xref: /minix/lib/libm/noieee_src/n_jn.c (revision 84d9c625)
1 /*	$NetBSD: n_jn.c,v 1.7 2011/11/02 02:34:56 christos Exp $	*/
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifndef lint
32 #if 0
33 static char sccsid[] = "@(#)jn.c	8.2 (Berkeley) 11/30/93";
34 #endif
35 #endif /* not lint */
36 
37 /*
38  * 16 December 1992
39  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
40  */
41 
42 /*
43  * ====================================================
44  * Copyright (C) 1992 by Sun Microsystems, Inc.
45  *
46  * Developed at SunPro, a Sun Microsystems, Inc. business.
47  * Permission to use, copy, modify, and distribute this
48  * software is freely granted, provided that this notice
49  * is preserved.
50  * ====================================================
51  *
52  * ******************* WARNING ********************
53  * This is an alpha version of SunPro's FDLIBM (Freely
54  * Distributable Math Library) for IEEE double precision
55  * arithmetic. FDLIBM is a basic math library written
56  * in C that runs on machines that conform to IEEE
57  * Standard 754/854. This alpha version is distributed
58  * for testing purpose. Those who use this software
59  * should report any bugs to
60  *
61  *		fdlibm-comments@sunpro.eng.sun.com
62  *
63  * -- K.C. Ng, Oct 12, 1992
64  * ************************************************
65  */
66 
67 /*
68  * jn(int n, double x), yn(int n, double x)
69  * floating point Bessel's function of the 1st and 2nd kind
70  * of order n
71  *
72  * Special cases:
73  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
74  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
75  * Note 2. About jn(n,x), yn(n,x)
76  *	For n=0, j0(x) is called,
77  *	for n=1, j1(x) is called,
78  *	for n<x, forward recursion us used starting
79  *	from values of j0(x) and j1(x).
80  *	for n>x, a continued fraction approximation to
81  *	j(n,x)/j(n-1,x) is evaluated and then backward
82  *	recursion is used starting from a supposed value
83  *	for j(n,x). The resulting value of j(0,x) is
84  *	compared with the actual value to correct the
85  *	supposed value of j(n,x).
86  *
87  *	yn(n,x) is similar in all respects, except
88  *	that forward recursion is used for all
89  *	values of n>1.
90  *
91  */
92 
93 #include "mathimpl.h"
94 #include <float.h>
95 #include <errno.h>
96 
97 #if defined(__vax__) || defined(tahoe)
98 #define _IEEE	0
99 #else
100 #define _IEEE	1
101 #define infnan(x) (0.0)
102 #endif
103 
104 static const double
105 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
106 two  = 2.0,
107 zero = 0.0,
108 one  = 1.0;
109 
110 double
jn(int n,double x)111 jn(int n, double x)
112 {
113 	int i, sgn;
114 	double a, b, temp;
115 	double z, w;
116 
117     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
118      * Thus, J(-n,x) = J(n,-x)
119      */
120     /* if J(n,NaN) is NaN */
121 #if _IEEE
122 	if (snan(x)) return x+x;
123 #endif
124 	if (n<0){
125 		n = -n;
126 		x = -x;
127 	}
128 	if (n==0) return(j0(x));
129 	if (n==1) return(j1(x));
130 	sgn = (n&1)&(x < zero);		/* even n -- 0, odd n -- sign(x) */
131 	x = fabs(x);
132 	if (x == 0 || !finite (x)) 	/* if x is 0 or inf */
133 	    b = zero;
134 	else if ((double) n <= x) {
135 			/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
136 #if _IEEE
137 	    if (x >= 8.148143905337944345e+090) {
138 					/* x >= 2**302 */
139     /* (x >> n**2)
140      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
141      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
142      *	    Let s=sin(x), c=cos(x),
143      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
144      *
145      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
146      *		----------------------------------
147      *		   0	 s-c		 c+s
148      *		   1	-s-c 		-c+s
149      *		   2	-s+c		-c-s
150      *		   3	 s+c		 c-s
151      */
152 		switch(n&3) {
153 		    case 0: temp =  cos(x)+sin(x); break;
154 		    case 1: temp = -cos(x)+sin(x); break;
155 		    case 2: temp = -cos(x)-sin(x); break;
156 		    case 3: temp =  cos(x)-sin(x); break;
157 		}
158 		b = invsqrtpi*temp/sqrt(x);
159 	    } else
160 #endif
161 	    {
162 	        a = j0(x);
163 	        b = j1(x);
164 	        for(i=1;i<n;i++){
165 		    temp = b;
166 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
167 		    a = temp;
168 	        }
169 	    }
170 	} else {
171 	    if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
172     /* x is tiny, return the first Taylor expansion of J(n,x)
173      * J(n,x) = 1/n!*(x/2)^n  - ...
174      */
175 		if (n > 33)	/* underflow */
176 		    b = zero;
177 		else {
178 		    temp = x*0.5; b = temp;
179 		    for (a=one,i=2;i<=n;i++) {
180 			a *= (double)i;		/* a = n! */
181 			b *= temp;		/* b = (x/2)^n */
182 		    }
183 		    b = b/a;
184 		}
185 	    } else {
186 		/* use backward recurrence */
187 		/* 			x      x^2      x^2
188 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
189 		 *			2n  - 2(n+1) - 2(n+2)
190 		 *
191 		 * 			1      1        1
192 		 *  (for large x)   =  ----  ------   ------   .....
193 		 *			2n   2(n+1)   2(n+2)
194 		 *			-- - ------ - ------ -
195 		 *			 x     x         x
196 		 *
197 		 * Let w = 2n/x and h=2/x, then the above quotient
198 		 * is equal to the continued fraction:
199 		 *		    1
200 		 *	= -----------------------
201 		 *		       1
202 		 *	   w - -----------------
203 		 *			  1
204 		 * 	        w+h - ---------
205 		 *		       w+2h - ...
206 		 *
207 		 * To determine how many terms needed, let
208 		 * Q(0) = w, Q(1) = w(w+h) - 1,
209 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
210 		 * When Q(k) > 1e4	good for single
211 		 * When Q(k) > 1e9	good for double
212 		 * When Q(k) > 1e17	good for quadruple
213 		 */
214 	    /* determine k */
215 		double t,v;
216 		double q0,q1,h,tmp; int k,m;
217 		w  = (n+n)/(double)x; h = 2.0/(double)x;
218 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
219 		while (q1<1.0e9) {
220 			k += 1; z += h;
221 			tmp = z*q1 - q0;
222 			q0 = q1;
223 			q1 = tmp;
224 		}
225 		m = n+n;
226 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
227 		a = t;
228 		b = one;
229 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
230 		 *  Hence, if n*(log(2n/x)) > ...
231 		 *  single 8.8722839355e+01
232 		 *  double 7.09782712893383973096e+02
233 		 *  long double 1.1356523406294143949491931077970765006170e+04
234 		 *  then recurrent value may overflow and the result will
235 		 *  likely underflow to zero
236 		 */
237 		tmp = n;
238 		v = two/x;
239 		tmp = tmp*log(fabs(v*tmp));
240 	    	for (i=n-1;i>0;i--){
241 		        temp = b;
242 		        b = ((i+i)/x)*b - a;
243 		        a = temp;
244 		    /* scale b to avoid spurious overflow */
245 #			if defined(__vax__) || defined(tahoe)
246 #				define BMAX 1e13
247 #			else
248 #				define BMAX 1e100
249 #			endif /* defined(__vax__) || defined(tahoe) */
250 			if (b > BMAX) {
251 				a /= b;
252 				t /= b;
253 				b = one;
254 			}
255 		}
256 	    	b = (t*j0(x)/b);
257 	    }
258 	}
259 	return ((sgn == 1) ? -b : b);
260 }
261 
262 double
yn(int n,double x)263 yn(int n, double x)
264 {
265 	int i, sign;
266 	double a, b, temp;
267 
268     /* Y(n,NaN), Y(n, x < 0) is NaN */
269 	if (x <= 0 || (_IEEE && x != x))
270 		if (_IEEE && x < 0) return zero/zero;
271 		else if (x < 0)     return (infnan(EDOM));
272 		else if (_IEEE)     return -one/zero;
273 		else		    return(infnan(-ERANGE));
274 	else if (!finite(x)) return(0);
275 	sign = 1;
276 	if (n<0){
277 		n = -n;
278 		sign = 1 - ((n&1)<<2);
279 	}
280 	if (n == 0) return(y0(x));
281 	if (n == 1) return(sign*y1(x));
282 #if _IEEE
283 	if(x >= 8.148143905337944345e+090) { /* x > 2**302 */
284     /* (x >> n**2)
285      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
286      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
287      *	    Let s=sin(x), c=cos(x),
288      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
289      *
290      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
291      *		----------------------------------
292      *		   0	 s-c		 c+s
293      *		   1	-s-c 		-c+s
294      *		   2	-s+c		-c-s
295      *		   3	 s+c		 c-s
296      */
297 		switch (n&3) {
298 		    case 0: temp =  sin(x)-cos(x); break;
299 		    case 1: temp = -sin(x)-cos(x); break;
300 		    case 2: temp = -sin(x)+cos(x); break;
301 		    case 3: temp =  sin(x)+cos(x); break;
302 		}
303 		b = invsqrtpi*temp/sqrt(x);
304 	} else
305 #endif
306 	{
307 	    a = y0(x);
308 	    b = y1(x);
309 	/* quit if b is -inf */
310 	    for (i = 1; i < n && !finite(b); i++){
311 		temp = b;
312 		b = ((double)(i+i)/x)*b - a;
313 		a = temp;
314 	    }
315 	}
316 	if (!_IEEE && !finite(b))
317 		return (infnan(-sign * ERANGE));
318 	return ((sign > 0) ? b : -b);
319 }
320