xref: /minix/lib/libm/noieee_src/n_cabs.c (revision ebfedea0)
1 /*      $NetBSD: n_cabs.c,v 1.5 2003/08/07 16:44:50 agc Exp $ */
2 /*
3  * Copyright (c) 1985, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifndef lint
32 static char sccsid[] = "@(#)cabs.c	8.1 (Berkeley) 6/4/93";
33 #endif /* not lint */
34 
35 /* HYPOT(X,Y)
36  * RETURN THE SQUARE ROOT OF X^2 + Y^2  WHERE Z=X+iY
37  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
38  * CODED IN C BY K.C. NG, 11/28/84;
39  * REVISED BY K.C. NG, 7/12/85.
40  *
41  * Required system supported functions :
42  *	copysign(x,y)
43  *	finite(x)
44  *	scalb(x,N)
45  *	sqrt(x)
46  *
47  * Method :
48  *	1. replace x by |x| and y by |y|, and swap x and
49  *	   y if y > x (hence x is never smaller than y).
50  *	2. Hypot(x,y) is computed by:
51  *	   Case I, x/y > 2
52  *
53  *				       y
54  *		hypot = x + -----------------------------
55  *			 		    2
56  *			    sqrt ( 1 + [x/y]  )  +  x/y
57  *
58  *	   Case II, x/y <= 2
59  *				                   y
60  *		hypot = x + --------------------------------------------------
61  *				          		     2
62  *				     			[x/y]   -  2
63  *			   (sqrt(2)+1) + (x-y)/y + -----------------------------
64  *			 		    			  2
65  *			    			  sqrt ( 1 + [x/y]  )  + sqrt(2)
66  *
67  *
68  *
69  * Special cases:
70  *	hypot(x,y) is INF if x or y is +INF or -INF; else
71  *	hypot(x,y) is NAN if x or y is NAN.
72  *
73  * Accuracy:
74  * 	hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
75  *	in the last place). See Kahan's "Interval Arithmetic Options in the
76  *	Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
77  *      1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
78  *	code follows in	comments.) In a test run with 500,000 random arguments
79  *	on a VAX, the maximum observed error was .959 ulps.
80  *
81  * Constants:
82  * The hexadecimal values are the intended ones for the following constants.
83  * The decimal values may be used, provided that the compiler will convert
84  * from decimal to binary accurately enough to produce the hexadecimal values
85  * shown.
86  */
87 #define _LIBM_STATIC
88 #include "mathimpl.h"
89 
90 vc(r2p1hi, 2.4142135623730950345E0   ,8279,411a,ef32,99fc,   2, .9A827999FCEF32)
91 vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
92 vc(sqrt2,  1.4142135623730950622E0   ,04f3,40b5,de65,33f9,   1, .B504F333F9DE65)
93 
94 ic(r2p1hi, 2.4142135623730949234E0   ,   1, 1.3504F333F9DE6)
95 ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
96 ic(sqrt2,  1.4142135623730951455E0   ,   0, 1.6A09E667F3BCD)
97 
98 #ifdef vccast
99 #define	r2p1hi	vccast(r2p1hi)
100 #define	r2p1lo	vccast(r2p1lo)
101 #define	sqrt2	vccast(sqrt2)
102 #endif
103 
104 double
105 hypot(double x, double y)
106 {
107 	static const double zero=0, one=1,
108 		      small=1.0E-18;	/* fl(1+small)==1 */
109 	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
110 	double t,r;
111 	int exp;
112 
113 	if(finite(x))
114 	    if(finite(y))
115 	    {
116 		x=copysign(x,one);
117 		y=copysign(y,one);
118 		if(y > x)
119 		    { t=x; x=y; y=t; }
120 		if(x == zero) return(zero);
121 		if(y == zero) return(x);
122 		exp= logb(x);
123 		if(exp-(int)logb(y) > ibig )
124 			/* raise inexact flag and return |x| */
125 		   { one+small; return(x); }
126 
127 	    /* start computing sqrt(x^2 + y^2) */
128 		r=x-y;
129 		if(r>y) { 	/* x/y > 2 */
130 		    r=x/y;
131 		    r=r+sqrt(one+r*r); }
132 		else {		/* 1 <= x/y <= 2 */
133 		    r/=y; t=r*(r+2.0);
134 		    r+=t/(sqrt2+sqrt(2.0+t));
135 		    r+=r2p1lo; r+=r2p1hi; }
136 
137 		r=y/r;
138 		return(x+r);
139 
140 	    }
141 
142 	    else if(y==y)   	   /* y is +-INF */
143 		     return(copysign(y,one));
144 	    else
145 		     return(y);	   /* y is NaN and x is finite */
146 
147 	else if(x==x) 		   /* x is +-INF */
148 	         return (copysign(x,one));
149 	else if(finite(y))
150 	         return(x);		   /* x is NaN, y is finite */
151 #if !defined(__vax__)&&!defined(tahoe)
152 	else if(y!=y) return(y);  /* x and y is NaN */
153 #endif	/* !defined(__vax__)&&!defined(tahoe) */
154 	else return(copysign(y,one));   /* y is INF */
155 }
156 
157 /* CABS(Z)
158  * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER  Z = X + iY
159  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
160  * CODED IN C BY K.C. NG, 11/28/84.
161  * REVISED BY K.C. NG, 7/12/85.
162  *
163  * Required kernel function :
164  *	hypot(x,y)
165  *
166  * Method :
167  *	cabs(z) = hypot(x,y) .
168  */
169 
170 struct complex { double x, y; };
171 
172 double
173 cabs(z)
174 struct complex z;
175 {
176 	return hypot(z.x,z.y);
177 }
178 
179 double
180 z_abs(z)
181 struct complex *z;
182 {
183 	return hypot(z->x,z->y);
184 }
185 
186 /* A faster but less accurate version of cabs(x,y) */
187 #if 0
188 double hypot(x,y)
189 double x, y;
190 {
191 	static const double zero=0, one=1;
192 		      small=1.0E-18;	/* fl(1+small)==1 */
193 	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
194 	double temp;
195 	int exp;
196 
197 	if(finite(x))
198 	    if(finite(y))
199 	    {
200 		x=copysign(x,one);
201 		y=copysign(y,one);
202 		if(y > x)
203 		    { temp=x; x=y; y=temp; }
204 		if(x == zero) return(zero);
205 		if(y == zero) return(x);
206 		exp= logb(x);
207 		x=scalb(x,-exp);
208 		if(exp-(int)logb(y) > ibig )
209 			/* raise inexact flag and return |x| */
210 		   { one+small; return(scalb(x,exp)); }
211 		else y=scalb(y,-exp);
212 		return(scalb(sqrt(x*x+y*y),exp));
213 	    }
214 
215 	    else if(y==y)   	   /* y is +-INF */
216 		     return(copysign(y,one));
217 	    else
218 		     return(y);	   /* y is NaN and x is finite */
219 
220 	else if(x==x) 		   /* x is +-INF */
221 	         return (copysign(x,one));
222 	else if(finite(y))
223 	         return(x);		   /* x is NaN, y is finite */
224 	else if(y!=y) return(y);  	/* x and y is NaN */
225 	else return(copysign(y,one));   /* y is INF */
226 }
227 #endif
228