xref: /minix/external/mit/lua/dist/src/ltable.c (revision 366d18b2)
1 /*	$NetBSD: ltable.c,v 1.5 2015/10/08 13:40:16 mbalmer Exp $	*/
2 
3 /*
4 ** Id: ltable.c,v 2.111 2015/06/09 14:21:13 roberto Exp
5 ** Lua tables (hash)
6 ** See Copyright Notice in lua.h
7 */
8 
9 #define ltable_c
10 #define LUA_CORE
11 
12 #include "lprefix.h"
13 
14 
15 /*
16 ** Implementation of tables (aka arrays, objects, or hash tables).
17 ** Tables keep its elements in two parts: an array part and a hash part.
18 ** Non-negative integer keys are all candidates to be kept in the array
19 ** part. The actual size of the array is the largest 'n' such that
20 ** more than half the slots between 1 and n are in use.
21 ** Hash uses a mix of chained scatter table with Brent's variation.
22 ** A main invariant of these tables is that, if an element is not
23 ** in its main position (i.e. the 'original' position that its hash gives
24 ** to it), then the colliding element is in its own main position.
25 ** Hence even when the load factor reaches 100%, performance remains good.
26 */
27 
28 #ifndef _KERNEL
29 #include <float.h>
30 #include <math.h>
31 #include <limits.h>
32 #endif
33 
34 #include "lua.h"
35 
36 #include "ldebug.h"
37 #include "ldo.h"
38 #include "lgc.h"
39 #include "lmem.h"
40 #include "lobject.h"
41 #include "lstate.h"
42 #include "lstring.h"
43 #include "ltable.h"
44 #include "lvm.h"
45 
46 
47 /*
48 ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is
49 ** the largest integer such that MAXASIZE fits in an unsigned int.
50 */
51 #define MAXABITS	cast_int(sizeof(int) * CHAR_BIT - 1)
52 #define MAXASIZE	(1u << MAXABITS)
53 
54 /*
55 ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest
56 ** integer such that 2^MAXHBITS fits in a signed int. (Note that the
57 ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still
58 ** fits comfortably in an unsigned int.)
59 */
60 #define MAXHBITS	(MAXABITS - 1)
61 
62 
63 #define hashpow2(t,n)		(gnode(t, lmod((n), sizenode(t))))
64 
65 #define hashstr(t,str)		hashpow2(t, (str)->hash)
66 #define hashboolean(t,p)	hashpow2(t, p)
67 #define hashint(t,i)		hashpow2(t, i)
68 
69 
70 /*
71 ** for some types, it is better to avoid modulus by power of 2, as
72 ** they tend to have many 2 factors.
73 */
74 #define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))
75 
76 
77 #define hashpointer(t,p)	hashmod(t, point2uint(p))
78 
79 
80 #define dummynode		(&dummynode_)
81 
82 #define isdummy(n)		((n) == dummynode)
83 
84 static const Node dummynode_ = {
85   {NILCONSTANT},  /* value */
86   {{NILCONSTANT, 0}}  /* key */
87 };
88 
89 
90 #ifndef _KERNEL
91 /*
92 ** Hash for floating-point numbers.
93 ** The main computation should be just
94 **     n = frepx(n, &i); return (n * INT_MAX) + i
95 ** but there are some numerical subtleties.
96 ** In a two-complement representation, INT_MAX does not has an exact
97 ** representation as a float, but INT_MIN does; because the absolute
98 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
99 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
100 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
101 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
102 ** INT_MIN.
103 */
104 #if !defined(l_hashfloat)
105 static int l_hashfloat (lua_Number n) {
106   int i;
107   lua_Integer ni;
108   n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
109   if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
110     lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == HUGE_VAL);
111     return 0;
112   }
113   else {  /* normal case */
114     unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni);
115     return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u);
116   }
117 }
118 #endif
119 #endif /*_KERNEL */
120 
121 /*
122 ** returns the 'main' position of an element in a table (that is, the index
123 ** of its hash value)
124 */
125 static Node *mainposition (const Table *t, const TValue *key) {
126   switch (ttype(key)) {
127     case LUA_TNUMINT:
128       return hashint(t, ivalue(key));
129 #ifndef _KERNEL
130     case LUA_TNUMFLT:
131       return hashmod(t, l_hashfloat(fltvalue(key)));
132 #endif
133     case LUA_TSHRSTR:
134       return hashstr(t, tsvalue(key));
135     case LUA_TLNGSTR: {
136       TString *s = tsvalue(key);
137       if (s->extra == 0) {  /* no hash? */
138         s->hash = luaS_hash(getstr(s), s->u.lnglen, s->hash);
139         s->extra = 1;  /* now it has its hash */
140       }
141       return hashstr(t, tsvalue(key));
142     }
143     case LUA_TBOOLEAN:
144       return hashboolean(t, bvalue(key));
145     case LUA_TLIGHTUSERDATA:
146       return hashpointer(t, pvalue(key));
147     case LUA_TLCF:
148       return hashpointer(t, fvalue(key));
149     default:
150       return hashpointer(t, gcvalue(key));
151   }
152 }
153 
154 
155 /*
156 ** returns the index for 'key' if 'key' is an appropriate key to live in
157 ** the array part of the table, 0 otherwise.
158 */
159 static unsigned int arrayindex (const TValue *key) {
160   if (ttisinteger(key)) {
161     lua_Integer k = ivalue(key);
162     if (0 < k && (lua_Unsigned)k <= MAXASIZE)
163       return cast(unsigned int, k);  /* 'key' is an appropriate array index */
164   }
165   return 0;  /* 'key' did not match some condition */
166 }
167 
168 
169 /*
170 ** returns the index of a 'key' for table traversals. First goes all
171 ** elements in the array part, then elements in the hash part. The
172 ** beginning of a traversal is signaled by 0.
173 */
174 static unsigned int findindex (lua_State *L, Table *t, StkId key) {
175   unsigned int i;
176   if (ttisnil(key)) return 0;  /* first iteration */
177   i = arrayindex(key);
178   if (i != 0 && i <= t->sizearray)  /* is 'key' inside array part? */
179     return i;  /* yes; that's the index */
180   else {
181     int nx;
182     Node *n = mainposition(t, key);
183     for (;;) {  /* check whether 'key' is somewhere in the chain */
184       /* key may be dead already, but it is ok to use it in 'next' */
185       if (luaV_rawequalobj(gkey(n), key) ||
186             (ttisdeadkey(gkey(n)) && iscollectable(key) &&
187              deadvalue(gkey(n)) == gcvalue(key))) {
188         i = cast_int(n - gnode(t, 0));  /* key index in hash table */
189         /* hash elements are numbered after array ones */
190         return (i + 1) + t->sizearray;
191       }
192       nx = gnext(n);
193       if (nx == 0)
194         luaG_runerror(L, "invalid key to 'next'");  /* key not found */
195       else n += nx;
196     }
197   }
198 }
199 
200 
201 int luaH_next (lua_State *L, Table *t, StkId key) {
202   unsigned int i = findindex(L, t, key);  /* find original element */
203   for (; i < t->sizearray; i++) {  /* try first array part */
204     if (!ttisnil(&t->array[i])) {  /* a non-nil value? */
205       setivalue(key, i + 1);
206       setobj2s(L, key+1, &t->array[i]);
207       return 1;
208     }
209   }
210   for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) {  /* hash part */
211     if (!ttisnil(gval(gnode(t, i)))) {  /* a non-nil value? */
212       setobj2s(L, key, gkey(gnode(t, i)));
213       setobj2s(L, key+1, gval(gnode(t, i)));
214       return 1;
215     }
216   }
217   return 0;  /* no more elements */
218 }
219 
220 
221 /*
222 ** {=============================================================
223 ** Rehash
224 ** ==============================================================
225 */
226 
227 /*
228 ** Compute the optimal size for the array part of table 't'. 'nums' is a
229 ** "count array" where 'nums[i]' is the number of integers in the table
230 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
231 ** integer keys in the table and leaves with the number of keys that
232 ** will go to the array part; return the optimal size.
233 */
234 static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
235   int i;
236   unsigned int twotoi;  /* 2^i (candidate for optimal size) */
237   unsigned int a = 0;  /* number of elements smaller than 2^i */
238   unsigned int na = 0;  /* number of elements to go to array part */
239   unsigned int optimal = 0;  /* optimal size for array part */
240   /* loop while keys can fill more than half of total size */
241   for (i = 0, twotoi = 1; *pna > twotoi / 2; i++, twotoi *= 2) {
242     if (nums[i] > 0) {
243       a += nums[i];
244       if (a > twotoi/2) {  /* more than half elements present? */
245         optimal = twotoi;  /* optimal size (till now) */
246         na = a;  /* all elements up to 'optimal' will go to array part */
247       }
248     }
249   }
250   lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
251   *pna = na;
252   return optimal;
253 }
254 
255 
256 static int countint (const TValue *key, unsigned int *nums) {
257   unsigned int k = arrayindex(key);
258   if (k != 0) {  /* is 'key' an appropriate array index? */
259     nums[luaO_ceillog2(k)]++;  /* count as such */
260     return 1;
261   }
262   else
263     return 0;
264 }
265 
266 
267 /*
268 ** Count keys in array part of table 't': Fill 'nums[i]' with
269 ** number of keys that will go into corresponding slice and return
270 ** total number of non-nil keys.
271 */
272 static unsigned int numusearray (const Table *t, unsigned int *nums) {
273   int lg;
274   unsigned int ttlg;  /* 2^lg */
275   unsigned int ause = 0;  /* summation of 'nums' */
276   unsigned int i = 1;  /* count to traverse all array keys */
277   /* traverse each slice */
278   for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
279     unsigned int lc = 0;  /* counter */
280     unsigned int lim = ttlg;
281     if (lim > t->sizearray) {
282       lim = t->sizearray;  /* adjust upper limit */
283       if (i > lim)
284         break;  /* no more elements to count */
285     }
286     /* count elements in range (2^(lg - 1), 2^lg] */
287     for (; i <= lim; i++) {
288       if (!ttisnil(&t->array[i-1]))
289         lc++;
290     }
291     nums[lg] += lc;
292     ause += lc;
293   }
294   return ause;
295 }
296 
297 
298 static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
299   int totaluse = 0;  /* total number of elements */
300   int ause = 0;  /* elements added to 'nums' (can go to array part) */
301   int i = sizenode(t);
302   while (i--) {
303     Node *n = &t->node[i];
304     if (!ttisnil(gval(n))) {
305       ause += countint(gkey(n), nums);
306       totaluse++;
307     }
308   }
309   *pna += ause;
310   return totaluse;
311 }
312 
313 
314 static void setarrayvector (lua_State *L, Table *t, unsigned int size) {
315   unsigned int i;
316   luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
317   for (i=t->sizearray; i<size; i++)
318      setnilvalue(&t->array[i]);
319   t->sizearray = size;
320 }
321 
322 
323 static void setnodevector (lua_State *L, Table *t, unsigned int size) {
324   int lsize;
325   if (size == 0) {  /* no elements to hash part? */
326     t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
327     lsize = 0;
328   }
329   else {
330     int i;
331     lsize = luaO_ceillog2(size);
332     if (lsize > MAXHBITS)
333       luaG_runerror(L, "table overflow");
334     size = twoto(lsize);
335     t->node = luaM_newvector(L, size, Node);
336     for (i = 0; i < (int)size; i++) {
337       Node *n = gnode(t, i);
338       gnext(n) = 0;
339       setnilvalue(wgkey(n));
340       setnilvalue(gval(n));
341     }
342   }
343   t->lsizenode = cast_byte(lsize);
344   t->lastfree = gnode(t, size);  /* all positions are free */
345 }
346 
347 
348 void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
349                                           unsigned int nhsize) {
350   unsigned int i;
351   int j;
352   unsigned int oldasize = t->sizearray;
353   int oldhsize = t->lsizenode;
354   Node *nold = t->node;  /* save old hash ... */
355   if (nasize > oldasize)  /* array part must grow? */
356     setarrayvector(L, t, nasize);
357   /* create new hash part with appropriate size */
358   setnodevector(L, t, nhsize);
359   if (nasize < oldasize) {  /* array part must shrink? */
360     t->sizearray = nasize;
361     /* re-insert elements from vanishing slice */
362     for (i=nasize; i<oldasize; i++) {
363       if (!ttisnil(&t->array[i]))
364         luaH_setint(L, t, i + 1, &t->array[i]);
365     }
366     /* shrink array */
367     luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
368   }
369   /* re-insert elements from hash part */
370   for (j = twoto(oldhsize) - 1; j >= 0; j--) {
371     Node *old = nold + j;
372     if (!ttisnil(gval(old))) {
373       /* doesn't need barrier/invalidate cache, as entry was
374          already present in the table */
375       setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old));
376     }
377   }
378   if (!isdummy(nold))
379     luaM_freearray(L, nold, cast(size_t, twoto(oldhsize))); /* free old hash */
380 }
381 
382 
383 void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
384   int nsize = isdummy(t->node) ? 0 : sizenode(t);
385   luaH_resize(L, t, nasize, nsize);
386 }
387 
388 /*
389 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
390 */
391 static void rehash (lua_State *L, Table *t, const TValue *ek) {
392   unsigned int asize;  /* optimal size for array part */
393   unsigned int na;  /* number of keys in the array part */
394   unsigned int nums[MAXABITS + 1];
395   int i;
396   int totaluse;
397   for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
398   na = numusearray(t, nums);  /* count keys in array part */
399   totaluse = na;  /* all those keys are integer keys */
400   totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
401   /* count extra key */
402   na += countint(ek, nums);
403   totaluse++;
404   /* compute new size for array part */
405   asize = computesizes(nums, &na);
406   /* resize the table to new computed sizes */
407   luaH_resize(L, t, asize, totaluse - na);
408 }
409 
410 
411 
412 /*
413 ** }=============================================================
414 */
415 
416 
417 Table *luaH_new (lua_State *L) {
418   GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
419   Table *t = gco2t(o);
420   t->metatable = NULL;
421   t->flags = cast_byte(~0);
422   t->array = NULL;
423   t->sizearray = 0;
424   setnodevector(L, t, 0);
425   return t;
426 }
427 
428 
429 void luaH_free (lua_State *L, Table *t) {
430   if (!isdummy(t->node))
431     luaM_freearray(L, t->node, cast(size_t, sizenode(t)));
432   luaM_freearray(L, t->array, t->sizearray);
433   luaM_free(L, t);
434 }
435 
436 
437 static Node *getfreepos (Table *t) {
438   while (t->lastfree > t->node) {
439     t->lastfree--;
440     if (ttisnil(gkey(t->lastfree)))
441       return t->lastfree;
442   }
443   return NULL;  /* could not find a free place */
444 }
445 
446 
447 
448 /*
449 ** inserts a new key into a hash table; first, check whether key's main
450 ** position is free. If not, check whether colliding node is in its main
451 ** position or not: if it is not, move colliding node to an empty place and
452 ** put new key in its main position; otherwise (colliding node is in its main
453 ** position), new key goes to an empty position.
454 */
455 TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
456   Node *mp;
457 #ifndef _KERNEL
458   TValue aux;
459 #endif
460   if (ttisnil(key)) luaG_runerror(L, "table index is nil");
461 #ifndef _KERNEL
462   else if (ttisfloat(key)) {
463     lua_Integer k;
464     if (luaV_tointeger(key, &k, 0)) {  /* index is int? */
465       setivalue(&aux, k);
466       key = &aux;  /* insert it as an integer */
467     }
468     else if (luai_numisnan(fltvalue(key)))
469       luaG_runerror(L, "table index is NaN");
470   }
471 #endif
472   mp = mainposition(t, key);
473   if (!ttisnil(gval(mp)) || isdummy(mp)) {  /* main position is taken? */
474     Node *othern;
475     Node *f = getfreepos(t);  /* get a free place */
476     if (f == NULL) {  /* cannot find a free place? */
477       rehash(L, t, key);  /* grow table */
478       /* whatever called 'newkey' takes care of TM cache and GC barrier */
479       return luaH_set(L, t, key);  /* insert key into grown table */
480     }
481     lua_assert(!isdummy(f));
482     othern = mainposition(t, gkey(mp));
483     if (othern != mp) {  /* is colliding node out of its main position? */
484       /* yes; move colliding node into free position */
485       while (othern + gnext(othern) != mp)  /* find previous */
486         othern += gnext(othern);
487       gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
488       *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
489       if (gnext(mp) != 0) {
490         gnext(f) += cast_int(mp - f);  /* correct 'next' */
491         gnext(mp) = 0;  /* now 'mp' is free */
492       }
493       setnilvalue(gval(mp));
494     }
495     else {  /* colliding node is in its own main position */
496       /* new node will go into free position */
497       if (gnext(mp) != 0)
498         gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
499       else lua_assert(gnext(f) == 0);
500       gnext(mp) = cast_int(f - mp);
501       mp = f;
502     }
503   }
504   setnodekey(L, &mp->i_key, key);
505   luaC_barrierback(L, t, key);
506   lua_assert(ttisnil(gval(mp)));
507   return gval(mp);
508 }
509 
510 
511 /*
512 ** search function for integers
513 */
514 const TValue *luaH_getint (Table *t, lua_Integer key) {
515   /* (1 <= key && key <= t->sizearray) */
516   if (l_castS2U(key - 1) < t->sizearray)
517     return &t->array[key - 1];
518   else {
519     Node *n = hashint(t, key);
520     for (;;) {  /* check whether 'key' is somewhere in the chain */
521       if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key)
522         return gval(n);  /* that's it */
523       else {
524         int nx = gnext(n);
525         if (nx == 0) break;
526         n += nx;
527       }
528     };
529     return luaO_nilobject;
530   }
531 }
532 
533 
534 /*
535 ** search function for short strings
536 */
537 const TValue *luaH_getstr (Table *t, TString *key) {
538   Node *n = hashstr(t, key);
539   lua_assert(key->tt == LUA_TSHRSTR);
540   for (;;) {  /* check whether 'key' is somewhere in the chain */
541     const TValue *k = gkey(n);
542     if (ttisshrstring(k) && eqshrstr(tsvalue(k), key))
543       return gval(n);  /* that's it */
544     else {
545       int nx = gnext(n);
546       if (nx == 0) break;
547       n += nx;
548     }
549   };
550   return luaO_nilobject;
551 }
552 
553 
554 /*
555 ** main search function
556 */
557 const TValue *luaH_get (Table *t, const TValue *key) {
558   switch (ttype(key)) {
559     case LUA_TSHRSTR: return luaH_getstr(t, tsvalue(key));
560     case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
561     case LUA_TNIL: return luaO_nilobject;
562 #ifndef _KERNEL
563     case LUA_TNUMFLT: {
564       lua_Integer k;
565       if (luaV_tointeger(key, &k, 0)) /* index is int? */
566         return luaH_getint(t, k);  /* use specialized version */
567       /* else... */
568     }  /* FALLTHROUGH */
569 #endif
570     default: {
571       Node *n = mainposition(t, key);
572       for (;;) {  /* check whether 'key' is somewhere in the chain */
573         if (luaV_rawequalobj(gkey(n), key))
574           return gval(n);  /* that's it */
575         else {
576           int nx = gnext(n);
577           if (nx == 0) break;
578           n += nx;
579         }
580       };
581       return luaO_nilobject;
582     }
583   }
584 }
585 
586 
587 /*
588 ** beware: when using this function you probably need to check a GC
589 ** barrier and invalidate the TM cache.
590 */
591 TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
592   const TValue *p = luaH_get(t, key);
593   if (p != luaO_nilobject)
594     return cast(TValue *, p);
595   else return luaH_newkey(L, t, key);
596 }
597 
598 
599 void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
600   const TValue *p = luaH_getint(t, key);
601   TValue *cell;
602   if (p != luaO_nilobject)
603     cell = cast(TValue *, p);
604   else {
605     TValue k;
606     setivalue(&k, key);
607     cell = luaH_newkey(L, t, &k);
608   }
609   setobj2t(L, cell, value);
610 }
611 
612 
613 static int unbound_search (Table *t, unsigned int j) {
614   unsigned int i = j;  /* i is zero or a present index */
615   j++;
616   /* find 'i' and 'j' such that i is present and j is not */
617   while (!ttisnil(luaH_getint(t, j))) {
618     i = j;
619     if (j > cast(unsigned int, MAX_INT)/2) {  /* overflow? */
620       /* table was built with bad purposes: resort to linear search */
621       i = 1;
622       while (!ttisnil(luaH_getint(t, i))) i++;
623       return i - 1;
624     }
625     j *= 2;
626   }
627   /* now do a binary search between them */
628   while (j - i > 1) {
629     unsigned int m = (i+j)/2;
630     if (ttisnil(luaH_getint(t, m))) j = m;
631     else i = m;
632   }
633   return i;
634 }
635 
636 
637 /*
638 ** Try to find a boundary in table 't'. A 'boundary' is an integer index
639 ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
640 */
641 int luaH_getn (Table *t) {
642   unsigned int j = t->sizearray;
643   if (j > 0 && ttisnil(&t->array[j - 1])) {
644     /* there is a boundary in the array part: (binary) search for it */
645     unsigned int i = 0;
646     while (j - i > 1) {
647       unsigned int m = (i+j)/2;
648       if (ttisnil(&t->array[m - 1])) j = m;
649       else i = m;
650     }
651     return i;
652   }
653   /* else must find a boundary in hash part */
654   else if (isdummy(t->node))  /* hash part is empty? */
655     return j;  /* that is easy... */
656   else return unbound_search(t, j);
657 }
658 
659 
660 
661 #if defined(LUA_DEBUG)
662 
663 Node *luaH_mainposition (const Table *t, const TValue *key) {
664   return mainposition(t, key);
665 }
666 
667 int luaH_isdummy (Node *n) { return isdummy(n); }
668 
669 #endif
670