xref: /minix/lib/libm/noieee_src/n_erf.c (revision 84d9c625)
1 /*	$NetBSD: n_erf.c,v 1.9 2013/11/24 15:16:49 martin Exp $	*/
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifndef lint
32 #if 0
33 static char sccsid[] = "@(#)erf.c	8.1 (Berkeley) 6/4/93";
34 #endif
35 #endif /* not lint */
36 
37 #include "mathimpl.h"
38 
39 /* Modified Nov 30, 1992 P. McILROY:
40  *	Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
41  * Replaced even+odd with direct calculation for x < .84375,
42  * to avoid destructive cancellation.
43  *
44  * Performance of erfc(x):
45  * In 300000 trials in the range [.83, .84375] the
46  * maximum observed error was 3.6ulp.
47  *
48  * In [.84735,1.25] the maximum observed error was <2.5ulp in
49  * 100000 runs in the range [1.2, 1.25].
50  *
51  * In [1.25,26] (Not including subnormal results)
52  * the error is < 1.7ulp.
53  */
54 
55 /* double erf(double x)
56  * double erfc(double x)
57  *			     x
58  *		      2      |\
59  *     erf(x)  =  ---------  | exp(-t*t)dt
60  *		   sqrt(pi) \|
61  *			     0
62  *
63  *     erfc(x) =  1-erf(x)
64  *
65  * Method:
66  *      1. Reduce x to |x| by erf(-x) = -erf(x)
67  *	2. For x in [0, 0.84375]
68  *	    erf(x)  = x + x*P(x^2)
69  *          erfc(x) = 1 - erf(x)           if x<=0.25
70  *                  = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375]
71  *	   where
72  *			2		 2	  4		  20
73  *              P =  P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x  )
74  * 	   is an approximation to (erf(x)-x)/x with precision
75  *
76  *						 -56.45
77  *			| P - (erf(x)-x)/x | <= 2
78  *
79  *
80  *	   Remark. The formula is derived by noting
81  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
82  *	   and that
83  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
84  *	   is close to one. The interval is chosen because the fixed
85  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
86  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
87  * 	   guarantee the error is less than one ulp for erf.
88  *
89  *      3. For x in [0.84375,1.25], let s = x - 1, and
90  *         c = 0.84506291151 rounded to single (24 bits)
91  *         	erf(x)  = c  + P1(s)/Q1(s)
92  *         	erfc(x) = (1-c)  - P1(s)/Q1(s)
93  *         	|P1/Q1 - (erf(x)-c)| <= 2**-59.06
94  *	   Remark: here we use the taylor series expansion at x=1.
95  *		erf(1+s) = erf(1) + s*Poly(s)
96  *			 = 0.845.. + P1(s)/Q1(s)
97  *	   That is, we use rational approximation to approximate
98  *			erf(1+s) - (c = (single)0.84506291151)
99  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
100  *	   where
101  *		P1(s) = degree 6 poly in s
102  *		Q1(s) = degree 6 poly in s
103  *
104  *	4. For x in [1.25, 2]; [2, 4]
105  *         	erf(x)  = 1.0 - tiny
106  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
107  *
108  *	Where z = 1/(x*x), R is degree 9, and S is degree 3;
109  *
110  *      5. For x in [4,28]
111  *         	erf(x)  = 1.0 - tiny
112  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
113  *
114  *	Where P is degree 14 polynomial in 1/(x*x).
115  *
116  *      Notes:
117  *	   Here 4 and 5 make use of the asymptotic series
118  *			  exp(-x*x)
119  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
120  *			  x*sqrt(pi)
121  *
122  *		where for z = 1/(x*x)
123  *		P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
124  *
125  *	   Thus we use rational approximation to approximate
126  *              erfc*x*exp(x*x) ~ 1/sqrt(pi);
127  *
128  *		The error bound for the target function, G(z) for
129  *		the interval
130  *		[4, 28]:
131  * 		|eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
132  *		for [2, 4]:
133  *      	|R(z)/S(z) - G(z)|	 < 2**(-58.24)
134  *		for [1.25, 2]:
135  *		|R(z)/S(z) - G(z)|	 < 2**(-58.12)
136  *
137  *      6. For inf > x >= 28
138  *         	erf(x)  = 1 - tiny  (raise inexact)
139  *         	erfc(x) = tiny*tiny (raise underflow)
140  *
141  *      7. Special cases:
142  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
143  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
144  *	   	erfc/erf(NaN) is NaN
145  */
146 
147 #if defined(__vax__) || defined(tahoe)
148 #define _IEEE	0
149 #define TRUNC(x) (x) = (float)(x)
150 #else
151 #define _IEEE	1
152 #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
153 #define infnan(x) 0.0
154 #endif
155 
156 #ifdef _IEEE_LIBM
157 /*
158  * redefining "___function" to "function" in _IEEE_LIBM mode
159  */
160 #include "ieee_libm.h"
161 #endif
162 
163 static const double
164 tiny	    = _TINY,
165 half	    = 0.5,
166 one	    = 1.0,
167 two	    = 2.0,
168 c 	    = 8.45062911510467529297e-01, /* (float)0.84506291151 */
169 /*
170  * Coefficients for approximation to erf in [0,0.84375]
171  */
172 p0t8 = 1.02703333676410051049867154944018394163280,
173 p0 =   1.283791670955125638123339436800229927041e-0001,
174 p1 =  -3.761263890318340796574473028946097022260e-0001,
175 p2 =   1.128379167093567004871858633779992337238e-0001,
176 p3 =  -2.686617064084433642889526516177508374437e-0002,
177 p4 =   5.223977576966219409445780927846432273191e-0003,
178 p5 =  -8.548323822001639515038738961618255438422e-0004,
179 p6 =   1.205520092530505090384383082516403772317e-0004,
180 p7 =  -1.492214100762529635365672665955239554276e-0005,
181 p8 =   1.640186161764254363152286358441771740838e-0006,
182 p9 =  -1.571599331700515057841960987689515895479e-0007,
183 p10=   1.073087585213621540635426191486561494058e-0008;
184 /*
185  * Coefficients for approximation to erf in [0.84375,1.25]
186  */
187 static const double
188 pa0 =  -2.362118560752659485957248365514511540287e-0003,
189 pa1 =   4.148561186837483359654781492060070469522e-0001,
190 pa2 =  -3.722078760357013107593507594535478633044e-0001,
191 pa3 =   3.183466199011617316853636418691420262160e-0001,
192 pa4 =  -1.108946942823966771253985510891237782544e-0001,
193 pa5 =   3.547830432561823343969797140537411825179e-0002,
194 pa6 =  -2.166375594868790886906539848893221184820e-0003,
195 qa1 =   1.064208804008442270765369280952419863524e-0001,
196 qa2 =   5.403979177021710663441167681878575087235e-0001,
197 qa3 =   7.182865441419627066207655332170665812023e-0002,
198 qa4 =   1.261712198087616469108438860983447773726e-0001,
199 qa5 =   1.363708391202905087876983523620537833157e-0002,
200 qa6 =   1.198449984679910764099772682882189711364e-0002;
201 /*
202  * log(sqrt(pi)) for large x expansions.
203  * The tail (lsqrtPI_lo) is included in the rational
204  * approximations.
205 */
206 static const double
207    lsqrtPI_hi = .5723649429247000819387380943226;
208 /*
209  * lsqrtPI_lo = .000000000000000005132975581353913;
210  *
211  * Coefficients for approximation to erfc in [2, 4]
212 */
213 static const double
214 rb0  =	-1.5306508387410807582e-010,	/* includes lsqrtPI_lo */
215 rb1  =	 2.15592846101742183841910806188e-008,
216 rb2  =	 6.24998557732436510470108714799e-001,
217 rb3  =	 8.24849222231141787631258921465e+000,
218 rb4  =	 2.63974967372233173534823436057e+001,
219 rb5  =	 9.86383092541570505318304640241e+000,
220 rb6  =	-7.28024154841991322228977878694e+000,
221 rb7  =	 5.96303287280680116566600190708e+000,
222 rb8  =	-4.40070358507372993983608466806e+000,
223 rb9  =	 2.39923700182518073731330332521e+000,
224 rb10 =	-6.89257464785841156285073338950e-001,
225 sb1  =	 1.56641558965626774835300238919e+001,
226 sb2  =	 7.20522741000949622502957936376e+001,
227 sb3  =	 9.60121069770492994166488642804e+001;
228 /*
229  * Coefficients for approximation to erfc in [1.25, 2]
230 */
231 static const double
232 rc0  =	-2.47925334685189288817e-007,	/* includes lsqrtPI_lo */
233 rc1  =	 1.28735722546372485255126993930e-005,
234 rc2  =	 6.24664954087883916855616917019e-001,
235 rc3  =	 4.69798884785807402408863708843e+000,
236 rc4  =	 7.61618295853929705430118701770e+000,
237 rc5  =	 9.15640208659364240872946538730e-001,
238 rc6  =	-3.59753040425048631334448145935e-001,
239 rc7  =	 1.42862267989304403403849619281e-001,
240 rc8  =	-4.74392758811439801958087514322e-002,
241 rc9  =	 1.09964787987580810135757047874e-002,
242 rc10 =	-1.28856240494889325194638463046e-003,
243 sc1  =	 9.97395106984001955652274773456e+000,
244 sc2  =	 2.80952153365721279953959310660e+001,
245 sc3  =	 2.19826478142545234106819407316e+001;
246 /*
247  * Coefficients for approximation to  erfc in [4,28]
248  */
249 static const double
250 rd0  =	-2.1491361969012978677e-016,	/* includes lsqrtPI_lo */
251 rd1  =	-4.99999999999640086151350330820e-001,
252 rd2  =	 6.24999999772906433825880867516e-001,
253 rd3  =	-1.54166659428052432723177389562e+000,
254 rd4  =	 5.51561147405411844601985649206e+000,
255 rd5  =	-2.55046307982949826964613748714e+001,
256 rd6  =	 1.43631424382843846387913799845e+002,
257 rd7  =	-9.45789244999420134263345971704e+002,
258 rd8  =	 6.94834146607051206956384703517e+003,
259 rd9  =	-5.27176414235983393155038356781e+004,
260 rd10 =	 3.68530281128672766499221324921e+005,
261 rd11 =	-2.06466642800404317677021026611e+006,
262 rd12 =	 7.78293889471135381609201431274e+006,
263 rd13 =	-1.42821001129434127360582351685e+007;
264 
265 double
erf(double x)266 erf(double x)
267 {
268 	double R,S,P,Q,ax,s,y,z,r;
269 	if(!finite(x)) {		/* erf(nan)=nan */
270 	    if (isnan(x))
271 		return(x);
272 	    return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
273 	}
274 	if ((ax = x) < 0)
275 		ax = - ax;
276 	if (ax < .84375) {
277 	    if (ax < 3.7e-09) {
278 		if (ax < _TINYER)
279 		    return 0.125*(8.0*x+p0t8*x);  /*avoid underflow */
280 		return x + p0*x;
281 	    }
282 	    y = x*x;
283 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
284 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
285 	    return x + x*(p0+r);
286 	}
287 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
288 	    s = fabs(x)-one;
289 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
290 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
291 	    if (x>=0)
292 		return (c + P/Q);
293 	    else
294 		return (-c - P/Q);
295 	}
296 	if (ax >= 6.0) {		/* inf>|x|>=6 */
297 	    if (x >= 0.0)
298 		return (one-tiny);
299 	    else
300 		return (tiny-one);
301 	}
302     /* 1.25 <= |x| < 6 */
303 	z = -ax*ax;
304 	s = -one/z;
305 	if (ax < 2.0) {
306 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
307 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
308 		S = one+s*(sc1+s*(sc2+s*sc3));
309 	} else {
310 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
311 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
312 		S = one+s*(sb1+s*(sb2+s*sb3));
313 	}
314 	y = (R/S -.5*s) - lsqrtPI_hi;
315 	z += y;
316 	z = exp(z)/ax;
317 	if (x >= 0)
318 		return (one-z);
319 	else
320 		return (z-one);
321 }
322 
323 float
erff(float x)324 erff(float x)
325 {
326 	return (float)erf(x);
327 }
328 
329 double
erfc(double x)330 erfc(double x)
331 {
332 	double R,S,P,Q,s,ax,y,z,r;
333 	if (!finite(x)) {
334 		if (isnan(x))		/* erfc(NaN) = NaN */
335 			return(x);
336 		else if (x > 0)		/* erfc(+-inf)=0,2 */
337 			return 0.0;
338 		else
339 			return 2.0;
340 	}
341 	if ((ax = x) < 0)
342 		ax = -ax;
343 	if (ax < .84375) {			/* |x|<0.84375 */
344 	    if (ax < 1.38777878078144568e-17)  	/* |x|<2**-56 */
345 		return one-x;
346 	    y = x*x;
347 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
348 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
349 	    if (ax < .0625) {  	/* |x|<2**-4 */
350 		return (one-(x+x*(p0+r)));
351 	    } else {
352 		r = x*(p0+r);
353 		r += (x-half);
354 	        return (half - r);
355 	    }
356 	}
357 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
358 	    s = ax-one;
359 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
360 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
361 	    if (x>=0) {
362 	        z  = one-c; return z - P/Q;
363 	    } else {
364 		z = c+P/Q; return one+z;
365 	    }
366 	}
367 	if (ax >= 28) {	/* Out of range */
368  		if (x>0)
369 			return (tiny*tiny);
370 		else
371 			return (two-tiny);
372 	}
373 	z = ax;
374 	TRUNC(z);
375 	y = z - ax; y *= (ax+z);
376 	z *= -z;			/* Here z + y = -x^2 */
377 		s = one/(-z-y);		/* 1/(x*x) */
378 	if (ax >= 4) {			/* 6 <= ax */
379 		R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
380 			s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
381 			+s*(rd11+s*(rd12+s*rd13))))))))))));
382 		y += rd0;
383 	} else if (ax >= 2) {
384 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
385 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
386 		S = one+s*(sb1+s*(sb2+s*sb3));
387 		y += R/S;
388 		R = -.5*s;
389 	} else {
390 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
391 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
392 		S = one+s*(sc1+s*(sc2+s*sc3));
393 		y += R/S;
394 		R = -.5*s;
395 	}
396 	/* return exp(-x^2 - lsqrtPI_hi + R + y)/x;	*/
397 	s = ((R + y) - lsqrtPI_hi) + z;
398 	y = (((z-s) - lsqrtPI_hi) + R) + y;
399 	r = __exp__D(s, y)/x;
400 	if (x>0)
401 		return r;
402 	else
403 		return two-r;
404 }
405 
406 float
erfcf(float x)407 erfcf(float x)
408 {
409 	return (float)erfc(x);
410 }
411 
412 
413