xref: /minix/lib/libm/src/e_j0f.c (revision 00b67f09)
1 /* e_j0f.c -- float version of e_j0.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include <sys/cdefs.h>
17 #if defined(LIBM_SCCS) && !defined(lint)
18 __RCSID("$NetBSD: e_j0f.c,v 1.10 2007/08/20 16:01:38 drochner Exp $");
19 #endif
20 
21 #include "namespace.h"
22 #include "math.h"
23 #include "math_private.h"
24 
25 static float pzerof(float), qzerof(float);
26 
27 static const float
28 huge 	= 1e30,
29 one	= 1.0,
30 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
31 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
32  		/* R0/S0 on [0, 2.00] */
33 R02  =  1.5625000000e-02, /* 0x3c800000 */
34 R03  = -1.8997929874e-04, /* 0xb947352e */
35 R04  =  1.8295404516e-06, /* 0x35f58e88 */
36 R05  = -4.6183270541e-09, /* 0xb19eaf3c */
37 S01  =  1.5619102865e-02, /* 0x3c7fe744 */
38 S02  =  1.1692678527e-04, /* 0x38f53697 */
39 S03  =  5.1354652442e-07, /* 0x3509daa6 */
40 S04  =  1.1661400734e-09; /* 0x30a045e8 */
41 
42 static const float zero = 0.0;
43 
44 float
45 __ieee754_j0f(float x)
46 {
47 	float z, s,c,ss,cc,r,u,v;
48 	int32_t hx,ix;
49 
50 	GET_FLOAT_WORD(hx,x);
51 	ix = hx&0x7fffffff;
52 	if(ix>=0x7f800000) return one/(x*x);
53 	x = fabsf(x);
54 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
55 		s = sinf(x);
56 		c = cosf(x);
57 		ss = s-c;
58 		cc = s+c;
59 		if(ix<0x7f000000) {  /* make sure x+x not overflow */
60 		    z = -cosf(x+x);
61 		    if ((s*c)<zero) cc = z/ss;
62 		    else 	    ss = z/cc;
63 		}
64 	/*
65 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
66 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
67 	 */
68 #ifdef DEAD_CODE
69 		if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x);
70 		else
71 #endif
72 		{
73 		    u = pzerof(x); v = qzerof(x);
74 		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
75 		}
76 		return z;
77 	}
78 	if(ix<0x39000000) {	/* |x| < 2**-13 */
79 	    if(huge+x>one) {	/* raise inexact if x != 0 */
80 	        if(ix<0x32000000) return one;	/* |x|<2**-27 */
81 	        else 	      return one - (float)0.25*x*x;
82 	    }
83 	}
84 	z = x*x;
85 	r =  z*(R02+z*(R03+z*(R04+z*R05)));
86 	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
87 	if(ix < 0x3F800000) {	/* |x| < 1.00 */
88 	    return one + z*((float)-0.25+(r/s));
89 	} else {
90 	    u = (float)0.5*x;
91 	    return((one+u)*(one-u)+z*(r/s));
92 	}
93 }
94 
95 static const float
96 u00  = -7.3804296553e-02, /* 0xbd9726b5 */
97 u01  =  1.7666645348e-01, /* 0x3e34e80d */
98 u02  = -1.3818567619e-02, /* 0xbc626746 */
99 u03  =  3.4745343146e-04, /* 0x39b62a69 */
100 u04  = -3.8140706238e-06, /* 0xb67ff53c */
101 u05  =  1.9559013964e-08, /* 0x32a802ba */
102 u06  = -3.9820518410e-11, /* 0xae2f21eb */
103 v01  =  1.2730483897e-02, /* 0x3c509385 */
104 v02  =  7.6006865129e-05, /* 0x389f65e0 */
105 v03  =  2.5915085189e-07, /* 0x348b216c */
106 v04  =  4.4111031494e-10; /* 0x2ff280c2 */
107 
108 float
109 __ieee754_y0f(float x)
110 {
111 	float z, s,c,ss,cc,u,v;
112 	int32_t hx,ix;
113 
114 	GET_FLOAT_WORD(hx,x);
115         ix = 0x7fffffff&hx;
116     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
117 	if(ix>=0x7f800000) return  one/(x+x*x);
118         if(ix==0) return -one/zero;
119         if(hx<0) return zero/zero;
120         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
121         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
122          * where x0 = x-pi/4
123          *      Better formula:
124          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
125          *                      =  1/sqrt(2) * (sin(x) + cos(x))
126          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
127          *                      =  1/sqrt(2) * (sin(x) - cos(x))
128          * To avoid cancellation, use
129          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
130          * to compute the worse one.
131          */
132                 s = sinf(x);
133                 c = cosf(x);
134                 ss = s-c;
135                 cc = s+c;
136 	/*
137 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
138 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
139 	 */
140                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
141                     z = -cosf(x+x);
142                     if ((s*c)<zero) cc = z/ss;
143                     else            ss = z/cc;
144                 }
145 #ifdef DEAD_CODE
146                 if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x);
147                 else
148 #endif
149 		{
150                     u = pzerof(x); v = qzerof(x);
151                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
152                 }
153                 return z;
154 	}
155 	if(ix<=0x32000000) {	/* x < 2**-27 */
156 	    return(u00 + tpi*__ieee754_logf(x));
157 	}
158 	z = x*x;
159 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
160 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
161 	return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
162 }
163 
164 /* The asymptotic expansions of pzero is
165  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
166  * For x >= 2, We approximate pzero by
167  * 	pzero(x) = 1 + (R/S)
168  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
169  * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
170  * and
171  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
172  */
173 static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
174   0.0000000000e+00, /* 0x00000000 */
175  -7.0312500000e-02, /* 0xbd900000 */
176  -8.0816707611e+00, /* 0xc1014e86 */
177  -2.5706311035e+02, /* 0xc3808814 */
178  -2.4852163086e+03, /* 0xc51b5376 */
179  -5.2530439453e+03, /* 0xc5a4285a */
180 };
181 static const float pS8[5] = {
182   1.1653436279e+02, /* 0x42e91198 */
183   3.8337448730e+03, /* 0x456f9beb */
184   4.0597855469e+04, /* 0x471e95db */
185   1.1675296875e+05, /* 0x47e4087c */
186   4.7627726562e+04, /* 0x473a0bba */
187 };
188 static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
189  -1.1412546255e-11, /* 0xad48c58a */
190  -7.0312492549e-02, /* 0xbd8fffff */
191  -4.1596107483e+00, /* 0xc0851b88 */
192  -6.7674766541e+01, /* 0xc287597b */
193  -3.3123129272e+02, /* 0xc3a59d9b */
194  -3.4643338013e+02, /* 0xc3ad3779 */
195 };
196 static const float pS5[5] = {
197   6.0753936768e+01, /* 0x42730408 */
198   1.0512523193e+03, /* 0x44836813 */
199   5.9789707031e+03, /* 0x45bad7c4 */
200   9.6254453125e+03, /* 0x461665c8 */
201   2.4060581055e+03, /* 0x451660ee */
202 };
203 
204 static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
205  -2.5470459075e-09, /* 0xb12f081b */
206  -7.0311963558e-02, /* 0xbd8fffb8 */
207  -2.4090321064e+00, /* 0xc01a2d95 */
208  -2.1965976715e+01, /* 0xc1afba52 */
209  -5.8079170227e+01, /* 0xc2685112 */
210  -3.1447946548e+01, /* 0xc1fb9565 */
211 };
212 static const float pS3[5] = {
213   3.5856033325e+01, /* 0x420f6c94 */
214   3.6151397705e+02, /* 0x43b4c1ca */
215   1.1936077881e+03, /* 0x44953373 */
216   1.1279968262e+03, /* 0x448cffe6 */
217   1.7358093262e+02, /* 0x432d94b8 */
218 };
219 
220 static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
221  -8.8753431271e-08, /* 0xb3be98b7 */
222  -7.0303097367e-02, /* 0xbd8ffb12 */
223  -1.4507384300e+00, /* 0xbfb9b1cc */
224  -7.6356959343e+00, /* 0xc0f4579f */
225  -1.1193166733e+01, /* 0xc1331736 */
226  -3.2336456776e+00, /* 0xc04ef40d */
227 };
228 static const float pS2[5] = {
229   2.2220300674e+01, /* 0x41b1c32d */
230   1.3620678711e+02, /* 0x430834f0 */
231   2.7047027588e+02, /* 0x43873c32 */
232   1.5387539673e+02, /* 0x4319e01a */
233   1.4657617569e+01, /* 0x416a859a */
234 };
235 
236 static float
237 pzerof(float x)
238 {
239 	const float *p,*q;
240 	float z,r,s;
241 	int32_t ix;
242 
243 	p = q = 0;
244 	GET_FLOAT_WORD(ix,x);
245 	ix &= 0x7fffffff;
246 	if(ix>=0x41000000)     {p = pR8; q= pS8;}
247 	else if(ix>=0x40f71c58){p = pR5; q= pS5;}
248 	else if(ix>=0x4036db68){p = pR3; q= pS3;}
249 	else if(ix>=0x40000000){p = pR2; q= pS2;}
250 	z = one/(x*x);
251 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
252 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
253 	return one+ r/s;
254 }
255 
256 
257 /* For x >= 8, the asymptotic expansions of qzero is
258  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
259  * We approximate pzero by
260  * 	qzero(x) = s*(-1.25 + (R/S))
261  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
262  * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
263  * and
264  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
265  */
266 static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
267   0.0000000000e+00, /* 0x00000000 */
268   7.3242187500e-02, /* 0x3d960000 */
269   1.1768206596e+01, /* 0x413c4a93 */
270   5.5767340088e+02, /* 0x440b6b19 */
271   8.8591972656e+03, /* 0x460a6cca */
272   3.7014625000e+04, /* 0x471096a0 */
273 };
274 static const float qS8[6] = {
275   1.6377603149e+02, /* 0x4323c6aa */
276   8.0983447266e+03, /* 0x45fd12c2 */
277   1.4253829688e+05, /* 0x480b3293 */
278   8.0330925000e+05, /* 0x49441ed4 */
279   8.4050156250e+05, /* 0x494d3359 */
280  -3.4389928125e+05, /* 0xc8a7eb69 */
281 };
282 
283 static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
284   1.8408595828e-11, /* 0x2da1ec79 */
285   7.3242180049e-02, /* 0x3d95ffff */
286   5.8356351852e+00, /* 0x40babd86 */
287   1.3511157227e+02, /* 0x43071c90 */
288   1.0272437744e+03, /* 0x448067cd */
289   1.9899779053e+03, /* 0x44f8bf4b */
290 };
291 static const float qS5[6] = {
292   8.2776611328e+01, /* 0x42a58da0 */
293   2.0778142090e+03, /* 0x4501dd07 */
294   1.8847289062e+04, /* 0x46933e94 */
295   5.6751113281e+04, /* 0x475daf1d */
296   3.5976753906e+04, /* 0x470c88c1 */
297  -5.3543427734e+03, /* 0xc5a752be */
298 };
299 
300 static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
301   4.3774099900e-09, /* 0x3196681b */
302   7.3241114616e-02, /* 0x3d95ff70 */
303   3.3442313671e+00, /* 0x405607e3 */
304   4.2621845245e+01, /* 0x422a7cc5 */
305   1.7080809021e+02, /* 0x432acedf */
306   1.6673394775e+02, /* 0x4326bbe4 */
307 };
308 static const float qS3[6] = {
309   4.8758872986e+01, /* 0x42430916 */
310   7.0968920898e+02, /* 0x44316c1c */
311   3.7041481934e+03, /* 0x4567825f */
312   6.4604252930e+03, /* 0x45c9e367 */
313   2.5163337402e+03, /* 0x451d4557 */
314  -1.4924745178e+02, /* 0xc3153f59 */
315 };
316 
317 static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
318   1.5044444979e-07, /* 0x342189db */
319   7.3223426938e-02, /* 0x3d95f62a */
320   1.9981917143e+00, /* 0x3fffc4bf */
321   1.4495602608e+01, /* 0x4167edfd */
322   3.1666231155e+01, /* 0x41fd5471 */
323   1.6252708435e+01, /* 0x4182058c */
324 };
325 static const float qS2[6] = {
326   3.0365585327e+01, /* 0x41f2ecb8 */
327   2.6934811401e+02, /* 0x4386ac8f */
328   8.4478375244e+02, /* 0x44533229 */
329   8.8293585205e+02, /* 0x445cbbe5 */
330   2.1266638184e+02, /* 0x4354aa98 */
331  -5.3109550476e+00, /* 0xc0a9f358 */
332 };
333 
334 static float
335 qzerof(float x)
336 {
337 	const float *p,*q;
338 	float s,r,z;
339 	int32_t ix;
340 
341 	p = q = 0;
342 	GET_FLOAT_WORD(ix,x);
343 	ix &= 0x7fffffff;
344 	if(ix>=0x41000000)     {p = qR8; q= qS8;}
345 	else if(ix>=0x40f71c58){p = qR5; q= qS5;}
346 	else if(ix>=0x4036db68){p = qR3; q= qS3;}
347 	else if(ix>=0x40000000){p = qR2; q= qS2;}
348 	z = one/(x*x);
349 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
350 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
351 	return (-(float).125 + r/s)/x;
352 }
353