xref: /minix/lib/libm/noieee_src/n_expm1.c (revision 84d9c625)
1 /*      $NetBSD: n_expm1.c,v 1.8 2013/11/24 18:50:58 martin Exp $ */
2 /*
3  * Copyright (c) 1985, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifndef lint
32 #if 0
33 static char sccsid[] = "@(#)expm1.c	8.1 (Berkeley) 6/4/93";
34 #endif
35 #endif /* not lint */
36 
37 /* EXPM1(X)
38  * RETURN THE EXPONENTIAL OF X MINUS ONE
39  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
40  * CODED IN C BY K.C. NG, 1/19/85;
41  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
42  *
43  * Required system supported functions:
44  *	scalb(x,n)
45  *	copysign(x,y)
46  *	finite(x)
47  *
48  * Kernel function:
49  *	exp__E(x,c)
50  *
51  * Method:
52  *	1. Argument Reduction: given the input x, find r and integer k such
53  *	   that
54  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
55  *	   r will be represented as r := z+c for better accuracy.
56  *
57  *	2. Compute EXPM1(r)=exp(r)-1 by
58  *
59  *			EXPM1(r=z+c) := z + exp__E(z,c)
60  *
61  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
62  *
63  * 	Remarks:
64  *	   1. When k=1 and z < -0.25, we use the following formula for
65  *	      better accuracy:
66  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
67  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
68  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
69  *	      when k>56.
70  *
71  * Special cases:
72  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
73  *	EXPM1(-INF)= -1;
74  *	for finite argument, only EXPM1(0)=0 is exact.
75  *
76  * Accuracy:
77  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
78  *	1,166,000 random arguments on a VAX, the maximum observed error was
79  *	.872 ulps (units of the last place).
80  *
81  * Constants:
82  * The hexadecimal values are the intended ones for the following constants.
83  * The decimal values may be used, provided that the compiler will convert
84  * from decimal to binary accurately enough to produce the hexadecimal values
85  * shown.
86  */
87 
88 #define _LIBM_STATIC
89 #include "mathimpl.h"
90 
91 vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
92 vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
93 vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
94 vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
95 
96 ic(ln2hi,  6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
97 ic(ln2lo,  1.9082149292705877000E-10, -33, 1.A39EF35793C76)
98 ic(lnhuge, 7.1602103751842355450E2,     9, 1.6602B15B7ECF2)
99 ic(invln2, 1.4426950408889633870E0,     0, 1.71547652B82FE)
100 
101 #ifdef vccast
102 #define	ln2hi	vccast(ln2hi)
103 #define	ln2lo	vccast(ln2lo)
104 #define	lnhuge	vccast(lnhuge)
105 #define	invln2	vccast(invln2)
106 #endif
107 
108 #if defined(__vax__)||defined(tahoe)
109 #define PREC	56
110 #else	/* defined(__vax__)||defined(tahoe) */
111 #define PREC	53
112 #endif	/* defined(__vax__)||defined(tahoe) */
113 
114 float
expm1f(float x)115 expm1f(float x)
116 {
117 	return (float)expm1(x);
118 }
119 
120 double
expm1(double x)121 expm1(double x)
122 {
123 	static const double one=1.0, half=1.0/2.0;
124 	double  z,hi,lo,c;
125 	int k;
126 
127 #if !defined(__vax__)&&!defined(tahoe)
128 	if(x!=x) return(x);	/* x is NaN */
129 #endif	/* !defined(__vax__)&&!defined(tahoe) */
130 
131 	if( x <= lnhuge ) {
132 		if( x >= -40.0 ) {
133 
134 		    /* argument reduction : x - k*ln2 */
135 			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
136 			hi=x-k*ln2hi ;
137 			z=hi-(lo=k*ln2lo);
138 			c=(hi-z)-lo;
139 
140 			if(k==0) return(z+__exp__E(z,c));
141 			if(k==1)
142 			    if(z< -0.25)
143 				{x=z+half;x +=__exp__E(z,c); return(x+x);}
144 			    else
145 				{z+=__exp__E(z,c); x=half+z; return(x+x);}
146 		    /* end of k=1 */
147 
148 			else {
149 			    if(k<=PREC)
150 			      { x=one-scalb(one,-k); z += __exp__E(z,c);}
151 			    else if(k<100)
152 			      { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
153 			    else
154 			      { x = __exp__E(z,c)+z; z=one;}
155 
156 			    return (scalb(x+z,k));
157 			}
158 		}
159 		/* end of x > lnunfl */
160 
161 		else
162 		     /* expm1(-big#) rounded to -1 (inexact) */
163 		     if(finite(x))
164 			 { c=ln2hi+ln2lo; return(-one);} /* ??? -ragge */
165 
166 		     /* expm1(-INF) is -1 */
167 		     else return(-one);
168 	}
169 	/* end of x < lnhuge */
170 
171 	else
172 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
173 	    return( finite(x) ?  scalb(one,5000) : x);
174 }
175