1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 #define SV_NAME "slp-vectorizer"
19 #define DEBUG_TYPE "SLP"
20 
21 #include "llvm/Transforms/Vectorize.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/Verifier.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <map>
45 
46 using namespace llvm;
47 
48 static cl::opt<int>
49     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
50                      cl::desc("Only vectorize if you gain more than this "
51                               "number "));
52 
53 static cl::opt<bool>
54 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
55                    cl::desc("Attempt to vectorize horizontal reductions"));
56 
57 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
58     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
59     cl::desc(
60         "Attempt to vectorize horizontal reductions feeding into a store"));
61 
62 namespace {
63 
64 static const unsigned MinVecRegSize = 128;
65 
66 static const unsigned RecursionMaxDepth = 12;
67 
68 /// A helper class for numbering instructions in multiple blocks.
69 /// Numbers start at zero for each basic block.
70 struct BlockNumbering {
71 
72   BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
73 
74   BlockNumbering() : BB(0), Valid(false) {}
75 
76   void numberInstructions() {
77     unsigned Loc = 0;
78     InstrIdx.clear();
79     InstrVec.clear();
80     // Number the instructions in the block.
81     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
82       InstrIdx[it] = Loc++;
83       InstrVec.push_back(it);
84       assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
85     }
86     Valid = true;
87   }
88 
89   int getIndex(Instruction *I) {
90     assert(I->getParent() == BB && "Invalid instruction");
91     if (!Valid)
92       numberInstructions();
93     assert(InstrIdx.count(I) && "Unknown instruction");
94     return InstrIdx[I];
95   }
96 
97   Instruction *getInstruction(unsigned loc) {
98     if (!Valid)
99       numberInstructions();
100     assert(InstrVec.size() > loc && "Invalid Index");
101     return InstrVec[loc];
102   }
103 
104   void forget() { Valid = false; }
105 
106 private:
107   /// The block we are numbering.
108   BasicBlock *BB;
109   /// Is the block numbered.
110   bool Valid;
111   /// Maps instructions to numbers and back.
112   SmallDenseMap<Instruction *, int> InstrIdx;
113   /// Maps integers to Instructions.
114   SmallVector<Instruction *, 32> InstrVec;
115 };
116 
117 /// \returns the parent basic block if all of the instructions in \p VL
118 /// are in the same block or null otherwise.
119 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
120   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
121   if (!I0)
122     return 0;
123   BasicBlock *BB = I0->getParent();
124   for (int i = 1, e = VL.size(); i < e; i++) {
125     Instruction *I = dyn_cast<Instruction>(VL[i]);
126     if (!I)
127       return 0;
128 
129     if (BB != I->getParent())
130       return 0;
131   }
132   return BB;
133 }
134 
135 /// \returns True if all of the values in \p VL are constants.
136 static bool allConstant(ArrayRef<Value *> VL) {
137   for (unsigned i = 0, e = VL.size(); i < e; ++i)
138     if (!isa<Constant>(VL[i]))
139       return false;
140   return true;
141 }
142 
143 /// \returns True if all of the values in \p VL are identical.
144 static bool isSplat(ArrayRef<Value *> VL) {
145   for (unsigned i = 1, e = VL.size(); i < e; ++i)
146     if (VL[i] != VL[0])
147       return false;
148   return true;
149 }
150 
151 /// \returns The opcode if all of the Instructions in \p VL have the same
152 /// opcode, or zero.
153 static unsigned getSameOpcode(ArrayRef<Value *> VL) {
154   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
155   if (!I0)
156     return 0;
157   unsigned Opcode = I0->getOpcode();
158   for (int i = 1, e = VL.size(); i < e; i++) {
159     Instruction *I = dyn_cast<Instruction>(VL[i]);
160     if (!I || Opcode != I->getOpcode())
161       return 0;
162   }
163   return Opcode;
164 }
165 
166 /// \returns \p I after propagating metadata from \p VL.
167 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
168   Instruction *I0 = cast<Instruction>(VL[0]);
169   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
170   I0->getAllMetadataOtherThanDebugLoc(Metadata);
171 
172   for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
173     unsigned Kind = Metadata[i].first;
174     MDNode *MD = Metadata[i].second;
175 
176     for (int i = 1, e = VL.size(); MD && i != e; i++) {
177       Instruction *I = cast<Instruction>(VL[i]);
178       MDNode *IMD = I->getMetadata(Kind);
179 
180       switch (Kind) {
181       default:
182         MD = 0; // Remove unknown metadata
183         break;
184       case LLVMContext::MD_tbaa:
185         MD = MDNode::getMostGenericTBAA(MD, IMD);
186         break;
187       case LLVMContext::MD_fpmath:
188         MD = MDNode::getMostGenericFPMath(MD, IMD);
189         break;
190       }
191     }
192     I->setMetadata(Kind, MD);
193   }
194   return I;
195 }
196 
197 /// \returns The type that all of the values in \p VL have or null if there
198 /// are different types.
199 static Type* getSameType(ArrayRef<Value *> VL) {
200   Type *Ty = VL[0]->getType();
201   for (int i = 1, e = VL.size(); i < e; i++)
202     if (VL[i]->getType() != Ty)
203       return 0;
204 
205   return Ty;
206 }
207 
208 /// \returns True if the ExtractElement instructions in VL can be vectorized
209 /// to use the original vector.
210 static bool CanReuseExtract(ArrayRef<Value *> VL) {
211   assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
212   // Check if all of the extracts come from the same vector and from the
213   // correct offset.
214   Value *VL0 = VL[0];
215   ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
216   Value *Vec = E0->getOperand(0);
217 
218   // We have to extract from the same vector type.
219   unsigned NElts = Vec->getType()->getVectorNumElements();
220 
221   if (NElts != VL.size())
222     return false;
223 
224   // Check that all of the indices extract from the correct offset.
225   ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
226   if (!CI || CI->getZExtValue())
227     return false;
228 
229   for (unsigned i = 1, e = VL.size(); i < e; ++i) {
230     ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
231     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
232 
233     if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
234       return false;
235   }
236 
237   return true;
238 }
239 
240 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
241                                            SmallVectorImpl<Value *> &Left,
242                                            SmallVectorImpl<Value *> &Right) {
243 
244   SmallVector<Value *, 16> OrigLeft, OrigRight;
245 
246   bool AllSameOpcodeLeft = true;
247   bool AllSameOpcodeRight = true;
248   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
249     Instruction *I = cast<Instruction>(VL[i]);
250     Value *V0 = I->getOperand(0);
251     Value *V1 = I->getOperand(1);
252 
253     OrigLeft.push_back(V0);
254     OrigRight.push_back(V1);
255 
256     Instruction *I0 = dyn_cast<Instruction>(V0);
257     Instruction *I1 = dyn_cast<Instruction>(V1);
258 
259     // Check whether all operands on one side have the same opcode. In this case
260     // we want to preserve the original order and not make things worse by
261     // reordering.
262     AllSameOpcodeLeft = I0;
263     AllSameOpcodeRight = I1;
264 
265     if (i && AllSameOpcodeLeft) {
266       if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
267         if(P0->getOpcode() != I0->getOpcode())
268           AllSameOpcodeLeft = false;
269       } else
270         AllSameOpcodeLeft = false;
271     }
272     if (i && AllSameOpcodeRight) {
273       if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
274         if(P1->getOpcode() != I1->getOpcode())
275           AllSameOpcodeRight = false;
276       } else
277         AllSameOpcodeRight = false;
278     }
279 
280     // Sort two opcodes. In the code below we try to preserve the ability to use
281     // broadcast of values instead of individual inserts.
282     // vl1 = load
283     // vl2 = phi
284     // vr1 = load
285     // vr2 = vr2
286     //    = vl1 x vr1
287     //    = vl2 x vr2
288     // If we just sorted according to opcode we would leave the first line in
289     // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
290     //    = vl1 x vr1
291     //    = vr2 x vl2
292     // Because vr2 and vr1 are from the same load we loose the opportunity of a
293     // broadcast for the packed right side in the backend: we have [vr1, vl2]
294     // instead of [vr1, vr2=vr1].
295     if (I0 && I1) {
296        if(!i && I0->getOpcode() > I1->getOpcode()) {
297          Left.push_back(I1);
298          Right.push_back(I0);
299        } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
300          // Try not to destroy a broad cast for no apparent benefit.
301          Left.push_back(I1);
302          Right.push_back(I0);
303        } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] ==  I0) {
304          // Try preserve broadcasts.
305          Left.push_back(I1);
306          Right.push_back(I0);
307        } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
308          // Try preserve broadcasts.
309          Left.push_back(I1);
310          Right.push_back(I0);
311        } else {
312          Left.push_back(I0);
313          Right.push_back(I1);
314        }
315        continue;
316     }
317     // One opcode, put the instruction on the right.
318     if (I0) {
319       Left.push_back(V1);
320       Right.push_back(I0);
321       continue;
322     }
323     Left.push_back(V0);
324     Right.push_back(V1);
325   }
326 
327   bool LeftBroadcast = isSplat(Left);
328   bool RightBroadcast = isSplat(Right);
329 
330   // Don't reorder if the operands where good to begin with.
331   if (!(LeftBroadcast || RightBroadcast) &&
332       (AllSameOpcodeRight || AllSameOpcodeLeft)) {
333     Left = OrigLeft;
334     Right = OrigRight;
335   }
336 }
337 
338 /// Bottom Up SLP Vectorizer.
339 class BoUpSLP {
340 public:
341   typedef SmallVector<Value *, 8> ValueList;
342   typedef SmallVector<Instruction *, 16> InstrList;
343   typedef SmallPtrSet<Value *, 16> ValueSet;
344   typedef SmallVector<StoreInst *, 8> StoreList;
345 
346   BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
347           TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
348           DominatorTree *Dt) :
349     F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
350     Builder(Se->getContext()) {
351       // Setup the block numbering utility for all of the blocks in the
352       // function.
353       for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
354         BasicBlock *BB = it;
355         BlocksNumbers[BB] = BlockNumbering(BB);
356       }
357     }
358 
359   /// \brief Vectorize the tree that starts with the elements in \p VL.
360   /// Returns the vectorized root.
361   Value *vectorizeTree();
362 
363   /// \returns the vectorization cost of the subtree that starts at \p VL.
364   /// A negative number means that this is profitable.
365   int getTreeCost();
366 
367   /// Construct a vectorizable tree that starts at \p Roots and is possibly
368   /// used by a reduction of \p RdxOps.
369   void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
370 
371   /// Clear the internal data structures that are created by 'buildTree'.
372   void deleteTree() {
373     RdxOps = 0;
374     VectorizableTree.clear();
375     ScalarToTreeEntry.clear();
376     MustGather.clear();
377     ExternalUses.clear();
378     MemBarrierIgnoreList.clear();
379   }
380 
381   /// \returns true if the memory operations A and B are consecutive.
382   bool isConsecutiveAccess(Value *A, Value *B);
383 
384   /// \brief Perform LICM and CSE on the newly generated gather sequences.
385   void optimizeGatherSequence();
386 private:
387   struct TreeEntry;
388 
389   /// \returns the cost of the vectorizable entry.
390   int getEntryCost(TreeEntry *E);
391 
392   /// This is the recursive part of buildTree.
393   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
394 
395   /// Vectorize a single entry in the tree.
396   Value *vectorizeTree(TreeEntry *E);
397 
398   /// Vectorize a single entry in the tree, starting in \p VL.
399   Value *vectorizeTree(ArrayRef<Value *> VL);
400 
401   /// \returns the pointer to the vectorized value if \p VL is already
402   /// vectorized, or NULL. They may happen in cycles.
403   Value *alreadyVectorized(ArrayRef<Value *> VL) const;
404 
405   /// \brief Take the pointer operand from the Load/Store instruction.
406   /// \returns NULL if this is not a valid Load/Store instruction.
407   static Value *getPointerOperand(Value *I);
408 
409   /// \brief Take the address space operand from the Load/Store instruction.
410   /// \returns -1 if this is not a valid Load/Store instruction.
411   static unsigned getAddressSpaceOperand(Value *I);
412 
413   /// \returns the scalarization cost for this type. Scalarization in this
414   /// context means the creation of vectors from a group of scalars.
415   int getGatherCost(Type *Ty);
416 
417   /// \returns the scalarization cost for this list of values. Assuming that
418   /// this subtree gets vectorized, we may need to extract the values from the
419   /// roots. This method calculates the cost of extracting the values.
420   int getGatherCost(ArrayRef<Value *> VL);
421 
422   /// \returns the AA location that is being access by the instruction.
423   AliasAnalysis::Location getLocation(Instruction *I);
424 
425   /// \brief Checks if it is possible to sink an instruction from
426   /// \p Src to \p Dst.
427   /// \returns the pointer to the barrier instruction if we can't sink.
428   Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
429 
430   /// \returns the index of the last instruction in the BB from \p VL.
431   int getLastIndex(ArrayRef<Value *> VL);
432 
433   /// \returns the Instruction in the bundle \p VL.
434   Instruction *getLastInstruction(ArrayRef<Value *> VL);
435 
436   /// \brief Set the Builder insert point to one after the last instruction in
437   /// the bundle
438   void setInsertPointAfterBundle(ArrayRef<Value *> VL);
439 
440   /// \returns a vector from a collection of scalars in \p VL.
441   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
442 
443   /// \returns whether the VectorizableTree is fully vectoriable and will
444   /// be beneficial even the tree height is tiny.
445   bool isFullyVectorizableTinyTree();
446 
447   struct TreeEntry {
448     TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
449     NeedToGather(0) {}
450 
451     /// \returns true if the scalars in VL are equal to this entry.
452     bool isSame(ArrayRef<Value *> VL) const {
453       assert(VL.size() == Scalars.size() && "Invalid size");
454       return std::equal(VL.begin(), VL.end(), Scalars.begin());
455     }
456 
457     /// A vector of scalars.
458     ValueList Scalars;
459 
460     /// The Scalars are vectorized into this value. It is initialized to Null.
461     Value *VectorizedValue;
462 
463     /// The index in the basic block of the last scalar.
464     int LastScalarIndex;
465 
466     /// Do we need to gather this sequence ?
467     bool NeedToGather;
468   };
469 
470   /// Create a new VectorizableTree entry.
471   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
472     VectorizableTree.push_back(TreeEntry());
473     int idx = VectorizableTree.size() - 1;
474     TreeEntry *Last = &VectorizableTree[idx];
475     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
476     Last->NeedToGather = !Vectorized;
477     if (Vectorized) {
478       Last->LastScalarIndex = getLastIndex(VL);
479       for (int i = 0, e = VL.size(); i != e; ++i) {
480         assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
481         ScalarToTreeEntry[VL[i]] = idx;
482       }
483     } else {
484       Last->LastScalarIndex = 0;
485       MustGather.insert(VL.begin(), VL.end());
486     }
487     return Last;
488   }
489 
490   /// -- Vectorization State --
491   /// Holds all of the tree entries.
492   std::vector<TreeEntry> VectorizableTree;
493 
494   /// Maps a specific scalar to its tree entry.
495   SmallDenseMap<Value*, int> ScalarToTreeEntry;
496 
497   /// A list of scalars that we found that we need to keep as scalars.
498   ValueSet MustGather;
499 
500   /// This POD struct describes one external user in the vectorized tree.
501   struct ExternalUser {
502     ExternalUser (Value *S, llvm::User *U, int L) :
503       Scalar(S), User(U), Lane(L){};
504     // Which scalar in our function.
505     Value *Scalar;
506     // Which user that uses the scalar.
507     llvm::User *User;
508     // Which lane does the scalar belong to.
509     int Lane;
510   };
511   typedef SmallVector<ExternalUser, 16> UserList;
512 
513   /// A list of values that need to extracted out of the tree.
514   /// This list holds pairs of (Internal Scalar : External User).
515   UserList ExternalUses;
516 
517   /// A list of instructions to ignore while sinking
518   /// memory instructions. This map must be reset between runs of getCost.
519   ValueSet MemBarrierIgnoreList;
520 
521   /// Holds all of the instructions that we gathered.
522   SetVector<Instruction *> GatherSeq;
523 
524   /// Numbers instructions in different blocks.
525   DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
526 
527   /// Reduction operators.
528   ValueSet *RdxOps;
529 
530   // Analysis and block reference.
531   Function *F;
532   ScalarEvolution *SE;
533   DataLayout *DL;
534   TargetTransformInfo *TTI;
535   AliasAnalysis *AA;
536   LoopInfo *LI;
537   DominatorTree *DT;
538   /// Instruction builder to construct the vectorized tree.
539   IRBuilder<> Builder;
540 };
541 
542 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
543   deleteTree();
544   RdxOps = Rdx;
545   if (!getSameType(Roots))
546     return;
547   buildTree_rec(Roots, 0);
548 
549   // Collect the values that we need to extract from the tree.
550   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
551     TreeEntry *Entry = &VectorizableTree[EIdx];
552 
553     // For each lane:
554     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
555       Value *Scalar = Entry->Scalars[Lane];
556 
557       // No need to handle users of gathered values.
558       if (Entry->NeedToGather)
559         continue;
560 
561       for (Value::use_iterator User = Scalar->use_begin(),
562            UE = Scalar->use_end(); User != UE; ++User) {
563         DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
564 
565         bool Gathered = MustGather.count(*User);
566 
567         // Skip in-tree scalars that become vectors.
568         if (ScalarToTreeEntry.count(*User) && !Gathered) {
569           DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
570                 **User << ".\n");
571           int Idx = ScalarToTreeEntry[*User]; (void) Idx;
572           assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
573           continue;
574         }
575         Instruction *UserInst = dyn_cast<Instruction>(*User);
576         if (!UserInst)
577           continue;
578 
579         // Ignore uses that are part of the reduction.
580         if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
581           continue;
582 
583         DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
584               Lane << " from " << *Scalar << ".\n");
585         ExternalUses.push_back(ExternalUser(Scalar, *User, Lane));
586       }
587     }
588   }
589 }
590 
591 
592 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
593   bool SameTy = getSameType(VL); (void)SameTy;
594   assert(SameTy && "Invalid types!");
595 
596   if (Depth == RecursionMaxDepth) {
597     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
598     newTreeEntry(VL, false);
599     return;
600   }
601 
602   // Don't handle vectors.
603   if (VL[0]->getType()->isVectorTy()) {
604     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
605     newTreeEntry(VL, false);
606     return;
607   }
608 
609   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
610     if (SI->getValueOperand()->getType()->isVectorTy()) {
611       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
612       newTreeEntry(VL, false);
613       return;
614     }
615 
616   // If all of the operands are identical or constant we have a simple solution.
617   if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
618       !getSameOpcode(VL)) {
619     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
620     newTreeEntry(VL, false);
621     return;
622   }
623 
624   // We now know that this is a vector of instructions of the same type from
625   // the same block.
626 
627   // Check if this is a duplicate of another entry.
628   if (ScalarToTreeEntry.count(VL[0])) {
629     int Idx = ScalarToTreeEntry[VL[0]];
630     TreeEntry *E = &VectorizableTree[Idx];
631     for (unsigned i = 0, e = VL.size(); i != e; ++i) {
632       DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
633       if (E->Scalars[i] != VL[i]) {
634         DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
635         newTreeEntry(VL, false);
636         return;
637       }
638     }
639     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
640     return;
641   }
642 
643   // Check that none of the instructions in the bundle are already in the tree.
644   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
645     if (ScalarToTreeEntry.count(VL[i])) {
646       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
647             ") is already in tree.\n");
648       newTreeEntry(VL, false);
649       return;
650     }
651   }
652 
653   // If any of the scalars appears in the table OR it is marked as a value that
654   // needs to stat scalar then we need to gather the scalars.
655   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
656     if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
657       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
658       newTreeEntry(VL, false);
659       return;
660     }
661   }
662 
663   // Check that all of the users of the scalars that we want to vectorize are
664   // schedulable.
665   Instruction *VL0 = cast<Instruction>(VL[0]);
666   int MyLastIndex = getLastIndex(VL);
667   BasicBlock *BB = cast<Instruction>(VL0)->getParent();
668 
669   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
670     Instruction *Scalar = cast<Instruction>(VL[i]);
671     DEBUG(dbgs() << "SLP: Checking users of  " << *Scalar << ". \n");
672     for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
673          U != UE; ++U) {
674       DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
675       Instruction *User = dyn_cast<Instruction>(*U);
676       if (!User) {
677         DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
678         newTreeEntry(VL, false);
679         return;
680       }
681 
682       // We don't care if the user is in a different basic block.
683       BasicBlock *UserBlock = User->getParent();
684       if (UserBlock != BB) {
685         DEBUG(dbgs() << "SLP: User from a different basic block "
686               << *User << ". \n");
687         continue;
688       }
689 
690       // If this is a PHINode within this basic block then we can place the
691       // extract wherever we want.
692       if (isa<PHINode>(*User)) {
693         DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
694         continue;
695       }
696 
697       // Check if this is a safe in-tree user.
698       if (ScalarToTreeEntry.count(User)) {
699         int Idx = ScalarToTreeEntry[User];
700         int VecLocation = VectorizableTree[Idx].LastScalarIndex;
701         if (VecLocation <= MyLastIndex) {
702           DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
703           newTreeEntry(VL, false);
704           return;
705         }
706         DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
707               VecLocation << " vector value (" << *Scalar << ") at #"
708               << MyLastIndex << ".\n");
709         continue;
710       }
711 
712       // This user is part of the reduction.
713       if (RdxOps && RdxOps->count(User))
714         continue;
715 
716       // Make sure that we can schedule this unknown user.
717       BlockNumbering &BN = BlocksNumbers[BB];
718       int UserIndex = BN.getIndex(User);
719       if (UserIndex < MyLastIndex) {
720 
721         DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
722               << *User << ". \n");
723         newTreeEntry(VL, false);
724         return;
725       }
726     }
727   }
728 
729   // Check that every instructions appears once in this bundle.
730   for (unsigned i = 0, e = VL.size(); i < e; ++i)
731     for (unsigned j = i+1; j < e; ++j)
732       if (VL[i] == VL[j]) {
733         DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
734         newTreeEntry(VL, false);
735         return;
736       }
737 
738   // Check that instructions in this bundle don't reference other instructions.
739   // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
740   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
741     for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
742          U != UE; ++U) {
743       for (unsigned j = 0; j < e; ++j) {
744         if (i != j && *U == VL[j]) {
745           DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
746           newTreeEntry(VL, false);
747           return;
748         }
749       }
750     }
751   }
752 
753   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
754 
755   unsigned Opcode = getSameOpcode(VL);
756 
757   // Check if it is safe to sink the loads or the stores.
758   if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
759     Instruction *Last = getLastInstruction(VL);
760 
761     for (unsigned i = 0, e = VL.size(); i < e; ++i) {
762       if (VL[i] == Last)
763         continue;
764       Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
765       if (Barrier) {
766         DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
767               << "\n because of " << *Barrier << ".  Gathering.\n");
768         newTreeEntry(VL, false);
769         return;
770       }
771     }
772   }
773 
774   switch (Opcode) {
775     case Instruction::PHI: {
776       PHINode *PH = dyn_cast<PHINode>(VL0);
777 
778       // Check for terminator values (e.g. invoke).
779       for (unsigned j = 0; j < VL.size(); ++j)
780         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
781           TerminatorInst *Term = dyn_cast<TerminatorInst>(cast<PHINode>(VL[j])->getIncomingValue(i));
782           if (Term) {
783             DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
784             newTreeEntry(VL, false);
785             return;
786           }
787         }
788 
789       newTreeEntry(VL, true);
790       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
791 
792       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
793         ValueList Operands;
794         // Prepare the operand vector.
795         for (unsigned j = 0; j < VL.size(); ++j)
796           Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
797 
798         buildTree_rec(Operands, Depth + 1);
799       }
800       return;
801     }
802     case Instruction::ExtractElement: {
803       bool Reuse = CanReuseExtract(VL);
804       if (Reuse) {
805         DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
806       }
807       newTreeEntry(VL, Reuse);
808       return;
809     }
810     case Instruction::Load: {
811       // Check if the loads are consecutive or of we need to swizzle them.
812       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
813         LoadInst *L = cast<LoadInst>(VL[i]);
814         if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
815           newTreeEntry(VL, false);
816           DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
817           return;
818         }
819       }
820       newTreeEntry(VL, true);
821       DEBUG(dbgs() << "SLP: added a vector of loads.\n");
822       return;
823     }
824     case Instruction::ZExt:
825     case Instruction::SExt:
826     case Instruction::FPToUI:
827     case Instruction::FPToSI:
828     case Instruction::FPExt:
829     case Instruction::PtrToInt:
830     case Instruction::IntToPtr:
831     case Instruction::SIToFP:
832     case Instruction::UIToFP:
833     case Instruction::Trunc:
834     case Instruction::FPTrunc:
835     case Instruction::BitCast: {
836       Type *SrcTy = VL0->getOperand(0)->getType();
837       for (unsigned i = 0; i < VL.size(); ++i) {
838         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
839         if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
840           newTreeEntry(VL, false);
841           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
842           return;
843         }
844       }
845       newTreeEntry(VL, true);
846       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
847 
848       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
849         ValueList Operands;
850         // Prepare the operand vector.
851         for (unsigned j = 0; j < VL.size(); ++j)
852           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
853 
854         buildTree_rec(Operands, Depth+1);
855       }
856       return;
857     }
858     case Instruction::ICmp:
859     case Instruction::FCmp: {
860       // Check that all of the compares have the same predicate.
861       CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
862       Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
863       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
864         CmpInst *Cmp = cast<CmpInst>(VL[i]);
865         if (Cmp->getPredicate() != P0 ||
866             Cmp->getOperand(0)->getType() != ComparedTy) {
867           newTreeEntry(VL, false);
868           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
869           return;
870         }
871       }
872 
873       newTreeEntry(VL, true);
874       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
875 
876       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
877         ValueList Operands;
878         // Prepare the operand vector.
879         for (unsigned j = 0; j < VL.size(); ++j)
880           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
881 
882         buildTree_rec(Operands, Depth+1);
883       }
884       return;
885     }
886     case Instruction::Select:
887     case Instruction::Add:
888     case Instruction::FAdd:
889     case Instruction::Sub:
890     case Instruction::FSub:
891     case Instruction::Mul:
892     case Instruction::FMul:
893     case Instruction::UDiv:
894     case Instruction::SDiv:
895     case Instruction::FDiv:
896     case Instruction::URem:
897     case Instruction::SRem:
898     case Instruction::FRem:
899     case Instruction::Shl:
900     case Instruction::LShr:
901     case Instruction::AShr:
902     case Instruction::And:
903     case Instruction::Or:
904     case Instruction::Xor: {
905       newTreeEntry(VL, true);
906       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
907 
908       // Sort operands of the instructions so that each side is more likely to
909       // have the same opcode.
910       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
911         ValueList Left, Right;
912         reorderInputsAccordingToOpcode(VL, Left, Right);
913         buildTree_rec(Left, Depth + 1);
914         buildTree_rec(Right, Depth + 1);
915         return;
916       }
917 
918       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
919         ValueList Operands;
920         // Prepare the operand vector.
921         for (unsigned j = 0; j < VL.size(); ++j)
922           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
923 
924         buildTree_rec(Operands, Depth+1);
925       }
926       return;
927     }
928     case Instruction::Store: {
929       // Check if the stores are consecutive or of we need to swizzle them.
930       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
931         if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
932           newTreeEntry(VL, false);
933           DEBUG(dbgs() << "SLP: Non consecutive store.\n");
934           return;
935         }
936 
937       newTreeEntry(VL, true);
938       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
939 
940       ValueList Operands;
941       for (unsigned j = 0; j < VL.size(); ++j)
942         Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
943 
944       // We can ignore these values because we are sinking them down.
945       MemBarrierIgnoreList.insert(VL.begin(), VL.end());
946       buildTree_rec(Operands, Depth + 1);
947       return;
948     }
949     default:
950       newTreeEntry(VL, false);
951       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
952       return;
953   }
954 }
955 
956 int BoUpSLP::getEntryCost(TreeEntry *E) {
957   ArrayRef<Value*> VL = E->Scalars;
958 
959   Type *ScalarTy = VL[0]->getType();
960   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
961     ScalarTy = SI->getValueOperand()->getType();
962   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
963 
964   if (E->NeedToGather) {
965     if (allConstant(VL))
966       return 0;
967     if (isSplat(VL)) {
968       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
969     }
970     return getGatherCost(E->Scalars);
971   }
972 
973   assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
974          "Invalid VL");
975   Instruction *VL0 = cast<Instruction>(VL[0]);
976   unsigned Opcode = VL0->getOpcode();
977   switch (Opcode) {
978     case Instruction::PHI: {
979       return 0;
980     }
981     case Instruction::ExtractElement: {
982       if (CanReuseExtract(VL))
983         return 0;
984       return getGatherCost(VecTy);
985     }
986     case Instruction::ZExt:
987     case Instruction::SExt:
988     case Instruction::FPToUI:
989     case Instruction::FPToSI:
990     case Instruction::FPExt:
991     case Instruction::PtrToInt:
992     case Instruction::IntToPtr:
993     case Instruction::SIToFP:
994     case Instruction::UIToFP:
995     case Instruction::Trunc:
996     case Instruction::FPTrunc:
997     case Instruction::BitCast: {
998       Type *SrcTy = VL0->getOperand(0)->getType();
999 
1000       // Calculate the cost of this instruction.
1001       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1002                                                          VL0->getType(), SrcTy);
1003 
1004       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1005       int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1006       return VecCost - ScalarCost;
1007     }
1008     case Instruction::FCmp:
1009     case Instruction::ICmp:
1010     case Instruction::Select:
1011     case Instruction::Add:
1012     case Instruction::FAdd:
1013     case Instruction::Sub:
1014     case Instruction::FSub:
1015     case Instruction::Mul:
1016     case Instruction::FMul:
1017     case Instruction::UDiv:
1018     case Instruction::SDiv:
1019     case Instruction::FDiv:
1020     case Instruction::URem:
1021     case Instruction::SRem:
1022     case Instruction::FRem:
1023     case Instruction::Shl:
1024     case Instruction::LShr:
1025     case Instruction::AShr:
1026     case Instruction::And:
1027     case Instruction::Or:
1028     case Instruction::Xor: {
1029       // Calculate the cost of this instruction.
1030       int ScalarCost = 0;
1031       int VecCost = 0;
1032       if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1033           Opcode == Instruction::Select) {
1034         VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1035         ScalarCost = VecTy->getNumElements() *
1036         TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1037         VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1038       } else {
1039         // Certain instructions can be cheaper to vectorize if they have a
1040         // constant second vector operand.
1041         TargetTransformInfo::OperandValueKind Op1VK =
1042             TargetTransformInfo::OK_AnyValue;
1043         TargetTransformInfo::OperandValueKind Op2VK =
1044             TargetTransformInfo::OK_UniformConstantValue;
1045 
1046         // Check whether all second operands are constant.
1047         for (unsigned i = 0; i < VL.size(); ++i)
1048           if (!isa<ConstantInt>(cast<Instruction>(VL[i])->getOperand(1))) {
1049             Op2VK = TargetTransformInfo::OK_AnyValue;
1050             break;
1051           }
1052 
1053         ScalarCost =
1054             VecTy->getNumElements() *
1055             TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
1056         VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
1057       }
1058       return VecCost - ScalarCost;
1059     }
1060     case Instruction::Load: {
1061       // Cost of wide load - cost of scalar loads.
1062       int ScalarLdCost = VecTy->getNumElements() *
1063       TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1064       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1065       return VecLdCost - ScalarLdCost;
1066     }
1067     case Instruction::Store: {
1068       // We know that we can merge the stores. Calculate the cost.
1069       int ScalarStCost = VecTy->getNumElements() *
1070       TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1071       int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1072       return VecStCost - ScalarStCost;
1073     }
1074     default:
1075       llvm_unreachable("Unknown instruction");
1076   }
1077 }
1078 
1079 bool BoUpSLP::isFullyVectorizableTinyTree() {
1080   DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1081         VectorizableTree.size() << " is fully vectorizable .\n");
1082 
1083   // We only handle trees of height 2.
1084   if (VectorizableTree.size() != 2)
1085     return false;
1086 
1087   // Gathering cost would be too much for tiny trees.
1088   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1089     return false;
1090 
1091   return true;
1092 }
1093 
1094 int BoUpSLP::getTreeCost() {
1095   int Cost = 0;
1096   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1097         VectorizableTree.size() << ".\n");
1098 
1099   // We only vectorize tiny trees if it is fully vectorizable.
1100   if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1101     if (!VectorizableTree.size()) {
1102       assert(!ExternalUses.size() && "We should not have any external users");
1103     }
1104     return INT_MAX;
1105   }
1106 
1107   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1108 
1109   for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1110     int C = getEntryCost(&VectorizableTree[i]);
1111     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1112           << *VectorizableTree[i].Scalars[0] << " .\n");
1113     Cost += C;
1114   }
1115 
1116   int ExtractCost = 0;
1117   for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1118        I != E; ++I) {
1119 
1120     VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1121     ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1122                                            I->Lane);
1123   }
1124 
1125 
1126   DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1127   return  Cost + ExtractCost;
1128 }
1129 
1130 int BoUpSLP::getGatherCost(Type *Ty) {
1131   int Cost = 0;
1132   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1133     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1134   return Cost;
1135 }
1136 
1137 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1138   // Find the type of the operands in VL.
1139   Type *ScalarTy = VL[0]->getType();
1140   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1141     ScalarTy = SI->getValueOperand()->getType();
1142   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1143   // Find the cost of inserting/extracting values from the vector.
1144   return getGatherCost(VecTy);
1145 }
1146 
1147 AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
1148   if (StoreInst *SI = dyn_cast<StoreInst>(I))
1149     return AA->getLocation(SI);
1150   if (LoadInst *LI = dyn_cast<LoadInst>(I))
1151     return AA->getLocation(LI);
1152   return AliasAnalysis::Location();
1153 }
1154 
1155 Value *BoUpSLP::getPointerOperand(Value *I) {
1156   if (LoadInst *LI = dyn_cast<LoadInst>(I))
1157     return LI->getPointerOperand();
1158   if (StoreInst *SI = dyn_cast<StoreInst>(I))
1159     return SI->getPointerOperand();
1160   return 0;
1161 }
1162 
1163 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1164   if (LoadInst *L = dyn_cast<LoadInst>(I))
1165     return L->getPointerAddressSpace();
1166   if (StoreInst *S = dyn_cast<StoreInst>(I))
1167     return S->getPointerAddressSpace();
1168   return -1;
1169 }
1170 
1171 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
1172   Value *PtrA = getPointerOperand(A);
1173   Value *PtrB = getPointerOperand(B);
1174   unsigned ASA = getAddressSpaceOperand(A);
1175   unsigned ASB = getAddressSpaceOperand(B);
1176 
1177   // Check that the address spaces match and that the pointers are valid.
1178   if (!PtrA || !PtrB || (ASA != ASB))
1179     return false;
1180 
1181   // Make sure that A and B are different pointers of the same type.
1182   if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1183     return false;
1184 
1185   unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
1186   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1187   APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
1188 
1189   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1190   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
1191   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
1192 
1193   APInt OffsetDelta = OffsetB - OffsetA;
1194 
1195   // Check if they are based on the same pointer. That makes the offsets
1196   // sufficient.
1197   if (PtrA == PtrB)
1198     return OffsetDelta == Size;
1199 
1200   // Compute the necessary base pointer delta to have the necessary final delta
1201   // equal to the size.
1202   APInt BaseDelta = Size - OffsetDelta;
1203 
1204   // Otherwise compute the distance with SCEV between the base pointers.
1205   const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1206   const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1207   const SCEV *C = SE->getConstant(BaseDelta);
1208   const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1209   return X == PtrSCEVB;
1210 }
1211 
1212 Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
1213   assert(Src->getParent() == Dst->getParent() && "Not the same BB");
1214   BasicBlock::iterator I = Src, E = Dst;
1215   /// Scan all of the instruction from SRC to DST and check if
1216   /// the source may alias.
1217   for (++I; I != E; ++I) {
1218     // Ignore store instructions that are marked as 'ignore'.
1219     if (MemBarrierIgnoreList.count(I))
1220       continue;
1221     if (Src->mayWriteToMemory()) /* Write */ {
1222       if (!I->mayReadOrWriteMemory())
1223         continue;
1224     } else /* Read */ {
1225       if (!I->mayWriteToMemory())
1226         continue;
1227     }
1228     AliasAnalysis::Location A = getLocation(&*I);
1229     AliasAnalysis::Location B = getLocation(Src);
1230 
1231     if (!A.Ptr || !B.Ptr || AA->alias(A, B))
1232       return I;
1233   }
1234   return 0;
1235 }
1236 
1237 int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
1238   BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1239   assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1240   BlockNumbering &BN = BlocksNumbers[BB];
1241 
1242   int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
1243   for (unsigned i = 0, e = VL.size(); i < e; ++i)
1244     MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1245   return MaxIdx;
1246 }
1247 
1248 Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
1249   BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1250   assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1251   BlockNumbering &BN = BlocksNumbers[BB];
1252 
1253   int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
1254   for (unsigned i = 1, e = VL.size(); i < e; ++i)
1255     MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1256   Instruction *I = BN.getInstruction(MaxIdx);
1257   assert(I && "bad location");
1258   return I;
1259 }
1260 
1261 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
1262   Instruction *VL0 = cast<Instruction>(VL[0]);
1263   Instruction *LastInst = getLastInstruction(VL);
1264   BasicBlock::iterator NextInst = LastInst;
1265   ++NextInst;
1266   Builder.SetInsertPoint(VL0->getParent(), NextInst);
1267   Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
1268 }
1269 
1270 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
1271   Value *Vec = UndefValue::get(Ty);
1272   // Generate the 'InsertElement' instruction.
1273   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
1274     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
1275     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
1276       GatherSeq.insert(Insrt);
1277 
1278       // Add to our 'need-to-extract' list.
1279       if (ScalarToTreeEntry.count(VL[i])) {
1280         int Idx = ScalarToTreeEntry[VL[i]];
1281         TreeEntry *E = &VectorizableTree[Idx];
1282         // Find which lane we need to extract.
1283         int FoundLane = -1;
1284         for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
1285           // Is this the lane of the scalar that we are looking for ?
1286           if (E->Scalars[Lane] == VL[i]) {
1287             FoundLane = Lane;
1288             break;
1289           }
1290         }
1291         assert(FoundLane >= 0 && "Could not find the correct lane");
1292         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
1293       }
1294     }
1295   }
1296 
1297   return Vec;
1298 }
1299 
1300 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
1301   SmallDenseMap<Value*, int>::const_iterator Entry
1302     = ScalarToTreeEntry.find(VL[0]);
1303   if (Entry != ScalarToTreeEntry.end()) {
1304     int Idx = Entry->second;
1305     const TreeEntry *En = &VectorizableTree[Idx];
1306     if (En->isSame(VL) && En->VectorizedValue)
1307       return En->VectorizedValue;
1308   }
1309   return 0;
1310 }
1311 
1312 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
1313   if (ScalarToTreeEntry.count(VL[0])) {
1314     int Idx = ScalarToTreeEntry[VL[0]];
1315     TreeEntry *E = &VectorizableTree[Idx];
1316     if (E->isSame(VL))
1317       return vectorizeTree(E);
1318   }
1319 
1320   Type *ScalarTy = VL[0]->getType();
1321   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1322     ScalarTy = SI->getValueOperand()->getType();
1323   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1324 
1325   return Gather(VL, VecTy);
1326 }
1327 
1328 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
1329   IRBuilder<>::InsertPointGuard Guard(Builder);
1330 
1331   if (E->VectorizedValue) {
1332     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
1333     return E->VectorizedValue;
1334   }
1335 
1336   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
1337   Type *ScalarTy = VL0->getType();
1338   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
1339     ScalarTy = SI->getValueOperand()->getType();
1340   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
1341 
1342   if (E->NeedToGather) {
1343     setInsertPointAfterBundle(E->Scalars);
1344     return Gather(E->Scalars, VecTy);
1345   }
1346 
1347   unsigned Opcode = VL0->getOpcode();
1348   assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
1349 
1350   switch (Opcode) {
1351     case Instruction::PHI: {
1352       PHINode *PH = dyn_cast<PHINode>(VL0);
1353       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
1354       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1355       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
1356       E->VectorizedValue = NewPhi;
1357 
1358       // PHINodes may have multiple entries from the same block. We want to
1359       // visit every block once.
1360       SmallSet<BasicBlock*, 4> VisitedBBs;
1361 
1362       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1363         ValueList Operands;
1364         BasicBlock *IBB = PH->getIncomingBlock(i);
1365 
1366         if (!VisitedBBs.insert(IBB)) {
1367           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
1368           continue;
1369         }
1370 
1371         // Prepare the operand vector.
1372         for (unsigned j = 0; j < E->Scalars.size(); ++j)
1373           Operands.push_back(cast<PHINode>(E->Scalars[j])->
1374                              getIncomingValueForBlock(IBB));
1375 
1376         Builder.SetInsertPoint(IBB->getTerminator());
1377         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1378         Value *Vec = vectorizeTree(Operands);
1379         NewPhi->addIncoming(Vec, IBB);
1380       }
1381 
1382       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
1383              "Invalid number of incoming values");
1384       return NewPhi;
1385     }
1386 
1387     case Instruction::ExtractElement: {
1388       if (CanReuseExtract(E->Scalars)) {
1389         Value *V = VL0->getOperand(0);
1390         E->VectorizedValue = V;
1391         return V;
1392       }
1393       return Gather(E->Scalars, VecTy);
1394     }
1395     case Instruction::ZExt:
1396     case Instruction::SExt:
1397     case Instruction::FPToUI:
1398     case Instruction::FPToSI:
1399     case Instruction::FPExt:
1400     case Instruction::PtrToInt:
1401     case Instruction::IntToPtr:
1402     case Instruction::SIToFP:
1403     case Instruction::UIToFP:
1404     case Instruction::Trunc:
1405     case Instruction::FPTrunc:
1406     case Instruction::BitCast: {
1407       ValueList INVL;
1408       for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1409         INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1410 
1411       setInsertPointAfterBundle(E->Scalars);
1412 
1413       Value *InVec = vectorizeTree(INVL);
1414 
1415       if (Value *V = alreadyVectorized(E->Scalars))
1416         return V;
1417 
1418       CastInst *CI = dyn_cast<CastInst>(VL0);
1419       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
1420       E->VectorizedValue = V;
1421       return V;
1422     }
1423     case Instruction::FCmp:
1424     case Instruction::ICmp: {
1425       ValueList LHSV, RHSV;
1426       for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1427         LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1428         RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1429       }
1430 
1431       setInsertPointAfterBundle(E->Scalars);
1432 
1433       Value *L = vectorizeTree(LHSV);
1434       Value *R = vectorizeTree(RHSV);
1435 
1436       if (Value *V = alreadyVectorized(E->Scalars))
1437         return V;
1438 
1439       CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
1440       Value *V;
1441       if (Opcode == Instruction::FCmp)
1442         V = Builder.CreateFCmp(P0, L, R);
1443       else
1444         V = Builder.CreateICmp(P0, L, R);
1445 
1446       E->VectorizedValue = V;
1447       return V;
1448     }
1449     case Instruction::Select: {
1450       ValueList TrueVec, FalseVec, CondVec;
1451       for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1452         CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1453         TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1454         FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
1455       }
1456 
1457       setInsertPointAfterBundle(E->Scalars);
1458 
1459       Value *Cond = vectorizeTree(CondVec);
1460       Value *True = vectorizeTree(TrueVec);
1461       Value *False = vectorizeTree(FalseVec);
1462 
1463       if (Value *V = alreadyVectorized(E->Scalars))
1464         return V;
1465 
1466       Value *V = Builder.CreateSelect(Cond, True, False);
1467       E->VectorizedValue = V;
1468       return V;
1469     }
1470     case Instruction::Add:
1471     case Instruction::FAdd:
1472     case Instruction::Sub:
1473     case Instruction::FSub:
1474     case Instruction::Mul:
1475     case Instruction::FMul:
1476     case Instruction::UDiv:
1477     case Instruction::SDiv:
1478     case Instruction::FDiv:
1479     case Instruction::URem:
1480     case Instruction::SRem:
1481     case Instruction::FRem:
1482     case Instruction::Shl:
1483     case Instruction::LShr:
1484     case Instruction::AShr:
1485     case Instruction::And:
1486     case Instruction::Or:
1487     case Instruction::Xor: {
1488       ValueList LHSVL, RHSVL;
1489       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
1490         reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
1491       else
1492         for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1493           LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1494           RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1495         }
1496 
1497       setInsertPointAfterBundle(E->Scalars);
1498 
1499       Value *LHS = vectorizeTree(LHSVL);
1500       Value *RHS = vectorizeTree(RHSVL);
1501 
1502       if (LHS == RHS && isa<Instruction>(LHS)) {
1503         assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
1504       }
1505 
1506       if (Value *V = alreadyVectorized(E->Scalars))
1507         return V;
1508 
1509       BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
1510       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
1511       E->VectorizedValue = V;
1512 
1513       if (Instruction *I = dyn_cast<Instruction>(V))
1514         return propagateMetadata(I, E->Scalars);
1515 
1516       return V;
1517     }
1518     case Instruction::Load: {
1519       // Loads are inserted at the head of the tree because we don't want to
1520       // sink them all the way down past store instructions.
1521       setInsertPointAfterBundle(E->Scalars);
1522 
1523       LoadInst *LI = cast<LoadInst>(VL0);
1524       unsigned AS = LI->getPointerAddressSpace();
1525 
1526       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
1527                                             VecTy->getPointerTo(AS));
1528       unsigned Alignment = LI->getAlignment();
1529       LI = Builder.CreateLoad(VecPtr);
1530       LI->setAlignment(Alignment);
1531       E->VectorizedValue = LI;
1532       return propagateMetadata(LI, E->Scalars);
1533     }
1534     case Instruction::Store: {
1535       StoreInst *SI = cast<StoreInst>(VL0);
1536       unsigned Alignment = SI->getAlignment();
1537       unsigned AS = SI->getPointerAddressSpace();
1538 
1539       ValueList ValueOp;
1540       for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1541         ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
1542 
1543       setInsertPointAfterBundle(E->Scalars);
1544 
1545       Value *VecValue = vectorizeTree(ValueOp);
1546       Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
1547                                             VecTy->getPointerTo(AS));
1548       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
1549       S->setAlignment(Alignment);
1550       E->VectorizedValue = S;
1551       return propagateMetadata(S, E->Scalars);
1552     }
1553     default:
1554     llvm_unreachable("unknown inst");
1555   }
1556   return 0;
1557 }
1558 
1559 Value *BoUpSLP::vectorizeTree() {
1560   Builder.SetInsertPoint(F->getEntryBlock().begin());
1561   vectorizeTree(&VectorizableTree[0]);
1562 
1563   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
1564 
1565   // Extract all of the elements with the external uses.
1566   for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
1567        it != e; ++it) {
1568     Value *Scalar = it->Scalar;
1569     llvm::User *User = it->User;
1570 
1571     // Skip users that we already RAUW. This happens when one instruction
1572     // has multiple uses of the same value.
1573     if (std::find(Scalar->use_begin(), Scalar->use_end(), User) ==
1574         Scalar->use_end())
1575       continue;
1576     assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
1577 
1578     int Idx = ScalarToTreeEntry[Scalar];
1579     TreeEntry *E = &VectorizableTree[Idx];
1580     assert(!E->NeedToGather && "Extracting from a gather list");
1581 
1582     Value *Vec = E->VectorizedValue;
1583     assert(Vec && "Can't find vectorizable value");
1584 
1585     Value *Lane = Builder.getInt32(it->Lane);
1586     // Generate extracts for out-of-tree users.
1587     // Find the insertion point for the extractelement lane.
1588     if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
1589       Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt());
1590       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1591       User->replaceUsesOfWith(Scalar, Ex);
1592     } else if (isa<Instruction>(Vec)){
1593       if (PHINode *PH = dyn_cast<PHINode>(User)) {
1594         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
1595           if (PH->getIncomingValue(i) == Scalar) {
1596             Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
1597             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1598             PH->setOperand(i, Ex);
1599           }
1600         }
1601       } else {
1602         Builder.SetInsertPoint(cast<Instruction>(User));
1603         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1604         User->replaceUsesOfWith(Scalar, Ex);
1605      }
1606     } else {
1607       Builder.SetInsertPoint(F->getEntryBlock().begin());
1608       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1609       User->replaceUsesOfWith(Scalar, Ex);
1610     }
1611 
1612     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
1613   }
1614 
1615   // For each vectorized value:
1616   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
1617     TreeEntry *Entry = &VectorizableTree[EIdx];
1618 
1619     // For each lane:
1620     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1621       Value *Scalar = Entry->Scalars[Lane];
1622 
1623       // No need to handle users of gathered values.
1624       if (Entry->NeedToGather)
1625         continue;
1626 
1627       assert(Entry->VectorizedValue && "Can't find vectorizable value");
1628 
1629       Type *Ty = Scalar->getType();
1630       if (!Ty->isVoidTy()) {
1631         for (Value::use_iterator User = Scalar->use_begin(),
1632              UE = Scalar->use_end(); User != UE; ++User) {
1633           DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
1634           assert(!MustGather.count(*User) &&
1635                  "Replacing gathered value with undef");
1636 
1637           assert((ScalarToTreeEntry.count(*User) ||
1638                   // It is legal to replace the reduction users by undef.
1639                   (RdxOps && RdxOps->count(*User))) &&
1640                  "Replacing out-of-tree value with undef");
1641         }
1642         Value *Undef = UndefValue::get(Ty);
1643         Scalar->replaceAllUsesWith(Undef);
1644       }
1645       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
1646       cast<Instruction>(Scalar)->eraseFromParent();
1647     }
1648   }
1649 
1650   for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
1651     BlocksNumbers[it].forget();
1652   }
1653   Builder.ClearInsertionPoint();
1654 
1655   return VectorizableTree[0].VectorizedValue;
1656 }
1657 
1658 class DTCmp {
1659   const DominatorTree *DT;
1660 
1661 public:
1662   DTCmp(const DominatorTree *DT) : DT(DT) {}
1663   bool operator()(const BasicBlock *A, const BasicBlock *B) const {
1664     return DT->properlyDominates(A, B);
1665   }
1666 };
1667 
1668 void BoUpSLP::optimizeGatherSequence() {
1669   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
1670         << " gather sequences instructions.\n");
1671   // Keep a list of visited BBs to run CSE on. It is typically small.
1672   SmallPtrSet<BasicBlock *, 4> VisitedBBs;
1673   SmallVector<BasicBlock *, 4> CSEWorkList;
1674   // LICM InsertElementInst sequences.
1675   for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
1676        e = GatherSeq.end(); it != e; ++it) {
1677     InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
1678 
1679     if (!Insert)
1680       continue;
1681 
1682     if (VisitedBBs.insert(Insert->getParent()))
1683       CSEWorkList.push_back(Insert->getParent());
1684 
1685     // Check if this block is inside a loop.
1686     Loop *L = LI->getLoopFor(Insert->getParent());
1687     if (!L)
1688       continue;
1689 
1690     // Check if it has a preheader.
1691     BasicBlock *PreHeader = L->getLoopPreheader();
1692     if (!PreHeader)
1693       continue;
1694 
1695     // If the vector or the element that we insert into it are
1696     // instructions that are defined in this basic block then we can't
1697     // hoist this instruction.
1698     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
1699     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
1700     if (CurrVec && L->contains(CurrVec))
1701       continue;
1702     if (NewElem && L->contains(NewElem))
1703       continue;
1704 
1705     // We can hoist this instruction. Move it to the pre-header.
1706     Insert->moveBefore(PreHeader->getTerminator());
1707   }
1708 
1709   // Sort blocks by domination. This ensures we visit a block after all blocks
1710   // dominating it are visited.
1711   std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), DTCmp(DT));
1712 
1713   // Perform O(N^2) search over the gather sequences and merge identical
1714   // instructions. TODO: We can further optimize this scan if we split the
1715   // instructions into different buckets based on the insert lane.
1716   SmallVector<Instruction *, 16> Visited;
1717   for (SmallVectorImpl<BasicBlock *>::iterator I = CSEWorkList.begin(),
1718                                                E = CSEWorkList.end();
1719        I != E; ++I) {
1720     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *llvm::prior(I))) &&
1721            "Worklist not sorted properly!");
1722     BasicBlock *BB = *I;
1723     // For all instructions in blocks containing gather sequences:
1724     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
1725       Instruction *In = it++;
1726       if ((!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) ||
1727           !GatherSeq.count(In))
1728         continue;
1729 
1730       // Check if we can replace this instruction with any of the
1731       // visited instructions.
1732       for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
1733                                                     ve = Visited.end();
1734            v != ve; ++v) {
1735         if (In->isIdenticalTo(*v) &&
1736             DT->dominates((*v)->getParent(), In->getParent())) {
1737           In->replaceAllUsesWith(*v);
1738           In->eraseFromParent();
1739           In = 0;
1740           break;
1741         }
1742       }
1743       if (In) {
1744         assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
1745         Visited.push_back(In);
1746       }
1747     }
1748   }
1749 }
1750 
1751 /// The SLPVectorizer Pass.
1752 struct SLPVectorizer : public FunctionPass {
1753   typedef SmallVector<StoreInst *, 8> StoreList;
1754   typedef MapVector<Value *, StoreList> StoreListMap;
1755 
1756   /// Pass identification, replacement for typeid
1757   static char ID;
1758 
1759   explicit SLPVectorizer() : FunctionPass(ID) {
1760     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
1761   }
1762 
1763   ScalarEvolution *SE;
1764   DataLayout *DL;
1765   TargetTransformInfo *TTI;
1766   AliasAnalysis *AA;
1767   LoopInfo *LI;
1768   DominatorTree *DT;
1769 
1770   virtual bool runOnFunction(Function &F) {
1771     SE = &getAnalysis<ScalarEvolution>();
1772     DL = getAnalysisIfAvailable<DataLayout>();
1773     TTI = &getAnalysis<TargetTransformInfo>();
1774     AA = &getAnalysis<AliasAnalysis>();
1775     LI = &getAnalysis<LoopInfo>();
1776     DT = &getAnalysis<DominatorTree>();
1777 
1778     StoreRefs.clear();
1779     bool Changed = false;
1780 
1781     // If the target claims to have no vector registers don't attempt
1782     // vectorization.
1783     if (!TTI->getNumberOfRegisters(true))
1784       return false;
1785 
1786     // Must have DataLayout. We can't require it because some tests run w/o
1787     // triple.
1788     if (!DL)
1789       return false;
1790 
1791     // Don't vectorize when the attribute NoImplicitFloat is used.
1792     if (F.hasFnAttribute(Attribute::NoImplicitFloat))
1793       return false;
1794 
1795     DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
1796 
1797     // Use the bollom up slp vectorizer to construct chains that start with
1798     // he store instructions.
1799     BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
1800 
1801     // Scan the blocks in the function in post order.
1802     for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
1803          e = po_end(&F.getEntryBlock()); it != e; ++it) {
1804       BasicBlock *BB = *it;
1805 
1806       // Vectorize trees that end at stores.
1807       if (unsigned count = collectStores(BB, R)) {
1808         (void)count;
1809         DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
1810         Changed |= vectorizeStoreChains(R);
1811       }
1812 
1813       // Vectorize trees that end at reductions.
1814       Changed |= vectorizeChainsInBlock(BB, R);
1815     }
1816 
1817     if (Changed) {
1818       R.optimizeGatherSequence();
1819       DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
1820       DEBUG(verifyFunction(F));
1821     }
1822     return Changed;
1823   }
1824 
1825   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1826     FunctionPass::getAnalysisUsage(AU);
1827     AU.addRequired<ScalarEvolution>();
1828     AU.addRequired<AliasAnalysis>();
1829     AU.addRequired<TargetTransformInfo>();
1830     AU.addRequired<LoopInfo>();
1831     AU.addRequired<DominatorTree>();
1832     AU.addPreserved<LoopInfo>();
1833     AU.addPreserved<DominatorTree>();
1834     AU.setPreservesCFG();
1835   }
1836 
1837 private:
1838 
1839   /// \brief Collect memory references and sort them according to their base
1840   /// object. We sort the stores to their base objects to reduce the cost of the
1841   /// quadratic search on the stores. TODO: We can further reduce this cost
1842   /// if we flush the chain creation every time we run into a memory barrier.
1843   unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
1844 
1845   /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
1846   bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
1847 
1848   /// \brief Try to vectorize a list of operands.
1849   /// \returns true if a value was vectorized.
1850   bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
1851 
1852   /// \brief Try to vectorize a chain that may start at the operands of \V;
1853   bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
1854 
1855   /// \brief Vectorize the stores that were collected in StoreRefs.
1856   bool vectorizeStoreChains(BoUpSLP &R);
1857 
1858   /// \brief Scan the basic block and look for patterns that are likely to start
1859   /// a vectorization chain.
1860   bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
1861 
1862   bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
1863                            BoUpSLP &R);
1864 
1865   bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
1866                        BoUpSLP &R);
1867 private:
1868   StoreListMap StoreRefs;
1869 };
1870 
1871 /// \brief Check that the Values in the slice in VL array are still existant in
1872 /// the WeakVH array.
1873 /// Vectorization of part of the VL array may cause later values in the VL array
1874 /// to become invalid. We track when this has happened in the WeakVH array.
1875 static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
1876                                SmallVectorImpl<WeakVH> &VH,
1877                                unsigned SliceBegin,
1878                                unsigned SliceSize) {
1879   for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
1880     if (VH[i] != VL[i])
1881       return true;
1882 
1883   return false;
1884 }
1885 
1886 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
1887                                           int CostThreshold, BoUpSLP &R) {
1888   unsigned ChainLen = Chain.size();
1889   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
1890         << "\n");
1891   Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
1892   unsigned Sz = DL->getTypeSizeInBits(StoreTy);
1893   unsigned VF = MinVecRegSize / Sz;
1894 
1895   if (!isPowerOf2_32(Sz) || VF < 2)
1896     return false;
1897 
1898   // Keep track of values that were delete by vectorizing in the loop below.
1899   SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
1900 
1901   bool Changed = false;
1902   // Look for profitable vectorizable trees at all offsets, starting at zero.
1903   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
1904     if (i + VF > e)
1905       break;
1906 
1907     // Check that a previous iteration of this loop did not delete the Value.
1908     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
1909       continue;
1910 
1911     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
1912           << "\n");
1913     ArrayRef<Value *> Operands = Chain.slice(i, VF);
1914 
1915     R.buildTree(Operands);
1916 
1917     int Cost = R.getTreeCost();
1918 
1919     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
1920     if (Cost < CostThreshold) {
1921       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
1922       R.vectorizeTree();
1923 
1924       // Move to the next bundle.
1925       i += VF - 1;
1926       Changed = true;
1927     }
1928   }
1929 
1930   return Changed;
1931 }
1932 
1933 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
1934                                     int costThreshold, BoUpSLP &R) {
1935   SetVector<Value *> Heads, Tails;
1936   SmallDenseMap<Value *, Value *> ConsecutiveChain;
1937 
1938   // We may run into multiple chains that merge into a single chain. We mark the
1939   // stores that we vectorized so that we don't visit the same store twice.
1940   BoUpSLP::ValueSet VectorizedStores;
1941   bool Changed = false;
1942 
1943   // Do a quadratic search on all of the given stores and find
1944   // all of the pairs of stores that follow each other.
1945   for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
1946     for (unsigned j = 0; j < e; ++j) {
1947       if (i == j)
1948         continue;
1949 
1950       if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
1951         Tails.insert(Stores[j]);
1952         Heads.insert(Stores[i]);
1953         ConsecutiveChain[Stores[i]] = Stores[j];
1954       }
1955     }
1956   }
1957 
1958   // For stores that start but don't end a link in the chain:
1959   for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
1960        it != e; ++it) {
1961     if (Tails.count(*it))
1962       continue;
1963 
1964     // We found a store instr that starts a chain. Now follow the chain and try
1965     // to vectorize it.
1966     BoUpSLP::ValueList Operands;
1967     Value *I = *it;
1968     // Collect the chain into a list.
1969     while (Tails.count(I) || Heads.count(I)) {
1970       if (VectorizedStores.count(I))
1971         break;
1972       Operands.push_back(I);
1973       // Move to the next value in the chain.
1974       I = ConsecutiveChain[I];
1975     }
1976 
1977     bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
1978 
1979     // Mark the vectorized stores so that we don't vectorize them again.
1980     if (Vectorized)
1981       VectorizedStores.insert(Operands.begin(), Operands.end());
1982     Changed |= Vectorized;
1983   }
1984 
1985   return Changed;
1986 }
1987 
1988 
1989 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
1990   unsigned count = 0;
1991   StoreRefs.clear();
1992   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1993     StoreInst *SI = dyn_cast<StoreInst>(it);
1994     if (!SI)
1995       continue;
1996 
1997     // Don't touch volatile stores.
1998     if (!SI->isSimple())
1999       continue;
2000 
2001     // Check that the pointer points to scalars.
2002     Type *Ty = SI->getValueOperand()->getType();
2003     if (Ty->isAggregateType() || Ty->isVectorTy())
2004       return 0;
2005 
2006     // Find the base pointer.
2007     Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
2008 
2009     // Save the store locations.
2010     StoreRefs[Ptr].push_back(SI);
2011     count++;
2012   }
2013   return count;
2014 }
2015 
2016 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
2017   if (!A || !B)
2018     return false;
2019   Value *VL[] = { A, B };
2020   return tryToVectorizeList(VL, R);
2021 }
2022 
2023 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
2024   if (VL.size() < 2)
2025     return false;
2026 
2027   DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
2028 
2029   // Check that all of the parts are scalar instructions of the same type.
2030   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
2031   if (!I0)
2032     return false;
2033 
2034   unsigned Opcode0 = I0->getOpcode();
2035 
2036   Type *Ty0 = I0->getType();
2037   unsigned Sz = DL->getTypeSizeInBits(Ty0);
2038   unsigned VF = MinVecRegSize / Sz;
2039 
2040   for (int i = 0, e = VL.size(); i < e; ++i) {
2041     Type *Ty = VL[i]->getType();
2042     if (Ty->isAggregateType() || Ty->isVectorTy())
2043       return false;
2044     Instruction *Inst = dyn_cast<Instruction>(VL[i]);
2045     if (!Inst || Inst->getOpcode() != Opcode0)
2046       return false;
2047   }
2048 
2049   bool Changed = false;
2050 
2051   // Keep track of values that were delete by vectorizing in the loop below.
2052   SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
2053 
2054   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2055     unsigned OpsWidth = 0;
2056 
2057     if (i + VF > e)
2058       OpsWidth = e - i;
2059     else
2060       OpsWidth = VF;
2061 
2062     if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
2063       break;
2064 
2065     // Check that a previous iteration of this loop did not delete the Value.
2066     if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
2067       continue;
2068 
2069     DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
2070                  << "\n");
2071     ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
2072 
2073     R.buildTree(Ops);
2074     int Cost = R.getTreeCost();
2075 
2076     if (Cost < -SLPCostThreshold) {
2077       DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
2078       R.vectorizeTree();
2079 
2080       // Move to the next bundle.
2081       i += VF - 1;
2082       Changed = true;
2083     }
2084   }
2085 
2086   return Changed;
2087 }
2088 
2089 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
2090   if (!V)
2091     return false;
2092 
2093   // Try to vectorize V.
2094   if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
2095     return true;
2096 
2097   BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
2098   BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
2099   // Try to skip B.
2100   if (B && B->hasOneUse()) {
2101     BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
2102     BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
2103     if (tryToVectorizePair(A, B0, R)) {
2104       B->moveBefore(V);
2105       return true;
2106     }
2107     if (tryToVectorizePair(A, B1, R)) {
2108       B->moveBefore(V);
2109       return true;
2110     }
2111   }
2112 
2113   // Try to skip A.
2114   if (A && A->hasOneUse()) {
2115     BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
2116     BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
2117     if (tryToVectorizePair(A0, B, R)) {
2118       A->moveBefore(V);
2119       return true;
2120     }
2121     if (tryToVectorizePair(A1, B, R)) {
2122       A->moveBefore(V);
2123       return true;
2124     }
2125   }
2126   return 0;
2127 }
2128 
2129 /// \brief Generate a shuffle mask to be used in a reduction tree.
2130 ///
2131 /// \param VecLen The length of the vector to be reduced.
2132 /// \param NumEltsToRdx The number of elements that should be reduced in the
2133 ///        vector.
2134 /// \param IsPairwise Whether the reduction is a pairwise or splitting
2135 ///        reduction. A pairwise reduction will generate a mask of
2136 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
2137 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
2138 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
2139 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
2140                                    bool IsPairwise, bool IsLeft,
2141                                    IRBuilder<> &Builder) {
2142   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
2143 
2144   SmallVector<Constant *, 32> ShuffleMask(
2145       VecLen, UndefValue::get(Builder.getInt32Ty()));
2146 
2147   if (IsPairwise)
2148     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
2149     for (unsigned i = 0; i != NumEltsToRdx; ++i)
2150       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
2151   else
2152     // Move the upper half of the vector to the lower half.
2153     for (unsigned i = 0; i != NumEltsToRdx; ++i)
2154       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
2155 
2156   return ConstantVector::get(ShuffleMask);
2157 }
2158 
2159 
2160 /// Model horizontal reductions.
2161 ///
2162 /// A horizontal reduction is a tree of reduction operations (currently add and
2163 /// fadd) that has operations that can be put into a vector as its leaf.
2164 /// For example, this tree:
2165 ///
2166 /// mul mul mul mul
2167 ///  \  /    \  /
2168 ///   +       +
2169 ///    \     /
2170 ///       +
2171 /// This tree has "mul" as its reduced values and "+" as its reduction
2172 /// operations. A reduction might be feeding into a store or a binary operation
2173 /// feeding a phi.
2174 ///    ...
2175 ///    \  /
2176 ///     +
2177 ///     |
2178 ///  phi +=
2179 ///
2180 ///  Or:
2181 ///    ...
2182 ///    \  /
2183 ///     +
2184 ///     |
2185 ///   *p =
2186 ///
2187 class HorizontalReduction {
2188   SmallPtrSet<Value *, 16> ReductionOps;
2189   SmallVector<Value *, 32> ReducedVals;
2190 
2191   BinaryOperator *ReductionRoot;
2192   PHINode *ReductionPHI;
2193 
2194   /// The opcode of the reduction.
2195   unsigned ReductionOpcode;
2196   /// The opcode of the values we perform a reduction on.
2197   unsigned ReducedValueOpcode;
2198   /// The width of one full horizontal reduction operation.
2199   unsigned ReduxWidth;
2200   /// Should we model this reduction as a pairwise reduction tree or a tree that
2201   /// splits the vector in halves and adds those halves.
2202   bool IsPairwiseReduction;
2203 
2204 public:
2205   HorizontalReduction()
2206     : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
2207     ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
2208 
2209   /// \brief Try to find a reduction tree.
2210   bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
2211                                  DataLayout *DL) {
2212     assert((!Phi ||
2213             std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
2214            "Thi phi needs to use the binary operator");
2215 
2216     // We could have a initial reductions that is not an add.
2217     //  r *= v1 + v2 + v3 + v4
2218     // In such a case start looking for a tree rooted in the first '+'.
2219     if (Phi) {
2220       if (B->getOperand(0) == Phi) {
2221         Phi = 0;
2222         B = dyn_cast<BinaryOperator>(B->getOperand(1));
2223       } else if (B->getOperand(1) == Phi) {
2224         Phi = 0;
2225         B = dyn_cast<BinaryOperator>(B->getOperand(0));
2226       }
2227     }
2228 
2229     if (!B)
2230       return false;
2231 
2232     Type *Ty = B->getType();
2233     if (Ty->isVectorTy())
2234       return false;
2235 
2236     ReductionOpcode = B->getOpcode();
2237     ReducedValueOpcode = 0;
2238     ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
2239     ReductionRoot = B;
2240     ReductionPHI = Phi;
2241 
2242     if (ReduxWidth < 4)
2243       return false;
2244 
2245     // We currently only support adds.
2246     if (ReductionOpcode != Instruction::Add &&
2247         ReductionOpcode != Instruction::FAdd)
2248       return false;
2249 
2250     // Post order traverse the reduction tree starting at B. We only handle true
2251     // trees containing only binary operators.
2252     SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
2253     Stack.push_back(std::make_pair(B, 0));
2254     while (!Stack.empty()) {
2255       BinaryOperator *TreeN = Stack.back().first;
2256       unsigned EdgeToVist = Stack.back().second++;
2257       bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
2258 
2259       // Only handle trees in the current basic block.
2260       if (TreeN->getParent() != B->getParent())
2261         return false;
2262 
2263       // Each tree node needs to have one user except for the ultimate
2264       // reduction.
2265       if (!TreeN->hasOneUse() && TreeN != B)
2266         return false;
2267 
2268       // Postorder vist.
2269       if (EdgeToVist == 2 || IsReducedValue) {
2270         if (IsReducedValue) {
2271           // Make sure that the opcodes of the operations that we are going to
2272           // reduce match.
2273           if (!ReducedValueOpcode)
2274             ReducedValueOpcode = TreeN->getOpcode();
2275           else if (ReducedValueOpcode != TreeN->getOpcode())
2276             return false;
2277           ReducedVals.push_back(TreeN);
2278         } else {
2279           // We need to be able to reassociate the adds.
2280           if (!TreeN->isAssociative())
2281             return false;
2282           ReductionOps.insert(TreeN);
2283         }
2284         // Retract.
2285         Stack.pop_back();
2286         continue;
2287       }
2288 
2289       // Visit left or right.
2290       Value *NextV = TreeN->getOperand(EdgeToVist);
2291       BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
2292       if (Next)
2293         Stack.push_back(std::make_pair(Next, 0));
2294       else if (NextV != Phi)
2295         return false;
2296     }
2297     return true;
2298   }
2299 
2300   /// \brief Attempt to vectorize the tree found by
2301   /// matchAssociativeReduction.
2302   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
2303     if (ReducedVals.empty())
2304       return false;
2305 
2306     unsigned NumReducedVals = ReducedVals.size();
2307     if (NumReducedVals < ReduxWidth)
2308       return false;
2309 
2310     Value *VectorizedTree = 0;
2311     IRBuilder<> Builder(ReductionRoot);
2312     FastMathFlags Unsafe;
2313     Unsafe.setUnsafeAlgebra();
2314     Builder.SetFastMathFlags(Unsafe);
2315     unsigned i = 0;
2316 
2317     for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
2318       ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
2319       V.buildTree(ValsToReduce, &ReductionOps);
2320 
2321       // Estimate cost.
2322       int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
2323       if (Cost >= -SLPCostThreshold)
2324         break;
2325 
2326       DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
2327                    << ". (HorRdx)\n");
2328 
2329       // Vectorize a tree.
2330       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
2331       Value *VectorizedRoot = V.vectorizeTree();
2332 
2333       // Emit a reduction.
2334       Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
2335       if (VectorizedTree) {
2336         Builder.SetCurrentDebugLocation(Loc);
2337         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2338                                      ReducedSubTree, "bin.rdx");
2339       } else
2340         VectorizedTree = ReducedSubTree;
2341     }
2342 
2343     if (VectorizedTree) {
2344       // Finish the reduction.
2345       for (; i < NumReducedVals; ++i) {
2346         Builder.SetCurrentDebugLocation(
2347           cast<Instruction>(ReducedVals[i])->getDebugLoc());
2348         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2349                                      ReducedVals[i]);
2350       }
2351       // Update users.
2352       if (ReductionPHI) {
2353         assert(ReductionRoot != NULL && "Need a reduction operation");
2354         ReductionRoot->setOperand(0, VectorizedTree);
2355         ReductionRoot->setOperand(1, ReductionPHI);
2356       } else
2357         ReductionRoot->replaceAllUsesWith(VectorizedTree);
2358     }
2359     return VectorizedTree != 0;
2360   }
2361 
2362 private:
2363 
2364   /// \brief Calcuate the cost of a reduction.
2365   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
2366     Type *ScalarTy = FirstReducedVal->getType();
2367     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
2368 
2369     int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
2370     int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
2371 
2372     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
2373     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
2374 
2375     int ScalarReduxCost =
2376         ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
2377 
2378     DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
2379                  << " for reduction that starts with " << *FirstReducedVal
2380                  << " (It is a "
2381                  << (IsPairwiseReduction ? "pairwise" : "splitting")
2382                  << " reduction)\n");
2383 
2384     return VecReduxCost - ScalarReduxCost;
2385   }
2386 
2387   static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
2388                             Value *R, const Twine &Name = "") {
2389     if (Opcode == Instruction::FAdd)
2390       return Builder.CreateFAdd(L, R, Name);
2391     return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
2392   }
2393 
2394   /// \brief Emit a horizontal reduction of the vectorized value.
2395   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
2396     assert(VectorizedValue && "Need to have a vectorized tree node");
2397     Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
2398     assert(isPowerOf2_32(ReduxWidth) &&
2399            "We only handle power-of-two reductions for now");
2400 
2401     Value *TmpVec = ValToReduce;
2402     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
2403       if (IsPairwiseReduction) {
2404         Value *LeftMask =
2405           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
2406         Value *RightMask =
2407           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
2408 
2409         Value *LeftShuf = Builder.CreateShuffleVector(
2410           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
2411         Value *RightShuf = Builder.CreateShuffleVector(
2412           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
2413           "rdx.shuf.r");
2414         TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
2415                              "bin.rdx");
2416       } else {
2417         Value *UpperHalf =
2418           createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
2419         Value *Shuf = Builder.CreateShuffleVector(
2420           TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
2421         TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
2422       }
2423     }
2424 
2425     // The result is in the first element of the vector.
2426     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
2427   }
2428 };
2429 
2430 /// \brief Recognize construction of vectors like
2431 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
2432 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
2433 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
2434 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
2435 ///
2436 /// Returns true if it matches
2437 ///
2438 static bool findBuildVector(InsertElementInst *IE,
2439                             SmallVectorImpl<Value *> &Ops) {
2440   if (!isa<UndefValue>(IE->getOperand(0)))
2441     return false;
2442 
2443   while (true) {
2444     Ops.push_back(IE->getOperand(1));
2445 
2446     if (IE->use_empty())
2447       return false;
2448 
2449     InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->use_back());
2450     if (!NextUse)
2451       return true;
2452 
2453     // If this isn't the final use, make sure the next insertelement is the only
2454     // use. It's OK if the final constructed vector is used multiple times
2455     if (!IE->hasOneUse())
2456       return false;
2457 
2458     IE = NextUse;
2459   }
2460 
2461   return false;
2462 }
2463 
2464 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
2465   return V->getType() < V2->getType();
2466 }
2467 
2468 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
2469   bool Changed = false;
2470   SmallVector<Value *, 4> Incoming;
2471   SmallSet<Value *, 16> VisitedInstrs;
2472 
2473   bool HaveVectorizedPhiNodes = true;
2474   while (HaveVectorizedPhiNodes) {
2475     HaveVectorizedPhiNodes = false;
2476 
2477     // Collect the incoming values from the PHIs.
2478     Incoming.clear();
2479     for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
2480          ++instr) {
2481       PHINode *P = dyn_cast<PHINode>(instr);
2482       if (!P)
2483         break;
2484 
2485       if (!VisitedInstrs.count(P))
2486         Incoming.push_back(P);
2487     }
2488 
2489     // Sort by type.
2490     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
2491 
2492     // Try to vectorize elements base on their type.
2493     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
2494                                            E = Incoming.end();
2495          IncIt != E;) {
2496 
2497       // Look for the next elements with the same type.
2498       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
2499       while (SameTypeIt != E &&
2500              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
2501         VisitedInstrs.insert(*SameTypeIt);
2502         ++SameTypeIt;
2503       }
2504 
2505       // Try to vectorize them.
2506       unsigned NumElts = (SameTypeIt - IncIt);
2507       DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
2508       if (NumElts > 1 &&
2509           tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
2510         // Success start over because instructions might have been changed.
2511         HaveVectorizedPhiNodes = true;
2512         Changed = true;
2513         break;
2514       }
2515 
2516       // Start over at the next instruction of a differnt type (or the end).
2517       IncIt = SameTypeIt;
2518     }
2519   }
2520 
2521   VisitedInstrs.clear();
2522 
2523   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
2524     // We may go through BB multiple times so skip the one we have checked.
2525     if (!VisitedInstrs.insert(it))
2526       continue;
2527 
2528     if (isa<DbgInfoIntrinsic>(it))
2529       continue;
2530 
2531     // Try to vectorize reductions that use PHINodes.
2532     if (PHINode *P = dyn_cast<PHINode>(it)) {
2533       // Check that the PHI is a reduction PHI.
2534       if (P->getNumIncomingValues() != 2)
2535         return Changed;
2536       Value *Rdx =
2537           (P->getIncomingBlock(0) == BB
2538                ? (P->getIncomingValue(0))
2539                : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
2540       // Check if this is a Binary Operator.
2541       BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
2542       if (!BI)
2543         continue;
2544 
2545       // Try to match and vectorize a horizontal reduction.
2546       HorizontalReduction HorRdx;
2547       if (ShouldVectorizeHor &&
2548           HorRdx.matchAssociativeReduction(P, BI, DL) &&
2549           HorRdx.tryToReduce(R, TTI)) {
2550         Changed = true;
2551         it = BB->begin();
2552         e = BB->end();
2553         continue;
2554       }
2555 
2556      Value *Inst = BI->getOperand(0);
2557       if (Inst == P)
2558         Inst = BI->getOperand(1);
2559 
2560       if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
2561         // We would like to start over since some instructions are deleted
2562         // and the iterator may become invalid value.
2563         Changed = true;
2564         it = BB->begin();
2565         e = BB->end();
2566         continue;
2567       }
2568 
2569       continue;
2570     }
2571 
2572     // Try to vectorize horizontal reductions feeding into a store.
2573     if (ShouldStartVectorizeHorAtStore)
2574       if (StoreInst *SI = dyn_cast<StoreInst>(it))
2575         if (BinaryOperator *BinOp =
2576                 dyn_cast<BinaryOperator>(SI->getValueOperand())) {
2577           HorizontalReduction HorRdx;
2578           if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
2579                 HorRdx.tryToReduce(R, TTI)) ||
2580                tryToVectorize(BinOp, R))) {
2581             Changed = true;
2582             it = BB->begin();
2583             e = BB->end();
2584             continue;
2585           }
2586         }
2587 
2588     // Try to vectorize trees that start at compare instructions.
2589     if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
2590       if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
2591         Changed = true;
2592         // We would like to start over since some instructions are deleted
2593         // and the iterator may become invalid value.
2594         it = BB->begin();
2595         e = BB->end();
2596         continue;
2597       }
2598 
2599       for (int i = 0; i < 2; ++i) {
2600          if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
2601             if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
2602               Changed = true;
2603               // We would like to start over since some instructions are deleted
2604               // and the iterator may become invalid value.
2605               it = BB->begin();
2606               e = BB->end();
2607             }
2608          }
2609       }
2610       continue;
2611     }
2612 
2613     // Try to vectorize trees that start at insertelement instructions.
2614     if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
2615       SmallVector<Value *, 8> Ops;
2616       if (!findBuildVector(IE, Ops))
2617         continue;
2618 
2619       if (tryToVectorizeList(Ops, R)) {
2620         Changed = true;
2621         it = BB->begin();
2622         e = BB->end();
2623       }
2624 
2625       continue;
2626     }
2627   }
2628 
2629   return Changed;
2630 }
2631 
2632 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
2633   bool Changed = false;
2634   // Attempt to sort and vectorize each of the store-groups.
2635   for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
2636        it != e; ++it) {
2637     if (it->second.size() < 2)
2638       continue;
2639 
2640     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
2641           << it->second.size() << ".\n");
2642 
2643     // Process the stores in chunks of 16.
2644     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
2645       unsigned Len = std::min<unsigned>(CE - CI, 16);
2646       ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
2647       Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
2648     }
2649   }
2650   return Changed;
2651 }
2652 
2653 } // end anonymous namespace
2654 
2655 char SLPVectorizer::ID = 0;
2656 static const char lv_name[] = "SLP Vectorizer";
2657 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
2658 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2659 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
2660 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2661 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
2662 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
2663 
2664 namespace llvm {
2665 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
2666 }
2667