1; RUN: opt < %s -sroa -S | FileCheck %s
2; RUN: opt < %s -sroa -force-ssa-updater -S | FileCheck %s
3
4target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
5
6declare void @llvm.lifetime.start(i64, i8* nocapture)
7declare void @llvm.lifetime.end(i64, i8* nocapture)
8
9define i32 @test0() {
10; CHECK-LABEL: @test0(
11; CHECK-NOT: alloca
12; CHECK: ret i32
13
14entry:
15  %a1 = alloca i32
16  %a2 = alloca float
17
18  %a1.i8 = bitcast i32* %a1 to i8*
19  call void @llvm.lifetime.start(i64 4, i8* %a1.i8)
20
21  store i32 0, i32* %a1
22  %v1 = load i32* %a1
23
24  call void @llvm.lifetime.end(i64 4, i8* %a1.i8)
25
26  %a2.i8 = bitcast float* %a2 to i8*
27  call void @llvm.lifetime.start(i64 4, i8* %a2.i8)
28
29  store float 0.0, float* %a2
30  %v2 = load float * %a2
31  %v2.int = bitcast float %v2 to i32
32  %sum1 = add i32 %v1, %v2.int
33
34  call void @llvm.lifetime.end(i64 4, i8* %a2.i8)
35
36  ret i32 %sum1
37}
38
39define i32 @test1() {
40; CHECK-LABEL: @test1(
41; CHECK-NOT: alloca
42; CHECK: ret i32 0
43
44entry:
45  %X = alloca { i32, float }
46  %Y = getelementptr { i32, float }* %X, i64 0, i32 0
47  store i32 0, i32* %Y
48  %Z = load i32* %Y
49  ret i32 %Z
50}
51
52define i64 @test2(i64 %X) {
53; CHECK-LABEL: @test2(
54; CHECK-NOT: alloca
55; CHECK: ret i64 %X
56
57entry:
58  %A = alloca [8 x i8]
59  %B = bitcast [8 x i8]* %A to i64*
60  store i64 %X, i64* %B
61  br label %L2
62
63L2:
64  %Z = load i64* %B
65  ret i64 %Z
66}
67
68define void @test3(i8* %dst, i8* %src) {
69; CHECK-LABEL: @test3(
70
71entry:
72  %a = alloca [300 x i8]
73; CHECK-NOT:  alloca
74; CHECK:      %[[test3_a1:.*]] = alloca [42 x i8]
75; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8]
76; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8]
77; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8]
78; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8]
79; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8]
80; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8]
81
82  %b = getelementptr [300 x i8]* %a, i64 0, i64 0
83  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 300, i32 1, i1 false)
84; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a1]], i64 0, i64 0
85; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 42
86; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 42
87; CHECK-NEXT: %[[test3_r1:.*]] = load i8* %[[gep]]
88; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 43
89; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8]* %[[test3_a2]], i64 0, i64 0
90; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
91; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 142
92; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0
93; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
94; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 158
95; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 0
96; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
97; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 200
98; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
99; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
100; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 207
101; CHECK-NEXT: %[[test3_r2:.*]] = load i8* %[[gep]]
102; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 208
103; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0
104; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
105; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 215
106; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0
107; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
108
109  ; Clobber a single element of the array, this should be promotable.
110  %c = getelementptr [300 x i8]* %a, i64 0, i64 42
111  store i8 0, i8* %c
112
113  ; Make a sequence of overlapping stores to the array. These overlap both in
114  ; forward strides and in shrinking accesses.
115  %overlap.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 142
116  %overlap.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 143
117  %overlap.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 144
118  %overlap.4.i8 = getelementptr [300 x i8]* %a, i64 0, i64 145
119  %overlap.5.i8 = getelementptr [300 x i8]* %a, i64 0, i64 146
120  %overlap.6.i8 = getelementptr [300 x i8]* %a, i64 0, i64 147
121  %overlap.7.i8 = getelementptr [300 x i8]* %a, i64 0, i64 148
122  %overlap.8.i8 = getelementptr [300 x i8]* %a, i64 0, i64 149
123  %overlap.9.i8 = getelementptr [300 x i8]* %a, i64 0, i64 150
124  %overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16*
125  %overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32*
126  %overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64*
127  %overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64*
128  %overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64*
129  %overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64*
130  %overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64*
131  %overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64*
132  %overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64*
133  %overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64*
134  %overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64*
135  store i8 1, i8* %overlap.1.i8
136; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0
137; CHECK-NEXT: store i8 1, i8* %[[gep]]
138  store i16 1, i16* %overlap.1.i16
139; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16*
140; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
141  store i32 1, i32* %overlap.1.i32
142; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32*
143; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
144  store i64 1, i64* %overlap.1.i64
145; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64*
146; CHECK-NEXT: store i64 1, i64* %[[bitcast]]
147  store i64 2, i64* %overlap.2.i64
148; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 1
149; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
150; CHECK-NEXT: store i64 2, i64* %[[bitcast]]
151  store i64 3, i64* %overlap.3.i64
152; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 2
153; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
154; CHECK-NEXT: store i64 3, i64* %[[bitcast]]
155  store i64 4, i64* %overlap.4.i64
156; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 3
157; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
158; CHECK-NEXT: store i64 4, i64* %[[bitcast]]
159  store i64 5, i64* %overlap.5.i64
160; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 4
161; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
162; CHECK-NEXT: store i64 5, i64* %[[bitcast]]
163  store i64 6, i64* %overlap.6.i64
164; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 5
165; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
166; CHECK-NEXT: store i64 6, i64* %[[bitcast]]
167  store i64 7, i64* %overlap.7.i64
168; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 6
169; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
170; CHECK-NEXT: store i64 7, i64* %[[bitcast]]
171  store i64 8, i64* %overlap.8.i64
172; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 7
173; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
174; CHECK-NEXT: store i64 8, i64* %[[bitcast]]
175  store i64 9, i64* %overlap.9.i64
176; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 8
177; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
178; CHECK-NEXT: store i64 9, i64* %[[bitcast]]
179
180  ; Make two sequences of overlapping stores with more gaps and irregularities.
181  %overlap2.1.0.i8 = getelementptr [300 x i8]* %a, i64 0, i64 200
182  %overlap2.1.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 201
183  %overlap2.1.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 202
184  %overlap2.1.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 203
185
186  %overlap2.2.0.i8 = getelementptr [300 x i8]* %a, i64 0, i64 208
187  %overlap2.2.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 209
188  %overlap2.2.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 210
189  %overlap2.2.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 211
190
191  %overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16*
192  %overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32*
193  %overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32*
194  %overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32*
195  %overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32*
196  store i8 1,  i8*  %overlap2.1.0.i8
197; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
198; CHECK-NEXT: store i8 1, i8* %[[gep]]
199  store i16 1, i16* %overlap2.1.0.i16
200; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16*
201; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
202  store i32 1, i32* %overlap2.1.0.i32
203; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32*
204; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
205  store i32 2, i32* %overlap2.1.1.i32
206; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 1
207; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
208; CHECK-NEXT: store i32 2, i32* %[[bitcast]]
209  store i32 3, i32* %overlap2.1.2.i32
210; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 2
211; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
212; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
213  store i32 4, i32* %overlap2.1.3.i32
214; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 3
215; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
216; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
217
218  %overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32*
219  %overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16*
220  %overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32*
221  %overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32*
222  %overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32*
223  store i32 1, i32* %overlap2.2.0.i32
224; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32*
225; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
226  store i8 1,  i8*  %overlap2.2.1.i8
227; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
228; CHECK-NEXT: store i8 1, i8* %[[gep]]
229  store i16 1, i16* %overlap2.2.1.i16
230; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
231; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
232; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
233  store i32 1, i32* %overlap2.2.1.i32
234; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
235; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
236; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
237  store i32 3, i32* %overlap2.2.2.i32
238; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 2
239; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
240; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
241  store i32 4, i32* %overlap2.2.3.i32
242; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 3
243; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
244; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
245
246  %overlap2.prefix = getelementptr i8* %overlap2.1.1.i8, i64 -4
247  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i32 1, i1 false)
248; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 39
249; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 3
250; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 3
251; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
252; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 5
253
254  ; Bridge between the overlapping areas
255  call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i32 1, i1 false)
256; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 2
257; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 5
258; ...promoted i8 store...
259; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0
260; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 2
261
262  ; Entirely within the second overlap.
263  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i32 1, i1 false)
264; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
265; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
266
267  ; Trailing past the second overlap.
268  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i32 1, i1 false)
269; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 2
270; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
271; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 5
272; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0
273; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 3
274
275  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i32 1, i1 false)
276; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a1]], i64 0, i64 0
277; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 42
278; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 42
279; CHECK-NEXT: store i8 0, i8* %[[gep]]
280; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 43
281; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8]* %[[test3_a2]], i64 0, i64 0
282; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
283; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 142
284; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0
285; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
286; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 158
287; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 0
288; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
289; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 200
290; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
291; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
292; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 207
293; CHECK-NEXT: store i8 42, i8* %[[gep]]
294; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 208
295; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0
296; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
297; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 215
298; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0
299; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
300
301  ret void
302}
303
304define void @test4(i8* %dst, i8* %src) {
305; CHECK-LABEL: @test4(
306
307entry:
308  %a = alloca [100 x i8]
309; CHECK-NOT:  alloca
310; CHECK:      %[[test4_a1:.*]] = alloca [20 x i8]
311; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8]
312; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8]
313; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8]
314; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8]
315; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8]
316
317  %b = getelementptr [100 x i8]* %a, i64 0, i64 0
318  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i32 1, i1 false)
319; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8]* %[[test4_a1]], i64 0, i64 0
320; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 20
321; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 20
322; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
323; CHECK-NEXT: %[[test4_r1:.*]] = load i16* %[[bitcast]]
324; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 22
325; CHECK-NEXT: %[[test4_r2:.*]] = load i8* %[[gep]]
326; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 23
327; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0
328; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
329; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 30
330; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8]* %[[test4_a3]], i64 0, i64 0
331; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
332; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 40
333; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
334; CHECK-NEXT: %[[test4_r3:.*]] = load i16* %[[bitcast]]
335; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 42
336; CHECK-NEXT: %[[test4_r4:.*]] = load i8* %[[gep]]
337; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 43
338; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
339; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
340; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 50
341; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
342; CHECK-NEXT: %[[test4_r5:.*]] = load i16* %[[bitcast]]
343; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 52
344; CHECK-NEXT: %[[test4_r6:.*]] = load i8* %[[gep]]
345; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 53
346; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0
347; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
348; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 60
349; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8]* %[[test4_a6]], i64 0, i64 0
350; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
351
352  %a.src.1 = getelementptr [100 x i8]* %a, i64 0, i64 20
353  %a.dst.1 = getelementptr [100 x i8]* %a, i64 0, i64 40
354  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i32 1, i1 false)
355; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
356; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0
357; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
358
359  ; Clobber a single element of the array, this should be promotable, and be deleted.
360  %c = getelementptr [100 x i8]* %a, i64 0, i64 42
361  store i8 0, i8* %c
362
363  %a.src.2 = getelementptr [100 x i8]* %a, i64 0, i64 50
364  call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i32 1, i1 false)
365; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
366; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0
367; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
368
369  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i32 1, i1 false)
370; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8]* %[[test4_a1]], i64 0, i64 0
371; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 20
372; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 20
373; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
374; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]]
375; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 22
376; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]]
377; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 23
378; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0
379; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
380; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 30
381; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8]* %[[test4_a3]], i64 0, i64 0
382; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
383; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 40
384; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
385; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
386; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 42
387; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
388; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 43
389; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
390; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
391; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 50
392; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
393; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
394; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 52
395; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
396; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 53
397; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0
398; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
399; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 60
400; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8]* %[[test4_a6]], i64 0, i64 0
401; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
402
403  ret void
404}
405
406declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
407declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
408declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1) nounwind
409
410define i16 @test5() {
411; CHECK-LABEL: @test5(
412; CHECK-NOT: alloca float
413; CHECK:      %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
414; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
415; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
416; CHECK-NEXT: ret i16 %[[trunc]]
417
418entry:
419  %a = alloca [4 x i8]
420  %fptr = bitcast [4 x i8]* %a to float*
421  store float 0.0, float* %fptr
422  %ptr = getelementptr [4 x i8]* %a, i32 0, i32 2
423  %iptr = bitcast i8* %ptr to i16*
424  %val = load i16* %iptr
425  ret i16 %val
426}
427
428define i32 @test6() {
429; CHECK-LABEL: @test6(
430; CHECK: alloca i32
431; CHECK-NEXT: store volatile i32
432; CHECK-NEXT: load i32*
433; CHECK-NEXT: ret i32
434
435entry:
436  %a = alloca [4 x i8]
437  %ptr = getelementptr [4 x i8]* %a, i32 0, i32 0
438  call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i32 1, i1 true)
439  %iptr = bitcast i8* %ptr to i32*
440  %val = load i32* %iptr
441  ret i32 %val
442}
443
444define void @test7(i8* %src, i8* %dst) {
445; CHECK-LABEL: @test7(
446; CHECK: alloca i32
447; CHECK-NEXT: bitcast i8* %src to i32*
448; CHECK-NEXT: load volatile i32*
449; CHECK-NEXT: store volatile i32
450; CHECK-NEXT: bitcast i8* %dst to i32*
451; CHECK-NEXT: load volatile i32*
452; CHECK-NEXT: store volatile i32
453; CHECK-NEXT: ret
454
455entry:
456  %a = alloca [4 x i8]
457  %ptr = getelementptr [4 x i8]* %a, i32 0, i32 0
458  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
459  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
460  ret void
461}
462
463
464%S1 = type { i32, i32, [16 x i8] }
465%S2 = type { %S1*, %S2* }
466
467define %S2 @test8(%S2* %s2) {
468; CHECK-LABEL: @test8(
469entry:
470  %new = alloca %S2
471; CHECK-NOT: alloca
472
473  %s2.next.ptr = getelementptr %S2* %s2, i64 0, i32 1
474  %s2.next = load %S2** %s2.next.ptr
475; CHECK:      %[[gep:.*]] = getelementptr %S2* %s2, i64 0, i32 1
476; CHECK-NEXT: %[[next:.*]] = load %S2** %[[gep]]
477
478  %s2.next.s1.ptr = getelementptr %S2* %s2.next, i64 0, i32 0
479  %s2.next.s1 = load %S1** %s2.next.s1.ptr
480  %new.s1.ptr = getelementptr %S2* %new, i64 0, i32 0
481  store %S1* %s2.next.s1, %S1** %new.s1.ptr
482  %s2.next.next.ptr = getelementptr %S2* %s2.next, i64 0, i32 1
483  %s2.next.next = load %S2** %s2.next.next.ptr
484  %new.next.ptr = getelementptr %S2* %new, i64 0, i32 1
485  store %S2* %s2.next.next, %S2** %new.next.ptr
486; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2* %[[next]], i64 0, i32 0
487; CHECK-NEXT: %[[next_s1:.*]] = load %S1** %[[gep]]
488; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2* %[[next]], i64 0, i32 1
489; CHECK-NEXT: %[[next_next:.*]] = load %S2** %[[gep]]
490
491  %new.s1 = load %S1** %new.s1.ptr
492  %result1 = insertvalue %S2 undef, %S1* %new.s1, 0
493; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0
494  %new.next = load %S2** %new.next.ptr
495  %result2 = insertvalue %S2 %result1, %S2* %new.next, 1
496; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1
497  ret %S2 %result2
498; CHECK-NEXT: ret %S2 %[[result2]]
499}
500
501define i64 @test9() {
502; Ensure we can handle loads off the end of an alloca even when wrapped in
503; weird bit casts and types. This is valid IR due to the alignment and masking
504; off the bits past the end of the alloca.
505;
506; CHECK-LABEL: @test9(
507; CHECK-NOT: alloca
508; CHECK:      %[[b2:.*]] = zext i8 26 to i64
509; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16
510; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681
511; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]]
512; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64
513; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8
514; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281
515; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]]
516; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64
517; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256
518; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]]
519; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215
520; CHECK-NEXT: ret i64 %[[result]]
521
522entry:
523  %a = alloca { [3 x i8] }, align 8
524  %gep1 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 0
525  store i8 0, i8* %gep1, align 1
526  %gep2 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 1
527  store i8 0, i8* %gep2, align 1
528  %gep3 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 2
529  store i8 26, i8* %gep3, align 1
530  %cast = bitcast { [3 x i8] }* %a to { i64 }*
531  %elt = getelementptr inbounds { i64 }* %cast, i32 0, i32 0
532  %load = load i64* %elt
533  %result = and i64 %load, 16777215
534  ret i64 %result
535}
536
537define %S2* @test10() {
538; CHECK-LABEL: @test10(
539; CHECK-NOT: alloca %S2*
540; CHECK: ret %S2* null
541
542entry:
543  %a = alloca [8 x i8]
544  %ptr = getelementptr [8 x i8]* %a, i32 0, i32 0
545  call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i32 1, i1 false)
546  %s2ptrptr = bitcast i8* %ptr to %S2**
547  %s2ptr = load %S2** %s2ptrptr
548  ret %S2* %s2ptr
549}
550
551define i32 @test11() {
552; CHECK-LABEL: @test11(
553; CHECK-NOT: alloca
554; CHECK: ret i32 0
555
556entry:
557  %X = alloca i32
558  br i1 undef, label %good, label %bad
559
560good:
561  %Y = getelementptr i32* %X, i64 0
562  store i32 0, i32* %Y
563  %Z = load i32* %Y
564  ret i32 %Z
565
566bad:
567  %Y2 = getelementptr i32* %X, i64 1
568  store i32 0, i32* %Y2
569  %Z2 = load i32* %Y2
570  ret i32 %Z2
571}
572
573define i8 @test12() {
574; We fully promote these to the i24 load or store size, resulting in just masks
575; and other operations that instcombine will fold, but no alloca.
576;
577; CHECK-LABEL: @test12(
578
579entry:
580  %a = alloca [3 x i8]
581  %b = alloca [3 x i8]
582; CHECK-NOT: alloca
583
584  %a0ptr = getelementptr [3 x i8]* %a, i64 0, i32 0
585  store i8 0, i8* %a0ptr
586  %a1ptr = getelementptr [3 x i8]* %a, i64 0, i32 1
587  store i8 0, i8* %a1ptr
588  %a2ptr = getelementptr [3 x i8]* %a, i64 0, i32 2
589  store i8 0, i8* %a2ptr
590  %aiptr = bitcast [3 x i8]* %a to i24*
591  %ai = load i24* %aiptr
592; CHECK-NOT: store
593; CHECK-NOT: load
594; CHECK:      %[[ext2:.*]] = zext i8 0 to i24
595; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16
596; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535
597; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]]
598; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
599; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
600; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
601; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
602; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
603; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256
604; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]]
605
606  %biptr = bitcast [3 x i8]* %b to i24*
607  store i24 %ai, i24* %biptr
608  %b0ptr = getelementptr [3 x i8]* %b, i64 0, i32 0
609  %b0 = load i8* %b0ptr
610  %b1ptr = getelementptr [3 x i8]* %b, i64 0, i32 1
611  %b1 = load i8* %b1ptr
612  %b2ptr = getelementptr [3 x i8]* %b, i64 0, i32 2
613  %b2 = load i8* %b2ptr
614; CHECK-NOT: store
615; CHECK-NOT: load
616; CHECK:      %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8
617; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
618; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
619; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16
620; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8
621
622  %bsum0 = add i8 %b0, %b1
623  %bsum1 = add i8 %bsum0, %b2
624  ret i8 %bsum1
625; CHECK:      %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
626; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
627; CHECK-NEXT: ret i8 %[[sum1]]
628}
629
630define i32 @test13() {
631; Ensure we don't crash and handle undefined loads that straddle the end of the
632; allocation.
633; CHECK-LABEL: @test13(
634; CHECK:      %[[value:.*]] = zext i8 0 to i16
635; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32
636; CHECK-NEXT: ret i32 %[[ret]]
637
638entry:
639  %a = alloca [3 x i8], align 2
640  %b0ptr = getelementptr [3 x i8]* %a, i64 0, i32 0
641  store i8 0, i8* %b0ptr
642  %b1ptr = getelementptr [3 x i8]* %a, i64 0, i32 1
643  store i8 0, i8* %b1ptr
644  %b2ptr = getelementptr [3 x i8]* %a, i64 0, i32 2
645  store i8 0, i8* %b2ptr
646  %iptrcast = bitcast [3 x i8]* %a to i16*
647  %iptrgep = getelementptr i16* %iptrcast, i64 1
648  %i = load i16* %iptrgep
649  %ret = zext i16 %i to i32
650  ret i32 %ret
651}
652
653%test14.struct = type { [3 x i32] }
654
655define void @test14(...) nounwind uwtable {
656; This is a strange case where we split allocas into promotable partitions, but
657; also gain enough data to prove they must be dead allocas due to GEPs that walk
658; across two adjacent allocas. Test that we don't try to promote or otherwise
659; do bad things to these dead allocas, they should just be removed.
660; CHECK-LABEL: @test14(
661; CHECK-NEXT: entry:
662; CHECK-NEXT: ret void
663
664entry:
665  %a = alloca %test14.struct
666  %p = alloca %test14.struct*
667  %0 = bitcast %test14.struct* %a to i8*
668  %1 = getelementptr i8* %0, i64 12
669  %2 = bitcast i8* %1 to %test14.struct*
670  %3 = getelementptr inbounds %test14.struct* %2, i32 0, i32 0
671  %4 = getelementptr inbounds %test14.struct* %a, i32 0, i32 0
672  %5 = bitcast [3 x i32]* %3 to i32*
673  %6 = bitcast [3 x i32]* %4 to i32*
674  %7 = load i32* %6, align 4
675  store i32 %7, i32* %5, align 4
676  %8 = getelementptr inbounds i32* %5, i32 1
677  %9 = getelementptr inbounds i32* %6, i32 1
678  %10 = load i32* %9, align 4
679  store i32 %10, i32* %8, align 4
680  %11 = getelementptr inbounds i32* %5, i32 2
681  %12 = getelementptr inbounds i32* %6, i32 2
682  %13 = load i32* %12, align 4
683  store i32 %13, i32* %11, align 4
684  ret void
685}
686
687define i32 @test15(i1 %flag) nounwind uwtable {
688; Ensure that when there are dead instructions using an alloca that are not
689; loads or stores we still delete them during partitioning and rewriting.
690; Otherwise we'll go to promote them while thy still have unpromotable uses.
691; CHECK-LABEL: @test15(
692; CHECK-NEXT: entry:
693; CHECK-NEXT:   br label %loop
694; CHECK:      loop:
695; CHECK-NEXT:   br label %loop
696
697entry:
698  %l0 = alloca i64
699  %l1 = alloca i64
700  %l2 = alloca i64
701  %l3 = alloca i64
702  br label %loop
703
704loop:
705  %dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ]
706
707  store i64 1879048192, i64* %l0, align 8
708  %bc0 = bitcast i64* %l0 to i8*
709  %gep0 = getelementptr i8* %bc0, i64 3
710  %dead0 = bitcast i8* %gep0 to i64*
711
712  store i64 1879048192, i64* %l1, align 8
713  %bc1 = bitcast i64* %l1 to i8*
714  %gep1 = getelementptr i8* %bc1, i64 3
715  %dead1 = getelementptr i8* %gep1, i64 1
716
717  store i64 1879048192, i64* %l2, align 8
718  %bc2 = bitcast i64* %l2 to i8*
719  %gep2.1 = getelementptr i8* %bc2, i64 1
720  %gep2.2 = getelementptr i8* %bc2, i64 3
721  ; Note that this select should get visited multiple times due to using two
722  ; different GEPs off the same alloca. We should only delete it once.
723  %dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2
724
725  store i64 1879048192, i64* %l3, align 8
726  %bc3 = bitcast i64* %l3 to i8*
727  %gep3 = getelementptr i8* %bc3, i64 3
728
729  br label %loop
730}
731
732define void @test16(i8* %src, i8* %dst) {
733; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value.
734; CHECK-LABEL: @test16(
735; CHECK-NOT: alloca
736; CHECK:      %[[srccast:.*]] = bitcast i8* %src to i24*
737; CHECK-NEXT: load i24* %[[srccast]]
738; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24*
739; CHECK-NEXT: store i24 0, i24* %[[dstcast]]
740; CHECK-NEXT: ret void
741
742entry:
743  %a = alloca [3 x i8]
744  %ptr = getelementptr [3 x i8]* %a, i32 0, i32 0
745  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 false)
746  %cast = bitcast i8* %ptr to i24*
747  store i24 0, i24* %cast
748  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 false)
749  ret void
750}
751
752define void @test17(i8* %src, i8* %dst) {
753; Ensure that we can rewrite unpromotable memcpys which extend past the end of
754; the alloca.
755; CHECK-LABEL: @test17(
756; CHECK:      %[[a:.*]] = alloca [3 x i8]
757; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8]* %[[a]], i32 0, i32 0
758; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src,
759; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]],
760; CHECK-NEXT: ret void
761
762entry:
763  %a = alloca [3 x i8]
764  %ptr = getelementptr [3 x i8]* %a, i32 0, i32 0
765  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
766  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
767  ret void
768}
769
770define void @test18(i8* %src, i8* %dst, i32 %size) {
771; Preserve transfer instrinsics with a variable size, even if they overlap with
772; fixed size operations. Further, continue to split and promote allocas preceding
773; the variable sized intrinsic.
774; CHECK-LABEL: @test18(
775; CHECK:      %[[a:.*]] = alloca [34 x i8]
776; CHECK:      %[[srcgep1:.*]] = getelementptr inbounds i8* %src, i64 4
777; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32*
778; CHECK-NEXT: %[[srcload:.*]] = load i32* %[[srccast1]]
779; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0
780; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[agep1]], i8* %src, i32 %size,
781; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0
782; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[agep2]], i8 42, i32 %size,
783; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32*
784; CHECK-NEXT: store i32 42, i32* %[[dstcast1]]
785; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8* %dst, i64 4
786; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32*
787; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]]
788; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0
789; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[agep3]], i32 %size,
790; CHECK-NEXT: ret void
791
792entry:
793  %a = alloca [42 x i8]
794  %ptr = getelementptr [42 x i8]* %a, i32 0, i32 0
795  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 false)
796  %ptr2 = getelementptr [42 x i8]* %a, i32 0, i32 8
797  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i32 1, i1 false)
798  call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i32 1, i1 false)
799  %cast = bitcast i8* %ptr to i32*
800  store i32 42, i32* %cast
801  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 false)
802  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i32 1, i1 false)
803  ret void
804}
805
806%opaque = type opaque
807
808define i32 @test19(%opaque* %x) {
809; This input will cause us to try to compute a natural GEP when rewriting
810; pointers in such a way that we try to GEP through the opaque type. Previously,
811; a check for an unsized type was missing and this crashed. Ensure it behaves
812; reasonably now.
813; CHECK-LABEL: @test19(
814; CHECK-NOT: alloca
815; CHECK: ret i32 undef
816
817entry:
818  %a = alloca { i64, i8* }
819  %cast1 = bitcast %opaque* %x to i8*
820  %cast2 = bitcast { i64, i8* }* %a to i8*
821  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i32 1, i1 false)
822  %gep = getelementptr inbounds { i64, i8* }* %a, i32 0, i32 0
823  %val = load i64* %gep
824  ret i32 undef
825}
826
827define i32 @test20() {
828; Ensure we can track negative offsets (before the beginning of the alloca) and
829; negative relative offsets from offsets starting past the end of the alloca.
830; CHECK-LABEL: @test20(
831; CHECK-NOT: alloca
832; CHECK: %[[sum1:.*]] = add i32 1, 2
833; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3
834; CHECK: ret i32 %[[sum2]]
835
836entry:
837  %a = alloca [3 x i32]
838  %gep1 = getelementptr [3 x i32]* %a, i32 0, i32 0
839  store i32 1, i32* %gep1
840  %gep2.1 = getelementptr [3 x i32]* %a, i32 0, i32 -2
841  %gep2.2 = getelementptr i32* %gep2.1, i32 3
842  store i32 2, i32* %gep2.2
843  %gep3.1 = getelementptr [3 x i32]* %a, i32 0, i32 14
844  %gep3.2 = getelementptr i32* %gep3.1, i32 -12
845  store i32 3, i32* %gep3.2
846
847  %load1 = load i32* %gep1
848  %load2 = load i32* %gep2.2
849  %load3 = load i32* %gep3.2
850  %sum1 = add i32 %load1, %load2
851  %sum2 = add i32 %sum1, %load3
852  ret i32 %sum2
853}
854
855declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind
856
857define i8 @test21() {
858; Test allocations and offsets which border on overflow of the int64_t used
859; internally. This is really awkward to really test as LLVM doesn't really
860; support such extreme constructs cleanly.
861; CHECK-LABEL: @test21(
862; CHECK-NOT: alloca
863; CHECK: or i8 -1, -1
864
865entry:
866  %a = alloca [2305843009213693951 x i8]
867  %gep0 = getelementptr [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949
868  store i8 255, i8* %gep0
869  %gep1 = getelementptr [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807
870  %gep2 = getelementptr i8* %gep1, i64 -1
871  call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i32 1, i1 false)
872  %gep3 = getelementptr i8* %gep1, i64 9223372036854775807
873  %gep4 = getelementptr i8* %gep3, i64 9223372036854775807
874  %gep5 = getelementptr i8* %gep4, i64 -6917529027641081857
875  store i8 255, i8* %gep5
876  %cast1 = bitcast i8* %gep4 to i32*
877  store i32 0, i32* %cast1
878  %load = load i8* %gep0
879  %gep6 = getelementptr i8* %gep0, i32 1
880  %load2 = load i8* %gep6
881  %result = or i8 %load, %load2
882  ret i8 %result
883}
884
885%PR13916.struct = type { i8 }
886
887define void @PR13916.1() {
888; Ensure that we handle overlapping memcpy intrinsics correctly, especially in
889; the case where there is a directly identical value for both source and dest.
890; CHECK: @PR13916.1
891; CHECK-NOT: alloca
892; CHECK: ret void
893
894entry:
895  %a = alloca i8
896  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i32 1, i1 false)
897  %tmp2 = load i8* %a
898  ret void
899}
900
901define void @PR13916.2() {
902; Check whether we continue to handle them correctly when they start off with
903; different pointer value chains, but during rewriting we coalesce them into the
904; same value.
905; CHECK: @PR13916.2
906; CHECK-NOT: alloca
907; CHECK: ret void
908
909entry:
910  %a = alloca %PR13916.struct, align 1
911  br i1 undef, label %if.then, label %if.end
912
913if.then:
914  %tmp0 = bitcast %PR13916.struct* %a to i8*
915  %tmp1 = bitcast %PR13916.struct* %a to i8*
916  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i32 1, i1 false)
917  br label %if.end
918
919if.end:
920  %gep = getelementptr %PR13916.struct* %a, i32 0, i32 0
921  %tmp2 = load i8* %gep
922  ret void
923}
924
925define void @PR13990() {
926; Ensure we can handle cases where processing one alloca causes the other
927; alloca to become dead and get deleted. This might crash or fail under
928; Valgrind if we regress.
929; CHECK-LABEL: @PR13990(
930; CHECK-NOT: alloca
931; CHECK: unreachable
932; CHECK: unreachable
933
934entry:
935  %tmp1 = alloca i8*
936  %tmp2 = alloca i8*
937  br i1 undef, label %bb1, label %bb2
938
939bb1:
940  store i8* undef, i8** %tmp2
941  br i1 undef, label %bb2, label %bb3
942
943bb2:
944  %tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1
945  br i1 undef, label %bb3, label %bb4
946
947bb3:
948  unreachable
949
950bb4:
951  unreachable
952}
953
954define double @PR13969(double %x) {
955; Check that we detect when promotion will un-escape an alloca and iterate to
956; re-try running SROA over that alloca. Without that, the two allocas that are
957; stored into a dead alloca don't get rewritten and promoted.
958; CHECK-LABEL: @PR13969(
959
960entry:
961  %a = alloca double
962  %b = alloca double*
963  %c = alloca double
964; CHECK-NOT: alloca
965
966  store double %x, double* %a
967  store double* %c, double** %b
968  store double* %a, double** %b
969  store double %x, double* %c
970  %ret = load double* %a
971; CHECK-NOT: store
972; CHECK-NOT: load
973
974  ret double %ret
975; CHECK: ret double %x
976}
977
978%PR14034.struct = type { { {} }, i32, %PR14034.list }
979%PR14034.list = type { %PR14034.list*, %PR14034.list* }
980
981define void @PR14034() {
982; This test case tries to form GEPs into the empty leading struct members, and
983; subsequently crashed (under valgrind) before we fixed the PR. The important
984; thing is to handle empty structs gracefully.
985; CHECK-LABEL: @PR14034(
986
987entry:
988  %a = alloca %PR14034.struct
989  %list = getelementptr %PR14034.struct* %a, i32 0, i32 2
990  %prev = getelementptr %PR14034.list* %list, i32 0, i32 1
991  store %PR14034.list* undef, %PR14034.list** %prev
992  %cast0 = bitcast %PR14034.struct* undef to i8*
993  %cast1 = bitcast %PR14034.struct* %a to i8*
994  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i32 0, i1 false)
995  ret void
996}
997
998define i32 @test22(i32 %x) {
999; Test that SROA and promotion is not confused by a grab bax mixture of pointer
1000; types involving wrapper aggregates and zero-length aggregate members.
1001; CHECK-LABEL: @test22(
1002
1003entry:
1004  %a1 = alloca { { [1 x { i32 }] } }
1005  %a2 = alloca { {}, { float }, [0 x i8] }
1006  %a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }
1007; CHECK-NOT: alloca
1008
1009  %wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0
1010  %gep1 = getelementptr { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0
1011  store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1
1012
1013  %gep2 = getelementptr { { [1 x { i32 }] } }* %a1, i32 0, i32 0
1014  %ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }*
1015  %load1 = load { [1 x { float }] }* %ptrcast1
1016  %unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0
1017
1018  %wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1
1019  store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2
1020
1021  %gep3 = getelementptr { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0
1022  %ptrcast2 = bitcast float* %gep3 to <4 x i8>*
1023  %load3 = load <4 x i8>* %ptrcast2
1024  %valcast1 = bitcast <4 x i8> %load3 to i32
1025
1026  %wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0
1027  %wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0
1028  %gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1
1029  %ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }*
1030  store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3
1031
1032  %gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0
1033  %ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }*
1034  %load4 = load { {}, float, {} }* %ptrcast4
1035  %unwrap2 = extractvalue { {}, float, {} } %load4, 1
1036  %valcast2 = bitcast float %unwrap2 to i32
1037
1038  ret i32 %valcast2
1039; CHECK: ret i32
1040}
1041
1042define void @PR14059.1(double* %d) {
1043; In PR14059 a peculiar construct was identified as something that is used
1044; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct
1045; of doubles via an array of i32 in order to place the data into integer
1046; registers. This in turn was missed as an optimization by SROA due to the
1047; partial loads and stores of integers to the double alloca we were trying to
1048; form and promote. The solution is to widen the integer operations to be
1049; whole-alloca operations, and perform the appropriate bitcasting on the
1050; *values* rather than the pointers. When this works, partial reads and writes
1051; via integers can be promoted away.
1052; CHECK: @PR14059.1
1053; CHECK-NOT: alloca
1054; CHECK: ret void
1055
1056entry:
1057  %X.sroa.0.i = alloca double, align 8
1058  %0 = bitcast double* %X.sroa.0.i to i8*
1059  call void @llvm.lifetime.start(i64 -1, i8* %0)
1060
1061  ; Store to the low 32-bits...
1062  %X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32*
1063  store i32 0, i32* %X.sroa.0.0.cast2.i, align 8
1064
1065  ; Also use a memset to the middle 32-bits for fun.
1066  %X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8* %0, i32 2
1067  call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i32 1, i1 false)
1068
1069  ; Or a memset of the whole thing.
1070  call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i32 1, i1 false)
1071
1072  ; Write to the high 32-bits with a memcpy.
1073  %X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8* %0, i32 4
1074  %d.raw = bitcast double* %d to i8*
1075  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i32 1, i1 false)
1076
1077  ; Store to the high 32-bits...
1078  %X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32*
1079  store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4
1080
1081  ; Do the actual math...
1082  %X.sroa.0.0.load1.i = load double* %X.sroa.0.i, align 8
1083  %accum.real.i = load double* %d, align 8
1084  %add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i
1085  store double %add.r.i, double* %d, align 8
1086  call void @llvm.lifetime.end(i64 -1, i8* %0)
1087  ret void
1088}
1089
1090define i64 @PR14059.2({ float, float }* %phi) {
1091; Check that SROA can split up alloca-wide integer loads and stores where the
1092; underlying alloca has smaller components that are accessed independently. This
1093; shows up particularly with ABI lowering patterns coming out of Clang that rely
1094; on the particular register placement of a single large integer return value.
1095; CHECK: @PR14059.2
1096
1097entry:
1098  %retval = alloca { float, float }, align 4
1099  ; CHECK-NOT: alloca
1100
1101  %0 = bitcast { float, float }* %retval to i64*
1102  store i64 0, i64* %0
1103  ; CHECK-NOT: store
1104
1105  %phi.realp = getelementptr inbounds { float, float }* %phi, i32 0, i32 0
1106  %phi.real = load float* %phi.realp
1107  %phi.imagp = getelementptr inbounds { float, float }* %phi, i32 0, i32 1
1108  %phi.imag = load float* %phi.imagp
1109  ; CHECK:      %[[realp:.*]] = getelementptr inbounds { float, float }* %phi, i32 0, i32 0
1110  ; CHECK-NEXT: %[[real:.*]] = load float* %[[realp]]
1111  ; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }* %phi, i32 0, i32 1
1112  ; CHECK-NEXT: %[[imag:.*]] = load float* %[[imagp]]
1113
1114  %real = getelementptr inbounds { float, float }* %retval, i32 0, i32 0
1115  %imag = getelementptr inbounds { float, float }* %retval, i32 0, i32 1
1116  store float %phi.real, float* %real
1117  store float %phi.imag, float* %imag
1118  ; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32
1119  ; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32
1120  ; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64
1121  ; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32
1122  ; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295
1123  ; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]]
1124  ; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64
1125  ; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296
1126  ; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]]
1127
1128  %1 = load i64* %0, align 1
1129  ret i64 %1
1130  ; CHECK-NEXT: ret i64 %[[real_insert]]
1131}
1132
1133define void @PR14105({ [16 x i8] }* %ptr) {
1134; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is
1135; sign as negative. We use a volatile memcpy to ensure promotion never actually
1136; occurs.
1137; CHECK-LABEL: @PR14105(
1138
1139entry:
1140  %a = alloca { [16 x i8] }, align 8
1141; CHECK: alloca [16 x i8], align 8
1142
1143  %gep = getelementptr inbounds { [16 x i8] }* %ptr, i64 -1
1144; CHECK-NEXT: getelementptr inbounds { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0
1145
1146  %cast1 = bitcast { [16 x i8 ] }* %gep to i8*
1147  %cast2 = bitcast { [16 x i8 ] }* %a to i8*
1148  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast2, i32 16, i32 8, i1 true)
1149  ret void
1150; CHECK: ret
1151}
1152
1153define void @PR14465() {
1154; Ensure that we don't crash when analyzing a alloca larger than the maximum
1155; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1).
1156; CHECK-LABEL: @PR14465(
1157
1158  %stack = alloca [1048576 x i32], align 16
1159; CHECK: alloca [1048576 x i32]
1160  %cast = bitcast [1048576 x i32]* %stack to i8*
1161  call void @llvm.memset.p0i8.i64(i8* %cast, i8 -2, i64 4194304, i32 16, i1 false)
1162  ret void
1163; CHECK: ret
1164}
1165
1166define void @PR14548(i1 %x) {
1167; Handle a mixture of i1 and i8 loads and stores to allocas. This particular
1168; pattern caused crashes and invalid output in the PR, and its nature will
1169; trigger a mixture in several permutations as we resolve each alloca
1170; iteratively.
1171; Note that we don't do a particularly good *job* of handling these mixtures,
1172; but the hope is that this is very rare.
1173; CHECK-LABEL: @PR14548(
1174
1175entry:
1176  %a = alloca <{ i1 }>, align 8
1177  %b = alloca <{ i1 }>, align 8
1178; CHECK:      %[[a:.*]] = alloca i8, align 8
1179
1180  %b.i1 = bitcast <{ i1 }>* %b to i1*
1181  store i1 %x, i1* %b.i1, align 8
1182  %b.i8 = bitcast <{ i1 }>* %b to i8*
1183  %foo = load i8* %b.i8, align 1
1184; CHECK-NEXT: %[[ext:.*]] = zext i1 %x to i8
1185; CHECK-NEXT: store i8 %[[ext]], i8* %[[a]], align 8
1186; CHECK-NEXT: {{.*}} = load i8* %[[a]], align 8
1187
1188  %a.i8 = bitcast <{ i1 }>* %a to i8*
1189  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i32 1, i1 false) nounwind
1190  %bar = load i8* %a.i8, align 1
1191  %a.i1 = getelementptr inbounds <{ i1 }>* %a, i32 0, i32 0
1192  %baz = load i1* %a.i1, align 1
1193; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1*
1194; CHECK-NEXT: {{.*}} = load i1* %[[a_cast]], align 8
1195
1196  ret void
1197}
1198
1199define <3 x i8> @PR14572.1(i32 %x) {
1200; Ensure that a split integer store which is wider than the type size of the
1201; alloca (relying on the alloc size padding) doesn't trigger an assert.
1202; CHECK: @PR14572.1
1203
1204entry:
1205  %a = alloca <3 x i8>, align 4
1206; CHECK-NOT: alloca
1207
1208  %cast = bitcast <3 x i8>* %a to i32*
1209  store i32 %x, i32* %cast, align 1
1210  %y = load <3 x i8>* %a, align 4
1211  ret <3 x i8> %y
1212; CHECK: ret <3 x i8>
1213}
1214
1215define i32 @PR14572.2(<3 x i8> %x) {
1216; Ensure that a split integer load which is wider than the type size of the
1217; alloca (relying on the alloc size padding) doesn't trigger an assert.
1218; CHECK: @PR14572.2
1219
1220entry:
1221  %a = alloca <3 x i8>, align 4
1222; CHECK-NOT: alloca
1223
1224  store <3 x i8> %x, <3 x i8>* %a, align 1
1225  %cast = bitcast <3 x i8>* %a to i32*
1226  %y = load i32* %cast, align 4
1227  ret i32 %y
1228; CHECK: ret i32
1229}
1230
1231define i32 @PR14601(i32 %x) {
1232; Don't try to form a promotable integer alloca when there is a variable length
1233; memory intrinsic.
1234; CHECK-LABEL: @PR14601(
1235
1236entry:
1237  %a = alloca i32
1238; CHECK: alloca
1239
1240  %a.i8 = bitcast i32* %a to i8*
1241  call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i32 1, i1 false)
1242  %v = load i32* %a
1243  ret i32 %v
1244}
1245
1246define void @PR15674(i8* %data, i8* %src, i32 %size) {
1247; Arrange (via control flow) to have unmerged stores of a particular width to
1248; an alloca where we incrementally store from the end of the array toward the
1249; beginning of the array. Ensure that the final integer store, despite being
1250; convertable to the integer type that we end up promoting this alloca toward,
1251; doesn't get widened to a full alloca store.
1252; CHECK-LABEL: @PR15674(
1253
1254entry:
1255  %tmp = alloca [4 x i8], align 1
1256; CHECK: alloca i32
1257
1258  switch i32 %size, label %end [
1259    i32 4, label %bb4
1260    i32 3, label %bb3
1261    i32 2, label %bb2
1262    i32 1, label %bb1
1263  ]
1264
1265bb4:
1266  %src.gep3 = getelementptr inbounds i8* %src, i32 3
1267  %src.3 = load i8* %src.gep3
1268  %tmp.gep3 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 3
1269  store i8 %src.3, i8* %tmp.gep3
1270; CHECK: store i8
1271
1272  br label %bb3
1273
1274bb3:
1275  %src.gep2 = getelementptr inbounds i8* %src, i32 2
1276  %src.2 = load i8* %src.gep2
1277  %tmp.gep2 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 2
1278  store i8 %src.2, i8* %tmp.gep2
1279; CHECK: store i8
1280
1281  br label %bb2
1282
1283bb2:
1284  %src.gep1 = getelementptr inbounds i8* %src, i32 1
1285  %src.1 = load i8* %src.gep1
1286  %tmp.gep1 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 1
1287  store i8 %src.1, i8* %tmp.gep1
1288; CHECK: store i8
1289
1290  br label %bb1
1291
1292bb1:
1293  %src.gep0 = getelementptr inbounds i8* %src, i32 0
1294  %src.0 = load i8* %src.gep0
1295  %tmp.gep0 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 0
1296  store i8 %src.0, i8* %tmp.gep0
1297; CHECK: store i8
1298
1299  br label %end
1300
1301end:
1302  %tmp.raw = bitcast [4 x i8]* %tmp to i8*
1303  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %data, i8* %tmp.raw, i32 %size, i32 1, i1 false)
1304  ret void
1305; CHECK: ret void
1306}
1307
1308define void @PR15805(i1 %a, i1 %b) {
1309; CHECK-LABEL: @PR15805(
1310; CHECK-NOT: alloca
1311; CHECK: ret void
1312
1313  %c = alloca i64, align 8
1314  %p.0.c = select i1 undef, i64* %c, i64* %c
1315  %cond.in = select i1 undef, i64* %p.0.c, i64* %c
1316  %cond = load i64* %cond.in, align 8
1317  ret void
1318}
1319
1320define void @PR16651.1(i8* %a) {
1321; This test case caused a crash due to the volatile memcpy in combination with
1322; lowering to integer loads and stores of a width other than that of the original
1323; memcpy.
1324;
1325; CHECK-LABEL: @PR16651.1(
1326; CHECK: alloca i16
1327; CHECK: alloca i8
1328; CHECK: alloca i8
1329; CHECK: unreachable
1330
1331entry:
1332  %b = alloca i32, align 4
1333  %b.cast = bitcast i32* %b to i8*
1334  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b.cast, i8* %a, i32 4, i32 4, i1 true)
1335  %b.gep = getelementptr inbounds i8* %b.cast, i32 2
1336  load i8* %b.gep, align 2
1337  unreachable
1338}
1339
1340define void @PR16651.2() {
1341; This test case caused a crash due to failing to promote given a select that
1342; can't be speculated. It shouldn't be promoted, but we missed that fact when
1343; analyzing whether we could form a vector promotion because that code didn't
1344; bail on select instructions.
1345;
1346; CHECK-LABEL: @PR16651.2(
1347; CHECK: alloca <2 x float>
1348; CHECK: ret void
1349
1350entry:
1351  %tv1 = alloca { <2 x float>, <2 x float> }, align 8
1352  %0 = getelementptr { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1
1353  store <2 x float> undef, <2 x float>* %0, align 8
1354  %1 = getelementptr inbounds { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1, i64 0
1355  %cond105.in.i.i = select i1 undef, float* null, float* %1
1356  %cond105.i.i = load float* %cond105.in.i.i, align 8
1357  ret void
1358}
1359