlock->getTerminator()->eraseFromParent();
1660   BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1661                      LastBypassBlock);
1662 
1663   // We are going to resume the execution of the scalar loop.
1664   // Go over all of the induction variables that we found and fix the
1665   // PHIs that are left in the scalar version of the loop.
1666   // The starting values of PHI nodes depend on the counter of the last
1667   // iteration in the vectorized loop.
1668   // If we come from a bypass edge then we need to start from the original
1669   // start value.
1670 
1671   // This variable saves the new starting index for the scalar loop.
1672   PHINode *ResumeIndex = 0;
1673   LoopVectorizationLegality::InductionList::iterator I, E;
1674   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1675   // Set builder to point to last bypass block.
1676   BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
1677   for (I = List->begin(), E = List->end(); I != E; ++I) {
1678     PHINode *OrigPhi = I->first;
1679     LoopVectorizationLegality::InductionInfo II = I->second;
1680 
1681     Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
1682     PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
1683                                          MiddleBlock->getTerminator());
1684     // We might have extended the type of the induction variable but we need a
1685     // truncated version for the scalar loop.
1686     PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
1687       PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
1688                       MiddleBlock->getTerminator()) : 0;
1689 
1690     Value *EndValue = 0;
1691     switch (II.IK) {
1692     case LoopVectorizationLegality::IK_NoInduction:
1693       llvm_unreachable("Unknown induction");
1694     case LoopVectorizationLegality::IK_IntInduction: {
1695       // Handle the integer induction counter.
1696       assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1697 
1698       // We have the canonical induction variable.
1699       if (OrigPhi == OldInduction) {
1700         // Create a truncated version of the resume value for the scalar loop,
1701         // we might have promoted the type to a larger width.
1702         EndValue =
1703           BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
1704         // The new PHI merges the original incoming value, in case of a bypass,
1705         // or the value at the end of the vectorized loop.
1706         for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1707           TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1708         TruncResumeVal->addIncoming(EndValue, VecBody);
1709 
1710         // We know what the end value is.
1711         EndValue = IdxEndRoundDown;
1712         // We also know which PHI node holds it.
1713         ResumeIndex = ResumeVal;
1714         break;
1715       }
1716 
1717       // Not the canonical induction variable - add the vector loop count to the
1718       // start value.
1719       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1720                                                    II.StartValue->getType(),
1721                                                    "cast.crd");
1722       EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
1723       break;
1724     }
1725     case LoopVectorizationLegality::IK_ReverseIntInduction: {
1726       // Convert the CountRoundDown variable to the PHI size.
1727       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1728                                                    II.StartValue->getType(),
1729                                                    "cast.crd");
1730       // Handle reverse integer induction counter.
1731       EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
1732       break;
1733     }
1734     case LoopVectorizationLegality::IK_PtrInduction: {
1735       // For pointer induction variables, calculate the offset using
1736       // the end index.
1737       EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
1738                                          "ptr.ind.end");
1739       break;
1740     }
1741     case LoopVectorizationLegality::IK_ReversePtrInduction: {
1742       // The value at the end of the loop for the reverse pointer is calculated
1743       // by creating a GEP with a negative index starting from the start value.
1744       Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1745       Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
1746                                               "rev.ind.end");
1747       EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
1748                                          "rev.ptr.ind.end");
1749       break;
1750     }
1751     }// end of case
1752 
1753     // The new PHI merges the original incoming value, in case of a bypass,
1754     // or the value at the end of the vectorized loop.
1755     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
1756       if (OrigPhi == OldInduction)
1757         ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
1758       else
1759         ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1760     }
1761     ResumeVal->addIncoming(EndValue, VecBody);
1762 
1763     // Fix the scalar body counter (PHI node).
1764     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1765     // The old inductions phi node in the scalar body needs the truncated value.
1766     if (OrigPhi == OldInduction)
1767       OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
1768     else
1769       OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1770   }
1771 
1772   // If we are generating a new induction variable then we also need to
1773   // generate the code that calculates the exit value. This value is not
1774   // simply the end of the counter because we may skip the vectorized body
1775   // in case of a runtime check.
1776   if (!OldInduction){
1777     assert(!ResumeIndex && "Unexpected resume value found");
1778     ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1779                                   MiddleBlock->getTerminator());
1780     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1781       ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1782     ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1783   }
1784 
1785   // Make sure that we found the index where scalar loop needs to continue.
1786   assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1787          "Invalid resume Index");
1788 
1789   // Add a check in the middle block to see if we have completed
1790   // all of the iterations in the first vector loop.
1791   // If (N - N%VF) == N, then we *don't* need to run the remainder.
1792   Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1793                                 ResumeIndex, "cmp.n",
1794                                 MiddleBlock->getTerminator());
1795 
1796   BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1797   // Remove the old terminator.
1798   MiddleBlock->getTerminator()->eraseFromParent();
1799 
1800   // Create i+1 and fill the PHINode.
1801   Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1802   Induction->addIncoming(StartIdx, VectorPH);
1803   Induction->addIncoming(NextIdx, VecBody);
1804   // Create the compare.
1805   Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1806   Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1807 
1808   // Now we have two terminators. Remove the old one from the block.
1809   VecBody->getTerminator()->eraseFromParent();
1810 
1811   // Get ready to start creating new instructions into the vectorized body.
1812   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1813 
1814   // Save the state.
1815   LoopVectorPreHeader = VectorPH;
1816   LoopScalarPreHeader = ScalarPH;
1817   LoopMiddleBlock = MiddleBlock;
1818   LoopExitBlock = ExitBlock;
1819   LoopVectorBody = VecBody;
1820   LoopScalarBody = OldBasicBlock;
1821 
1822   LoopVectorizeHints Hints(Lp, true);
1823   Hints.setAlreadyVectorized(Lp);
1824 }
1825 
1826 /// This function returns the identity element (or neutral element) for
1827 /// the operation K.
1828 Constant*
1829 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
1830   switch (K) {
1831   case RK_IntegerXor:
1832   case RK_IntegerAdd:
1833   case RK_IntegerOr:
1834     // Adding, Xoring, Oring zero to a number does not change it.
1835     return ConstantInt::get(Tp, 0);
1836   case RK_IntegerMult:
1837     // Multiplying a number by 1 does not change it.
1838     return ConstantInt::get(Tp, 1);
1839   case RK_IntegerAnd:
1840     // AND-ing a number with an all-1 value does not change it.
1841     return ConstantInt::get(Tp, -1, true);
1842   case  RK_FloatMult:
1843     // Multiplying a number by 1 does not change it.
1844     return ConstantFP::get(Tp, 1.0L);
1845   case  RK_FloatAdd:
1846     // Adding zero to a number does not change it.
1847     return ConstantFP::get(Tp, 0.0L);
1848   default:
1849     llvm_unreachable("Unknown reduction kind");
1850   }
1851 }
1852 
1853 static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I,
1854                                               Intrinsic::ID ValidIntrinsicID) {
1855   if (I.getNumArgOperands() != 1 ||
1856       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1857       I.getType() != I.getArgOperand(0)->getType() ||
1858       !I.onlyReadsMemory())
1859     return Intrinsic::not_intrinsic;
1860 
1861   return ValidIntrinsicID;
1862 }
1863 
1864 static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I,
1865                                                Intrinsic::ID ValidIntrinsicID) {
1866   if (I.getNumArgOperands() != 2 ||
1867       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1868       !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
1869       I.getType() != I.getArgOperand(0)->getType() ||
1870       I.getType() != I.getArgOperand(1)->getType() ||
1871       !I.onlyReadsMemory())
1872     return Intrinsic::not_intrinsic;
1873 
1874   return ValidIntrinsicID;
1875 }
1876 
1877 
1878 static Intrinsic::ID
1879 getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
1880   // If we have an intrinsic call, check if it is trivially vectorizable.
1881   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1882     switch (II->getIntrinsicID()) {
1883     case Intrinsic::sqrt:
1884     case Intrinsic::sin:
1885     case Intrinsic::cos:
1886     case Intrinsic::exp:
1887     case Intrinsic::exp2:
1888     case Intrinsic::log:
1889     case Intrinsic::log10:
1890     case Intrinsic::log2:
1891     case Intrinsic::fabs:
1892     case Intrinsic::copysign:
1893     case Intrinsic::floor:
1894     case Intrinsic::ceil:
1895     case Intrinsic::trunc:
1896     case Intrinsic::rint:
1897     case Intrinsic::nearbyint:
1898     case Intrinsic::round:
1899     case Intrinsic::pow:
1900     case Intrinsic::fma:
1901     case Intrinsic::fmuladd:
1902     case Intrinsic::lifetime_start:
1903     case Intrinsic::lifetime_end:
1904       return II->getIntrinsicID();
1905     default:
1906       return Intrinsic::not_intrinsic;
1907     }
1908   }
1909 
1910   if (!TLI)
1911     return Intrinsic::not_intrinsic;
1912 
1913   LibFunc::Func Func;
1914   Function *F = CI->getCalledFunction();
1915   // We're going to make assumptions on the semantics of the functions, check
1916   // that the target knows that it's available in this environment and it does
1917   // not have local linkage.
1918   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
1919     return Intrinsic::not_intrinsic;
1920 
1921   // Otherwise check if we have a call to a function that can be turned into a
1922   // vector intrinsic.
1923   switch (Func) {
1924   default:
1925     break;
1926   case LibFunc::sin:
1927   case LibFunc::sinf:
1928   case LibFunc::sinl:
1929     return checkUnaryFloatSignature(*CI, Intrinsic::sin);
1930   case LibFunc::cos:
1931   case LibFunc::cosf:
1932   case LibFunc::cosl:
1933     return checkUnaryFloatSignature(*CI, Intrinsic::cos);
1934   case LibFunc::exp:
1935   case LibFunc::expf:
1936   case LibFunc::expl:
1937     return checkUnaryFloatSignature(*CI, Intrinsic::exp);
1938   case LibFunc::exp2:
1939   case LibFunc::exp2f:
1940   case LibFunc::exp2l:
1941     return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
1942   case LibFunc::log:
1943   case LibFunc::logf:
1944   case LibFunc::logl:
1945     return checkUnaryFloatSignature(*CI, Intrinsic::log);
1946   case LibFunc::log10:
1947   case LibFunc::log10f:
1948   case LibFunc::log10l:
1949     return checkUnaryFloatSignature(*CI, Intrinsic::log10);
1950   case LibFunc::log2:
1951   case LibFunc::log2f:
1952   case LibFunc::log2l:
1953     return checkUnaryFloatSignature(*CI, Intrinsic::log2);
1954   case LibFunc::fabs:
1955   case LibFunc::fabsf:
1956   case LibFunc::fabsl:
1957     return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
1958   case LibFunc::copysign:
1959   case LibFunc::copysignf:
1960   case LibFunc::copysignl:
1961     return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
1962   case LibFunc::floor:
1963   case LibFunc::floorf:
1964   case LibFunc::floorl:
1965     return checkUnaryFloatSignature(*CI, Intrinsic::floor);
1966   case LibFunc::ceil:
1967   case LibFunc::ceilf:
1968   case LibFunc::ceill:
1969     return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
1970   case LibFunc::trunc:
1971   case LibFunc::truncf:
1972   case LibFunc::truncl:
1973     return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
1974   case LibFunc::rint:
1975   case LibFunc::rintf:
1976   case LibFunc::rintl:
1977     return checkUnaryFloatSignature(*CI, Intrinsic::rint);
1978   case LibFunc::nearbyint:
1979   case LibFunc::nearbyintf:
1980   case LibFunc::nearbyintl:
1981     return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
1982   case LibFunc::round:
1983   case LibFunc::roundf:
1984   case LibFunc::roundl:
1985     return checkUnaryFloatSignature(*CI, Intrinsic::round);
1986   case LibFunc::pow:
1987   case LibFunc::powf:
1988   case LibFunc::powl:
1989     return checkBinaryFloatSignature(*CI, Intrinsic::pow);
1990   }
1991 
1992   return Intrinsic::not_intrinsic;
1993 }
1994 
1995 /// This function translates the reduction kind to an LLVM binary operator.
1996 static unsigned
1997 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1998   switch (Kind) {
1999     case LoopVectorizationLegality::RK_IntegerAdd:
2000       return Instruction::Add;
2001     case LoopVectorizationLegality::RK_IntegerMult:
2002       return Instruction::Mul;
2003     case LoopVectorizationLegality::RK_IntegerOr:
2004       return Instruction::Or;
2005     case LoopVectorizationLegality::RK_IntegerAnd:
2006       return Instruction::And;
2007     case LoopVectorizationLegality::RK_IntegerXor:
2008       return Instruction::Xor;
2009     case LoopVectorizationLegality::RK_FloatMult:
2010       return Instruction::FMul;
2011     case LoopVectorizationLegality::RK_FloatAdd:
2012       return Instruction::FAdd;
2013     case LoopVectorizationLegality::RK_IntegerMinMax:
2014       return Instruction::ICmp;
2015     case LoopVectorizationLegality::RK_FloatMinMax:
2016       return Instruction::FCmp;
2017     default:
2018       llvm_unreachable("Unknown reduction operation");
2019   }
2020 }
2021 
2022 Value *createMinMaxOp(IRBuilder<> &Builder,
2023                       LoopVectorizationLegality::MinMaxReductionKind RK,
2024                       Value *Left,
2025                       Value *Right) {
2026   CmpInst::Predicate P = CmpInst::ICMP_NE;
2027   switch (RK) {
2028   default:
2029     llvm_unreachable("Unknown min/max reduction kind");
2030   case LoopVectorizationLegality::MRK_UIntMin:
2031     P = CmpInst::ICMP_ULT;
2032     break;
2033   case LoopVectorizationLegality::MRK_UIntMax:
2034     P = CmpInst::ICMP_UGT;
2035     break;
2036   case LoopVectorizationLegality::MRK_SIntMin:
2037     P = CmpInst::ICMP_SLT;
2038     break;
2039   case LoopVectorizationLegality::MRK_SIntMax:
2040     P = CmpInst::ICMP_SGT;
2041     break;
2042   case LoopVectorizationLegality::MRK_FloatMin:
2043     P = CmpInst::FCMP_OLT;
2044     break;
2045   case LoopVectorizationLegality::MRK_FloatMax:
2046     P = CmpInst::FCMP_OGT;
2047     break;
2048   }
2049 
2050   Value *Cmp;
2051   if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2052       RK == LoopVectorizationLegality::MRK_FloatMax)
2053     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2054   else
2055     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2056 
2057   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2058   return Select;
2059 }
2060 
2061 namespace {
2062 struct CSEDenseMapInfo {
2063   static bool canHandle(Instruction *I) {
2064     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2065            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2066   }
2067   static inline Instruction *getEmptyKey() {
2068     return DenseMapInfo<Instruction *>::getEmptyKey();
2069   }
2070   static inline Instruction *getTombstoneKey() {
2071     return DenseMapInfo<Instruction *>::getTombstoneKey();
2072   }
2073   static unsigned getHashValue(Instruction *I) {
2074     assert(canHandle(I) && "Unknown instruction!");
2075     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2076                                                            I->value_op_end()));
2077   }
2078   static bool isEqual(Instruction *LHS, Instruction *RHS) {
2079     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2080         LHS == getTombstoneKey() || RHS == getTombstoneKey())
2081       return LHS == RHS;
2082     return LHS->isIdenticalTo(RHS);
2083   }
2084 };
2085 }
2086 
2087 ///\brief Perform cse of induction variable instructions.
2088 static void cse(BasicBlock *BB) {
2089   // Perform simple cse.
2090   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
2091   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2092     Instruction *In = I++;
2093 
2094     if (!CSEDenseMapInfo::canHandle(In))
2095       continue;
2096 
2097     // Check if we can replace this instruction with any of the
2098     // visited instructions.
2099     if (Instruction *V = CSEMap.lookup(In)) {
2100       In->replaceAllUsesWith(V);
2101       In->eraseFromParent();
2102       continue;
2103     }
2104 
2105     CSEMap[In] = In;
2106   }
2107 }
2108 
2109 void
2110 InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
2111   //===------------------------------------------------===//
2112   //
2113   // Notice: any optimization or new instruction that go
2114   // into the code below should be also be implemented in
2115   // the cost-model.
2116   //
2117   //===------------------------------------------------===//
2118   Constant *Zero = Builder.getInt32(0);
2119 
2120   // In order to support reduction variables we need to be able to vectorize
2121   // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2122   // stages. First, we create a new vector PHI node with no incoming edges.
2123   // We use this value when we vectorize all of the instructions that use the
2124   // PHI. Next, after all of the instructions in the block are complete we
2125   // add the new incoming edges to the PHI. At this point all of the
2126   // instructions in the basic block are vectorized, so we can use them to
2127   // construct the PHI.
2128   PhiVector RdxPHIsToFix;
2129 
2130   // Scan the loop in a topological order to ensure that defs are vectorized
2131   // before users.
2132   LoopBlocksDFS DFS(OrigLoop);
2133   DFS.perform(LI);
2134 
2135   // Vectorize all of the blocks in the original loop.
2136   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2137        be = DFS.endRPO(); bb != be; ++bb)
2138     vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
2139 
2140   // At this point every instruction in the original loop is widened to
2141   // a vector form. We are almost done. Now, we need to fix the PHI nodes
2142   // that we vectorized. The PHI nodes are currently empty because we did
2143   // not want to introduce cycles. Notice that the remaining PHI nodes
2144   // that we need to fix are reduction variables.
2145 
2146   // Create the 'reduced' values for each of the induction vars.
2147   // The reduced values are the vector values that we scalarize and combine
2148   // after the loop is finished.
2149   for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2150        it != e; ++it) {
2151     PHINode *RdxPhi = *it;
2152     assert(RdxPhi && "Unable to recover vectorized PHI");
2153 
2154     // Find the reduction variable descriptor.
2155     assert(Legal->getReductionVars()->count(RdxPhi) &&
2156            "Unable to find the reduction variable");
2157     LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2158     (*Legal->getReductionVars())[RdxPhi];
2159 
2160     setDebugLocFromInst(Builder, RdxDesc.StartValue);
2161 
2162     // We need to generate a reduction vector from the incoming scalar.
2163     // To do so, we need to generate the 'identity' vector and overide
2164     // one of the elements with the incoming scalar reduction. We need
2165     // to do it in the vector-loop preheader.
2166     Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
2167 
2168     // This is the vector-clone of the value that leaves the loop.
2169     VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2170     Type *VecTy = VectorExit[0]->getType();
2171 
2172     // Find the reduction identity variable. Zero for addition, or, xor,
2173     // one for multiplication, -1 for And.
2174     Value *Identity;
2175     Value *VectorStart;
2176     if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2177         RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2178       // MinMax reduction have the start value as their identify.
2179       if (VF == 1) {
2180         VectorStart = Identity = RdxDesc.StartValue;
2181       } else {
2182         VectorStart = Identity = Builder.CreateVectorSplat(VF,
2183                                                            RdxDesc.StartValue,
2184                                                            "minmax.ident");
2185       }
2186     } else {
2187       // Handle other reduction kinds:
2188       Constant *Iden =
2189       LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2190                                                       VecTy->getScalarType());
2191       if (VF == 1) {
2192         Identity = Iden;
2193         // This vector is the Identity vector where the first element is the
2194         // incoming scalar reduction.
2195         VectorStart = RdxDesc.StartValue;
2196       } else {
2197         Identity = ConstantVector::getSplat(VF, Iden);
2198 
2199         // This vector is the Identity vector where the first element is the
2200         // incoming scalar reduction.
2201         VectorStart = Builder.CreateInsertElement(Identity,
2202                                                   RdxDesc.StartValue, Zero);
2203       }
2204     }
2205 
2206     // Fix the vector-loop phi.
2207     // We created the induction variable so we know that the
2208     // preheader is the first entry.
2209     BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2210 
2211     // Reductions do not have to start at zero. They can start with
2212     // any loop invariant values.
2213     VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2214     BasicBlock *Latch = OrigLoop->getLoopLatch();
2215     Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2216     VectorParts &Val = getVectorValue(LoopVal);
2217     for (unsigned part = 0; part < UF; ++part) {
2218       // Make sure to add the reduction stat value only to the
2219       // first unroll part.
2220       Value *StartVal = (part == 0) ? VectorStart : Identity;
2221       cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2222       cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
2223     }
2224 
2225     // Before each round, move the insertion point right between
2226     // the PHIs and the values we are going to write.
2227     // This allows us to write both PHINodes and the extractelement
2228     // instructions.
2229     Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2230 
2231     VectorParts RdxParts;
2232     setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2233     for (unsigned part = 0; part < UF; ++part) {
2234       // This PHINode contains the vectorized reduction variable, or
2235       // the initial value vector, if we bypass the vector loop.
2236       VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2237       PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2238       Value *StartVal = (part == 0) ? VectorStart : Identity;
2239       for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2240         NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2241       NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
2242       RdxParts.push_back(NewPhi);
2243     }
2244 
2245     // Reduce all of the unrolled parts into a single vector.
2246     Value *ReducedPartRdx = RdxParts[0];
2247     unsigned Op = getReductionBinOp(RdxDesc.Kind);
2248     setDebugLocFromInst(Builder, ReducedPartRdx);
2249     for (unsigned part = 1; part < UF; ++part) {
2250       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2251         ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
2252                                              RdxParts[part], ReducedPartRdx,
2253                                              "bin.rdx");
2254       else
2255         ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2256                                         ReducedPartRdx, RdxParts[part]);
2257     }
2258 
2259     if (VF > 1) {
2260       // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2261       // and vector ops, reducing the set of values being computed by half each
2262       // round.
2263       assert(isPowerOf2_32(VF) &&
2264              "Reduction emission only supported for pow2 vectors!");
2265       Value *TmpVec = ReducedPartRdx;
2266       SmallVector<Constant*, 32> ShuffleMask(VF, 0);
2267       for (unsigned i = VF; i != 1; i >>= 1) {
2268         // Move the upper half of the vector to the lower half.
2269         for (unsigned j = 0; j != i/2; ++j)
2270           ShuffleMask[j] = Builder.getInt32(i/2 + j);
2271 
2272         // Fill the rest of the mask with undef.
2273         std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2274                   UndefValue::get(Builder.getInt32Ty()));
2275 
2276         Value *Shuf =
2277         Builder.CreateShuffleVector(TmpVec,
2278                                     UndefValue::get(TmpVec->getType()),
2279                                     ConstantVector::get(ShuffleMask),
2280                                     "rdx.shuf");
2281 
2282         if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2283           TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
2284                                        "bin.rdx");
2285         else
2286           TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2287       }
2288 
2289       // The result is in the first element of the vector.
2290       ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2291                                                     Builder.getInt32(0));
2292     }
2293 
2294     // Now, we need to fix the users of the reduction variable
2295     // inside and outside of the scalar remainder loop.
2296     // We know that the loop is in LCSSA form. We need to update the
2297     // PHI nodes in the exit blocks.
2298     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2299          LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2300       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2301       if (!LCSSAPhi) break;
2302 
2303       // All PHINodes need to have a single entry edge, or two if
2304       // we already fixed them.
2305       assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2306 
2307       // We found our reduction value exit-PHI. Update it with the
2308       // incoming bypass edge.
2309       if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2310         // Add an edge coming from the bypass.
2311         LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2312         break;
2313       }
2314     }// end of the LCSSA phi scan.
2315 
2316     // Fix the scalar loop reduction variable with the incoming reduction sum
2317     // from the vector body and from the backedge value.
2318     int IncomingEdgeBlockIdx =
2319     (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2320     assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2321     // Pick the other block.
2322     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2323     (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx);
2324     (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2325   }// end of for each redux variable.
2326 
2327   fixLCSSAPHIs();
2328 
2329   // Remove redundant induction instructions.
2330   cse(LoopVectorBody);
2331 }
2332 
2333 void InnerLoopVectorizer::fixLCSSAPHIs() {
2334   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2335        LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2336     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2337     if (!LCSSAPhi) break;
2338     if (LCSSAPhi->getNumIncomingValues() == 1)
2339       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2340                             LoopMiddleBlock);
2341   }
2342 }
2343 
2344 InnerLoopVectorizer::VectorParts
2345 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2346   assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2347          "Invalid edge");
2348 
2349   // Look for cached value.
2350   std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2351   EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2352   if (ECEntryIt != MaskCache.end())
2353     return ECEntryIt->second;
2354 
2355   VectorParts SrcMask = createBlockInMask(Src);
2356 
2357   // The terminator has to be a branch inst!
2358   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
2359   assert(BI && "Unexpected terminator found");
2360 
2361   if (BI->isConditional()) {
2362     VectorParts EdgeMask = getVectorValue(BI->getCondition());
2363 
2364     if (BI->getSuccessor(0) != Dst)
2365       for (unsigned part = 0; part < UF; ++part)
2366         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2367 
2368     for (unsigned part = 0; part < UF; ++part)
2369       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2370 
2371     MaskCache[Edge] = EdgeMask;
2372     return EdgeMask;
2373   }
2374 
2375   MaskCache[Edge] = SrcMask;
2376   return SrcMask;
2377 }
2378 
2379 InnerLoopVectorizer::VectorParts
2380 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
2381   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
2382 
2383   // Loop incoming mask is all-one.
2384   if (OrigLoop->getHeader() == BB) {
2385     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
2386     return getVectorValue(C);
2387   }
2388 
2389   // This is the block mask. We OR all incoming edges, and with zero.
2390   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
2391   VectorParts BlockMask = getVectorValue(Zero);
2392 
2393   // For each pred:
2394   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
2395     VectorParts EM = createEdgeMask(*it, BB);
2396     for (unsigned part = 0; part < UF; ++part)
2397       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
2398   }
2399 
2400   return BlockMask;
2401 }
2402 
2403 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
2404                                               InnerLoopVectorizer::VectorParts &Entry,
2405                                               LoopVectorizationLegality *Legal,
2406                                               unsigned UF, unsigned VF, PhiVector *PV) {
2407   PHINode* P = cast<PHINode>(PN);
2408   // Handle reduction variables:
2409   if (Legal->getReductionVars()->count(P)) {
2410     for (unsigned part = 0; part < UF; ++part) {
2411       // This is phase one of vectorizing PHIs.
2412       Type *VecTy = (VF == 1) ? PN->getType() :
2413       VectorType::get(PN->getType(), VF);
2414       Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
2415                                     LoopVectorBody-> getFirstInsertionPt());
2416     }
2417     PV->push_back(P);
2418     return;
2419   }
2420 
2421   setDebugLocFromInst(Builder, P);
2422   // Check for PHI nodes that are lowered to vector selects.
2423   if (P->getParent() != OrigLoop->getHeader()) {
2424     // We know that all PHIs in non header blocks are converted into
2425     // selects, so we don't have to worry about the insertion order and we
2426     // can just use the builder.
2427     // At this point we generate the predication tree. There may be
2428     // duplications since this is a simple recursive scan, but future
2429     // optimizations will clean it up.
2430 
2431     unsigned NumIncoming = P->getNumIncomingValues();
2432 
2433     // Generate a sequence of selects of the form:
2434     // SELECT(Mask3, In3,
2435     //      SELECT(Mask2, In2,
2436     //                   ( ...)))
2437     for (unsigned In = 0; In < NumIncoming; In++) {
2438       VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2439                                         P->getParent());
2440       VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2441 
2442       for (unsigned part = 0; part < UF; ++part) {
2443         // We might have single edge PHIs (blocks) - use an identity
2444         // 'select' for the first PHI operand.
2445         if (In == 0)
2446           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2447                                              In0[part]);
2448         else
2449           // Select between the current value and the previous incoming edge
2450           // based on the incoming mask.
2451           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2452                                              Entry[part], "predphi");
2453       }
2454     }
2455     return;
2456   }
2457 
2458   // This PHINode must be an induction variable.
2459   // Make sure that we know about it.
2460   assert(Legal->getInductionVars()->count(P) &&
2461          "Not an induction variable");
2462 
2463   LoopVectorizationLegality::InductionInfo II =
2464   Legal->getInductionVars()->lookup(P);
2465 
2466   switch (II.IK) {
2467     case LoopVectorizationLegality::IK_NoInduction:
2468       llvm_unreachable("Unknown induction");
2469     case LoopVectorizationLegality::IK_IntInduction: {
2470       assert(P->getType() == II.StartValue->getType() && "Types must match");
2471       Type *PhiTy = P->getType();
2472       Value *Broadcasted;
2473       if (P == OldInduction) {
2474         // Handle the canonical induction variable. We might have had to
2475         // extend the type.
2476         Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
2477       } else {
2478         // Handle other induction variables that are now based on the
2479         // canonical one.
2480         Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
2481                                                  "normalized.idx");
2482         NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
2483         Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
2484                                         "offset.idx");
2485       }
2486       Broadcasted = getBroadcastInstrs(Broadcasted);
2487       // After broadcasting the induction variable we need to make the vector
2488       // consecutive by adding 0, 1, 2, etc.
2489       for (unsigned part = 0; part < UF; ++part)
2490         Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2491       return;
2492     }
2493     case LoopVectorizationLegality::IK_ReverseIntInduction:
2494     case LoopVectorizationLegality::IK_PtrInduction:
2495     case LoopVectorizationLegality::IK_ReversePtrInduction:
2496       // Handle reverse integer and pointer inductions.
2497       Value *StartIdx = ExtendedIdx;
2498       // This is the normalized GEP that starts counting at zero.
2499       Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2500                                                "normalized.idx");
2501 
2502       // Handle the reverse integer induction variable case.
2503       if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
2504         IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
2505         Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
2506                                                "resize.norm.idx");
2507         Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
2508                                                "reverse.idx");
2509 
2510         // This is a new value so do not hoist it out.
2511         Value *Broadcasted = getBroadcastInstrs(ReverseInd);
2512         // After broadcasting the induction variable we need to make the
2513         // vector consecutive by adding  ... -3, -2, -1, 0.
2514         for (unsigned part = 0; part < UF; ++part)
2515           Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
2516                                              true);
2517         return;
2518       }
2519 
2520       // Handle the pointer induction variable case.
2521       assert(P->getType()->isPointerTy() && "Unexpected type.");
2522 
2523       // Is this a reverse induction ptr or a consecutive induction ptr.
2524       bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
2525                       II.IK);
2526 
2527       // This is the vector of results. Notice that we don't generate
2528       // vector geps because scalar geps result in better code.
2529       for (unsigned part = 0; part < UF; ++part) {
2530         if (VF == 1) {
2531           int EltIndex = (part) * (Reverse ? -1 : 1);
2532           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2533           Value *GlobalIdx;
2534           if (Reverse)
2535             GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2536           else
2537             GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2538 
2539           Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2540                                              "next.gep");
2541           Entry[part] = SclrGep;
2542           continue;
2543         }
2544 
2545         Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
2546         for (unsigned int i = 0; i < VF; ++i) {
2547           int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
2548           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2549           Value *GlobalIdx;
2550           if (!Reverse)
2551             GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2552           else
2553             GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2554 
2555           Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2556                                              "next.gep");
2557           VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
2558                                                Builder.getInt32(i),
2559                                                "insert.gep");
2560         }
2561         Entry[part] = VecVal;
2562       }
2563       return;
2564   }
2565 }
2566 
2567 void
2568 InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
2569                                           BasicBlock *BB, PhiVector *PV) {
2570   // For each instruction in the old loop.
2571   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2572     VectorParts &Entry = WidenMap.get(it);
2573     switch (it->getOpcode()) {
2574     case Instruction::Br:
2575       // Nothing to do for PHIs and BR, since we already took care of the
2576       // loop control flow instructions.
2577       continue;
2578     case Instruction::PHI:{
2579       // Vectorize PHINodes.
2580       widenPHIInstruction(it, Entry, Legal, UF, VF, PV);
2581       continue;
2582     }// End of PHI.
2583 
2584     case Instruction::Add:
2585     case Instruction::FAdd:
2586     case Instruction::Sub:
2587     case Instruction::FSub:
2588     case Instruction::Mul:
2589     case Instruction::FMul:
2590     case Instruction::UDiv:
2591     case Instruction::SDiv:
2592     case Instruction::FDiv:
2593     case Instruction::URem:
2594     case Instruction::SRem:
2595     case Instruction::FRem:
2596     case Instruction::Shl:
2597     case Instruction::LShr:
2598     case Instruction::AShr:
2599     case Instruction::And:
2600     case Instruction::Or:
2601     case Instruction::Xor: {
2602       // Just widen binops.
2603       BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
2604       setDebugLocFromInst(Builder, BinOp);
2605       VectorParts &A = getVectorValue(it->getOperand(0));
2606       VectorParts &B = getVectorValue(it->getOperand(1));
2607 
2608       // Use this vector value for all users of the original instruction.
2609       for (unsigned Part = 0; Part < UF; ++Part) {
2610         Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
2611 
2612         // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
2613         BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
2614         if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
2615           VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
2616           VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2617         }
2618         if (VecOp && isa<PossiblyExactOperator>(VecOp))
2619           VecOp->setIsExact(BinOp->isExact());
2620 
2621         Entry[Part] = V;
2622       }
2623       break;
2624     }
2625     case Instruction::Select: {
2626       // Widen selects.
2627       // If the selector is loop invariant we can create a select
2628       // instruction with a scalar condition. Otherwise, use vector-select.
2629       bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2630                                                OrigLoop);
2631       setDebugLocFromInst(Builder, it);
2632 
2633       // The condition can be loop invariant  but still defined inside the
2634       // loop. This means that we can't just use the original 'cond' value.
2635       // We have to take the 'vectorized' value and pick the first lane.
2636       // Instcombine will make this a no-op.
2637       VectorParts &Cond = getVectorValue(it->getOperand(0));
2638       VectorParts &Op0  = getVectorValue(it->getOperand(1));
2639       VectorParts &Op1  = getVectorValue(it->getOperand(2));
2640 
2641       Value *ScalarCond = (VF == 1) ? Cond[0] :
2642         Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
2643 
2644       for (unsigned Part = 0; Part < UF; ++Part) {
2645         Entry[Part] = Builder.CreateSelect(
2646           InvariantCond ? ScalarCond : Cond[Part],
2647           Op0[Part],
2648           Op1[Part]);
2649       }
2650       break;
2651     }
2652 
2653     case Instruction::ICmp:
2654     case Instruction::FCmp: {
2655       // Widen compares. Generate vector compares.
2656       bool FCmp = (it->getOpcode() == Instruction::FCmp);
2657       CmpInst *Cmp = dyn_cast<CmpInst>(it);
2658       setDebugLocFromInst(Builder, it);
2659       VectorParts &A = getVectorValue(it->getOperand(0));
2660       VectorParts &B = getVectorValue(it->getOperand(1));
2661       for (unsigned Part = 0; Part < UF; ++Part) {
2662         Value *C = 0;
2663         if (FCmp)
2664           C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2665         else
2666           C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2667         Entry[Part] = C;
2668       }
2669       break;
2670     }
2671 
2672     case Instruction::Store:
2673     case Instruction::Load:
2674         vectorizeMemoryInstruction(it, Legal);
2675         break;
2676     case Instruction::ZExt:
2677     case Instruction::SExt:
2678     case Instruction::FPToUI:
2679     case Instruction::FPToSI:
2680     case Instruction::FPExt:
2681     case Instruction::PtrToInt:
2682     case Instruction::IntToPtr:
2683     case Instruction::SIToFP:
2684     case Instruction::UIToFP:
2685     case Instruction::Trunc:
2686     case Instruction::FPTrunc:
2687     case Instruction::BitCast: {
2688       CastInst *CI = dyn_cast<CastInst>(it);
2689       setDebugLocFromInst(Builder, it);
2690       /// Optimize the special case where the source is the induction
2691       /// variable. Notice that we can only optimize the 'trunc' case
2692       /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2693       /// c. other casts depend on pointer size.
2694       if (CI->getOperand(0) == OldInduction &&
2695           it->getOpcode() == Instruction::Trunc) {
2696         Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2697                                                CI->getType());
2698         Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2699         for (unsigned Part = 0; Part < UF; ++Part)
2700           Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2701         break;
2702       }
2703       /// Vectorize casts.
2704       Type *DestTy = (VF == 1) ? CI->getType() :
2705                                  VectorType::get(CI->getType(), VF);
2706 
2707       VectorParts &A = getVectorValue(it->getOperand(0));
2708       for (unsigned Part = 0; Part < UF; ++Part)
2709         Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2710       break;
2711     }
2712 
2713     case Instruction::Call: {
2714       // Ignore dbg intrinsics.
2715       if (isa<DbgInfoIntrinsic>(it))
2716         break;
2717       setDebugLocFromInst(Builder, it);
2718 
2719       Module *M = BB->getParent()->getParent();
2720       CallInst *CI = cast<CallInst>(it);
2721       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2722       assert(ID && "Not an intrinsic call!");
2723       switch (ID) {
2724       case Intrinsic::lifetime_end:
2725       case Intrinsic::lifetime_start:
2726         scalarizeInstruction(it);
2727         break;
2728       default:
2729         for (unsigned Part = 0; Part < UF; ++Part) {
2730           SmallVector<Value *, 4> Args;
2731           for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2732             VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2733             Args.push_back(Arg[Part]);
2734           }
2735           Type *Tys[] = {CI->getType()};
2736           if (VF > 1)
2737             Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
2738 
2739           Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2740           Entry[Part] = Builder.CreateCall(F, Args);
2741         }
2742         break;
2743       }
2744       break;
2745     }
2746 
2747     default:
2748       // All other instructions are unsupported. Scalarize them.
2749       scalarizeInstruction(it);
2750       break;
2751     }// end of switch.
2752   }// end of for_each instr.
2753 }
2754 
2755 void InnerLoopVectorizer::updateAnalysis() {
2756   // Forget the original basic block.
2757   SE->forgetLoop(OrigLoop);
2758 
2759   // Update the dominator tree information.
2760   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2761          "Entry does not dominate exit.");
2762 
2763   for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2764     DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2765   DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2766   DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2767   DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2768   DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2769   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2770   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2771 
2772   DEBUG(DT->verifyAnalysis());
2773 }
2774 
2775 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2776   if (!EnableIfConversion)
2777     return false;
2778 
2779   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2780 
2781   // A list of pointers that we can safely read and write to.
2782   SmallPtrSet<Value *, 8> SafePointes;
2783 
2784   // Collect safe addresses.
2785   for (Loop::block_iterator BI = TheLoop->block_begin(),
2786          BE = TheLoop->block_end(); BI != BE; ++BI) {
2787     BasicBlock *BB = *BI;
2788 
2789     if (blockNeedsPredication(BB))
2790       continue;
2791 
2792     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2793       if (LoadInst *LI = dyn_cast<LoadInst>(I))
2794         SafePointes.insert(LI->getPointerOperand());
2795       else if (StoreInst *SI = dyn_cast<StoreInst>(I))
2796         SafePointes.insert(SI->getPointerOperand());
2797     }
2798   }
2799 
2800   // Collect the blocks that need predication.
2801   for (Loop::block_iterator BI = TheLoop->block_begin(),
2802          BE = TheLoop->block_end(); BI != BE; ++BI) {
2803     BasicBlock *BB = *BI;
2804 
2805     // We don't support switch statements inside loops.
2806     if (!isa<BranchInst>(BB->getTerminator()))
2807       return false;
2808 
2809     // We must be able to predicate all blocks that need to be predicated.
2810     if (blockNeedsPredication(BB) && !blockCanBePredicated(BB, SafePointes))
2811       return false;
2812   }
2813 
2814   // We can if-convert this loop.
2815   return true;
2816 }
2817 
2818 bool LoopVectorizationLegality::canVectorize() {
2819   // We must have a loop in canonical form. Loops with indirectbr in them cannot
2820   // be canonicalized.
2821   if (!TheLoop->getLoopPreheader())
2822     return false;
2823 
2824   // We can only vectorize innermost loops.
2825   if (TheLoop->getSubLoopsVector().size())
2826     return false;
2827 
2828   // We must have a single backedge.
2829   if (TheLoop->getNumBackEdges() != 1)
2830     return false;
2831 
2832   // We must have a single exiting block.
2833   if (!TheLoop->getExitingBlock())
2834     return false;
2835 
2836   // We need to have a loop header.
2837   DEBUG(dbgs() << "LV: Found a loop: " <<
2838         TheLoop->getHeader()->getName() << '\n');
2839 
2840   // Check if we can if-convert non single-bb loops.
2841   unsigned NumBlocks = TheLoop->getNumBlocks();
2842   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2843     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2844     return false;
2845   }
2846 
2847   // ScalarEvolution needs to be able to find the exit count.
2848   const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
2849   if (ExitCount == SE->getCouldNotCompute()) {
2850     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2851     return false;
2852   }
2853 
2854   // Do not loop-vectorize loops with a tiny trip count.
2855   BasicBlock *Latch = TheLoop->getLoopLatch();
2856   unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2857   if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2858     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2859           "This loop is not worth vectorizing.\n");
2860     return false;
2861   }
2862 
2863   // Check if we can vectorize the instructions and CFG in this loop.
2864   if (!canVectorizeInstrs()) {
2865     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2866     return false;
2867   }
2868 
2869   // Go over each instruction and look at memory deps.
2870   if (!canVectorizeMemory()) {
2871     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2872     return false;
2873   }
2874 
2875   // Collect all of the variables that remain uniform after vectorization.
2876   collectLoopUniforms();
2877 
2878   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2879         (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2880         <<"!\n");
2881 
2882   // Okay! We can vectorize. At this point we don't have any other mem analysis
2883   // which may limit our maximum vectorization factor, so just return true with
2884   // no restrictions.
2885   return true;
2886 }
2887 
2888 static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) {
2889   if (Ty->isPointerTy())
2890     return DL.getIntPtrType(Ty);
2891 
2892   // It is possible that char's or short's overflow when we ask for the loop's
2893   // trip count, work around this by changing the type size.
2894   if (Ty->getScalarSizeInBits() < 32)
2895     return Type::getInt32Ty(Ty->getContext());
2896 
2897   return Ty;
2898 }
2899 
2900 static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) {
2901   Ty0 = convertPointerToIntegerType(DL, Ty0);
2902   Ty1 = convertPointerToIntegerType(DL, Ty1);
2903   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
2904     return Ty0;
2905   return Ty1;
2906 }
2907 
2908 /// \brief Check that the instruction has outside loop users and is not an
2909 /// identified reduction variable.
2910 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
2911                                SmallPtrSet<Value *, 4> &Reductions) {
2912   // Reduction instructions are allowed to have exit users. All other
2913   // instructions must not have external users.
2914   if (!Reductions.count(Inst))
2915     //Check that all of the users of the loop are inside the BB.
2916     for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
2917          I != E; ++I) {
2918       Instruction *U = cast<Instruction>(*I);
2919       // This user may be a reduction exit value.
2920       if (!TheLoop->contains(U)) {
2921         DEBUG(dbgs() << "LV: Found an outside user for : " << *U << '\n');
2922         return true;
2923       }
2924     }
2925   return false;
2926 }
2927 
2928 bool LoopVectorizationLegality::canVectorizeInstrs() {
2929   BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2930   BasicBlock *Header = TheLoop->getHeader();
2931 
2932   // Look for the attribute signaling the absence of NaNs.
2933   Function &F = *Header->getParent();
2934   if (F.hasFnAttribute("no-nans-fp-math"))
2935     HasFunNoNaNAttr = F.getAttributes().getAttribute(
2936       AttributeSet::FunctionIndex,
2937       "no-nans-fp-math").getValueAsString() == "true";
2938 
2939   // For each block in the loop.
2940   for (Loop::block_iterator bb = TheLoop->block_begin(),
2941        be = TheLoop->block_end(); bb != be; ++bb) {
2942 
2943     // Scan the instructions in the block and look for hazards.
2944     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2945          ++it) {
2946 
2947       if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2948         Type *PhiTy = Phi->getType();
2949         // Check that this PHI type is allowed.
2950         if (!PhiTy->isIntegerTy() &&
2951             !PhiTy->isFloatingPointTy() &&
2952             !PhiTy->isPointerTy()) {
2953           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2954           return false;
2955         }
2956 
2957         // If this PHINode is not in the header block, then we know that we
2958         // can convert it to select during if-conversion. No need to check if
2959         // the PHIs in this block are induction or reduction variables.
2960         if (*bb != Header) {
2961           // Check that this instruction has no outside users or is an
2962           // identified reduction value with an outside user.
2963           if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
2964             continue;
2965           return false;
2966         }
2967 
2968         // We only allow if-converted PHIs with more than two incoming values.
2969         if (Phi->getNumIncomingValues() != 2) {
2970           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2971           return false;
2972         }
2973 
2974         // This is the value coming from the preheader.
2975         Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2976         // Check if this is an induction variable.
2977         InductionKind IK = isInductionVariable(Phi);
2978 
2979         if (IK_NoInduction != IK) {
2980           // Get the widest type.
2981           if (!WidestIndTy)
2982             WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
2983           else
2984             WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
2985 
2986           // Int inductions are special because we only allow one IV.
2987           if (IK == IK_IntInduction) {
2988             // Use the phi node with the widest type as induction. Use the last
2989             // one if there are multiple (no good reason for doing this other
2990             // than it is expedient).
2991             if (!Induction || PhiTy == WidestIndTy)
2992               Induction = Phi;
2993           }
2994 
2995           DEBUG(dbgs() << "LV: Found an induction variable.\n");
2996           Inductions[Phi] = InductionInfo(StartValue, IK);
2997 
2998           // Until we explicitly handle the case of an induction variable with
2999           // an outside loop user we have to give up vectorizing this loop.
3000           if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
3001             return false;
3002 
3003           continue;
3004         }
3005 
3006         if (AddReductionVar(Phi, RK_IntegerAdd)) {
3007           DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
3008           continue;
3009         }
3010         if (AddReductionVar(Phi, RK_IntegerMult)) {
3011           DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
3012           continue;
3013         }
3014         if (AddReductionVar(Phi, RK_IntegerOr)) {
3015           DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
3016           continue;
3017         }
3018         if (AddReductionVar(Phi, RK_IntegerAnd)) {
3019           DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
3020           continue;
3021         }
3022         if (AddReductionVar(Phi, RK_IntegerXor)) {
3023           DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
3024           continue;
3025         }
3026         if (AddReductionVar(Phi, RK_IntegerMinMax)) {
3027           DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
3028           continue;
3029         }
3030         if (AddReductionVar(Phi, RK_FloatMult)) {
3031           DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
3032           continue;
3033         }
3034         if (AddReductionVar(Phi, RK_FloatAdd)) {
3035           DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
3036           continue;
3037         }
3038         if (AddReductionVar(Phi, RK_FloatMinMax)) {
3039           DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
3040                 "\n");
3041           continue;
3042         }
3043 
3044         DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
3045         return false;
3046       }// end of PHI handling
3047 
3048       // We still don't handle functions. However, we can ignore dbg intrinsic
3049       // calls and we do handle certain intrinsic and libm functions.
3050       CallInst *CI = dyn_cast<CallInst>(it);
3051       if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
3052         DEBUG(dbgs() << "LV: Found a call site.\n");
3053         return false;
3054       }
3055 
3056       // Check that the instruction return type is vectorizable.
3057       // Also, we can't vectorize extractelement instructions.
3058       if ((!VectorType::isValidElementType(it->getType()) &&
3059            !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
3060         DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
3061         return false;
3062       }
3063 
3064       // Check that the stored type is vectorizable.
3065       if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
3066         Type *T = ST->getValueOperand()->getType();
3067         if (!VectorType::isValidElementType(T))
3068           return false;
3069       }
3070 
3071       // Reduction instructions are allowed to have exit users.
3072       // All other instructions must not have external users.
3073       if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
3074         return false;
3075 
3076     } // next instr.
3077 
3078   }
3079 
3080   if (!Induction) {
3081     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
3082     if (Inductions.empty())
3083       return false;
3084   }
3085 
3086   return true;
3087 }
3088 
3089 void LoopVectorizationLegality::collectLoopUniforms() {
3090   // We now know that the loop is vectorizable!
3091   // Collect variables that will remain uniform after vectorization.
3092   std::vector<Value*> Worklist;
3093   BasicBlock *Latch = TheLoop->getLoopLatch();
3094 
3095   // Start with the conditional branch and walk up the block.
3096   Worklist.push_back(Latch->getTerminator()->getOperand(0));
3097 
3098   while (Worklist.size()) {
3099     Instruction *I = dyn_cast<Instruction>(Worklist.back());
3100     Worklist.pop_back();
3101 
3102     // Look at instructions inside this loop.
3103     // Stop when reaching PHI nodes.
3104     // TODO: we need to follow values all over the loop, not only in this block.
3105     if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
3106       continue;
3107 
3108     // This is a known uniform.
3109     Uniforms.insert(I);
3110 
3111     // Insert all operands.
3112     Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
3113   }
3114 }
3115 
3116 namespace {
3117 /// \brief Analyses memory accesses in a loop.
3118 ///
3119 /// Checks whether run time pointer checks are needed and builds sets for data
3120 /// dependence checking.
3121 class AccessAnalysis {
3122 public:
3123   /// \brief Read or write access location.
3124   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3125   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3126 
3127   /// \brief Set of potential dependent memory accesses.
3128   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
3129 
3130   AccessAnalysis(DataLayout *Dl, DepCandidates &DA) :
3131     DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
3132     AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
3133 
3134   /// \brief Register a load  and whether it is only read from.
3135   void addLoad(Value *Ptr, bool IsReadOnly) {
3136     Accesses.insert(MemAccessInfo(Ptr, false));
3137     if (IsReadOnly)
3138       ReadOnlyPtr.insert(Ptr);
3139   }
3140 
3141   /// \brief Register a store.
3142   void addStore(Value *Ptr) {
3143     Accesses.insert(MemAccessInfo(Ptr, true));
3144   }
3145 
3146   /// \brief Check whether we can check the pointers at runtime for
3147   /// non-intersection.
3148   bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3149                        unsigned &NumComparisons, ScalarEvolution *SE,
3150                        Loop *TheLoop, bool ShouldCheckStride = false);
3151 
3152   /// \brief Goes over all memory accesses, checks whether a RT check is needed
3153   /// and builds sets of dependent accesses.
3154   void buildDependenceSets() {
3155     // Process read-write pointers first.
3156     processMemAccesses(false);
3157     // Next, process read pointers.
3158     processMemAccesses(true);
3159   }
3160 
3161   bool isRTCheckNeeded() { return IsRTCheckNeeded; }
3162 
3163   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
3164   void resetDepChecks() { CheckDeps.clear(); }
3165 
3166   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
3167 
3168 private:
3169   typedef SetVector<MemAccessInfo> PtrAccessSet;
3170   typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
3171 
3172   /// \brief Go over all memory access or only the deferred ones if
3173   /// \p UseDeferred is true and check whether runtime pointer checks are needed
3174   /// and build sets of dependency check candidates.
3175   void processMemAccesses(bool UseDeferred);
3176 
3177   /// Set of all accesses.
3178   PtrAccessSet Accesses;
3179 
3180   /// Set of access to check after all writes have been processed.
3181   PtrAccessSet DeferredAccesses;
3182 
3183   /// Map of pointers to last access encountered.
3184   UnderlyingObjToAccessMap ObjToLastAccess;
3185 
3186   /// Set of accesses that need a further dependence check.
3187   MemAccessInfoSet CheckDeps;
3188 
3189   /// Set of pointers that are read only.
3190   SmallPtrSet<Value*, 16> ReadOnlyPtr;
3191 
3192   /// Set of underlying objects already written to.
3193   SmallPtrSet<Value*, 16> WriteObjects;
3194 
3195   DataLayout *DL;
3196 
3197   /// Sets of potentially dependent accesses - members of one set share an
3198   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
3199   /// dependence check.
3200   DepCandidates &DepCands;
3201 
3202   bool AreAllWritesIdentified;
3203   bool AreAllReadsIdentified;
3204   bool IsRTCheckNeeded;
3205 };
3206 
3207 } // end anonymous namespace
3208 
3209 /// \brief Check whether a pointer can participate in a runtime bounds check.
3210 static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
3211   const SCEV *PtrScev = SE->getSCEV(Ptr);
3212   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3213   if (!AR)
3214     return false;
3215 
3216   return AR->isAffine();
3217 }
3218 
3219 /// \brief Check the stride of the pointer and ensure that it does not wrap in
3220 /// the address space.
3221 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3222                         const Loop *Lp);
3223 
3224 bool AccessAnalysis::canCheckPtrAtRT(
3225                        LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3226                         unsigned &NumComparisons, ScalarEvolution *SE,
3227                         Loop *TheLoop, bool ShouldCheckStride) {
3228   // Find pointers with computable bounds. We are going to use this information
3229   // to place a runtime bound check.
3230   unsigned NumReadPtrChecks = 0;
3231   unsigned NumWritePtrChecks = 0;
3232   bool CanDoRT = true;
3233 
3234   bool IsDepCheckNeeded = isDependencyCheckNeeded();
3235   // We assign consecutive id to access from different dependence sets.
3236   // Accesses within the same set don't need a runtime check.
3237   unsigned RunningDepId = 1;
3238   DenseMap<Value *, unsigned> DepSetId;
3239 
3240   for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
3241        AI != AE; ++AI) {
3242     const MemAccessInfo &Access = *AI;
3243     Value *Ptr = Access.getPointer();
3244     bool IsWrite = Access.getInt();
3245 
3246     // Just add write checks if we have both.
3247     if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
3248       continue;
3249 
3250     if (IsWrite)
3251       ++NumWritePtrChecks;
3252     else
3253       ++NumReadPtrChecks;
3254 
3255     if (hasComputableBounds(SE, Ptr) &&
3256         // When we run after a failing dependency check we have to make sure we
3257         // don't have wrapping pointers.
3258         (!ShouldCheckStride || isStridedPtr(SE, DL, Ptr, TheLoop) == 1)) {
3259       // The id of the dependence set.
3260       unsigned DepId;
3261 
3262       if (IsDepCheckNeeded) {
3263         Value *Leader = DepCands.getLeaderValue(Access).getPointer();
3264         unsigned &LeaderId = DepSetId[Leader];
3265         if (!LeaderId)
3266           LeaderId = RunningDepId++;
3267         DepId = LeaderId;
3268       } else
3269         // Each access has its own dependence set.
3270         DepId = RunningDepId++;
3271 
3272       RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
3273 
3274       DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
3275     } else {
3276       CanDoRT = false;
3277     }
3278   }
3279 
3280   if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
3281     NumComparisons = 0; // Only one dependence set.
3282   else {
3283     NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
3284                                            NumWritePtrChecks - 1));
3285   }
3286 
3287   // If the pointers that we would use for the bounds comparison have different
3288   // address spaces, assume the values aren't directly comparable, so we can't
3289   // use them for the runtime check. We also have to assume they could
3290   // overlap. In the future there should be metadata for whether address spaces
3291   // are disjoint.
3292   unsigned NumPointers = RtCheck.Pointers.size();
3293   for (unsigned i = 0; i < NumPointers; ++i) {
3294     for (unsigned j = i + 1; j < NumPointers; ++j) {
3295       // Only need to check pointers between two different dependency sets.
3296       if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
3297        continue;
3298 
3299       Value *PtrI = RtCheck.Pointers[i];
3300       Value *PtrJ = RtCheck.Pointers[j];
3301 
3302       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
3303       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
3304       if (ASi != ASj) {
3305         DEBUG(dbgs() << "LV: Runtime check would require comparison between"
3306                        " different address spaces\n");
3307         return false;
3308       }
3309     }
3310   }
3311 
3312   return CanDoRT;
3313 }
3314 
3315 static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
3316   return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
3317 }
3318 
3319 void AccessAnalysis::processMemAccesses(bool UseDeferred) {
3320   // We process the set twice: first we process read-write pointers, last we
3321   // process read-only pointers. This allows us to skip dependence tests for
3322   // read-only pointers.
3323 
3324   PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
3325   for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
3326     const MemAccessInfo &Access = *AI;
3327     Value *Ptr = Access.getPointer();
3328     bool IsWrite = Access.getInt();
3329 
3330     DepCands.insert(Access);
3331 
3332     // Memorize read-only pointers for later processing and skip them in the
3333     // first round (they need to be checked after we have seen all write
3334     // pointers). Note: we also mark pointer that are not consecutive as
3335     // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
3336     // second check for "!IsWrite".
3337     bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
3338     if (!UseDeferred && IsReadOnlyPtr) {
3339       DeferredAccesses.insert(Access);
3340       continue;
3341     }
3342 
3343     bool NeedDepCheck = false;
3344     // Check whether there is the possiblity of dependency because of underlying
3345     // objects being the same.
3346     typedef SmallVector<Value*, 16> ValueVector;
3347     ValueVector TempObjects;
3348     GetUnderlyingObjects(Ptr, TempObjects, DL);
3349     for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
3350          UI != UE; ++UI) {
3351       Value *UnderlyingObj = *UI;
3352 
3353       // If this is a write then it needs to be an identified object.  If this a
3354       // read and all writes (so far) are identified function scope objects we
3355       // don't need an identified underlying object but only an Argument (the
3356       // next write is going to invalidate this assumption if it is
3357       // unidentified).
3358       // This is a micro-optimization for the case where all writes are
3359       // identified and we have one argument pointer.
3360       // Otherwise, we do need a runtime check.
3361       if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
3362           (!IsWrite && (!AreAllWritesIdentified ||
3363                         !isa<Argument>(UnderlyingObj)) &&
3364            !isIdentifiedObject(UnderlyingObj))) {
3365         DEBUG(dbgs() << "LV: Found an unidentified " <<
3366               (IsWrite ?  "write" : "read" ) << " ptr: " << *UnderlyingObj <<
3367               "\n");
3368         IsRTCheckNeeded = (IsRTCheckNeeded ||
3369                            !isIdentifiedObject(UnderlyingObj) ||
3370                            !AreAllReadsIdentified);
3371 
3372         if (IsWrite)
3373           AreAllWritesIdentified = false;
3374         if (!IsWrite)
3375           AreAllReadsIdentified = false;
3376       }
3377 
3378       // If this is a write - check other reads and writes for conflicts.  If
3379       // this is a read only check other writes for conflicts (but only if there
3380       // is no other write to the ptr - this is an optimization to catch "a[i] =
3381       // a[i] + " without having to do a dependence check).
3382       if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
3383         NeedDepCheck = true;
3384 
3385       if (IsWrite)
3386         WriteObjects.insert(UnderlyingObj);
3387 
3388       // Create sets of pointers connected by shared underlying objects.
3389       UnderlyingObjToAccessMap::iterator Prev =
3390         ObjToLastAccess.find(UnderlyingObj);
3391       if (Prev != ObjToLastAccess.end())
3392         DepCands.unionSets(Access, Prev->second);
3393 
3394       ObjToLastAccess[UnderlyingObj] = Access;
3395     }
3396 
3397     if (NeedDepCheck)
3398       CheckDeps.insert(Access);
3399   }
3400 }
3401 
3402 namespace {
3403 /// \brief Checks memory dependences among accesses to the same underlying
3404 /// object to determine whether there vectorization is legal or not (and at
3405 /// which vectorization factor).
3406 ///
3407 /// This class works under the assumption that we already checked that memory
3408 /// locations with different underlying pointers are "must-not alias".
3409 /// We use the ScalarEvolution framework to symbolically evalutate access
3410 /// functions pairs. Since we currently don't restructure the loop we can rely
3411 /// on the program order of memory accesses to determine their safety.
3412 /// At the moment we will only deem accesses as safe for:
3413 ///  * A negative constant distance assuming program order.
3414 ///
3415 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
3416 ///            a[i] = tmp;                y = a[i];
3417 ///
3418 ///   The latter case is safe because later checks guarantuee that there can't
3419 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
3420 ///   the same variable: a header phi can only be an induction or a reduction, a
3421 ///   reduction can't have a memory sink, an induction can't have a memory
3422 ///   source). This is important and must not be violated (or we have to
3423 ///   resort to checking for cycles through memory).
3424 ///
3425 ///  * A positive constant distance assuming program order that is bigger
3426 ///    than the biggest memory access.
3427 ///
3428 ///     tmp = a[i]        OR              b[i] = x
3429 ///     a[i+2] = tmp                      y = b[i+2];
3430 ///
3431 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
3432 ///
3433 ///  * Zero distances and all accesses have the same size.
3434 ///
3435 class MemoryDepChecker {
3436 public:
3437   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3438   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3439 
3440   MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L)
3441       : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
3442         ShouldRetryWithRuntimeCheck(false) {}
3443 
3444   /// \brief Register the location (instructions are given increasing numbers)
3445   /// of a write access.
3446   void addAccess(StoreInst *SI) {
3447     Value *Ptr = SI->getPointerOperand();
3448     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
3449     InstMap.push_back(SI);
3450     ++AccessIdx;
3451   }
3452 
3453   /// \brief Register the location (instructions are given increasing numbers)
3454   /// of a write access.
3455   void addAccess(LoadInst *LI) {
3456     Value *Ptr = LI->getPointerOperand();
3457     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
3458     InstMap.push_back(LI);
3459     ++AccessIdx;
3460   }
3461 
3462   /// \brief Check whether the dependencies between the accesses are safe.
3463   ///
3464   /// Only checks sets with elements in \p CheckDeps.
3465   bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3466                    MemAccessInfoSet &CheckDeps);
3467 
3468   /// \brief The maximum number of bytes of a vector register we can vectorize
3469   /// the accesses safely with.
3470   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
3471 
3472   /// \brief In same cases when the dependency check fails we can still
3473   /// vectorize the loop with a dynamic array access check.
3474   bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
3475 
3476 private:
3477   ScalarEvolution *SE;
3478   DataLayout *DL;
3479   const Loop *InnermostLoop;
3480 
3481   /// \brief Maps access locations (ptr, read/write) to program order.
3482   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
3483 
3484   /// \brief Memory access instructions in program order.
3485   SmallVector<Instruction *, 16> InstMap;
3486 
3487   /// \brief The program order index to be used for the next instruction.
3488   unsigned AccessIdx;
3489 
3490   // We can access this many bytes in parallel safely.
3491   unsigned MaxSafeDepDistBytes;
3492 
3493   /// \brief If we see a non constant dependence distance we can still try to
3494   /// vectorize this loop with runtime checks.
3495   bool ShouldRetryWithRuntimeCheck;
3496 
3497   /// \brief Check whether there is a plausible dependence between the two
3498   /// accesses.
3499   ///
3500   /// Access \p A must happen before \p B in program order. The two indices
3501   /// identify the index into the program order map.
3502   ///
3503   /// This function checks  whether there is a plausible dependence (or the
3504   /// absence of such can't be proved) between the two accesses. If there is a
3505   /// plausible dependence but the dependence distance is bigger than one
3506   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
3507   /// distance is smaller than any other distance encountered so far).
3508   /// Otherwise, this function returns true signaling a possible dependence.
3509   bool isDependent(const MemAccessInfo &A, unsigned AIdx,
3510                    const MemAccessInfo &B, unsigned BIdx);
3511 
3512   /// \brief Check whether the data dependence could prevent store-load
3513   /// forwarding.
3514   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
3515 };
3516 
3517 } // end anonymous namespace
3518 
3519 static bool isInBoundsGep(Value *Ptr) {
3520   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
3521     return GEP->isInBounds();
3522   return false;
3523 }
3524 
3525 /// \brief Check whether the access through \p Ptr has a constant stride.
3526 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3527                         const Loop *Lp) {
3528   const Type *Ty = Ptr->getType();
3529   assert(Ty->isPointerTy() && "Unexpected non ptr");
3530 
3531   // Make sure that the pointer does not point to aggregate types.
3532   const PointerType *PtrTy = cast<PointerType>(Ty);
3533   if (PtrTy->getElementType()->isAggregateType()) {
3534     DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
3535           "\n");
3536     return 0;
3537   }
3538 
3539   const SCEV *PtrScev = SE->getSCEV(Ptr);
3540   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3541   if (!AR) {
3542     DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
3543           << *Ptr << " SCEV: " << *PtrScev << "\n");
3544     return 0;
3545   }
3546 
3547   // The accesss function must stride over the innermost loop.
3548   if (Lp != AR->getLoop()) {
3549     DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
3550           *Ptr << " SCEV: " << *PtrScev << "\n");
3551   }
3552 
3553   // The address calculation must not wrap. Otherwise, a dependence could be
3554   // inverted.
3555   // An inbounds getelementptr that is a AddRec with a unit stride
3556   // cannot wrap per definition. The unit stride requirement is checked later.
3557   // An getelementptr without an inbounds attribute and unit stride would have
3558   // to access the pointer value "0" which is undefined behavior in address
3559   // space 0, therefore we can also vectorize this case.
3560   bool IsInBoundsGEP = isInBoundsGep(Ptr);
3561   bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
3562   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
3563   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
3564     DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
3565           << *Ptr << " SCEV: " << *PtrScev << "\n");
3566     return 0;
3567   }
3568 
3569   // Check the step is constant.
3570   const SCEV *Step = AR->getStepRecurrence(*SE);
3571 
3572   // Calculate the pointer stride and check if it is consecutive.
3573   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
3574   if (!C) {
3575     DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
3576           " SCEV: " << *PtrScev << "\n");
3577     return 0;
3578   }
3579 
3580   int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
3581   const APInt &APStepVal = C->getValue()->getValue();
3582 
3583   // Huge step value - give up.
3584   if (APStepVal.getBitWidth() > 64)
3585     return 0;
3586 
3587   int64_t StepVal = APStepVal.getSExtValue();
3588 
3589   // Strided access.
3590   int64_t Stride = StepVal / Size;
3591   int64_t Rem = StepVal % Size;
3592   if (Rem)
3593     return 0;
3594 
3595   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
3596   // know we can't "wrap around the address space". In case of address space
3597   // zero we know that this won't happen without triggering undefined behavior.
3598   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
3599       Stride != 1 && Stride != -1)
3600     return 0;
3601 
3602   return Stride;
3603 }
3604 
3605 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
3606                                                     unsigned TypeByteSize) {
3607   // If loads occur at a distance that is not a multiple of a feasible vector
3608   // factor store-load forwarding does not take place.
3609   // Positive dependences might cause troubles because vectorizing them might
3610   // prevent store-load forwarding making vectorized code run a lot slower.
3611   //   a[i] = a[i-3] ^ a[i-8];
3612   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
3613   //   hence on your typical architecture store-load forwarding does not take
3614   //   place. Vectorizing in such cases does not make sense.
3615   // Store-load forwarding distance.
3616   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
3617   // Maximum vector factor.
3618   unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
3619   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
3620     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
3621 
3622   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
3623        vf *= 2) {
3624     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
3625       MaxVFWithoutSLForwardIssues = (vf >>=1);
3626       break;
3627     }
3628   }
3629 
3630   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
3631     DEBUG(dbgs() << "LV: Distance " << Distance <<
3632           " that could cause a store-load forwarding conflict\n");
3633     return true;
3634   }
3635 
3636   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
3637       MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
3638     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
3639   return false;
3640 }
3641 
3642 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
3643                                    const MemAccessInfo &B, unsigned BIdx) {
3644   assert (AIdx < BIdx && "Must pass arguments in program order");
3645 
3646   Value *APtr = A.getPointer();
3647   Value *BPtr = B.getPointer();
3648   bool AIsWrite = A.getInt();
3649   bool BIsWrite = B.getInt();
3650 
3651   // Two reads are independent.
3652   if (!AIsWrite && !BIsWrite)
3653     return false;
3654 
3655   const SCEV *AScev = SE->getSCEV(APtr);
3656   const SCEV *BScev = SE->getSCEV(BPtr);
3657 
3658   int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
3659   int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
3660 
3661   const SCEV *Src = AScev;
3662   const SCEV *Sink = BScev;
3663 
3664   // If the induction step is negative we have to invert source and sink of the
3665   // dependence.
3666   if (StrideAPtr < 0) {
3667     //Src = BScev;
3668     //Sink = AScev;
3669     std::swap(APtr, BPtr);
3670     std::swap(Src, Sink);
3671     std::swap(AIsWrite, BIsWrite);
3672     std::swap(AIdx, BIdx);
3673     std::swap(StrideAPtr, StrideBPtr);
3674   }
3675 
3676   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
3677 
3678   DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
3679         << "(Induction step: " << StrideAPtr <<  ")\n");
3680   DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
3681         << *InstMap[BIdx] << ": " << *Dist << "\n");
3682 
3683   // Need consecutive accesses. We don't want to vectorize
3684   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
3685   // the address space.
3686   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
3687     DEBUG(dbgs() << "Non-consecutive pointer access\n");
3688     return true;
3689   }
3690 
3691   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
3692   if (!C) {
3693     DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
3694     ShouldRetryWithRuntimeCheck = true;
3695     return true;
3696   }
3697 
3698   Type *ATy = APtr->getType()->getPointerElementType();
3699   Type *BTy = BPtr->getType()->getPointerElementType();
3700   unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
3701 
3702   // Negative distances are not plausible dependencies.
3703   const APInt &Val = C->getValue()->getValue();
3704   if (Val.isNegative()) {
3705     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
3706     if (IsTrueDataDependence &&
3707         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
3708          ATy != BTy))
3709       return true;
3710 
3711     DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
3712     return false;
3713   }
3714 
3715   // Write to the same location with the same size.
3716   // Could be improved to assert type sizes are the same (i32 == float, etc).
3717   if (Val == 0) {
3718     if (ATy == BTy)
3719       return false;
3720     DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
3721     return true;
3722   }
3723 
3724   assert(Val.isStrictlyPositive() && "Expect a positive value");
3725 
3726   // Positive distance bigger than max vectorization factor.
3727   if (ATy != BTy) {
3728     DEBUG(dbgs() <<
3729           "LV: ReadWrite-Write positive dependency with different types\n");
3730     return false;
3731   }
3732 
3733   unsigned Distance = (unsigned) Val.getZExtValue();
3734 
3735   // Bail out early if passed-in parameters make vectorization not feasible.
3736   unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
3737   unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
3738 
3739   // The distance must be bigger than the size needed for a vectorized version
3740   // of the operation and the size of the vectorized operation must not be
3741   // bigger than the currrent maximum size.
3742   if (Distance < 2*TypeByteSize ||
3743       2*TypeByteSize > MaxSafeDepDistBytes ||
3744       Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
3745     DEBUG(dbgs() << "LV: Failure because of Positive distance "
3746         << Val.getSExtValue() << '\n');
3747     return true;
3748   }
3749 
3750   MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
3751     Distance : MaxSafeDepDistBytes;
3752 
3753   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
3754   if (IsTrueDataDependence &&
3755       couldPreventStoreLoadForward(Distance, TypeByteSize))
3756      return true;
3757 
3758   DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
3759         " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
3760 
3761   return false;
3762 }
3763 
3764 bool
3765 MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3766                               MemAccessInfoSet &CheckDeps) {
3767 
3768   MaxSafeDepDistBytes = -1U;
3769   while (!CheckDeps.empty()) {
3770     MemAccessInfo CurAccess = *CheckDeps.begin();
3771 
3772     // Get the relevant memory access set.
3773     EquivalenceClasses<MemAccessInfo>::iterator I =
3774       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
3775 
3776     // Check accesses within this set.
3777     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
3778     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
3779 
3780     // Check every access pair.
3781     while (AI != AE) {
3782       CheckDeps.erase(*AI);
3783       EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI);
3784       while (OI != AE) {
3785         // Check every accessing instruction pair in program order.
3786         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
3787              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
3788           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
3789                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
3790             if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
3791               return false;
3792             if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
3793               return false;
3794           }
3795         ++OI;
3796       }
3797       AI++;
3798     }
3799   }
3800   return true;
3801 }
3802 
3803 bool LoopVectorizationLegality::canVectorizeMemory() {
3804 
3805   typedef SmallVector<Value*, 16> ValueVector;
3806   typedef SmallPtrSet<Value*, 16> ValueSet;
3807 
3808   // Holds the Load and Store *instructions*.
3809   ValueVector Loads;
3810   ValueVector Stores;
3811 
3812   // Holds all the different accesses in the loop.
3813   unsigned NumReads = 0;
3814   unsigned NumReadWrites = 0;
3815 
3816   PtrRtCheck.Pointers.clear();
3817   PtrRtCheck.Need = false;
3818 
3819   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
3820   MemoryDepChecker DepChecker(SE, DL, TheLoop);
3821 
3822   // For each block.
3823   for (Loop::block_iterator bb = TheLoop->block_begin(),
3824        be = TheLoop->block_end(); bb != be; ++bb) {
3825 
3826     // Scan the BB and collect legal loads and stores.
3827     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3828          ++it) {
3829 
3830       // If this is a load, save it. If this instruction can read from memory
3831       // but is not a load, then we quit. Notice that we don't handle function
3832       // calls that read or write.
3833       if (it->mayReadFromMemory()) {
3834         // Many math library functions read the rounding mode. We will only
3835         // vectorize a loop if it contains known function calls that don't set
3836         // the flag. Therefore, it is safe to ignore this read from memory.
3837         CallInst *Call = dyn_cast<CallInst>(it);
3838         if (Call && getIntrinsicIDForCall(Call, TLI))
3839           continue;
3840 
3841         LoadInst *Ld = dyn_cast<LoadInst>(it);
3842         if (!Ld) return false;
3843         if (!Ld->isSimple() && !IsAnnotatedParallel) {
3844           DEBUG(dbgs() << "LV: Found a non-simple load.\n");
3845           return false;
3846         }
3847         Loads.push_back(Ld);
3848         DepChecker.addAccess(Ld);
3849         continue;
3850       }
3851 
3852       // Save 'store' instructions. Abort if other instructions write to memory.
3853       if (it->mayWriteToMemory()) {
3854         StoreInst *St = dyn_cast<StoreInst>(it);
3855         if (!St) return false;
3856         if (!St->isSimple() && !IsAnnotatedParallel) {
3857           DEBUG(dbgs() << "LV: Found a non-simple store.\n");
3858           return false;
3859         }
3860         Stores.push_back(St);
3861         DepChecker.addAccess(St);
3862       }
3863     } // Next instr.
3864   } // Next block.
3865 
3866   // Now we have two lists that hold the loads and the stores.
3867   // Next, we find the pointers that they use.
3868 
3869   // Check if we see any stores. If there are no stores, then we don't
3870   // care if the pointers are *restrict*.
3871   if (!Stores.size()) {
3872     DEBUG(dbgs() << "LV: Found a read-only loop!\n");
3873     return true;
3874   }
3875 
3876   AccessAnalysis::DepCandidates DependentAccesses;
3877   AccessAnalysis Accesses(DL, DependentAccesses);
3878 
3879   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
3880   // multiple times on the same object. If the ptr is accessed twice, once
3881   // for read and once for write, it will only appear once (on the write
3882   // list). This is okay, since we are going to check for conflicts between
3883   // writes and between reads and writes, but not between reads and reads.
3884   ValueSet Seen;
3885 
3886   ValueVector::iterator I, IE;
3887   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
3888     StoreInst *ST = cast<StoreInst>(*I);
3889     Value* Ptr = ST->getPointerOperand();
3890 
3891     if (isUniform(Ptr)) {
3892       DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
3893       return false;
3894     }
3895 
3896     // If we did *not* see this pointer before, insert it to  the read-write
3897     // list. At this phase it is only a 'write' list.
3898     if (Seen.insert(Ptr)) {
3899       ++NumReadWrites;
3900       Accesses.addStore(Ptr);
3901     }
3902   }
3903 
3904   if (IsAnnotatedParallel) {
3905     DEBUG(dbgs()
3906           << "LV: A loop annotated parallel, ignore memory dependency "
3907           << "checks.\n");
3908     return true;
3909   }
3910 
3911   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
3912     LoadInst *LD = cast<LoadInst>(*I);
3913     Value* Ptr = LD->getPointerOperand();
3914     // If we did *not* see this pointer before, insert it to the
3915     // read list. If we *did* see it before, then it is already in
3916     // the read-write list. This allows us to vectorize expressions
3917     // such as A[i] += x;  Because the address of A[i] is a read-write
3918     // pointer. This only works if the index of A[i] is consecutive.
3919     // If the address of i is unknown (for example A[B[i]]) then we may
3920     // read a few words, modify, and write a few words, and some of the
3921     // words may be written to the same address.
3922     bool IsReadOnlyPtr = false;
3923     if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) {
3924       ++NumReads;
3925       IsReadOnlyPtr = true;
3926     }
3927     Accesses.addLoad(Ptr, IsReadOnlyPtr);
3928   }
3929 
3930   // If we write (or read-write) to a single destination and there are no
3931   // other reads in this loop then is it safe to vectorize.
3932   if (NumReadWrites == 1 && NumReads == 0) {
3933     DEBUG(dbgs() << "LV: Found a write-only loop!\n");
3934     return true;
3935   }
3936 
3937   // Build dependence sets and check whether we need a runtime pointer bounds
3938   // check.
3939   Accesses.buildDependenceSets();
3940   bool NeedRTCheck = Accesses.isRTCheckNeeded();
3941 
3942   // Find pointers with computable bounds. We are going to use this information
3943   // to place a runtime bound check.
3944   unsigned NumComparisons = 0;
3945   bool CanDoRT = false;
3946   if (NeedRTCheck)
3947     CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop);
3948 
3949 
3950   DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
3951         " pointer comparisons.\n");
3952 
3953   // If we only have one set of dependences to check pointers among we don't
3954   // need a runtime check.
3955   if (NumComparisons == 0 && NeedRTCheck)
3956     NeedRTCheck = false;
3957 
3958   // Check that we did not collect too many pointers or found an unsizeable
3959   // pointer.
3960   if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
3961     PtrRtCheck.reset();
3962     CanDoRT = false;
3963   }
3964 
3965   if (CanDoRT) {
3966     DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
3967   }
3968 
3969   if (NeedRTCheck && !CanDoRT) {
3970     DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
3971           "the array bounds.\n");
3972     PtrRtCheck.reset();
3973     return false;
3974   }
3975 
3976   PtrRtCheck.Need = NeedRTCheck;
3977 
3978   bool CanVecMem = true;
3979   if (Accesses.isDependencyCheckNeeded()) {
3980     DEBUG(dbgs() << "LV: Checking memory dependencies\n");
3981     CanVecMem = DepChecker.areDepsSafe(DependentAccesses,
3982                                        Accesses.getDependenciesToCheck());
3983     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
3984 
3985     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
3986       DEBUG(dbgs() << "LV: Retrying with memory checks\n");
3987       NeedRTCheck = true;
3988 
3989       // Clear the dependency checks. We assume they are not needed.
3990       Accesses.resetDepChecks();
3991 
3992       PtrRtCheck.reset();
3993       PtrRtCheck.Need = true;
3994 
3995       CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
3996                                          TheLoop, true);
3997       // Check that we did not collect too many pointers or found an unsizeable
3998       // pointer.
3999       if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4000         DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
4001         PtrRtCheck.reset();
4002         return false;
4003       }
4004 
4005       CanVecMem = true;
4006     }
4007   }
4008 
4009   DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
4010         " need a runtime memory check.\n");
4011 
4012   return CanVecMem;
4013 }
4014 
4015 static bool hasMultipleUsesOf(Instruction *I,
4016                               SmallPtrSet<Instruction *, 8> &Insts) {
4017   unsigned NumUses = 0;
4018   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
4019     if (Insts.count(dyn_cast<Instruction>(*Use)))
4020       ++NumUses;
4021     if (NumUses > 1)
4022       return true;
4023   }
4024 
4025   return false;
4026 }
4027 
4028 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
4029   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
4030     if (!Set.count(dyn_cast<Instruction>(*Use)))
4031       return false;
4032   return true;
4033 }
4034 
4035 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
4036                                                 ReductionKind Kind) {
4037   if (Phi->getNumIncomingValues() != 2)
4038     return false;
4039 
4040   // Reduction variables are only found in the loop header block.
4041   if (Phi->getParent() != TheLoop->getHeader())
4042     return false;
4043 
4044   // Obtain the reduction start value from the value that comes from the loop
4045   // preheader.
4046   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
4047 
4048   // ExitInstruction is the single value which is used outside the loop.
4049   // We only allow for a single reduction value to be used outside the loop.
4050   // This includes users of the reduction, variables (which form a cycle
4051   // which ends in the phi node).
4052   Instruction *ExitInstruction = 0;
4053   // Indicates that we found a reduction operation in our scan.
4054   bool FoundReduxOp = false;
4055 
4056   // We start with the PHI node and scan for all of the users of this
4057   // instruction. All users must be instructions that can be used as reduction
4058   // variables (such as ADD). We must have a single out-of-block user. The cycle
4059   // must include the original PHI.
4060   bool FoundStartPHI = false;
4061 
4062   // To recognize min/max patterns formed by a icmp select sequence, we store
4063   // the number of instruction we saw from the recognized min/max pattern,
4064   //  to make sure we only see exactly the two instructions.
4065   unsigned NumCmpSelectPatternInst = 0;
4066   ReductionInstDesc ReduxDesc(false, 0);
4067 
4068   SmallPtrSet<Instruction *, 8> VisitedInsts;
4069   SmallVector<Instruction *, 8> Worklist;
4070   Worklist.push_back(Phi);
4071   VisitedInsts.insert(Phi);
4072 
4073   // A value in the reduction can be used:
4074   //  - By the reduction:
4075   //      - Reduction operation:
4076   //        - One use of reduction value (safe).
4077   //        - Multiple use of reduction value (not safe).
4078   //      - PHI:
4079   //        - All uses of the PHI must be the reduction (safe).
4080   //        - Otherwise, not safe.
4081   //  - By one instruction outside of the loop (safe).
4082   //  - By further instructions outside of the loop (not safe).
4083   //  - By an instruction that is not part of the reduction (not safe).
4084   //    This is either:
4085   //      * An instruction type other than PHI or the reduction operation.
4086   //      * A PHI in the header other than the initial PHI.
4087   while (!Worklist.empty()) {
4088     Instruction *Cur = Worklist.back();
4089     Worklist.pop_back();
4090 
4091     // No Users.
4092     // If the instruction has no users then this is a broken chain and can't be
4093     // a reduction variable.
4094     if (Cur->use_empty())
4095       return false;
4096 
4097     bool IsAPhi = isa<PHINode>(Cur);
4098 
4099     // A header PHI use other than the original PHI.
4100     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
4101       return false;
4102 
4103     // Reductions of instructions such as Div, and Sub is only possible if the
4104     // LHS is the reduction variable.
4105     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
4106         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
4107         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
4108       return false;
4109 
4110     // Any reduction instruction must be of one of the allowed kinds.
4111     ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
4112     if (!ReduxDesc.IsReduction)
4113       return false;
4114 
4115     // A reduction operation must only have one use of the reduction value.
4116     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
4117         hasMultipleUsesOf(Cur, VisitedInsts))
4118       return false;
4119 
4120     // All inputs to a PHI node must be a reduction value.
4121     if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
4122       return false;
4123 
4124     if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
4125                                      isa<SelectInst>(Cur)))
4126       ++NumCmpSelectPatternInst;
4127     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
4128                                    isa<SelectInst>(Cur)))
4129       ++NumCmpSelectPatternInst;
4130 
4131     // Check  whether we found a reduction operator.
4132     FoundReduxOp |= !IsAPhi;
4133 
4134     // Process users of current instruction. Push non PHI nodes after PHI nodes
4135     // onto the stack. This way we are going to have seen all inputs to PHI
4136     // nodes once we get to them.
4137     SmallVector<Instruction *, 8> NonPHIs;
4138     SmallVector<Instruction *, 8> PHIs;
4139     for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
4140          ++UI) {
4141       Instruction *Usr = cast<Instruction>(*UI);
4142 
4143       // Check if we found the exit user.
4144       BasicBlock *Parent = Usr->getParent();
4145       if (!TheLoop->contains(Parent)) {
4146         // Exit if you find multiple outside users or if the header phi node is
4147         // being used. In this case the user uses the value of the previous
4148         // iteration, in which case we would loose "VF-1" iterations of the
4149         // reduction operation if we vectorize.
4150         if (ExitInstruction != 0 || Cur == Phi)
4151           return false;
4152 
4153         // The instruction used by an outside user must be the last instruction
4154         // before we feed back to the reduction phi. Otherwise, we loose VF-1
4155         // operations on the value.
4156         if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
4157          return false;
4158 
4159         ExitInstruction = Cur;
4160         continue;
4161       }
4162 
4163       // Process instructions only once (termination).
4164       if (VisitedInsts.insert(Usr)) {
4165         if (isa<PHINode>(Usr))
4166           PHIs.push_back(Usr);
4167         else
4168           NonPHIs.push_back(Usr);
4169       }
4170       // Remember that we completed the cycle.
4171       if (Usr == Phi)
4172         FoundStartPHI = true;
4173     }
4174     Worklist.append(PHIs.begin(), PHIs.end());
4175     Worklist.append(NonPHIs.begin(), NonPHIs.end());
4176   }
4177 
4178   // This means we have seen one but not the other instruction of the
4179   // pattern or more than just a select and cmp.
4180   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
4181       NumCmpSelectPatternInst != 2)
4182     return false;
4183 
4184   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
4185     return false;
4186 
4187   // We found a reduction var if we have reached the original phi node and we
4188   // only have a single instruction with out-of-loop users.
4189 
4190   // This instruction is allowed to have out-of-loop users.
4191   AllowedExit.insert(ExitInstruction);
4192 
4193   // Save the description of this reduction variable.
4194   ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
4195                          ReduxDesc.MinMaxKind);
4196   Reductions[Phi] = RD;
4197   // We've ended the cycle. This is a reduction variable if we have an
4198   // outside user and it has a binary op.
4199 
4200   return true;
4201 }
4202 
4203 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
4204 /// pattern corresponding to a min(X, Y) or max(X, Y).
4205 LoopVectorizationLegality::ReductionInstDesc
4206 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
4207                                                     ReductionInstDesc &Prev) {
4208 
4209   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
4210          "Expect a select instruction");
4211   Instruction *Cmp = 0;
4212   SelectInst *Select = 0;
4213 
4214   // We must handle the select(cmp()) as a single instruction. Advance to the
4215   // select.
4216   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
4217     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
4218       return ReductionInstDesc(false, I);
4219     return ReductionInstDesc(Select, Prev.MinMaxKind);
4220   }
4221 
4222   // Only handle single use cases for now.
4223   if (!(Select = dyn_cast<SelectInst>(I)))
4224     return ReductionInstDesc(false, I);
4225   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
4226       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
4227     return ReductionInstDesc(false, I);
4228   if (!Cmp->hasOneUse())
4229     return ReductionInstDesc(false, I);
4230 
4231   Value *CmpLeft;
4232   Value *CmpRight;
4233 
4234   // Look for a min/max pattern.
4235   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4236     return ReductionInstDesc(Select, MRK_UIntMin);
4237   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4238     return ReductionInstDesc(Select, MRK_UIntMax);
4239   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4240     return ReductionInstDesc(Select, MRK_SIntMax);
4241   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4242     return ReductionInstDesc(Select, MRK_SIntMin);
4243   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4244     return ReductionInstDesc(Select, MRK_FloatMin);
4245   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4246     return ReductionInstDesc(Select, MRK_FloatMax);
4247   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4248     return ReductionInstDesc(Select, MRK_FloatMin);
4249   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4250     return ReductionInstDesc(Select, MRK_FloatMax);
4251 
4252   return ReductionInstDesc(false, I);
4253 }
4254 
4255 LoopVectorizationLegality::ReductionInstDesc
4256 LoopVectorizationLegality::isReductionInstr(Instruction *I,
4257                                             ReductionKind Kind,
4258                                             ReductionInstDesc &Prev) {
4259   bool FP = I->getType()->isFloatingPointTy();
4260   bool FastMath = (FP && I->isCommutative() && I->isAssociative());
4261   switch (I->getOpcode()) {
4262   default:
4263     return ReductionInstDesc(false, I);
4264   case Instruction::PHI:
4265       if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
4266                  Kind != RK_FloatMinMax))
4267         return ReductionInstDesc(false, I);
4268     return ReductionInstDesc(I, Prev.MinMaxKind);
4269   case Instruction::Sub:
4270   case Instruction::Add:
4271     return ReductionInstDesc(Kind == RK_IntegerAdd, I);
4272   case Instruction::Mul:
4273     return ReductionInstDesc(Kind == RK_IntegerMult, I);
4274   case Instruction::And:
4275     return ReductionInstDesc(Kind == RK_IntegerAnd, I);
4276   case Instruction::Or:
4277     return ReductionInstDesc(Kind == RK_IntegerOr, I);
4278   case Instruction::Xor:
4279     return ReductionInstDesc(Kind == RK_IntegerXor, I);
4280   case Instruction::FMul:
4281     return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
4282   case Instruction::FAdd:
4283     return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
4284   case Instruction::FCmp:
4285   case Instruction::ICmp:
4286   case Instruction::Select:
4287     if (Kind != RK_IntegerMinMax &&
4288         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
4289       return ReductionInstDesc(false, I);
4290     return isMinMaxSelectCmpPattern(I, Prev);
4291   }
4292 }
4293 
4294 LoopVectorizationLegality::InductionKind
4295 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
4296   Type *PhiTy = Phi->getType();
4297   // We only handle integer and pointer inductions variables.
4298   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
4299     return IK_NoInduction;
4300 
4301   // Check that the PHI is consecutive.
4302   const SCEV *PhiScev = SE->getSCEV(Phi);
4303   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
4304   if (!AR) {
4305     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
4306     return IK_NoInduction;
4307   }
4308   const SCEV *Step = AR->getStepRecurrence(*SE);
4309 
4310   // Integer inductions need to have a stride of one.
4311   if (PhiTy->isIntegerTy()) {
4312     if (Step->isOne())
4313       return IK_IntInduction;
4314     if (Step->isAllOnesValue())
4315       return IK_ReverseIntInduction;
4316     return IK_NoInduction;
4317   }
4318 
4319   // Calculate the pointer stride and check if it is consecutive.
4320   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4321   if (!C)
4322     return IK_NoInduction;
4323 
4324   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
4325   uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
4326   if (C->getValue()->equalsInt(Size))
4327     return IK_PtrInduction;
4328   else if (C->getValue()->equalsInt(0 - Size))
4329     return IK_ReversePtrInduction;
4330 
4331   return IK_NoInduction;
4332 }
4333 
4334 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4335   Value *In0 = const_cast<Value*>(V);
4336   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4337   if (!PN)
4338     return false;
4339 
4340   return Inductions.count(PN);
4341 }
4342 
4343 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
4344   assert(TheLoop->contains(BB) && "Unknown block used");
4345 
4346   // Blocks that do not dominate the latch need predication.
4347   BasicBlock* Latch = TheLoop->getLoopLatch();
4348   return !DT->dominates(BB, Latch);
4349 }
4350 
4351 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
4352                                             SmallPtrSet<Value *, 8>& SafePtrs) {
4353   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4354     // We might be able to hoist the load.
4355     if (it->mayReadFromMemory()) {
4356       LoadInst *LI = dyn_cast<LoadInst>(it);
4357       if (!LI || !SafePtrs.count(LI->getPointerOperand()))
4358         return false;
4359     }
4360 
4361     // We don't predicate stores at the moment.
4362     if (it->mayWriteToMemory() || it->mayThrow())
4363       return false;
4364 
4365     // The instructions below can trap.
4366     switch (it->getOpcode()) {
4367     default: continue;
4368     case Instruction::UDiv:
4369     case Instruction::SDiv:
4370     case Instruction::URem:
4371     case Instruction::SRem:
4372              return false;
4373     }
4374   }
4375 
4376   return true;
4377 }
4378 
4379 LoopVectorizationCostModel::VectorizationFactor
4380 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
4381                                                       unsigned UserVF) {
4382   // Width 1 means no vectorize
4383   VectorizationFactor Factor = { 1U, 0U };
4384   if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
4385     DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
4386     return Factor;
4387   }
4388 
4389   // Find the trip count.
4390   unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
4391   DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4392 
4393   unsigned WidestType = getWidestType();
4394   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4395   unsigned MaxSafeDepDist = -1U;
4396   if (Legal->getMaxSafeDepDistBytes() != -1U)
4397     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
4398   WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
4399                     WidestRegister : MaxSafeDepDist);
4400   unsigned MaxVectorSize = WidestRegister / WidestType;
4401   DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
4402   DEBUG(dbgs() << "LV: The Widest register is: "
4403           << WidestRegister << " bits.\n");
4404 
4405   if (MaxVectorSize == 0) {
4406     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4407     MaxVectorSize = 1;
4408   }
4409 
4410   assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
4411          " into one vector!");
4412 
4413   unsigned VF = MaxVectorSize;
4414 
4415   // If we optimize the program for size, avoid creating the tail loop.
4416   if (OptForSize) {
4417     // If we are unable to calculate the trip count then don't try to vectorize.
4418     if (TC < 2) {
4419       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4420       return Factor;
4421     }
4422 
4423     // Find the maximum SIMD width that can fit within the trip count.
4424     VF = TC % MaxVectorSize;
4425 
4426     if (VF == 0)
4427       VF = MaxVectorSize;
4428 
4429     // If the trip count that we found modulo the vectorization factor is not
4430     // zero then we require a tail.
4431     if (VF < 2) {
4432       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4433       return Factor;
4434     }
4435   }
4436 
4437   if (UserVF != 0) {
4438     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
4439     DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
4440 
4441     Factor.Width = UserVF;
4442     return Factor;
4443   }
4444 
4445   float Cost = expectedCost(1);
4446   unsigned Width = 1;
4447   DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n");
4448   for (unsigned i=2; i <= VF; i*=2) {
4449     // Notice that the vector loop needs to be executed less times, so
4450     // we need to divide the cost of the vector loops by the width of
4451     // the vector elements.
4452     float VectorCost = expectedCost(i) / (float)i;
4453     DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
4454           (int)VectorCost << ".\n");
4455     if (VectorCost < Cost) {
4456       Cost = VectorCost;
4457       Width = i;
4458     }
4459   }
4460 
4461   DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
4462   Factor.Width = Width;
4463   Factor.Cost = Width * Cost;
4464   return Factor;
4465 }
4466 
4467 unsigned LoopVectorizationCostModel::getWidestType() {
4468   unsigned MaxWidth = 8;
4469 
4470   // For each block.
4471   for (Loop::block_iterator bb = TheLoop->block_begin(),
4472        be = TheLoop->block_end(); bb != be; ++bb) {
4473     BasicBlock *BB = *bb;
4474 
4475     // For each instruction in the loop.
4476     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4477       Type *T = it->getType();
4478 
4479       // Only examine Loads, Stores and PHINodes.
4480       if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
4481         continue;
4482 
4483       // Examine PHI nodes that are reduction variables.
4484       if (PHINode *PN = dyn_cast<PHINode>(it))
4485         if (!Legal->getReductionVars()->count(PN))
4486           continue;
4487 
4488       // Examine the stored values.
4489       if (StoreInst *ST = dyn_cast<StoreInst>(it))
4490         T = ST->getValueOperand()->getType();
4491 
4492       // Ignore loaded pointer types and stored pointer types that are not
4493       // consecutive. However, we do want to take consecutive stores/loads of
4494       // pointer vectors into account.
4495       if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
4496         continue;
4497 
4498       MaxWidth = std::max(MaxWidth,
4499                           (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
4500     }
4501   }
4502 
4503   return MaxWidth;
4504 }
4505 
4506 unsigned
4507 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
4508                                                unsigned UserUF,
4509                                                unsigned VF,
4510                                                unsigned LoopCost) {
4511 
4512   // -- The unroll heuristics --
4513   // We unroll the loop in order to expose ILP and reduce the loop overhead.
4514   // There are many micro-architectural considerations that we can't predict
4515   // at this level. For example frontend pressure (on decode or fetch) due to
4516   // code size, or the number and capabilities of the execution ports.
4517   //
4518   // We use the following heuristics to select the unroll factor:
4519   // 1. If the code has reductions the we unroll in order to break the cross
4520   // iteration dependency.
4521   // 2. If the loop is really small then we unroll in order to reduce the loop
4522   // overhead.
4523   // 3. We don't unroll if we think that we will spill registers to memory due
4524   // to the increased register pressure.
4525 
4526   // Use the user preference, unless 'auto' is selected.
4527   if (UserUF != 0)
4528     return UserUF;
4529 
4530   // When we optimize for size we don't unroll.
4531   if (OptForSize)
4532     return 1;
4533 
4534   // We used the distance for the unroll factor.
4535   if (Legal->getMaxSafeDepDistBytes() != -1U)
4536     return 1;
4537 
4538   // Do not unroll loops with a relatively small trip count.
4539   unsigned TC = SE->getSmallConstantTripCount(TheLoop,
4540                                               TheLoop->getLoopLatch());
4541   if (TC > 1 && TC < TinyTripCountUnrollThreshold)
4542     return 1;
4543 
4544   unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
4545   DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
4546         " vector registers\n");
4547 
4548   LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
4549   // We divide by these constants so assume that we have at least one
4550   // instruction that uses at least one register.
4551   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
4552   R.NumInstructions = std::max(R.NumInstructions, 1U);
4553 
4554   // We calculate the unroll factor using the following formula.
4555   // Subtract the number of loop invariants from the number of available
4556   // registers. These registers are used by all of the unrolled instances.
4557   // Next, divide the remaining registers by the number of registers that is
4558   // required by the loop, in order to estimate how many parallel instances
4559   // fit without causing spills.
4560   unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
4561 
4562   // Clamp the unroll factor ranges to reasonable factors.
4563   unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
4564 
4565   // If we did not calculate the cost for VF (because the user selected the VF)
4566   // then we calculate the cost of VF here.
4567   if (LoopCost == 0)
4568     LoopCost = expectedCost(VF);
4569 
4570   // Clamp the calculated UF to be between the 1 and the max unroll factor
4571   // that the target allows.
4572   if (UF > MaxUnrollSize)
4573     UF = MaxUnrollSize;
4574   else if (UF < 1)
4575     UF = 1;
4576 
4577   bool HasReductions = Legal->getReductionVars()->size();
4578 
4579   // Decide if we want to unroll if we decided that it is legal to vectorize
4580   // but not profitable.
4581   if (VF == 1) {
4582     if (TheLoop->getNumBlocks() > 1 || !HasReductions ||
4583         LoopCost > SmallLoopCost)
4584       return 1;
4585 
4586     return UF;
4587   }
4588 
4589   if (HasReductions) {
4590     DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
4591     return UF;
4592   }
4593 
4594   // We want to unroll tiny loops in order to reduce the loop overhead.
4595   // We assume that the cost overhead is 1 and we use the cost model
4596   // to estimate the cost of the loop and unroll until the cost of the
4597   // loop overhead is about 5% of the cost of the loop.
4598   DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
4599   if (LoopCost < SmallLoopCost) {
4600     DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
4601     unsigned NewUF = SmallLoopCost / (LoopCost + 1);
4602     return std::min(NewUF, UF);
4603   }
4604 
4605   DEBUG(dbgs() << "LV: Not Unrolling.\n");
4606   return 1;
4607 }
4608 
4609 LoopVectorizationCostModel::RegisterUsage
4610 LoopVectorizationCostModel::calculateRegisterUsage() {
4611   // This function calculates the register usage by measuring the highest number
4612   // of values that are alive at a single location. Obviously, this is a very
4613   // rough estimation. We scan the loop in a topological order in order and
4614   // assign a number to each instruction. We use RPO to ensure that defs are
4615   // met before their users. We assume that each instruction that has in-loop
4616   // users starts an interval. We record every time that an in-loop value is
4617   // used, so we have a list of the first and last occurrences of each
4618   // instruction. Next, we transpose this data structure into a multi map that
4619   // holds the list of intervals that *end* at a specific location. This multi
4620   // map allows us to perform a linear search. We scan the instructions linearly
4621   // and record each time that a new interval starts, by placing it in a set.
4622   // If we find this value in the multi-map then we remove it from the set.
4623   // The max register usage is the maximum size of the set.
4624   // We also search for instructions that are defined outside the loop, but are
4625   // used inside the loop. We need this number separately from the max-interval
4626   // usage number because when we unroll, loop-invariant values do not take
4627   // more register.
4628   LoopBlocksDFS DFS(TheLoop);
4629   DFS.perform(LI);
4630 
4631   RegisterUsage R;
4632   R.NumInstructions = 0;
4633 
4634   // Each 'key' in the map opens a new interval. The values
4635   // of the map are the index of the 'last seen' usage of the
4636   // instruction that is the key.
4637   typedef DenseMap<Instruction*, unsigned> IntervalMap;
4638   // Maps instruction to its index.
4639   DenseMap<unsigned, Instruction*> IdxToInstr;
4640   // Marks the end of each interval.
4641   IntervalMap EndPoint;
4642   // Saves the list of instruction indices that are used in the loop.
4643   SmallSet<Instruction*, 8> Ends;
4644   // Saves the list of values that are used in the loop but are
4645   // defined outside the loop, such as arguments and constants.
4646   SmallPtrSet<Value*, 8> LoopInvariants;
4647 
4648   unsigned Index = 0;
4649   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
4650        be = DFS.endRPO(); bb != be; ++bb) {
4651     R.NumInstructions += (*bb)->size();
4652     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4653          ++it) {
4654       Instruction *I = it;
4655       IdxToInstr[Index++] = I;
4656 
4657       // Save the end location of each USE.
4658       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
4659         Value *U = I->getOperand(i);
4660         Instruction *Instr = dyn_cast<Instruction>(U);
4661 
4662         // Ignore non-instruction values such as arguments, constants, etc.
4663         if (!Instr) continue;
4664 
4665         // If this instruction is outside the loop then record it and continue.
4666         if (!TheLoop->contains(Instr)) {
4667           LoopInvariants.insert(Instr);
4668           continue;
4669         }
4670 
4671         // Overwrite previous end points.
4672         EndPoint[Instr] = Index;
4673         Ends.insert(Instr);
4674       }
4675     }
4676   }
4677 
4678   // Saves the list of intervals that end with the index in 'key'.
4679   typedef SmallVector<Instruction*, 2> InstrList;
4680   DenseMap<unsigned, InstrList> TransposeEnds;
4681 
4682   // Transpose the EndPoints to a list of values that end at each index.
4683   for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
4684        it != e; ++it)
4685     TransposeEnds[it->second].push_back(it->first);
4686 
4687   SmallSet<Instruction*, 8> OpenIntervals;
4688   unsigned MaxUsage = 0;
4689 
4690 
4691   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
4692   for (unsigned int i = 0; i < Index; ++i) {
4693     Instruction *I = IdxToInstr[i];
4694     // Ignore instructions that are never used within the loop.
4695     if (!Ends.count(I)) continue;
4696 
4697     // Remove all of the instructions that end at this location.
4698     InstrList &List = TransposeEnds[i];
4699     for (unsigned int j=0, e = List.size(); j < e; ++j)
4700       OpenIntervals.erase(List[j]);
4701 
4702     // Count the number of live interals.
4703     MaxUsage = std::max(MaxUsage, OpenIntervals.size());
4704 
4705     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
4706           OpenIntervals.size() << '\n');
4707 
4708     // Add the current instruction to the list of open intervals.
4709     OpenIntervals.insert(I);
4710   }
4711 
4712   unsigned Invariant = LoopInvariants.size();
4713   DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
4714   DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
4715   DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
4716 
4717   R.LoopInvariantRegs = Invariant;
4718   R.MaxLocalUsers = MaxUsage;
4719   return R;
4720 }
4721 
4722 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
4723   unsigned Cost = 0;
4724 
4725   // For each block.
4726   for (Loop::block_iterator bb = TheLoop->block_begin(),
4727        be = TheLoop->block_end(); bb != be; ++bb) {
4728     unsigned BlockCost = 0;
4729     BasicBlock *BB = *bb;
4730 
4731     // For each instruction in the old loop.
4732     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4733       // Skip dbg intrinsics.
4734       if (isa<DbgInfoIntrinsic>(it))
4735         continue;
4736 
4737       unsigned C = getInstructionCost(it, VF);
4738       BlockCost += C;
4739       DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
4740             VF << " For instruction: " << *it << '\n');
4741     }
4742 
4743     // We assume that if-converted blocks have a 50% chance of being executed.
4744     // When the code is scalar then some of the blocks are avoided due to CF.
4745     // When the code is vectorized we execute all code paths.
4746     if (VF == 1 && Legal->blockNeedsPredication(*bb))
4747       BlockCost /= 2;
4748 
4749     Cost += BlockCost;
4750   }
4751 
4752   return Cost;
4753 }
4754 
4755 /// \brief Check whether the address computation for a non-consecutive memory
4756 /// access looks like an unlikely candidate for being merged into the indexing
4757 /// mode.
4758 ///
4759 /// We look for a GEP which has one index that is an induction variable and all
4760 /// other indices are loop invariant. If the stride of this access is also
4761 /// within a small bound we decide that this address computation can likely be
4762 /// merged into the addressing mode.
4763 /// In all other cases, we identify the address computation as complex.
4764 static bool isLikelyComplexAddressComputation(Value *Ptr,
4765                                               LoopVectorizationLegality *Legal,
4766                                               ScalarEvolution *SE,
4767                                               const Loop *TheLoop) {
4768   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
4769   if (!Gep)
4770     return true;
4771 
4772   // We are looking for a gep with all loop invariant indices except for one
4773   // which should be an induction variable.
4774   unsigned NumOperands = Gep->getNumOperands();
4775   for (unsigned i = 1; i < NumOperands; ++i) {
4776     Value *Opd = Gep->getOperand(i);
4777     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
4778         !Legal->isInductionVariable(Opd))
4779       return true;
4780   }
4781 
4782   // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
4783   // can likely be merged into the address computation.
4784   unsigned MaxMergeDistance = 64;
4785 
4786   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
4787   if (!AddRec)
4788     return true;
4789 
4790   // Check the step is constant.
4791   const SCEV *Step = AddRec->getStepRecurrence(*SE);
4792   // Calculate the pointer stride and check if it is consecutive.
4793   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4794   if (!C)
4795     return true;
4796 
4797   const APInt &APStepVal = C->getValue()->getValue();
4798 
4799   // Huge step value - give up.
4800   if (APStepVal.getBitWidth() > 64)
4801     return true;
4802 
4803   int64_t StepVal = APStepVal.getSExtValue();
4804 
4805   return StepVal > MaxMergeDistance;
4806 }
4807 
4808 unsigned
4809 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
4810   // If we know that this instruction will remain uniform, check the cost of
4811   // the scalar version.
4812   if (Legal->isUniformAfterVectorization(I))
4813     VF = 1;
4814 
4815   Type *RetTy = I->getType();
4816   Type *VectorTy = ToVectorTy(RetTy, VF);
4817 
4818   // TODO: We need to estimate the cost of intrinsic calls.
4819   switch (I->getOpcode()) {
4820   case Instruction::GetElementPtr:
4821     // We mark this instruction as zero-cost because the cost of GEPs in
4822     // vectorized code depends on whether the corresponding memory instruction
4823     // is scalarized or not. Therefore, we handle GEPs with the memory
4824     // instruction cost.
4825     return 0;
4826   case Instruction::Br: {
4827     return TTI.getCFInstrCost(I->getOpcode());
4828   }
4829   case Instruction::PHI:
4830     //TODO: IF-converted IFs become selects.
4831     return 0;
4832   case Instruction::Add:
4833   case Instruction::FAdd:
4834   case Instruction::Sub:
4835   case Instruction::FSub:
4836   case Instruction::Mul:
4837   case Instruction::FMul:
4838   case Instruction::UDiv:
4839   case Instruction::SDiv:
4840   case Instruction::FDiv:
4841   case Instruction::URem:
4842   case Instruction::SRem:
4843   case Instruction::FRem:
4844   case Instruction::Shl:
4845   case Instruction::LShr:
4846   case Instruction::AShr:
4847   case Instruction::And:
4848   case Instruction::Or:
4849   case Instruction::Xor: {
4850     // Certain instructions can be cheaper to vectorize if they have a constant
4851     // second vector operand. One example of this are shifts on x86.
4852     TargetTransformInfo::OperandValueKind Op1VK =
4853       TargetTransformInfo::OK_AnyValue;
4854     TargetTransformInfo::OperandValueKind Op2VK =
4855       TargetTransformInfo::OK_AnyValue;
4856 
4857     if (isa<ConstantInt>(I->getOperand(1)))
4858       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
4859 
4860     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
4861   }
4862   case Instruction::Select: {
4863     SelectInst *SI = cast<SelectInst>(I);
4864     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
4865     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
4866     Type *CondTy = SI->getCondition()->getType();
4867     if (!ScalarCond)
4868       CondTy = VectorType::get(CondTy, VF);
4869 
4870     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
4871   }
4872   case Instruction::ICmp:
4873   case Instruction::FCmp: {
4874     Type *ValTy = I->getOperand(0)->getType();
4875     VectorTy = ToVectorTy(ValTy, VF);
4876     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
4877   }
4878   case Instruction::Store:
4879   case Instruction::Load: {
4880     StoreInst *SI = dyn_cast<StoreInst>(I);
4881     LoadInst *LI = dyn_cast<LoadInst>(I);
4882     Type *ValTy = (SI ? SI->getValueOperand()->getType() :
4883                    LI->getType());
4884     VectorTy = ToVectorTy(ValTy, VF);
4885 
4886     unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
4887     unsigned AS = SI ? SI->getPointerAddressSpace() :
4888       LI->getPointerAddressSpace();
4889     Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
4890     // We add the cost of address computation here instead of with the gep
4891     // instruction because only here we know whether the operation is
4892     // scalarized.
4893     if (VF == 1)
4894       return TTI.getAddressComputationCost(VectorTy) +
4895         TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4896 
4897     // Scalarized loads/stores.
4898     int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
4899     bool Reverse = ConsecutiveStride < 0;
4900     unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
4901     unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
4902     if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
4903       bool IsComplexComputation =
4904         isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
4905       unsigned Cost = 0;
4906       // The cost of extracting from the value vector and pointer vector.
4907       Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
4908       for (unsigned i = 0; i < VF; ++i) {
4909         //  The cost of extracting the pointer operand.
4910         Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
4911         // In case of STORE, the cost of ExtractElement from the vector.
4912         // In case of LOAD, the cost of InsertElement into the returned
4913         // vector.
4914         Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
4915                                             Instruction::InsertElement,
4916                                             VectorTy, i);
4917       }
4918 
4919       // The cost of the scalar loads/stores.
4920       Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
4921       Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
4922                                        Alignment, AS);
4923       return Cost;
4924     }
4925 
4926     // Wide load/stores.
4927     unsigned Cost = TTI.getAddressComputationCost(VectorTy);
4928     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4929 
4930     if (Reverse)
4931       Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4932                                   VectorTy, 0);
4933     return Cost;
4934   }
4935   case Instruction::ZExt:
4936   case Instruction::SExt:
4937   case Instruction::FPToUI:
4938   case Instruction::FPToSI:
4939   case Instruction::FPExt:
4940   case Instruction::PtrToInt:
4941   case Instruction::IntToPtr:
4942   case Instruction::SIToFP:
4943   case Instruction::UIToFP:
4944   case Instruction::Trunc:
4945   case Instruction::FPTrunc:
4946   case Instruction::BitCast: {
4947     // We optimize the truncation of induction variable.
4948     // The cost of these is the same as the scalar operation.
4949     if (I->getOpcode() == Instruction::Trunc &&
4950         Legal->isInductionVariable(I->getOperand(0)))
4951       return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
4952                                   I->getOperand(0)->getType());
4953 
4954     Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
4955     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
4956   }
4957   case Instruction::Call: {
4958     CallInst *CI = cast<CallInst>(I);
4959     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
4960     assert(ID && "Not an intrinsic call!");
4961     Type *RetTy = ToVectorTy(CI->getType(), VF);
4962     SmallVector<Type*, 4> Tys;
4963     for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
4964       Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
4965     return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
4966   }
4967   default: {
4968     // We are scalarizing the instruction. Return the cost of the scalar
4969     // instruction, plus the cost of insert and extract into vector
4970     // elements, times the vector width.
4971     unsigned Cost = 0;
4972 
4973     if (!RetTy->isVoidTy() && VF != 1) {
4974       unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
4975                                                 VectorTy);
4976       unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
4977                                                 VectorTy);
4978 
4979       // The cost of inserting the results plus extracting each one of the
4980       // operands.
4981       Cost += VF * (InsCost + ExtCost * I->getNumOperands());
4982     }
4983 
4984     // The cost of executing VF copies of the scalar instruction. This opcode
4985     // is unknown. Assume that it is the same as 'mul'.
4986     Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
4987     return Cost;
4988   }
4989   }// end of switch.
4990 }
4991 
4992 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
4993   if (Scalar->isVoidTy() || VF == 1)
4994     return Scalar;
4995   return VectorType::get(Scalar, VF);
4996 }
4997 
4998 char LoopVectorize::ID = 0;
4999 static const char lv_name[] = "Loop Vectorization";
5000 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
5001 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
5002 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
5003 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
5004 INITIALIZE_PASS_DEPENDENCY(LCSSA)
5005 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
5006 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5007 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
5008 
5009 namespace llvm {
5010   Pass *createLoopVectorizePass(bool NoUnrolling) {
5011     return new LoopVectorize(NoUnrolling);
5012   }
5013 }
5014 
5015 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
5016   // Check for a store.
5017   if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
5018     return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
5019 
5020   // Check for a load.
5021   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
5022     return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
5023 
5024   return false;
5025 }
5026 
5027 
5028 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr) {
5029   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
5030   // Holds vector parameters or scalars, in case of uniform vals.
5031   SmallVector<VectorParts, 4> Params;
5032 
5033   setDebugLocFromInst(Builder, Instr);
5034 
5035   // Find all of the vectorized parameters.
5036   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5037     Value *SrcOp = Instr->getOperand(op);
5038 
5039     // If we are accessing the old induction variable, use the new one.
5040     if (SrcOp == OldInduction) {
5041       Params.push_back(getVectorValue(SrcOp));
5042       continue;
5043     }
5044 
5045     // Try using previously calculated values.
5046     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
5047 
5048     // If the src is an instruction that appeared earlier in the basic block
5049     // then it should already be vectorized.
5050     if (SrcInst && OrigLoop->contains(SrcInst)) {
5051       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
5052       // The parameter is a vector value from earlier.
5053       Params.push_back(WidenMap.get(SrcInst));
5054     } else {
5055       // The parameter is a scalar from outside the loop. Maybe even a constant.
5056       VectorParts Scalars;
5057       Scalars.append(UF, SrcOp);
5058       Params.push_back(Scalars);
5059     }
5060   }
5061 
5062   assert(Params.size() == Instr->getNumOperands() &&
5063          "Invalid number of operands");
5064 
5065   // Does this instruction return a value ?
5066   bool IsVoidRetTy = Instr->getType()->isVoidTy();
5067 
5068   Value *UndefVec = IsVoidRetTy ? 0 :
5069   UndefValue::get(Instr->getType());
5070   // Create a new entry in the WidenMap and initialize it to Undef or Null.
5071   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
5072 
5073   // For each vector unroll 'part':
5074   for (unsigned Part = 0; Part < UF; ++Part) {
5075     // For each scalar that we create:
5076 
5077     Instruction *Cloned = Instr->clone();
5078       if (!IsVoidRetTy)
5079         Cloned->setName(Instr->getName() + ".cloned");
5080       // Replace the operands of the cloned instructions with extracted scalars.
5081       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5082         Value *Op = Params[op][Part];
5083         Cloned->setOperand(op, Op);
5084       }
5085 
5086       // Place the cloned scalar in the new loop.
5087       Builder.Insert(Cloned);
5088 
5089       // If the original scalar returns a value we need to place it in a vector
5090       // so that future users will be able to use it.
5091       if (!IsVoidRetTy)
5092         VecResults[Part] = Cloned;
5093   }
5094 }
5095 
5096 void
5097 InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr,
5098                                               LoopVectorizationLegality*) {
5099   return scalarizeInstruction(Instr);
5100 }
5101 
5102 Value *InnerLoopUnroller::reverseVector(Value *Vec) {
5103   return Vec;
5104 }
5105 
5106 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
5107   return V;
5108 }
5109 
5110 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
5111                                                bool Negate) {
5112   // When unrolling and the VF is 1, we only need to add a simple scalar.
5113   Type *ITy = Val->getType();
5114   assert(!ITy->isVectorTy() && "Val must be a scalar");
5115   Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
5116   return Builder.CreateAdd(Val, C, "induction");
5117 }
5118 
5119