xref: /minix/lib/libm/noieee_src/n_j1.c (revision ebfedea0)
1 /*	$NetBSD: n_j1.c,v 1.7 2011/11/02 02:34:56 christos Exp $	*/
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifndef lint
32 #if 0
33 static char sccsid[] = "@(#)j1.c	8.2 (Berkeley) 11/30/93";
34 #endif
35 #endif /* not lint */
36 
37 /*
38  * 16 December 1992
39  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
40  */
41 
42 /*
43  * ====================================================
44  * Copyright (C) 1992 by Sun Microsystems, Inc.
45  *
46  * Developed at SunPro, a Sun Microsystems, Inc. business.
47  * Permission to use, copy, modify, and distribute this
48  * software is freely granted, provided that this notice
49  * is preserved.
50  * ====================================================
51  *
52  * ******************* WARNING ********************
53  * This is an alpha version of SunPro's FDLIBM (Freely
54  * Distributable Math Library) for IEEE double precision
55  * arithmetic. FDLIBM is a basic math library written
56  * in C that runs on machines that conform to IEEE
57  * Standard 754/854. This alpha version is distributed
58  * for testing purpose. Those who use this software
59  * should report any bugs to
60  *
61  *		fdlibm-comments@sunpro.eng.sun.com
62  *
63  * -- K.C. Ng, Oct 12, 1992
64  * ************************************************
65  */
66 
67 /* double j1(double x), y1(double x)
68  * Bessel function of the first and second kinds of order zero.
69  * Method -- j1(x):
70  *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
71  *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
72  *	   for x in (0,2)
73  *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
74  *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
75  *	   for x in (2,inf)
76  * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
77  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
78  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
79  *	   as follows:
80  *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
81  *			=  1/sqrt(2) * (sin(x) - cos(x))
82  *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
83  *			= -1/sqrt(2) * (sin(x) + cos(x))
84  * 	   (To avoid cancellation, use
85  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
86  * 	    to compute the worse one.)
87  *
88  *	3 Special cases
89  *		j1(nan)= nan
90  *		j1(0) = 0
91  *		j1(inf) = 0
92  *
93  * Method -- y1(x):
94  *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
95  *	2. For x<2.
96  *	   Since
97  *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
98  *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
99  *	   We use the following function to approximate y1,
100  *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
101  *	   where for x in [0,2] (abs err less than 2**-65.89)
102  *		U(z) = u0 + u1*z + ... + u4*z^4
103  *		V(z) = 1  + v1*z + ... + v5*z^5
104  *	   Note: For tiny x, 1/x dominate y1 and hence
105  *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
106  *	3. For x>=2.
107  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
108  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
109  *	   by method mentioned above.
110  */
111 
112 #include "mathimpl.h"
113 #include <float.h>
114 #include <errno.h>
115 
116 #if defined(__vax__) || defined(tahoe)
117 #define _IEEE	0
118 #else
119 #define _IEEE	1
120 #define infnan(x) (0.0)
121 #endif
122 
123 static double pone (double), qone (double);
124 
125 static const double
126 huge    = _HUGE,
127 zero    = 0.0,
128 one	= 1.0,
129 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
130 tpi	= 0.636619772367581343075535053490057448,
131 
132 	/* R0/S0 on [0,2] */
133 r00 =  -6.250000000000000020842322918309200910191e-0002,
134 r01 =   1.407056669551897148204830386691427791200e-0003,
135 r02 =  -1.599556310840356073980727783817809847071e-0005,
136 r03 =   4.967279996095844750387702652791615403527e-0008,
137 s01 =   1.915375995383634614394860200531091839635e-0002,
138 s02 =   1.859467855886309024045655476348872850396e-0004,
139 s03 =   1.177184640426236767593432585906758230822e-0006,
140 s04 =   5.046362570762170559046714468225101016915e-0009,
141 s05 =   1.235422744261379203512624973117299248281e-0011;
142 
143 #define two_129	6.80564733841876926e+038	/* 2^129 */
144 #define two_m54	5.55111512312578270e-017	/* 2^-54 */
145 
146 double
147 j1(double x)
148 {
149 	double z, s,c,ss,cc,r,u,v,y;
150 	y = fabs(x);
151 	if (!finite(x)) {		/* Inf or NaN */
152 #if _IEEE
153 		if (x != x)
154 			return(x);
155 		else
156 #endif
157 			return (copysign(x, zero));
158 	}
159 	y = fabs(x);
160 	if (y >= 2) {			/* |x| >= 2.0 */
161 		s = sin(y);
162 		c = cos(y);
163 		ss = -s-c;
164 		cc = s-c;
165 		if (y < .5*DBL_MAX) {  	/* make sure y+y not overflow */
166 		    z = cos(y+y);
167 		    if ((s*c)<zero) cc = z/ss;
168 		    else 	    ss = z/cc;
169 		}
170 	/*
171 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
172 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
173 	 */
174 #if !defined(__vax__) && !defined(tahoe)
175 		if (y > two_129)	 /* x > 2^129 */
176 			z = (invsqrtpi*cc)/sqrt(y);
177 		else
178 #endif /* defined(__vax__) || defined(tahoe) */
179 		{
180 		    u = pone(y); v = qone(y);
181 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
182 		}
183 		if (x < 0) return -z;
184 		else  	 return  z;
185 	}
186 	if (y < 7.450580596923828125e-009) {	/* |x|<2**-27 */
187 	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
188 	}
189 	z = x*x;
190 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
191 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
192 	r *= x;
193 	return (x*0.5+r/s);
194 }
195 
196 static const double u0[5] = {
197   -1.960570906462389484206891092512047539632e-0001,
198    5.044387166398112572026169863174882070274e-0002,
199   -1.912568958757635383926261729464141209569e-0003,
200    2.352526005616105109577368905595045204577e-0005,
201    -9.190991580398788465315411784276789663849e-0008,
202 };
203 static const double v0[5] = {
204    1.991673182366499064031901734535479833387e-0002,
205    2.025525810251351806268483867032781294682e-0004,
206    1.356088010975162198085369545564475416398e-0006,
207    6.227414523646214811803898435084697863445e-0009,
208    1.665592462079920695971450872592458916421e-0011,
209 };
210 
211 double
212 y1(double x)
213 {
214 	double z, s, c, ss, cc, u, v;
215     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
216 	if (!finite(x)) {
217 #if _IEEE
218 		if (x < 0)
219 			return(zero/zero);
220 		else if (x > 0)
221 			return (0);
222 		else
223 			return(x);
224 #else
225 		return (infnan(EDOM));
226 #endif
227 	}
228 	if (x <= 0) {
229 #if _IEEE
230 		if (x == 0) return -one/zero;
231 #endif
232 		if(x == 0) return(infnan(-ERANGE));
233 #if _IEEE
234 		return (zero/zero);
235 #else
236 		return(infnan(EDOM));
237 #endif
238 	}
239         if (x >= 2) {			 /* |x| >= 2.0 */
240                 s = sin(x);
241                 c = cos(x);
242                 ss = -s-c;
243                 cc = s-c;
244 		if (x < .5 * DBL_MAX) {	/* make sure x+x not overflow */
245                     z = cos(x+x);
246                     if ((s*c)>zero) cc = z/ss;
247                     else            ss = z/cc;
248                 }
249         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
250          * where x0 = x-3pi/4
251          *      Better formula:
252          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
253          *                      =  1/sqrt(2) * (sin(x) - cos(x))
254          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
255          *                      = -1/sqrt(2) * (cos(x) + sin(x))
256          * To avoid cancellation, use
257          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
258          * to compute the worse one.
259          */
260 #if _IEEE
261                 if (x>two_129) {
262 			z = (invsqrtpi*ss)/sqrt(x);
263                 } else
264 #endif
265 		{
266                     u = pone(x); v = qone(x);
267                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
268                 }
269                 return z;
270         }
271         if (x <= two_m54) {    /* x < 2**-54 */
272             return (-tpi/x);
273         }
274         z = x*x;
275         u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
276         v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
277         return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
278 }
279 
280 /* For x >= 8, the asymptotic expansions of pone is
281  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
282  * We approximate pone by
283  * 	pone(x) = 1 + (R/S)
284  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
285  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
286  * and
287  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
288  */
289 
290 static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
291    0.0,
292    1.171874999999886486643746274751925399540e-0001,
293    1.323948065930735690925827997575471527252e+0001,
294    4.120518543073785433325860184116512799375e+0002,
295    3.874745389139605254931106878336700275601e+0003,
296    7.914479540318917214253998253147871806507e+0003,
297 };
298 static const double ps8[5] = {
299    1.142073703756784104235066368252692471887e+0002,
300    3.650930834208534511135396060708677099382e+0003,
301    3.695620602690334708579444954937638371808e+0004,
302    9.760279359349508334916300080109196824151e+0004,
303    3.080427206278887984185421142572315054499e+0004,
304 };
305 
306 static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
307    1.319905195562435287967533851581013807103e-0011,
308    1.171874931906140985709584817065144884218e-0001,
309    6.802751278684328781830052995333841452280e+0000,
310    1.083081829901891089952869437126160568246e+0002,
311    5.176361395331997166796512844100442096318e+0002,
312    5.287152013633375676874794230748055786553e+0002,
313 };
314 static const double ps5[5] = {
315    5.928059872211313557747989128353699746120e+0001,
316    9.914014187336144114070148769222018425781e+0002,
317    5.353266952914879348427003712029704477451e+0003,
318    7.844690317495512717451367787640014588422e+0003,
319    1.504046888103610723953792002716816255382e+0003,
320 };
321 
322 static const double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
323    3.025039161373736032825049903408701962756e-0009,
324    1.171868655672535980750284752227495879921e-0001,
325    3.932977500333156527232725812363183251138e+0000,
326    3.511940355916369600741054592597098912682e+0001,
327    9.105501107507812029367749771053045219094e+0001,
328    4.855906851973649494139275085628195457113e+0001,
329 };
330 static const double ps3[5] = {
331    3.479130950012515114598605916318694946754e+0001,
332    3.367624587478257581844639171605788622549e+0002,
333    1.046871399757751279180649307467612538415e+0003,
334    8.908113463982564638443204408234739237639e+0002,
335    1.037879324396392739952487012284401031859e+0002,
336 };
337 
338 static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
339    1.077108301068737449490056513753865482831e-0007,
340    1.171762194626833490512746348050035171545e-0001,
341    2.368514966676087902251125130227221462134e+0000,
342    1.224261091482612280835153832574115951447e+0001,
343    1.769397112716877301904532320376586509782e+0001,
344    5.073523125888185399030700509321145995160e+0000,
345 };
346 static const double ps2[5] = {
347    2.143648593638214170243114358933327983793e+0001,
348    1.252902271684027493309211410842525120355e+0002,
349    2.322764690571628159027850677565128301361e+0002,
350    1.176793732871470939654351793502076106651e+0002,
351    8.364638933716182492500902115164881195742e+0000,
352 };
353 
354 static double
355 pone(double x)
356 {
357 	const double *p,*q;
358 	double z,r,s;
359 	if (x >= 8.0) 			   {p = pr8; q= ps8;}
360 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
361 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
362 	else /* if (x >= 2.0) */	   {p = pr2; q= ps2;}
363 	z = one/(x*x);
364 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
365 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
366 	return (one + r/s);
367 }
368 
369 
370 /* For x >= 8, the asymptotic expansions of qone is
371  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
372  * We approximate pone by
373  * 	qone(x) = s*(0.375 + (R/S))
374  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
375  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
376  * and
377  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
378  */
379 
380 static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
381    0.0,
382   -1.025390624999927207385863635575804210817e-0001,
383   -1.627175345445899724355852152103771510209e+0001,
384   -7.596017225139501519843072766973047217159e+0002,
385   -1.184980667024295901645301570813228628541e+0004,
386   -4.843851242857503225866761992518949647041e+0004,
387 };
388 static const double qs8[6] = {
389    1.613953697007229231029079421446916397904e+0002,
390    7.825385999233484705298782500926834217525e+0003,
391    1.338753362872495800748094112937868089032e+0005,
392    7.196577236832409151461363171617204036929e+0005,
393    6.666012326177764020898162762642290294625e+0005,
394   -2.944902643038346618211973470809456636830e+0005,
395 };
396 
397 static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
398   -2.089799311417640889742251585097264715678e-0011,
399   -1.025390502413754195402736294609692303708e-0001,
400   -8.056448281239359746193011295417408828404e+0000,
401   -1.836696074748883785606784430098756513222e+0002,
402   -1.373193760655081612991329358017247355921e+0003,
403   -2.612444404532156676659706427295870995743e+0003,
404 };
405 static const double qs5[6] = {
406    8.127655013843357670881559763225310973118e+0001,
407    1.991798734604859732508048816860471197220e+0003,
408    1.746848519249089131627491835267411777366e+0004,
409    4.985142709103522808438758919150738000353e+0004,
410    2.794807516389181249227113445299675335543e+0004,
411   -4.719183547951285076111596613593553911065e+0003,
412 };
413 
414 static const double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
415   -5.078312264617665927595954813341838734288e-0009,
416   -1.025378298208370901410560259001035577681e-0001,
417   -4.610115811394734131557983832055607679242e+0000,
418   -5.784722165627836421815348508816936196402e+0001,
419   -2.282445407376317023842545937526967035712e+0002,
420   -2.192101284789093123936441805496580237676e+0002,
421 };
422 static const double qs3[6] = {
423    4.766515503237295155392317984171640809318e+0001,
424    6.738651126766996691330687210949984203167e+0002,
425    3.380152866795263466426219644231687474174e+0003,
426    5.547729097207227642358288160210745890345e+0003,
427    1.903119193388108072238947732674639066045e+0003,
428   -1.352011914443073322978097159157678748982e+0002,
429 };
430 
431 static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
432   -1.783817275109588656126772316921194887979e-0007,
433   -1.025170426079855506812435356168903694433e-0001,
434   -2.752205682781874520495702498875020485552e+0000,
435   -1.966361626437037351076756351268110418862e+0001,
436   -4.232531333728305108194363846333841480336e+0001,
437   -2.137192117037040574661406572497288723430e+0001,
438 };
439 static const double qs2[6] = {
440    2.953336290605238495019307530224241335502e+0001,
441    2.529815499821905343698811319455305266409e+0002,
442    7.575028348686454070022561120722815892346e+0002,
443    7.393932053204672479746835719678434981599e+0002,
444    1.559490033366661142496448853793707126179e+0002,
445   -4.959498988226281813825263003231704397158e+0000,
446 };
447 
448 static double
449 qone(double x)
450 {
451 	const double *p,*q;
452 	double s,r,z;
453 	if (x >= 8.0)			   {p = qr8; q= qs8;}
454 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
455 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
456 	else /* if (x >= 2.0) */	   {p = qr2; q= qs2;}
457 	z = one/(x*x);
458 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
459 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
460 	return (.375 + r/s)/x;
461 }
462