xref: /minix/minix/drivers/storage/floppy/floppy.c (revision 00e393ca)
1 /* This file contains the device dependent part of the driver for the Floppy
2  * Disk Controller (FDC) using the NEC PD765 chip.
3  *
4  * The file contains two entry points:
5  *
6  *   floppy_task:   main entry when system is brought up
7  *
8  * Changes:
9  *   Sep 11, 2005   code cleanup (Andy Tanenbaum)
10  *   Dec 01, 2004   floppy driver moved to user-space (Jorrit N. Herder)
11  *   Sep 15, 2004   sync alarms/ local timer management  (Jorrit N. Herder)
12  *   Aug 12, 2003   null seek no interrupt fix  (Mike Haertel)
13  *   May 14, 2000   d-d/i rewrite  (Kees J. Bot)
14  *   Apr 04, 1992   device dependent/independent split  (Kees J. Bot)
15  *   Mar 27, 1992   last details on density checking  (Kees J. Bot)
16  *   Feb 14, 1992   check drive density on opens only  (Andy Tanenbaum)
17  *	     1991   len[] / motors / reset / step rate / ...  (Bruce Evans)
18  *   May 13, 1991   renovated the errors loop  (Don Chapman)
19  *           1989   I/O vector to keep up with 1-1 interleave  (Bruce Evans)
20  *   Jan 06, 1988   allow 1.44 MB diskettes  (Al Crew)
21  *   Nov 28, 1986   better resetting for 386  (Peter Kay)
22  *   Oct 27, 1986   fdc_results fixed for 8 MHz  (Jakob Schripsema)
23  */
24 
25 #include "floppy.h"
26 #include <minix/timers.h>
27 #include <machine/diskparm.h>
28 #include <minix/sysutil.h>
29 #include <minix/syslib.h>
30 #include <minix/endpoint.h>
31 #include <stdio.h>
32 
33 /* I/O Ports used by floppy disk task. */
34 #define DOR            0x3F2	/* motor drive control bits */
35 #define FDC_STATUS     0x3F4	/* floppy disk controller status register */
36 #define FDC_DATA       0x3F5	/* floppy disk controller data register */
37 #define FDC_RATE       0x3F7	/* transfer rate register */
38 #define DMA_ADDR       0x004	/* port for low 16 bits of DMA address */
39 #define DMA_TOP        0x081	/* port for top 8 bits of 24-bit DMA addr */
40 #define DMA_COUNT      0x005	/* port for DMA count (count =  bytes - 1) */
41 #define DMA_FLIPFLOP   0x00C	/* DMA byte pointer flip-flop */
42 #define DMA_MODE       0x00B	/* DMA mode port */
43 #define DMA_INIT       0x00A	/* DMA init port */
44 #define DMA_RESET_VAL  0x006
45 
46 #define DMA_ADDR_MASK  0xFFFFFF	/* mask to verify DMA address is 24-bit */
47 
48 /* Status registers returned as result of operation. */
49 #define ST0             0x00	/* status register 0 */
50 #define ST1             0x01	/* status register 1 */
51 #define ST2             0x02	/* status register 2 */
52 #define ST3             0x00	/* status register 3 (return by DRIVE_SENSE) */
53 #define ST_CYL          0x03	/* slot where controller reports cylinder */
54 #define ST_HEAD         0x04	/* slot where controller reports head */
55 #define ST_SEC          0x05	/* slot where controller reports sector */
56 #define ST_PCN          0x01	/* slot where controller reports present cyl */
57 
58 /* Fields within the I/O ports. */
59 /* Main status register. */
60 #define CTL_BUSY        0x10	/* bit is set when read or write in progress */
61 #define DIRECTION       0x40	/* bit is set when reading data reg is valid */
62 #define MASTER          0x80	/* bit is set when data reg can be accessed */
63 
64 /* Digital output port (DOR). */
65 #define MOTOR_SHIFT        4	/* high 4 bits control the motors in DOR */
66 #define ENABLE_INT      0x0C	/* used for setting DOR port */
67 
68 /* ST0. */
69 #define ST0_BITS_TRANS  0xD8	/* check 4 bits of status */
70 #define TRANS_ST0       0x00	/* 4 bits of ST0 for READ/WRITE */
71 #define ST0_BITS_SEEK   0xF8	/* check top 5 bits of seek status */
72 #define SEEK_ST0        0x20	/* top 5 bits of ST0 for SEEK */
73 
74 /* ST1. */
75 #define BAD_SECTOR      0x05	/* if these bits are set in ST1, recalibrate */
76 #define WRITE_PROTECT   0x02	/* bit is set if diskette is write protected */
77 
78 /* ST2. */
79 #define BAD_CYL         0x1F	/* if any of these bits are set, recalibrate */
80 
81 /* ST3 (not used). */
82 #define ST3_FAULT       0x80	/* if this bit is set, drive is sick */
83 #define ST3_WR_PROTECT  0x40	/* set when diskette is write protected */
84 #define ST3_READY       0x20	/* set when drive is ready */
85 
86 /* Floppy disk controller command bytes. */
87 #define FDC_SEEK        0x0F	/* command the drive to seek */
88 #define FDC_READ        0xE6	/* command the drive to read */
89 #define FDC_WRITE       0xC5	/* command the drive to write */
90 #define FDC_SENSE       0x08	/* command the controller to tell its status */
91 #define FDC_RECALIBRATE 0x07	/* command the drive to go to cyl 0 */
92 #define FDC_SPECIFY     0x03	/* command the drive to accept params */
93 #define FDC_READ_ID     0x4A	/* command the drive to read sector identity */
94 #define FDC_FORMAT      0x4D	/* command the drive to format a track */
95 
96 /* DMA channel commands. */
97 #define DMA_READ        0x46	/* DMA read opcode */
98 #define DMA_WRITE       0x4A	/* DMA write opcode */
99 
100 /* Parameters for the disk drive. */
101 #define HC_SIZE         2880	/* # sectors on largest legal disk (1.44MB) */
102 #define NR_HEADS        0x02	/* two heads (i.e., two tracks/cylinder) */
103 #define MAX_SECTORS	  18	/* largest # sectors per track */
104 #define DTL             0xFF	/* determines data length (sector size) */
105 #define SPEC2           0x02	/* second parameter to SPECIFY */
106 #define MOTOR_OFF (3*system_hz)	/* how long to wait before stopping motor */
107 #define WAKEUP	  (2*system_hz)	/* timeout on I/O, FDC won't quit. */
108 
109 /* Error codes */
110 #define ERR_SEEK         (-1)	/* bad seek */
111 #define ERR_TRANSFER     (-2)	/* bad transfer */
112 #define ERR_STATUS       (-3)	/* something wrong when getting status */
113 #define ERR_READ_ID      (-4)	/* bad read id */
114 #define ERR_RECALIBRATE  (-5)	/* recalibrate didn't work properly */
115 #define ERR_DRIVE        (-6)	/* something wrong with a drive */
116 #define ERR_WR_PROTECT   (-7)	/* diskette is write protected */
117 #define ERR_TIMEOUT      (-8)	/* interrupt timeout */
118 
119 /* No retries on some errors. */
120 #define err_no_retry(err)	((err) <= ERR_WR_PROTECT)
121 
122 /* Encoding of drive type in minor device number. */
123 #define DEV_TYPE_BITS   0x7C	/* drive type + 1, if nonzero */
124 #define DEV_TYPE_SHIFT     2	/* right shift to normalize type bits */
125 #define FORMAT_DEV_BIT  0x80	/* bit in minor to turn write into format */
126 
127 /* Miscellaneous. */
128 #define MAX_ERRORS         6	/* how often to try rd/wt before quitting */
129 #define MAX_RESULTS        7	/* max number of bytes controller returns */
130 #define NR_DRIVES          2	/* maximum number of drives */
131 #define DIVISOR          128	/* used for sector size encoding */
132 #define SECTOR_SIZE_CODE   2	/* code to say "512" to the controller */
133 #define TIMEOUT_MICROS   5000000L	/* microseconds waiting for FDC */
134 #define NT                 7	/* number of diskette/drive combinations */
135 #define UNCALIBRATED       0	/* drive needs to be calibrated at next use */
136 #define CALIBRATED         1	/* no calibration needed */
137 #define BASE_SECTOR        1	/* sectors are numbered starting at 1 */
138 #define NO_SECTOR ((unsigned) -1)	/* current sector unknown */
139 #define NO_CYL		 (-1)	/* current cylinder unknown, must seek */
140 #define NO_DENS		 100	/* current media unknown */
141 #define BSY_IDLE	   0	/* busy doing nothing */
142 #define BSY_IO		   1	/* busy doing I/O */
143 #define BSY_WAKEN	   2	/* got a wakeup call */
144 
145 /* Seven combinations of diskette/drive are supported.
146  *
147  * # Diskette Drive  Sectors  Tracks   Rotation Data-rate  Comment
148  * 0   360K    360K     9       40     300 RPM  250 kbps   Standard PC DSDD
149  * 1   1.2M    1.2M    15       80     360 RPM  500 kbps   AT disk in AT drive
150  * 2   360K    720K     9       40     300 RPM  250 kbps   Quad density PC
151  * 3   720K    720K     9       80     300 RPM  250 kbps   Toshiba, et al.
152  * 4   360K    1.2M     9       40     360 RPM  300 kbps   PC disk in AT drive
153  * 5   720K    1.2M     9       80     360 RPM  300 kbps   Toshiba in AT drive
154  * 6   1.44M   1.44M   18	80     300 RPM  500 kbps   PS/2, et al.
155  *
156  * In addition, 720K diskettes can be read in 1.44MB drives, but that does
157  * not need a different set of parameters.  This combination uses
158  *
159  * 3   720K    1.44M    9       80     300 RPM  250 kbps   PS/2, et al.
160  */
161 static struct density {
162 	u8_t	secpt;		/* sectors per track */
163 	u8_t	cyls;		/* tracks per side */
164 	u8_t	steps;		/* steps per cylinder (2 = double step) */
165 	u8_t	test;		/* sector to try for density test */
166 	u8_t	rate;		/* data rate (2=250, 1=300, 0=500 kbps) */
167 	clock_t	start_ms;	/* motor start (milliseconds) */
168 	u8_t	gap;		/* gap size */
169 	u8_t	spec1;		/* first specify byte (SRT/HUT) */
170 } fdensity[NT] = {
171 	{  9, 40, 1, 4*9, 2, 500, 0x2A, 0xDF },	/*  360K / 360K  */
172 	{ 15, 80, 1,  14, 0, 500, 0x1B, 0xDF },	/*  1.2M / 1.2M  */
173 	{  9, 40, 2, 2*9, 2, 500, 0x2A, 0xDF },	/*  360K / 720K  */
174 	{  9, 80, 1, 4*9, 2, 750, 0x2A, 0xDF },	/*  720K / 720K  */
175 	{  9, 40, 2, 2*9, 1, 500, 0x23, 0xDF },	/*  360K / 1.2M  */
176 	{  9, 80, 1, 4*9, 1, 500, 0x23, 0xDF },	/*  720K / 1.2M  */
177 	{ 18, 80, 1,  17, 0, 750, 0x1B, 0xCF },	/* 1.44M / 1.44M */
178 };
179 
180 /* The following table is used with the test_sector array to recognize a
181  * drive/floppy combination.  The sector to test has been determined by
182  * looking at the differences in gap size, sectors/track, and double stepping.
183  * This means that types 0 and 3 can't be told apart, only the motor start
184  * time differs.  If a read test succeeds then the drive is limited to the
185  * set of densities it can support to avoid unnecessary tests in the future.
186  */
187 
188 #define b(d)	(1 << (d))	/* bit for density d. */
189 
190 static struct test_order {
191 	u8_t	t_density;	/* floppy/drive type */
192 	u8_t	t_class;	/* limit drive to this class of densities */
193 } test_order[NT-1] = {
194 	{ 6,  b(3) | b(6) },		/* 1.44M  {720K, 1.44M} */
195 	{ 1,  b(1) | b(4) | b(5) },	/* 1.2M   {1.2M, 360K, 720K} */
196 	{ 3,  b(2) | b(3) | b(6) },	/* 720K   {360K, 720K, 1.44M} */
197 	{ 4,  b(1) | b(4) | b(5) },	/* 360K   {1.2M, 360K, 720K} */
198 	{ 5,  b(1) | b(4) | b(5) },	/* 720K   {1.2M, 360K, 720K} */
199 	{ 2,  b(2) | b(3) },		/* 360K   {360K, 720K} */
200 	/* Note that type 0 is missing, type 3 can read/write it too, which is
201 	 * why the type 3 parameters have been pessimized to be like type 0.
202 	 */
203 };
204 
205 /* Variables. */
206 static struct floppy {		/* main drive struct, one entry per drive */
207   unsigned fl_curcyl;		/* current cylinder */
208   unsigned fl_hardcyl;		/* hardware cylinder, as opposed to: */
209   unsigned fl_cylinder;		/* cylinder number addressed */
210   unsigned fl_sector;		/* sector addressed */
211   unsigned fl_head;		/* head number addressed */
212   char fl_calibration;		/* CALIBRATED or UNCALIBRATED */
213   u8_t fl_density;		/* NO_DENS = ?, 0 = 360K; 1 = 360K/1.2M; etc.*/
214   u8_t fl_class;		/* bitmap for possible densities */
215   minix_timer_t fl_tmr_stop;		/* timer to stop motor */
216   struct device fl_geom;	/* Geometry of the drive */
217   struct device fl_part[NR_PARTITIONS];  /* partition's base & size */
218 } floppy[NR_DRIVES];
219 
220 static int irq_hook_id;	/* id of irq hook at the kernel */
221 int motor_status;	/* bitmap of current motor status */
222 static int need_reset;		/* set to 1 when controller must be reset */
223 unsigned f_drive;	/* selected drive */
224 static unsigned f_device;	/* selected minor device */
225 static struct floppy *f_fp;	/* current drive */
226 static struct density *f_dp;	/* current density parameters */
227 static struct density *prev_dp;/* previous density parameters */
228 static unsigned f_sectors;	/* equal to f_dp->secpt (needed a lot) */
229 u16_t f_busy;		/* BSY_IDLE, BSY_IO, BSY_WAKEN */
230 static struct device *f_dv;	/* device's base and size */
231 static struct disk_parameter_s fmt_param; /* parameters for format */
232 static u8_t f_results[MAX_RESULTS];/* the controller can give lots of output */
233 
234 /* The floppy uses various timers. These are managed by the floppy driver
235  * itself, because only a single synchronous alarm is available per process.
236  * Besides the 'f_tmr_timeout' timer below, the floppy structure for each
237  * floppy disk drive contains a 'fl_tmr_stop' timer.
238  */
239 static minix_timer_t f_tmr_timeout;		/* timer for various timeouts */
240 static u32_t system_hz;		/* system clock frequency */
241 static void f_expire_tmrs(clock_t stamp);
242 static void stop_motor(int arg);
243 static void f_timeout(int arg);
244 
245 static struct device *f_prepare(devminor_t device);
246 static struct device *f_part(devminor_t minor);
247 static void f_cleanup(void);
248 static ssize_t f_transfer(devminor_t minor, int do_write, u64_t position,
249 	endpoint_t proc_nr, iovec_t *iov, unsigned int nr_req, int flags);
250 static int dma_setup(int do_write);
251 static void start_motor(void);
252 static int seek(void);
253 static int fdc_transfer(int do_write);
254 static int fdc_results(void);
255 static int fdc_command(const u8_t *cmd, int len);
256 static void fdc_out(int val);
257 static int recalibrate(void);
258 static void f_reset(void);
259 static int f_intr_wait(void);
260 static int read_id(void);
261 static int f_do_open(devminor_t minor, int access);
262 static int f_do_close(devminor_t minor);
263 static int test_read(int density);
264 static void f_geometry(devminor_t minor, struct part_geom *entry);
265 
266 /* Entry points to this driver. */
267 static struct blockdriver f_dtab = {
268   .bdr_type	= BLOCKDRIVER_TYPE_DISK,	/* handle partition requests */
269   .bdr_open	= f_do_open,	/* open request, sense type of diskette */
270   .bdr_close	= f_do_close,	/* nothing on a close */
271   .bdr_transfer	= f_transfer,	/* do the I/O */
272   .bdr_cleanup	= f_cleanup,	/* cleanup before sending reply to caller */
273   .bdr_part	= f_part,	/* return partition information structure */
274   .bdr_geometry	= f_geometry,	/* tell the geometry of the diskette */
275   .bdr_alarm	= f_expire_tmrs /* expire all alarm timers */
276 };
277 
278 static char *floppy_buf;
279 static phys_bytes floppy_buf_phys;
280 
281 /* SEF functions and variables. */
282 static void sef_local_startup(void);
283 static int sef_cb_init_fresh(int type, sef_init_info_t *info);
284 static void sef_cb_signal_handler(int signo);
285 EXTERN int sef_cb_lu_prepare(int state);
286 EXTERN int sef_cb_lu_state_isvalid(int state, int flags);
287 EXTERN void sef_cb_lu_state_dump(int state);
288 int last_was_write;
289 
290 /*===========================================================================*
291  *				floppy_task				     *
292  *===========================================================================*/
293 int main(void)
294 {
295   /* SEF local startup. */
296   sef_local_startup();
297 
298   /* Call the generic receive loop. */
299   blockdriver_task(&f_dtab);
300 
301   return(OK);
302 }
303 
304 /*===========================================================================*
305  *			       sef_local_startup			     *
306  *===========================================================================*/
307 static void sef_local_startup(void)
308 {
309   /* Register init callbacks. */
310   sef_setcb_init_fresh(sef_cb_init_fresh);
311 
312   /* Register live update callbacks. */
313   sef_setcb_lu_prepare(sef_cb_lu_prepare);
314   sef_setcb_lu_state_isvalid(sef_cb_lu_state_isvalid);
315   sef_setcb_lu_state_dump(sef_cb_lu_state_dump);
316 
317   /* Register signal callbacks. */
318   sef_setcb_signal_handler(sef_cb_signal_handler);
319 
320   /* Let SEF perform startup. */
321   sef_startup();
322 }
323 
324 /*===========================================================================*
325  *		            sef_cb_init_fresh                                *
326  *===========================================================================*/
327 static int sef_cb_init_fresh(int type, sef_init_info_t *UNUSED(info))
328 {
329 /* Initialize the floppy driver. */
330   struct floppy *fp;
331   int s;
332 
333   /* Initialize the floppy structure and the timers. */
334   system_hz = sys_hz();
335 
336   if(!(floppy_buf = alloc_contig(2*DMA_BUF_SIZE,
337 	AC_LOWER16M | AC_ALIGN4K, &floppy_buf_phys)))
338   	panic("couldn't allocate dma buffer");
339 
340   init_timer(&f_tmr_timeout);
341 
342   for (fp = &floppy[0]; fp < &floppy[NR_DRIVES]; fp++) {
343 	fp->fl_curcyl = NO_CYL;
344 	fp->fl_density = NO_DENS;
345 	fp->fl_class = ~0;
346 	init_timer(&fp->fl_tmr_stop);
347   }
348 
349   /* Set IRQ policy, only request notifications, do not automatically
350    * reenable interrupts. ID return on interrupt is the IRQ line number.
351    */
352   irq_hook_id = FLOPPY_IRQ;
353   if ((s=sys_irqsetpolicy(FLOPPY_IRQ, 0, &irq_hook_id )) != OK)
354   	panic("Couldn't set IRQ policy: %d", s);
355   if ((s=sys_irqenable(&irq_hook_id)) != OK)
356   	panic("Couldn't enable IRQs: %d", s);
357 
358   /* Announce we are up! */
359   blockdriver_announce(type);
360 
361   return(OK);
362 }
363 
364 /*===========================================================================*
365  *		           sef_cb_signal_handler                             *
366  *===========================================================================*/
367 static void sef_cb_signal_handler(int signo)
368 {
369   int s;
370 
371   /* Only check for termination signal, ignore anything else. */
372   if (signo != SIGTERM) return;
373 
374   /* Stop all activity and cleanly exit with the system. */
375   if ((s=sys_outb(DOR, ENABLE_INT)) != OK)
376       panic("Sys_outb failed: %d", s);
377   exit(0);
378 }
379 
380 /*===========================================================================*
381  *				f_expire_tmrs				     *
382  *===========================================================================*/
383 static void f_expire_tmrs(clock_t stamp)
384 {
385 /* A synchronous alarm message was received. Call the watchdog function for
386  * each expired timer, if any.
387  */
388 
389   expire_timers(stamp);
390 }
391 
392 /*===========================================================================*
393  *				f_prepare				     *
394  *===========================================================================*/
395 static struct device *f_prepare(devminor_t device)
396 {
397 /* Prepare for I/O on a device. */
398 
399   f_device = device;
400   f_drive = device & ~(DEV_TYPE_BITS | FORMAT_DEV_BIT);
401   if (device < 0 || f_drive >= NR_DRIVES) return(NULL);
402 
403   f_fp = &floppy[f_drive];
404   f_dv = &f_fp->fl_geom;
405   if (f_fp->fl_density < NT) {
406 	f_dp = &fdensity[f_fp->fl_density];
407 	f_sectors = f_dp->secpt;
408 	f_fp->fl_geom.dv_size = (u64_t)(NR_HEADS * f_sectors * f_dp->cyls) *
409 								SECTOR_SIZE;
410   }
411 
412   /* A partition? */
413   if ((device &= DEV_TYPE_BITS) >= MINOR_fd0p0)
414 	f_dv = &f_fp->fl_part[(device - MINOR_fd0p0) >> DEV_TYPE_SHIFT];
415 
416   return f_dv;
417 }
418 
419 /*===========================================================================*
420  *				f_part					     *
421  *===========================================================================*/
422 static struct device *f_part(devminor_t minor)
423 {
424 /* Return a pointer to the partition information of the given minor device. */
425 
426   return f_prepare(minor);
427 }
428 
429 /*===========================================================================*
430  *				f_cleanup				     *
431  *===========================================================================*/
432 static void f_cleanup(void)
433 {
434   /* Start a timer to turn the motor off in a few seconds. */
435   set_timer(&f_fp->fl_tmr_stop, MOTOR_OFF, stop_motor, f_drive);
436 
437   /* Exiting the floppy driver, so forget where we are. */
438   f_fp->fl_sector = NO_SECTOR;
439 }
440 
441 /*===========================================================================*
442  *				f_transfer				     *
443  *===========================================================================*/
444 static ssize_t f_transfer(
445   devminor_t minor,		/* minor device number */
446   int do_write,			/* read or write? */
447   u64_t pos64,			/* offset on device to read or write */
448   endpoint_t proc_nr,		/* process doing the request */
449   iovec_t *iov,			/* pointer to read or write request vector */
450   unsigned int nr_req,		/* length of request vector */
451   int UNUSED(flags)		/* transfer flags */
452 )
453 {
454 #define NO_OFFSET -1
455   struct floppy *fp;
456   iovec_t *iop, *iov_end = iov + nr_req;
457   int s, r, errors, nr;
458   unsigned block, nbytes, count, chunk, sector;
459   u64_t dv_size;
460   vir_bytes user_offset, iov_offset = 0, iop_offset;
461   unsigned long position;
462   signed long uoffsets[MAX_SECTORS], *up;
463   cp_grant_id_t ugrants[MAX_SECTORS], *ug = NULL;
464   u8_t cmd[3];
465   ssize_t total;
466 
467   if (f_prepare(minor) == NULL) return(ENXIO);
468 
469   fp = f_fp;
470   dv_size = f_dv->dv_size;
471 
472   if (ex64hi(pos64) != 0)
473 	return OK;	/* Way beyond EOF */
474   position= pos64;
475   total = 0;
476 
477   /* Record the direction of the last transfer performed. */
478   last_was_write = do_write;
479 
480   /* Check disk address. */
481   if ((position & SECTOR_MASK) != 0) return(EINVAL);
482 
483 #if 0	/* XXX hack to create a disk driver that crashes */
484   { static int count= 0; if (++count > 10) {
485 	printf("floppy: time to die\n"); *(int *)-1= 42;
486   }}
487 #endif
488 
489   errors = 0;
490   while (nr_req > 0) {
491 	/* How many bytes to transfer? */
492 	nbytes = 0;
493 	for (iop = iov; iop < iov_end; iop++) nbytes += iop->iov_size;
494 
495 	/* Which block on disk and how close to EOF? */
496 	if (position >= dv_size) return(total);		/* At EOF */
497 	if (position + nbytes > dv_size) nbytes = dv_size - position;
498 	block = (unsigned long)((f_dv->dv_base + position) / SECTOR_SIZE);
499 
500 	if ((nbytes & SECTOR_MASK) != 0) return(EINVAL);
501 
502 	/* Using a formatting device? */
503 	if (f_device & FORMAT_DEV_BIT) {
504 		if (!do_write) return(EIO);
505 		if (iov->iov_size < SECTOR_SIZE + sizeof(fmt_param))
506 			return(EINVAL);
507 
508 		if(proc_nr != SELF) {
509 		   s=sys_safecopyfrom(proc_nr, iov->iov_addr,
510 			SECTOR_SIZE + iov_offset, (vir_bytes) &fmt_param,
511 			(phys_bytes) sizeof(fmt_param));
512 		   if(s != OK)
513 			panic("sys_safecopyfrom failed: %d", s);
514 		} else {
515 			memcpy(&fmt_param, (void *) (iov->iov_addr +
516 				SECTOR_SIZE + iov_offset),
517 				(phys_bytes) sizeof(fmt_param));
518 		}
519 
520 		/* Check that the number of sectors in the data is reasonable,
521 		 * to avoid division by 0.  Leave checking of other data to
522 		 * the FDC.
523 		 */
524 		if (fmt_param.sectors_per_cylinder == 0) return(EIO);
525 
526 		/* Only the first sector of the parameters now needed. */
527 		iov->iov_size = nbytes = SECTOR_SIZE;
528 	}
529 
530 	/* Only try one sector if there were errors. */
531 	if (errors > 0) nbytes = SECTOR_SIZE;
532 
533 	/* Compute cylinder and head of the track to access. */
534 	fp->fl_cylinder = block / (NR_HEADS * f_sectors);
535 	fp->fl_hardcyl = fp->fl_cylinder * f_dp->steps;
536 	fp->fl_head = (block % (NR_HEADS * f_sectors)) / f_sectors;
537 
538 	/* For each sector on this track compute the user address it is to
539 	 * go or to come from.
540 	 */
541 	for (up = uoffsets; up < uoffsets + MAX_SECTORS; up++) *up = NO_OFFSET;
542 	count = 0;
543 	iop = iov;
544 	sector = block % f_sectors;
545 	nr = 0;
546 	iop_offset = iov_offset;
547 	for (;;) {
548 		nr++;
549 		user_offset = iop_offset;
550 		chunk = iop->iov_size;
551 		if ((chunk & SECTOR_MASK) != 0) return(EINVAL);
552 
553 		while (chunk > 0) {
554 			ugrants[sector] = iop->iov_addr;
555 			uoffsets[sector++] = user_offset;
556 			chunk -= SECTOR_SIZE;
557 			user_offset += SECTOR_SIZE;
558 			count += SECTOR_SIZE;
559 			if (sector == f_sectors || count == nbytes)
560 				goto track_set_up;
561 		}
562 		iop_offset = 0;
563 		iop++;
564 	}
565   track_set_up:
566 
567 	/* First check to see if a reset is needed. */
568 	if (need_reset) f_reset();
569 
570 	/* See if motor is running; if not, turn it on and wait. */
571 	start_motor();
572 
573 	/* Set the stepping rate and data rate */
574 	if (f_dp != prev_dp) {
575 		cmd[0] = FDC_SPECIFY;
576 		cmd[1] = f_dp->spec1;
577 		cmd[2] = SPEC2;
578 		(void) fdc_command(cmd, 3);
579 		if ((s=sys_outb(FDC_RATE, f_dp->rate)) != OK)
580 			panic("Sys_outb failed: %d", s);
581 		prev_dp = f_dp;
582 	}
583 
584 	/* If we are going to a new cylinder, perform a seek. */
585 	r = seek();
586 
587 	/* Avoid read_id() if we don't plan to read much. */
588 	if (fp->fl_sector == NO_SECTOR && count < (6 * SECTOR_SIZE))
589 		fp->fl_sector = 0;
590 
591 	for (nbytes = 0; nbytes < count; nbytes += SECTOR_SIZE) {
592 		if (fp->fl_sector == NO_SECTOR) {
593 			/* Find out what the current sector is.  This often
594 			 * fails right after a seek, so try it twice.
595 			 */
596 			if (r == OK && read_id() != OK) r = read_id();
597 		}
598 
599 		/* Look for the next job in uoffsets[] */
600 		if (r == OK) {
601 			for (;;) {
602 				if (fp->fl_sector >= f_sectors)
603 					fp->fl_sector = 0;
604 
605 				up = &uoffsets[fp->fl_sector];
606 				ug = &ugrants[fp->fl_sector];
607 				if (*up != NO_OFFSET) break;
608 				fp->fl_sector++;
609 			}
610 
611 			if (do_write) {
612 				/* Copy the user bytes to the DMA buffer. */
613 				if(proc_nr != SELF) {
614 				   s=sys_safecopyfrom(proc_nr, *ug, *up,
615 					(vir_bytes) floppy_buf,
616 					 (phys_bytes) SECTOR_SIZE);
617 				   if(s != OK)
618 					panic("sys_safecopyfrom failed: %d", s);
619 				} else {
620 				   memcpy(floppy_buf, (void *) (*ug + *up), SECTOR_SIZE);
621 				}
622 			}
623 		}
624 
625 		/* Set up the DMA chip and perform the transfer. */
626 		if (r == OK) {
627 			if (dma_setup(do_write) != OK) {
628 				/* This can only fail for addresses above 16MB
629 				 * that cannot be handled by the controller,
630  				 * because it uses 24-bit addressing.
631 				 */
632 				return(EIO);
633 			}
634 			r = fdc_transfer(do_write);
635 		}
636 
637 		if (r == OK && !do_write) {
638 			/* Copy the DMA buffer to user space. */
639 			if(proc_nr != SELF) {
640 		   	   s=sys_safecopyto(proc_nr, *ug, *up,
641 				(vir_bytes) floppy_buf,
642 			  	 (phys_bytes) SECTOR_SIZE);
643 			if(s != OK)
644 				panic("sys_safecopyto failed: %d", s);
645 			} else {
646 			   memcpy((void *) (*ug + *up), floppy_buf, SECTOR_SIZE);
647 			}
648 		}
649 
650 		if (r != OK) {
651 			/* Don't retry if write protected or too many errors. */
652 			if (err_no_retry(r) || ++errors == MAX_ERRORS) {
653 				return(EIO);
654 			}
655 
656 			/* Recalibrate if halfway. */
657 			if (errors == MAX_ERRORS / 2)
658 				fp->fl_calibration = UNCALIBRATED;
659 
660 			nbytes = 0;
661 			break;		/* retry */
662 		}
663 	}
664 
665 	/* Book the bytes successfully transferred. */
666 	position += nbytes;
667 	total += nbytes;
668 	while (nbytes > 0) {
669 		if (nbytes < iov->iov_size) {
670 			/* Not done with this one yet. */
671 			iov_offset += nbytes;
672 			iov->iov_size -= nbytes;
673 			break;
674 		}
675 		iov_offset = 0;
676 		nbytes -= iov->iov_size;
677 		iov->iov_size = 0;
678 		iov++;
679 		nr_req--;
680 	}
681   }
682   return(total);
683 }
684 
685 /*===========================================================================*
686  *				dma_setup				     *
687  *===========================================================================*/
688 static int dma_setup(int do_write)
689 {
690 /* The IBM PC can perform DMA operations by using the DMA chip.  To use it,
691  * the DMA (Direct Memory Access) chip is loaded with the 20-bit memory address
692  * to be read from or written to, the byte count minus 1, and a read or write
693  * opcode.  This routine sets up the DMA chip.  Note that the chip is not
694  * capable of doing a DMA across a 64K boundary (e.g., you can't read a
695  * 512-byte block starting at physical address 65520).
696  *
697  * Warning! Also note that it's not possible to do DMA above 16 MB because
698  * the ISA bus uses 24-bit addresses. Addresses above 16 MB therefore will
699  * be interpreted modulo 16 MB, dangerously overwriting arbitrary memory.
700  * A check here denies the I/O if the address is out of range.
701  */
702   pvb_pair_t byte_out[9];
703   int s;
704 
705   /* First check the DMA memory address not to exceed maximum. */
706   if (floppy_buf_phys != (floppy_buf_phys & DMA_ADDR_MASK)) {
707 	printf("floppy: DMA denied because address out of range\n");
708 	return(EIO);
709   }
710 
711   /* Set up the DMA registers.  (The comment on the reset is a bit strong,
712    * it probably only resets the floppy channel.)
713    */
714   pv_set(byte_out[0], DMA_INIT, DMA_RESET_VAL);	/* reset the dma controller */
715   pv_set(byte_out[1], DMA_FLIPFLOP, 0);		/* write anything to reset it */
716   pv_set(byte_out[2], DMA_MODE, do_write ? DMA_WRITE : DMA_READ);
717   pv_set(byte_out[3], DMA_ADDR, (unsigned) (floppy_buf_phys >>  0) & 0xff);
718   pv_set(byte_out[4], DMA_ADDR, (unsigned) (floppy_buf_phys >>  8) & 0xff);
719   pv_set(byte_out[5], DMA_TOP,  (unsigned) (floppy_buf_phys >> 16) & 0xff);
720   pv_set(byte_out[6], DMA_COUNT, (((SECTOR_SIZE - 1) >> 0)) & 0xff);
721   pv_set(byte_out[7], DMA_COUNT, (SECTOR_SIZE - 1) >> 8);
722   pv_set(byte_out[8], DMA_INIT, 2);		/* some sort of enable */
723 
724   if ((s=sys_voutb(byte_out, 9)) != OK)
725   	panic("Sys_voutb in dma_setup() failed: %d", s);
726   return(OK);
727 }
728 
729 /*===========================================================================*
730  *				start_motor				     *
731  *===========================================================================*/
732 static void start_motor(void)
733 {
734 /* Control of the floppy disk motors is a big pain.  If a motor is off, you
735  * have to turn it on first, which takes 1/2 second.  You can't leave it on
736  * all the time, since that would wear out the diskette.  However, if you turn
737  * the motor off after each operation, the system performance will be awful.
738  * The compromise used here is to leave it on for a few seconds after each
739  * operation.  If a new operation is started in that interval, it need not be
740  * turned on again.  If no new operation is started, a timer goes off and the
741  * motor is turned off.  I/O port DOR has bits to control each of 4 drives.
742  */
743 
744   int s, motor_bit, running;
745   message mess;
746   int ipc_status;
747 
748   motor_bit = 1 << f_drive;		/* bit mask for this drive */
749   running = motor_status & motor_bit;	/* nonzero if this motor is running */
750   motor_status |= motor_bit;		/* want this drive running too */
751 
752   if ((s=sys_outb(DOR,
753   		(motor_status << MOTOR_SHIFT) | ENABLE_INT | f_drive)) != OK)
754 	panic("Sys_outb in start_motor() failed: %d", s);
755 
756   /* If the motor was already running, we don't have to wait for it. */
757   if (running) return;			/* motor was already running */
758 
759   /* Set an alarm timer to force a timeout if the hardware does not interrupt
760    * in time. Expect an interrupt, but check for a timeout.
761    */
762   set_timer(&f_tmr_timeout, f_dp->start_ms * system_hz / 1000, f_timeout, 0);
763   f_busy = BSY_IO;
764   do {
765 	if ((s = driver_receive(ANY, &mess, &ipc_status)) != OK)
766 		panic("Couldn't receive message: %d", s);
767 
768 	if (is_ipc_notify(ipc_status)) {
769 		switch (_ENDPOINT_P(mess.m_source)) {
770 			case CLOCK:
771 				f_expire_tmrs(mess.m_notify.timestamp);
772 				break;
773 			default :
774 				f_busy = BSY_IDLE;
775 				break;
776 		}
777   	} else {
778   		f_busy = BSY_IDLE;
779   	}
780   } while (f_busy == BSY_IO);
781   f_fp->fl_sector = NO_SECTOR;
782 }
783 
784 /*===========================================================================*
785  *				stop_motor				     *
786  *===========================================================================*/
787 static void stop_motor(int arg)
788 {
789 /* This routine is called from an alarm timer after several seconds have
790  * elapsed with no floppy disk activity.  It turns the drive motor off.
791  */
792   int s;
793   motor_status &= ~(1 << arg);
794   if ((s=sys_outb(DOR, (motor_status << MOTOR_SHIFT) | ENABLE_INT)) != OK)
795 	panic("Sys_outb in stop_motor() failed: %d", s);
796 }
797 
798 /*===========================================================================*
799  *				seek					     *
800  *===========================================================================*/
801 static int seek(void)
802 {
803 /* Issue a SEEK command on the indicated drive unless the arm is already
804  * positioned on the correct cylinder.
805  */
806 
807   struct floppy *fp = f_fp;
808   int r;
809   message mess;
810   int ipc_status;
811   u8_t cmd[3];
812 
813   /* Are we already on the correct cylinder? */
814   if (fp->fl_calibration == UNCALIBRATED)
815 	if (recalibrate() != OK) return(ERR_SEEK);
816   if (fp->fl_curcyl == fp->fl_hardcyl) return(OK);
817 
818   /* No.  Wrong cylinder.  Issue a SEEK and wait for interrupt. */
819   cmd[0] = FDC_SEEK;
820   cmd[1] = (fp->fl_head << 2) | f_drive;
821   cmd[2] = fp->fl_hardcyl;
822   if (fdc_command(cmd, 3) != OK) return(ERR_SEEK);
823   if (f_intr_wait() != OK) return(ERR_TIMEOUT);
824 
825   /* Interrupt has been received.  Check drive status. */
826   fdc_out(FDC_SENSE);		/* probe FDC to make it return status */
827   r = fdc_results();		/* get controller status bytes */
828   if (r != OK || (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0
829 				|| f_results[ST1] != fp->fl_hardcyl) {
830 	/* seek failed, may need a recalibrate */
831 	return(ERR_SEEK);
832   }
833   /* Give head time to settle on a format, no retrying here! */
834   if (f_device & FORMAT_DEV_BIT) {
835 	/* Set a synchronous alarm to force a timeout if the hardware does
836 	 * not interrupt.
837  	 */
838  	set_timer(&f_tmr_timeout, system_hz/30, f_timeout, 0);
839 	f_busy = BSY_IO;
840   	do {
841 		if ((r = driver_receive(ANY, &mess, &ipc_status)) != OK)
842 			panic("Couldn't receive message: %d", r);
843 
844 		if (is_ipc_notify(ipc_status)) {
845 			switch (_ENDPOINT_P(mess.m_source)) {
846 				case CLOCK:
847 					f_expire_tmrs(mess.m_notify.timestamp);
848 					break;
849 				default :
850 					f_busy = BSY_IDLE;
851 					break;
852 			}
853   		} else {
854   			f_busy = BSY_IDLE;
855   		}
856   	} while (f_busy == BSY_IO);
857   }
858   fp->fl_curcyl = fp->fl_hardcyl;
859   fp->fl_sector = NO_SECTOR;
860   return(OK);
861 }
862 
863 /*===========================================================================*
864  *				fdc_transfer				     *
865  *===========================================================================*/
866 static int fdc_transfer(int do_write)
867 {
868 /* The drive is now on the proper cylinder.  Read, write or format 1 block. */
869 
870   struct floppy *fp = f_fp;
871   int r, s;
872   u8_t cmd[9];
873 
874   /* Never attempt a transfer if the drive is uncalibrated or motor is off. */
875   if (fp->fl_calibration == UNCALIBRATED) return(ERR_TRANSFER);
876   if ((motor_status & (1 << f_drive)) == 0) return(ERR_TRANSFER);
877 
878   /* The command is issued by outputting several bytes to the controller chip.
879    */
880   if (f_device & FORMAT_DEV_BIT) {
881 	cmd[0] = FDC_FORMAT;
882 	cmd[1] = (fp->fl_head << 2) | f_drive;
883 	cmd[2] = fmt_param.sector_size_code;
884 	cmd[3] = fmt_param.sectors_per_cylinder;
885 	cmd[4] = fmt_param.gap_length_for_format;
886 	cmd[5] = fmt_param.fill_byte_for_format;
887 	if (fdc_command(cmd, 6) != OK) return(ERR_TRANSFER);
888   } else {
889 	cmd[0] = do_write ? FDC_WRITE : FDC_READ;
890 	cmd[1] = (fp->fl_head << 2) | f_drive;
891 	cmd[2] = fp->fl_cylinder;
892 	cmd[3] = fp->fl_head;
893 	cmd[4] = BASE_SECTOR + fp->fl_sector;
894 	cmd[5] = SECTOR_SIZE_CODE;
895 	cmd[6] = f_sectors;
896 	cmd[7] = f_dp->gap;	/* sector gap */
897 	cmd[8] = DTL;		/* data length */
898 	if (fdc_command(cmd, 9) != OK) return(ERR_TRANSFER);
899   }
900 
901   /* Block, waiting for disk interrupt. */
902   if (f_intr_wait() != OK) {
903 	printf("fd%u: disk interrupt timed out.\n", f_drive);
904   	return(ERR_TIMEOUT);
905   }
906 
907   /* Get controller status and check for errors. */
908   r = fdc_results();
909   if (r != OK) return(r);
910 
911   if (f_results[ST1] & WRITE_PROTECT) {
912 	printf("fd%u: diskette is write protected.\n", f_drive);
913 	return(ERR_WR_PROTECT);
914   }
915 
916   if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_TRANSFER);
917   if (f_results[ST1] | f_results[ST2]) return(ERR_TRANSFER);
918 
919   if (f_device & FORMAT_DEV_BIT) return(OK);
920 
921   /* Compare actual numbers of sectors transferred with expected number. */
922   s =  (f_results[ST_CYL] - fp->fl_cylinder) * NR_HEADS * f_sectors;
923   s += (f_results[ST_HEAD] - fp->fl_head) * f_sectors;
924   s += (f_results[ST_SEC] - BASE_SECTOR - fp->fl_sector);
925   if (s != 1) return(ERR_TRANSFER);
926 
927   /* This sector is next for I/O: */
928   fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR;
929 #if 0
930   if (processor < 386) fp->fl_sector++;		/* Old CPU can't keep up. */
931 #endif
932   return(OK);
933 }
934 
935 /*===========================================================================*
936  *				fdc_results				     *
937  *===========================================================================*/
938 static int fdc_results(void)
939 {
940 /* Extract results from the controller after an operation, then allow floppy
941  * interrupts again.
942  */
943 
944   int s, result_nr;
945   u32_t status;
946   spin_t spin;
947 
948   /* Extract bytes from FDC until it says it has no more.  The loop is
949    * really an outer loop on result_nr and an inner loop on status.
950    * A timeout flag alarm is set.
951    */
952   result_nr = 0;
953   SPIN_FOR(&spin, TIMEOUT_MICROS) {
954 	/* Reading one byte is almost a mirror of fdc_out() - the DIRECTION
955 	 * bit must be set instead of clear, but the CTL_BUSY bit destroys
956 	 * the perfection of the mirror.
957 	 */
958 	if ((s=sys_inb(FDC_STATUS, &status)) != OK)
959 		panic("Sys_inb in fdc_results() failed: %d", s);
960 	status &= (MASTER | DIRECTION | CTL_BUSY);
961 	if (status == (MASTER | DIRECTION | CTL_BUSY)) {
962 		u32_t tmp_r;
963 		if (result_nr >= MAX_RESULTS) break;	/* too many results */
964 		if ((s=sys_inb(FDC_DATA, &tmp_r)) != OK)
965 		   panic("Sys_inb in fdc_results() failed: %d", s);
966 		f_results[result_nr] = tmp_r;
967 		result_nr ++;
968 		continue;
969 	}
970 	if (status == MASTER) {			/* all read */
971 		if ((s=sys_irqenable(&irq_hook_id)) != OK)
972 			panic("Couldn't enable IRQs: %d", s);
973 
974 		return(OK);			/* only good exit */
975 	}
976   }
977   need_reset = TRUE;		/* controller chip must be reset */
978 
979   if ((s=sys_irqenable(&irq_hook_id)) != OK)
980 	panic("Couldn't enable IRQs: %d", s);
981   return(ERR_STATUS);
982 }
983 
984 /*===========================================================================*
985  *				fdc_command				     *
986  *===========================================================================*/
987 static int fdc_command(
988   const u8_t *cmd,	/* command bytes */
989   int len		/* command length */
990 )
991 {
992 /* Output a command to the controller. */
993 
994   /* Set a synchronous alarm to force a timeout if the hardware does
995    * not interrupt.
996    * Note that the actual check is done by the code that issued the
997    * fdc_command() call.
998    */
999   set_timer(&f_tmr_timeout, WAKEUP, f_timeout, 0);
1000 
1001   f_busy = BSY_IO;
1002   while (len > 0) {
1003 	fdc_out(*cmd++);
1004 	len--;
1005   }
1006   return(need_reset ? ERR_DRIVE : OK);
1007 }
1008 
1009 /*===========================================================================*
1010  *				fdc_out					     *
1011  *===========================================================================*/
1012 static void fdc_out(
1013   int val		/* write this byte to floppy disk controller */
1014 )
1015 {
1016 /* Output a byte to the controller.  This is not entirely trivial, since you
1017  * can only write to it when it is listening, and it decides when to listen.
1018  * If the controller refuses to listen, the FDC chip is given a hard reset.
1019  */
1020   spin_t spin;
1021   int s;
1022   u32_t status;
1023 
1024   if (need_reset) return;	/* if controller is not listening, return */
1025 
1026   /* It may take several tries to get the FDC to accept a command.  */
1027   SPIN_FOR(&spin, TIMEOUT_MICROS) {
1028   	if ((s=sys_inb(FDC_STATUS, &status)) != OK)
1029   		panic("Sys_inb in fdc_out() failed: %d", s);
1030 
1031   	if ((status & (MASTER | DIRECTION)) == (MASTER | 0)) {
1032 		if ((s=sys_outb(FDC_DATA, val)) != OK)
1033 			panic("Sys_outb in fdc_out() failed: %d", s);
1034 
1035 		return;
1036 	}
1037   }
1038 
1039   need_reset = TRUE;	/* hit it over the head */
1040 }
1041 
1042 /*===========================================================================*
1043  *				recalibrate				     *
1044  *===========================================================================*/
1045 static int recalibrate(void)
1046 {
1047 /* The floppy disk controller has no way of determining its absolute arm
1048  * position (cylinder).  Instead, it steps the arm a cylinder at a time and
1049  * keeps track of where it thinks it is (in software).  However, after a
1050  * SEEK, the hardware reads information from the diskette telling where the
1051  * arm actually is.  If the arm is in the wrong place, a recalibration is done,
1052  * which forces the arm to cylinder 0.  This way the controller can get back
1053  * into sync with reality.
1054  */
1055 
1056   struct floppy *fp = f_fp;
1057   int r;
1058   u8_t cmd[2];
1059 
1060   /* Issue the RECALIBRATE command and wait for the interrupt. */
1061   cmd[0] = FDC_RECALIBRATE;	/* tell drive to recalibrate itself */
1062   cmd[1] = f_drive;		/* specify drive */
1063   if (fdc_command(cmd, 2) != OK) return(ERR_SEEK);
1064   if (f_intr_wait() != OK) return(ERR_TIMEOUT);
1065 
1066   /* Determine if the recalibration succeeded. */
1067   fdc_out(FDC_SENSE);		/* issue SENSE command to request results */
1068   r = fdc_results();		/* get results of the FDC_RECALIBRATE command*/
1069   fp->fl_curcyl = NO_CYL;	/* force a SEEK next time */
1070   fp->fl_sector = NO_SECTOR;
1071   if (r != OK ||		/* controller would not respond */
1072      (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0 || f_results[ST_PCN] != 0) {
1073 	/* Recalibration failed.  FDC must be reset. */
1074 	need_reset = TRUE;
1075 	return(ERR_RECALIBRATE);
1076   } else {
1077 	/* Recalibration succeeded. */
1078 	fp->fl_calibration = CALIBRATED;
1079 	fp->fl_curcyl = f_results[ST_PCN];
1080 	return(OK);
1081   }
1082 }
1083 
1084 /*===========================================================================*
1085  *				f_reset					     *
1086  *===========================================================================*/
1087 static void f_reset(void)
1088 {
1089 /* Issue a reset to the controller.  This is done after any catastrophe,
1090  * like the controller refusing to respond.
1091  */
1092   pvb_pair_t byte_out[2];
1093   int s,i;
1094   message mess;
1095   int ipc_status;
1096 
1097   /* Disable interrupts and strobe reset bit low. */
1098   need_reset = FALSE;
1099 
1100   /* It is not clear why the next lock is needed.  Writing 0 to DOR causes
1101    * interrupt, while the PC documentation says turning bit 8 off disables
1102    * interrupts.  Without the lock:
1103    *   1) the interrupt handler sets the floppy mask bit in the 8259.
1104    *   2) writing ENABLE_INT to DOR causes the FDC to assert the interrupt
1105    *      line again, but the mask stops the cpu being interrupted.
1106    *   3) the sense interrupt clears the interrupt (not clear which one).
1107    * and for some reason the reset does not work.
1108    */
1109   (void) fdc_command((u8_t *) 0, 0);   /* need only the timer */
1110   motor_status = 0;
1111   pv_set(byte_out[0], DOR, 0);			/* strobe reset bit low */
1112   pv_set(byte_out[1], DOR, ENABLE_INT);		/* strobe it high again */
1113   if ((s=sys_voutb(byte_out, 2)) != OK)
1114   	panic("Sys_voutb in f_reset() failed: %d", s);
1115 
1116   /* A synchronous alarm timer was set in fdc_command. Expect an interrupt,
1117    * but be prepared to handle a timeout.
1118    */
1119   do {
1120 	if ((s = driver_receive(ANY, &mess, &ipc_status)) != OK)
1121 		panic("Couldn't receive message: %d", s);
1122 	if (is_ipc_notify(ipc_status)) {
1123 		switch (_ENDPOINT_P(mess.m_source)) {
1124 			case CLOCK:
1125 				f_expire_tmrs(mess.m_notify.timestamp);
1126 				break;
1127 			default :
1128 				f_busy = BSY_IDLE;
1129 				break;
1130 		}
1131   	} else {			/* expect hw interrupt */
1132   		f_busy = BSY_IDLE;
1133   	}
1134   } while (f_busy == BSY_IO);
1135 
1136   /* The controller supports 4 drives and returns a result for each of them.
1137    * Collect all the results now.  The old version only collected the first
1138    * result.  This happens to work for 2 drives, but it doesn't work for 3
1139    * or more drives, at least with only drives 0 and 2 actually connected
1140    * (the controller generates an extra interrupt for the middle drive when
1141    * drive 2 is accessed and the driver panics).
1142    *
1143    * It would be better to keep collecting results until there are no more.
1144    * For this, fdc_results needs to return the number of results (instead
1145    * of OK) when it succeeds.
1146    */
1147   for (i = 0; i < 4; i++) {
1148 	fdc_out(FDC_SENSE);	/* probe FDC to make it return status */
1149 	(void) fdc_results();	/* flush controller */
1150   }
1151   for (i = 0; i < NR_DRIVES; i++)	/* clear each drive */
1152 	floppy[i].fl_calibration = UNCALIBRATED;
1153 
1154   /* The current timing parameters must be specified again. */
1155   prev_dp = NULL;
1156 }
1157 
1158 /*===========================================================================*
1159  *				f_intr_wait				     *
1160  *===========================================================================*/
1161 static int f_intr_wait(void)
1162 {
1163 /* Wait for an interrupt, but not forever.  The FDC may have all the time of
1164  * the world, but we humans do not.
1165  */
1166   message mess;
1167   int r, ipc_status;
1168 
1169   /* We expect an interrupt, but if a timeout, occurs, report an error. */
1170   do {
1171 	if ((r = driver_receive(ANY, &mess, &ipc_status)) != OK)
1172 		panic("Couldn't receive message: %d", r);
1173 	if (is_ipc_notify(ipc_status)) {
1174 		switch (_ENDPOINT_P(mess.m_source)) {
1175 			case CLOCK:
1176 				f_expire_tmrs(mess.m_notify.timestamp);
1177 				break;
1178 			default :
1179 				f_busy = BSY_IDLE;
1180 				break;
1181 		}
1182   	} else {
1183   		f_busy = BSY_IDLE;
1184   	}
1185   } while (f_busy == BSY_IO);
1186 
1187   if (f_busy == BSY_WAKEN) {
1188 
1189 	/* No interrupt from the FDC, this means that there is probably no
1190 	 * floppy in the drive.  Get the FDC down to earth and return error.
1191 	 */
1192 	need_reset = TRUE;
1193 	return(ERR_TIMEOUT);
1194   }
1195   return(OK);
1196 }
1197 
1198 /*===========================================================================*
1199  *				f_timeout				     *
1200  *===========================================================================*/
1201 static void f_timeout(int arg __unused)
1202 {
1203 /* This routine is called when a timer expires.  Usually to tell that a
1204  * motor has spun up, but also to forge an interrupt when it takes too long
1205  * for the FDC to interrupt (no floppy in the drive).  It sets a flag to tell
1206  * what has happened.
1207  */
1208   if (f_busy == BSY_IO) {
1209 	f_busy = BSY_WAKEN;
1210   }
1211 }
1212 
1213 /*===========================================================================*
1214  *				read_id					     *
1215  *===========================================================================*/
1216 static int read_id(void)
1217 {
1218 /* Determine current cylinder and sector. */
1219 
1220   struct floppy *fp = f_fp;
1221   int result;
1222   u8_t cmd[2];
1223 
1224   /* Never attempt a read id if the drive is uncalibrated or motor is off. */
1225   if (fp->fl_calibration == UNCALIBRATED) return(ERR_READ_ID);
1226   if ((motor_status & (1 << f_drive)) == 0) return(ERR_READ_ID);
1227 
1228   /* The command is issued by outputting 2 bytes to the controller chip. */
1229   cmd[0] = FDC_READ_ID;		/* issue the read id command */
1230   cmd[1] = (fp->fl_head << 2) | f_drive;
1231   if (fdc_command(cmd, 2) != OK) return(ERR_READ_ID);
1232   if (f_intr_wait() != OK) return(ERR_TIMEOUT);
1233 
1234   /* Get controller status and check for errors. */
1235   result = fdc_results();
1236   if (result != OK) return(result);
1237 
1238   if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_READ_ID);
1239   if (f_results[ST1] | f_results[ST2]) return(ERR_READ_ID);
1240 
1241   /* The next sector is next for I/O: */
1242   fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR + 1;
1243   return(OK);
1244 }
1245 
1246 /*===========================================================================*
1247  *				f_do_open				     *
1248  *===========================================================================*/
1249 static int f_do_open(devminor_t minor, int UNUSED(access))
1250 {
1251 /* Handle an open on a floppy.  Determine diskette type if need be. */
1252 
1253   int dtype;
1254   struct test_order *top;
1255 
1256   /* Decode the message parameters. */
1257   if (f_prepare(minor) == NULL) return(ENXIO);
1258 
1259   dtype = f_device & DEV_TYPE_BITS;	/* get density from minor dev */
1260   if (dtype >= MINOR_fd0p0) dtype = 0;
1261 
1262   if (dtype != 0) {
1263 	/* All types except 0 indicate a specific drive/medium combination.*/
1264 	dtype = (dtype >> DEV_TYPE_SHIFT) - 1;
1265 	if (dtype >= NT) return(ENXIO);
1266 	f_fp->fl_density = dtype;
1267 	(void) f_prepare(f_device);	/* Recompute parameters. */
1268 	return(OK);
1269   }
1270   if (f_device & FORMAT_DEV_BIT) return(EIO);	/* Can't format /dev/fdN */
1271 
1272   /* The device opened is /dev/fdN.  Experimentally determine drive/medium.
1273    * First check fl_density.  If it is not NO_DENS, the drive has been used
1274    * before and the value of fl_density tells what was found last time. Try
1275    * that first.  If the motor is still running then assume nothing changed.
1276    */
1277   if (f_fp->fl_density != NO_DENS) {
1278 	if (motor_status & (1 << f_drive)) return(OK);
1279 	if (test_read(f_fp->fl_density) == OK) return(OK);
1280   }
1281 
1282   /* Either drive type is unknown or a different diskette is now present.
1283    * Use test_order to try them one by one.
1284    */
1285   for (top = &test_order[0]; top < &test_order[NT-1]; top++) {
1286 	dtype = top->t_density;
1287 
1288 	/* Skip densities that have been proven to be impossible */
1289 	if (!(f_fp->fl_class & (1 << dtype))) continue;
1290 
1291 	if (test_read(dtype) == OK) {
1292 		/* The test succeeded, use this knowledge to limit the
1293 		 * drive class to match the density just read.
1294 		 */
1295 		f_fp->fl_class &= top->t_class;
1296 		return(OK);
1297 	}
1298 	/* Test failed, wrong density or did it time out? */
1299 	if (f_busy == BSY_WAKEN) break;
1300   }
1301   f_fp->fl_density = NO_DENS;
1302   return(EIO);			/* nothing worked */
1303 }
1304 
1305 /*===========================================================================*
1306  *				f_do_close				     *
1307  *===========================================================================*/
1308 static int f_do_close(devminor_t UNUSED(minor))
1309 {
1310 /* Handle a close on a floppy.  Nothing to do here. */
1311 
1312   return(OK);
1313 }
1314 
1315 /*===========================================================================*
1316  *				test_read				     *
1317  *===========================================================================*/
1318 static int test_read(int density)
1319 {
1320 /* Try to read the highest numbered sector on cylinder 2.  Not all floppy
1321  * types have as many sectors per track, and trying cylinder 2 finds the
1322  * ones that need double stepping.
1323  */
1324   int device;
1325   off_t position;
1326   iovec_t iovec1;
1327   ssize_t result;
1328 
1329   f_fp->fl_density = density;
1330   device = ((density + 1) << DEV_TYPE_SHIFT) + f_drive;
1331 
1332   (void) f_prepare(device);
1333   position = (off_t) f_dp->test << SECTOR_SHIFT;
1334   iovec1.iov_addr = (vir_bytes) floppy_buf;
1335   iovec1.iov_size = SECTOR_SIZE;
1336   result = f_transfer(device, FALSE /*do_write*/, position, SELF,
1337 	&iovec1, 1, BDEV_NOFLAGS);
1338 
1339   if (result != SECTOR_SIZE) return(EIO);
1340 
1341   partition(&f_dtab, f_drive, P_FLOPPY, 0);
1342   return(OK);
1343 }
1344 
1345 /*===========================================================================*
1346  *				f_geometry				     *
1347  *===========================================================================*/
1348 static void f_geometry(devminor_t minor, struct part_geom *entry)
1349 {
1350   if (f_prepare(minor) == NULL) return;
1351 
1352   entry->cylinders = f_dp->cyls;
1353   entry->heads = NR_HEADS;
1354   entry->sectors = f_sectors;
1355 }
1356