xref: /minix/minix/kernel/arch/earm/memory.c (revision 9f988b79)
1 
2 #include "kernel/kernel.h"
3 #include "kernel/proc.h"
4 #include "kernel/vm.h"
5 
6 #include <machine/vm.h>
7 
8 #include <minix/type.h>
9 #include <minix/board.h>
10 #include <minix/syslib.h>
11 #include <minix/cpufeature.h>
12 #include <string.h>
13 #include <assert.h>
14 #include <signal.h>
15 #include <stdlib.h>
16 
17 #include <machine/vm.h>
18 
19 #include "arch_proto.h"
20 #include "kernel/proto.h"
21 #include "kernel/debug.h"
22 #include "bsp_timer.h"
23 
24 
25 #define HASPT(procptr) ((procptr)->p_seg.p_ttbr != 0)
26 static int nfreepdes = 0;
27 #define MAXFREEPDES	2
28 static int freepdes[MAXFREEPDES];
29 
30 static u32_t phys_get32(phys_bytes v);
31 
32 /* list of requested physical mapping */
33 static kern_phys_map *kern_phys_map_head;
34 
35 void mem_clear_mapcache(void)
36 {
37 	int i;
38 	for(i = 0; i < nfreepdes; i++) {
39 		struct proc *ptproc = get_cpulocal_var(ptproc);
40 		int pde = freepdes[i];
41 		u32_t *ptv;
42 		assert(ptproc);
43 		ptv = ptproc->p_seg.p_ttbr_v;
44 		assert(ptv);
45 		ptv[pde] = 0;
46 	}
47 }
48 
49 /* This function sets up a mapping from within the kernel's address
50  * space to any other area of memory, either straight physical
51  * memory (pr == NULL) or a process view of memory, in 1MB windows.
52  * I.e., it maps in 1MB chunks of virtual (or physical) address space
53  * to 1MB chunks of kernel virtual address space.
54  *
55  * It recognizes pr already being in memory as a special case (no
56  * mapping required).
57  *
58  * The target (i.e. in-kernel) mapping area is one of the freepdes[]
59  * VM has earlier already told the kernel about that is available. It is
60  * identified as the 'pde' parameter. This value can be chosen freely
61  * by the caller, as long as it is in range (i.e. 0 or higher and corresponds
62  * to a known freepde slot). It is up to the caller to keep track of which
63  * freepde's are in use, and to determine which ones are free to use.
64  *
65  * The logical number supplied by the caller is translated into an actual
66  * pde number to be used, and a pointer to it (linear address) is returned
67  * for actual use by phys_copy or memset.
68  */
69 static phys_bytes createpde(
70 	const struct proc *pr,	/* Requested process, NULL for physical. */
71 	const phys_bytes linaddr,/* Address after segment translation. */
72 	phys_bytes *bytes,	/* Size of chunk, function may truncate it. */
73 	int free_pde_idx,	/* index of the free slot to use */
74 	int *changed		/* If mapping is made, this is set to 1. */
75 	)
76 {
77 	u32_t pdeval;
78 	phys_bytes offset;
79 	int pde;
80 
81 	assert(free_pde_idx >= 0 && free_pde_idx < nfreepdes);
82 	pde = freepdes[free_pde_idx];
83 	assert(pde >= 0 && pde < 4096);
84 
85 	if(pr && ((pr == get_cpulocal_var(ptproc)) || iskernelp(pr))) {
86 		/* Process memory is requested, and
87 		 * it's a process that is already in current page table, or
88 		 * the kernel, which is always there.
89 		 * Therefore linaddr is valid directly, with the requested
90 		 * size.
91 		 */
92 		return linaddr;
93 	}
94 
95 	if(pr) {
96 		/* Requested address is in a process that is not currently
97 		 * accessible directly. Grab the PDE entry of that process'
98 		 * page table that corresponds to the requested address.
99 		 */
100 		assert(pr->p_seg.p_ttbr_v);
101 		pdeval = pr->p_seg.p_ttbr_v[ARM_VM_PDE(linaddr)];
102 	} else {
103 		/* Requested address is physical. Make up the PDE entry. */
104 		assert (linaddr >= PHYS_MEM_BEGIN && linaddr <= PHYS_MEM_END);
105 
106 		/* memory */
107 		pdeval = (linaddr & ARM_VM_SECTION_MASK)
108 			| ARM_VM_SECTION
109 			| ARM_VM_SECTION_DOMAIN
110 			| ARM_VM_SECTION_CACHED
111 			| ARM_VM_SECTION_USER;
112 	}
113 
114 	/* Write the pde value that we need into a pde that the kernel
115 	 * can access, into the currently loaded page table so it becomes
116 	 * visible.
117 	 */
118 	assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
119 	if(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v[pde] != pdeval) {
120 		get_cpulocal_var(ptproc)->p_seg.p_ttbr_v[pde] = pdeval;
121 		*changed = 1;
122 	}
123 
124 	/* Memory is now available, but only the 1MB window of virtual
125 	 * address space that we have mapped; calculate how much of
126 	 * the requested range is visible and return that in *bytes,
127 	 * if that is less than the requested range.
128 	 */
129 	offset = linaddr & ARM_VM_OFFSET_MASK_1MB; /* Offset in 1MB window. */
130 	*bytes = MIN(*bytes, ARM_SECTION_SIZE - offset);
131 
132 	/* Return the linear address of the start of the new mapping. */
133 	return ARM_SECTION_SIZE*pde + offset;
134 }
135 
136 
137 /*===========================================================================*
138  *                           check_resumed_caller                            *
139  *===========================================================================*/
140 static int check_resumed_caller(struct proc *caller)
141 {
142 	/* Returns the result from VM if caller was resumed, otherwise OK. */
143 	if (caller && (caller->p_misc_flags & MF_KCALL_RESUME)) {
144 		assert(caller->p_vmrequest.vmresult != VMSUSPEND);
145 		return caller->p_vmrequest.vmresult;
146 	}
147 
148 	return OK;
149 }
150 
151 /*===========================================================================*
152  *				lin_lin_copy				     *
153  *===========================================================================*/
154 static int lin_lin_copy(struct proc *srcproc, vir_bytes srclinaddr,
155 	struct proc *dstproc, vir_bytes dstlinaddr, vir_bytes bytes)
156 {
157 	u32_t addr;
158 	proc_nr_t procslot;
159 
160 	assert(get_cpulocal_var(ptproc));
161 	assert(get_cpulocal_var(proc_ptr));
162 	assert(read_ttbr0() == get_cpulocal_var(ptproc)->p_seg.p_ttbr);
163 
164 	procslot = get_cpulocal_var(ptproc)->p_nr;
165 
166 	assert(procslot >= 0 && procslot < ARM_VM_DIR_ENTRIES);
167 
168 	if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
169 	if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
170 	assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
171 	assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
172 	if(srcproc) assert(!RTS_ISSET(srcproc, RTS_VMINHIBIT));
173 	if(dstproc) assert(!RTS_ISSET(dstproc, RTS_VMINHIBIT));
174 
175 	while(bytes > 0) {
176 		phys_bytes srcptr, dstptr;
177 		vir_bytes chunk = bytes;
178 		int changed = 0;
179 
180 #ifdef CONFIG_SMP
181 		unsigned cpu = cpuid;
182 
183 		if (srcproc && GET_BIT(srcproc->p_stale_tlb, cpu)) {
184 			changed = 1;
185 			UNSET_BIT(srcproc->p_stale_tlb, cpu);
186 		}
187 		if (dstproc && GET_BIT(dstproc->p_stale_tlb, cpu)) {
188 			changed = 1;
189 			UNSET_BIT(dstproc->p_stale_tlb, cpu);
190 		}
191 #endif
192 
193 		/* Set up 1MB ranges. */
194 		srcptr = createpde(srcproc, srclinaddr, &chunk, 0, &changed);
195 		dstptr = createpde(dstproc, dstlinaddr, &chunk, 1, &changed);
196 		if(changed) {
197 			reload_ttbr0();
198 		}
199 		/* Copy pages. */
200 		PHYS_COPY_CATCH(srcptr, dstptr, chunk, addr);
201 
202 		if(addr) {
203 			/* If addr is nonzero, a page fault was caught.
204 			 *
205 			 * phys_copy does all memory accesses word-aligned (rounded
206 			 * down), so pagefaults can occur at a lower address than
207 			 * the specified offsets. compute the lower bounds for sanity
208 			 * check use.
209 			 */
210 			vir_bytes src_aligned = srcptr & ~0x3, dst_aligned = dstptr & ~0x3;
211 
212 			if(addr >= src_aligned && addr < (srcptr + chunk)) {
213 				return EFAULT_SRC;
214 			}
215 			if(addr >= dst_aligned && addr < (dstptr + chunk)) {
216 				return EFAULT_DST;
217 			}
218 
219 			panic("lin_lin_copy fault out of range");
220 
221 			/* Not reached. */
222 			return EFAULT;
223 		}
224 
225 		/* Update counter and addresses for next iteration, if any. */
226 		bytes -= chunk;
227 		srclinaddr += chunk;
228 		dstlinaddr += chunk;
229 	}
230 
231 	if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
232 	if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
233 	assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
234 	assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
235 
236 	return OK;
237 }
238 
239 static u32_t phys_get32(phys_bytes addr)
240 {
241 	u32_t v;
242 	int r;
243 
244 	if((r=lin_lin_copy(NULL, addr,
245 		proc_addr(SYSTEM), (phys_bytes) &v, sizeof(v))) != OK) {
246 		panic("lin_lin_copy for phys_get32 failed: %d",  r);
247 	}
248 
249 	return v;
250 }
251 
252 /*===========================================================================*
253  *                              umap_virtual                                 *
254  *===========================================================================*/
255 phys_bytes umap_virtual(rp, seg, vir_addr, bytes)
256 register struct proc *rp;       /* pointer to proc table entry for process */
257 int seg;                        /* T, D, or S segment */
258 vir_bytes vir_addr;             /* virtual address in bytes within the seg */
259 vir_bytes bytes;                /* # of bytes to be copied */
260 {
261 	phys_bytes phys = 0;
262 
263 	if(vm_lookup(rp, vir_addr, &phys, NULL) != OK) {
264 		printf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%x: 0x%lx failed\n", rp->p_name, seg, vir_addr);
265 		phys = 0;
266 	} else {
267 		if(phys == 0)
268 			panic("vm_lookup returned phys: 0x%lx",  phys);
269 	}
270 
271 	if(phys == 0) {
272 		printf("SYSTEM:umap_virtual: lookup failed\n");
273 		return 0;
274 	}
275 
276 	/* Now make sure addresses are contiguous in physical memory
277 	 * so that the umap makes sense.
278 	 */
279 	if(bytes > 0 && vm_lookup_range(rp, vir_addr, NULL, bytes) != bytes) {
280 		printf("umap_virtual: %s: %lu at 0x%lx (vir 0x%lx) not contiguous\n",
281 			rp->p_name, bytes, vir_addr, vir_addr);
282 		return 0;
283 	}
284 
285 	/* phys must be larger than 0 (or the caller will think the call
286 	 * failed), and address must not cross a page boundary.
287 	 */
288 	assert(phys);
289 
290 	return phys;
291 }
292 
293 
294 /*===========================================================================*
295  *                              vm_lookup                                    *
296  *===========================================================================*/
297 int vm_lookup(const struct proc *proc, const vir_bytes virtual,
298  phys_bytes *physical, u32_t *ptent)
299 {
300 	u32_t *root, *pt;
301 	int pde, pte;
302 	u32_t pde_v, pte_v;
303 
304 	assert(proc);
305 	assert(physical);
306 	assert(!isemptyp(proc));
307 	assert(HASPT(proc));
308 
309 	/* Retrieve page directory entry. */
310 	root = (u32_t *) (proc->p_seg.p_ttbr & ARM_TTBR_ADDR_MASK);
311 	assert(!((u32_t) root % ARM_PAGEDIR_SIZE));
312 	pde = ARM_VM_PDE(virtual);
313 	assert(pde >= 0 && pde < ARM_VM_DIR_ENTRIES);
314 	pde_v = phys_get32((u32_t) (root + pde));
315 
316 	if(! ((pde_v & ARM_VM_PDE_PRESENT)
317 		|| (pde_v & ARM_VM_SECTION_PRESENT)
318 	     )) {
319 		return EFAULT;
320 	}
321 
322 	if(pde_v & ARM_VM_SECTION) {
323 		*physical = pde_v & ARM_VM_SECTION_MASK;
324 		if(ptent) *ptent = pde_v;
325 		*physical += virtual & ARM_VM_OFFSET_MASK_1MB;
326 	} else  {
327 		/* Retrieve page table entry. */
328 		pt = (u32_t *) (pde_v & ARM_VM_PDE_MASK);
329 		assert(!((u32_t) pt % ARM_PAGETABLE_SIZE));
330 		pte = ARM_VM_PTE(virtual);
331 		assert(pte >= 0 && pte < ARM_VM_PT_ENTRIES);
332 		pte_v = phys_get32((u32_t) (pt + pte));
333 		if(!(pte_v & ARM_VM_PTE_PRESENT)) {
334 			return EFAULT;
335 		}
336 
337 		if(ptent) *ptent = pte_v;
338 
339 		/* Actual address now known; retrieve it and add page offset. */
340 		*physical = pte_v & ARM_VM_PTE_MASK;
341 		*physical += virtual % ARM_PAGE_SIZE;
342 	}
343 
344 	return OK;
345 }
346 
347 /*===========================================================================*
348  *				vm_lookup_range				     *
349  *===========================================================================*/
350 size_t vm_lookup_range(const struct proc *proc, vir_bytes vir_addr,
351 	phys_bytes *phys_addr, size_t bytes)
352 {
353 	/* Look up the physical address corresponding to linear virtual address
354 	 * 'vir_addr' for process 'proc'. Return the size of the range covered
355 	 * by contiguous physical memory starting from that address; this may
356 	 * be anywhere between 0 and 'bytes' inclusive. If the return value is
357 	 * nonzero, and 'phys_addr' is non-NULL, 'phys_addr' will be set to the
358 	 * base physical address of the range. 'vir_addr' and 'bytes' need not
359 	 * be page-aligned, but the caller must have verified that the given
360 	 * linear range is valid for the given process at all.
361 	 */
362 	phys_bytes phys, next_phys;
363 	size_t len;
364 
365 	assert(proc);
366 	assert(bytes > 0);
367 	assert(HASPT(proc));
368 
369 	/* Look up the first page. */
370 	if (vm_lookup(proc, vir_addr, &phys, NULL) != OK)
371 		return 0;
372 
373 	if (phys_addr != NULL)
374 		*phys_addr = phys;
375 
376 	len = ARM_PAGE_SIZE - (vir_addr % ARM_PAGE_SIZE);
377 	vir_addr += len;
378 	next_phys = phys + len;
379 
380 	/* Look up any next pages and test physical contiguity. */
381 	while (len < bytes) {
382 		if (vm_lookup(proc, vir_addr, &phys, NULL) != OK)
383 			break;
384 
385 		if (next_phys != phys)
386 			break;
387 
388 		len += ARM_PAGE_SIZE;
389 		vir_addr += ARM_PAGE_SIZE;
390 		next_phys += ARM_PAGE_SIZE;
391 	}
392 
393 	/* We might now have overshot the requested length somewhat. */
394 	return MIN(bytes, len);
395 }
396 
397 /*===========================================================================*
398  *				vm_check_range				     *
399  *===========================================================================*/
400 int vm_check_range(struct proc *caller, struct proc *target,
401 	vir_bytes vir_addr, size_t bytes, int writeflag)
402 {
403 	/* Public interface to vm_suspend(), for use by kernel calls. On behalf
404 	 * of 'caller', call into VM to check linear virtual address range of
405 	 * process 'target', starting at 'vir_addr', for 'bytes' bytes. This
406 	 * function assumes that it will called twice if VM returned an error
407 	 * the first time (since nothing has changed in that case), and will
408 	 * then return the error code resulting from the first call. Upon the
409 	 * first call, a non-success error code is returned as well.
410 	 */
411 	int r;
412 
413 	if ((caller->p_misc_flags & MF_KCALL_RESUME) &&
414 			(r = caller->p_vmrequest.vmresult) != OK)
415 		return r;
416 
417 	vm_suspend(caller, target, vir_addr, bytes, VMSTYPE_KERNELCALL,
418 		writeflag);
419 
420 	return VMSUSPEND;
421 }
422 
423 /*===========================================================================*
424  *                                 vmmemset                                  *
425  *===========================================================================*/
426 int vm_memset(struct proc* caller, endpoint_t who, phys_bytes ph, int c,
427 	phys_bytes count)
428 {
429 	u32_t pattern;
430 	struct proc *whoptr = NULL;
431 	phys_bytes cur_ph = ph;
432 	phys_bytes left = count;
433 	phys_bytes ptr, chunk, pfa = 0;
434 	int new_ttbr, r = OK;
435 
436 	if ((r = check_resumed_caller(caller)) != OK)
437 		return r;
438 
439 	/* NONE for physical, otherwise virtual */
440 	if (who != NONE && !(whoptr = endpoint_lookup(who)))
441 		return ESRCH;
442 
443 	c &= 0xFF;
444 	pattern = c | (c << 8) | (c << 16) | (c << 24);
445 
446 	assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
447 	assert(!catch_pagefaults);
448 	catch_pagefaults = 1;
449 
450 	/* We can memset as many bytes as we have remaining,
451 	 * or as many as remain in the 1MB chunk we mapped in.
452 	 */
453 	while (left > 0) {
454 		new_ttbr = 0;
455 		chunk = left;
456 		ptr = createpde(whoptr, cur_ph, &chunk, 0, &new_ttbr);
457 
458 		if (new_ttbr) {
459 			reload_ttbr0();
460 		}
461 		/* If a page fault happens, pfa is non-null */
462 		if ((pfa = phys_memset(ptr, pattern, chunk))) {
463 
464 			/* If a process pagefaults, VM may help out */
465 			if (whoptr) {
466 				vm_suspend(caller, whoptr, ph, count,
467 						   VMSTYPE_KERNELCALL, 1);
468 				assert(catch_pagefaults);
469 				catch_pagefaults = 0;
470 				return VMSUSPEND;
471 			}
472 
473 			/* Pagefault when phys copying ?! */
474 			panic("vm_memset: pf %lx addr=%lx len=%lu\n",
475 						pfa , ptr, chunk);
476 		}
477 
478 		cur_ph += chunk;
479 		left -= chunk;
480 	}
481 
482 	assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
483 	assert(catch_pagefaults);
484 	catch_pagefaults = 0;
485 
486 	return OK;
487 }
488 
489 /*===========================================================================*
490  *				virtual_copy_f				     *
491  *===========================================================================*/
492 int virtual_copy_f(caller, src_addr, dst_addr, bytes, vmcheck)
493 struct proc * caller;
494 struct vir_addr *src_addr;	/* source virtual address */
495 struct vir_addr *dst_addr;	/* destination virtual address */
496 vir_bytes bytes;		/* # of bytes to copy  */
497 int vmcheck;			/* if nonzero, can return VMSUSPEND */
498 {
499 /* Copy bytes from virtual address src_addr to virtual address dst_addr. */
500   struct vir_addr *vir_addr[2];	/* virtual source and destination address */
501   int i, r;
502   struct proc *procs[2];
503 
504   assert((vmcheck && caller) || (!vmcheck && !caller));
505 
506   /* Check copy count. */
507   if (bytes <= 0) return(EDOM);
508 
509   /* Do some more checks and map virtual addresses to physical addresses. */
510   vir_addr[_SRC_] = src_addr;
511   vir_addr[_DST_] = dst_addr;
512 
513   for (i=_SRC_; i<=_DST_; i++) {
514   	endpoint_t proc_e = vir_addr[i]->proc_nr_e;
515 	int proc_nr;
516 	struct proc *p;
517 
518 	if(proc_e == NONE) {
519 		p = NULL;
520 	} else {
521 		if(!isokendpt(proc_e, &proc_nr)) {
522 			printf("virtual_copy: no reasonable endpoint\n");
523 			return ESRCH;
524 		}
525 		p = proc_addr(proc_nr);
526 	}
527 
528 	procs[i] = p;
529   }
530 
531   if ((r = check_resumed_caller(caller)) != OK)
532 	return r;
533 
534   if((r=lin_lin_copy(procs[_SRC_], vir_addr[_SRC_]->offset,
535   	procs[_DST_], vir_addr[_DST_]->offset, bytes)) != OK) {
536 	int writeflag;
537   	struct proc *target = NULL;
538   	phys_bytes lin;
539   	if(r != EFAULT_SRC && r != EFAULT_DST)
540   		panic("lin_lin_copy failed: %d",  r);
541   	if(!vmcheck || !caller) {
542     		return r;
543   	}
544 
545   	if(r == EFAULT_SRC) {
546   		lin = vir_addr[_SRC_]->offset;
547   		target = procs[_SRC_];
548 		writeflag = 0;
549   	} else if(r == EFAULT_DST) {
550   		lin = vir_addr[_DST_]->offset;
551   		target = procs[_DST_];
552 		writeflag = 1;
553   	} else {
554   		panic("r strange: %d",  r);
555   	}
556 
557 	assert(caller);
558 	assert(target);
559 
560 	vm_suspend(caller, target, lin, bytes, VMSTYPE_KERNELCALL, writeflag);
561 	return VMSUSPEND;
562   }
563 
564   return OK;
565 }
566 
567 /*===========================================================================*
568  *				data_copy				     *
569  *===========================================================================*/
570 int data_copy(const endpoint_t from_proc, const vir_bytes from_addr,
571 	const endpoint_t to_proc, const vir_bytes to_addr,
572 	size_t bytes)
573 {
574   struct vir_addr src, dst;
575 
576   src.offset = from_addr;
577   dst.offset = to_addr;
578   src.proc_nr_e = from_proc;
579   dst.proc_nr_e = to_proc;
580   assert(src.proc_nr_e != NONE);
581   assert(dst.proc_nr_e != NONE);
582 
583   return virtual_copy(&src, &dst, bytes);
584 }
585 
586 /*===========================================================================*
587  *				data_copy_vmcheck			     *
588  *===========================================================================*/
589 int data_copy_vmcheck(struct proc * caller,
590 	const endpoint_t from_proc, const vir_bytes from_addr,
591 	const endpoint_t to_proc, const vir_bytes to_addr,
592 	size_t bytes)
593 {
594   struct vir_addr src, dst;
595 
596   src.offset = from_addr;
597   dst.offset = to_addr;
598   src.proc_nr_e = from_proc;
599   dst.proc_nr_e = to_proc;
600   assert(src.proc_nr_e != NONE);
601   assert(dst.proc_nr_e != NONE);
602 
603   return virtual_copy_vmcheck(caller, &src, &dst, bytes);
604 }
605 
606 void memory_init(void)
607 {
608 	assert(nfreepdes == 0);
609 
610 	freepdes[nfreepdes++] = kinfo.freepde_start++;
611 	freepdes[nfreepdes++] = kinfo.freepde_start++;
612 
613 	assert(kinfo.freepde_start < ARM_VM_DIR_ENTRIES);
614 	assert(nfreepdes == 2);
615 	assert(nfreepdes <= MAXFREEPDES);
616 }
617 
618 /*===========================================================================*
619  *				arch_proc_init				     *
620  *===========================================================================*/
621 void arch_proc_init(struct proc *pr, const u32_t ip, const u32_t sp,
622 	const u32_t ps_str, char *name)
623 {
624 	arch_proc_reset(pr);
625 	strcpy(pr->p_name, name);
626 
627 	/* set custom state we know */
628 	pr->p_reg.pc = ip;
629 	pr->p_reg.sp = sp;
630 	pr->p_reg.retreg = ps_str; /* a.k.a r0*/
631 }
632 
633 static int usermapped_glo_index = -1,
634 	usermapped_index = -1, first_um_idx = -1;
635 
636 
637 /* defined in kernel.lds */
638 extern char usermapped_start, usermapped_end, usermapped_nonglo_start;
639 
640 int arch_phys_map(const int index,
641 			phys_bytes *addr,
642 			phys_bytes *len,
643 			int *flags)
644 {
645 	static int first = 1;
646 	kern_phys_map *phys_maps;
647 
648 	int freeidx = 0;
649 	u32_t glo_len = (u32_t) &usermapped_nonglo_start -
650 			(u32_t) &usermapped_start;
651 
652 	if(first) {
653 		memset(&minix_kerninfo, 0, sizeof(minix_kerninfo));
654 		if(glo_len > 0) {
655 			usermapped_glo_index = freeidx++;
656 		}
657 
658 		usermapped_index = freeidx++;
659 		first_um_idx = usermapped_index;
660 		if(usermapped_glo_index != -1)
661 			first_um_idx = usermapped_glo_index;
662 		first = 0;
663 
664 		/* list over the maps and index them */
665 		phys_maps = kern_phys_map_head;
666 		while(phys_maps != NULL){
667 			phys_maps->index = freeidx++;
668 			phys_maps = phys_maps->next;
669 		}
670 
671 	}
672 
673 	if(index == usermapped_glo_index) {
674 		*addr = vir2phys(&usermapped_start);
675 		*len = glo_len;
676 		*flags = VMMF_USER | VMMF_GLO;
677 		return OK;
678 	}
679 	else if(index == usermapped_index) {
680 		*addr = vir2phys(&usermapped_nonglo_start);
681 		*len = (u32_t) &usermapped_end -
682 			(u32_t) &usermapped_nonglo_start;
683 		*flags = VMMF_USER;
684 		return OK;
685 	}
686 
687 	/* if this all fails loop over the maps */
688 	phys_maps = kern_phys_map_head;
689 	while(phys_maps != NULL){
690 		if(phys_maps->index == index){
691 			*addr = phys_maps->addr;
692 			*len =  phys_maps->size;
693 			*flags = phys_maps->vm_flags;
694 			return OK;
695 		}
696 		phys_maps = phys_maps->next;
697 	}
698 
699 	return EINVAL;
700 }
701 
702 int arch_phys_map_reply(const int index, const vir_bytes addr)
703 {
704 	kern_phys_map *phys_maps;
705 
706 	if(index == first_um_idx) {
707 		u32_t usermapped_offset;
708 		assert(addr > (u32_t) &usermapped_start);
709 		usermapped_offset = addr - (u32_t) &usermapped_start;
710 #define FIXEDPTR(ptr) (void *) ((u32_t)ptr + usermapped_offset)
711 #define FIXPTR(ptr) ptr = FIXEDPTR(ptr)
712 #define ASSIGN(minixstruct) minix_kerninfo.minixstruct = FIXEDPTR(&minixstruct)
713 		ASSIGN(kinfo);
714 		ASSIGN(machine);
715 		ASSIGN(kmessages);
716 		ASSIGN(loadinfo);
717 		ASSIGN(kuserinfo);
718 		ASSIGN(arm_frclock);
719 		ASSIGN(kclockinfo);
720 
721 		/* adjust the pointers of the functions and the struct
722 		 * itself to the user-accessible mapping
723 		 */
724 		minix_kerninfo.kerninfo_magic = KERNINFO_MAGIC;
725 		minix_kerninfo.minix_feature_flags = minix_feature_flags;
726 		minix_kerninfo_user = (vir_bytes) FIXEDPTR(&minix_kerninfo);
727 
728 		minix_kerninfo.ki_flags |= MINIX_KIF_USERINFO;
729 
730 		return OK;
731 	}
732 
733 	if (index == usermapped_index) {
734 		return OK;
735 	}
736 
737 	/* if this all fails loop over the maps */
738 	/* list over the maps and index them */
739 	phys_maps = kern_phys_map_head;
740 	while(phys_maps != NULL){
741 		if(phys_maps->index == index){
742 			assert(phys_maps->cb != NULL);
743 			/* only update the vir addr we are
744 			   going to call the callback in enable
745 			   paging
746 			*/
747 			phys_maps->vir = addr;
748 			return OK;
749 		}
750 		phys_maps = phys_maps->next;
751 	}
752 
753 	return EINVAL;
754 }
755 
756 int arch_enable_paging(struct proc * caller)
757 {
758 	kern_phys_map *phys_maps;
759 	assert(caller->p_seg.p_ttbr);
760 
761 
762 	/* load caller's page table */
763 	switch_address_space(caller);
764 
765 	/* We have now switched address spaces and the mappings are
766 	   valid. We can now remap previous mappings. This is not a
767 	   good time to do printf as the initial massing is gone and
768 	   the new mapping is not in place */
769 	phys_maps = kern_phys_map_head;
770 	while(phys_maps != NULL){
771 		assert(phys_maps->cb != NULL);
772 		phys_maps->cb(phys_maps->id, phys_maps->vir);
773 		phys_maps = phys_maps->next;
774 	}
775 
776 	return OK;
777 }
778 
779 void release_address_space(struct proc *pr)
780 {
781 	pr->p_seg.p_ttbr_v = NULL;
782 	barrier();
783 }
784 
785 
786 
787 /*
788  * Request a physical mapping
789  */
790 int kern_req_phys_map( phys_bytes base_address, vir_bytes io_size,
791 		       int vm_flags, kern_phys_map * priv,
792 		       kern_phys_map_mapped cb, vir_bytes id)
793 {
794 	/* Assign the values to the given struct and add priv
795 	to the list */
796 	assert(base_address != 0);
797 	assert(io_size % ARM_PAGE_SIZE == 0);
798 	assert(cb != NULL);
799 
800 	priv->addr  = base_address;
801 	priv->size  = io_size;
802 	priv->vm_flags  = vm_flags;
803 	priv->cb  = cb;
804 	priv->id  = id;
805 	priv->index = -1;
806 	priv->next = NULL;
807 
808 
809 	if (kern_phys_map_head == NULL){
810 		/* keep a list of items this is the first one */
811 		kern_phys_map_head = priv;
812 		kern_phys_map_head->next = NULL;
813 	} else {
814 		/* insert the item head but first keep track
815 		   of the current by putting it in next */
816 		priv->next = kern_phys_map_head;
817 		/* replace the head */
818 		kern_phys_map_head = priv;
819 	}
820 	return 0;
821 }
822 
823 /*
824  * Callback implementation where the id given to the
825  * kern_phys_map is a pointer to the io map base address.
826  * this implementation will just change that base address.
827  * once that area is remapped.
828  */
829 int kern_phys_map_mapped_ptr(vir_bytes id, phys_bytes address){
830 	*((vir_bytes*)id) = address;
831 	return 0;
832 }
833 
834 /*
835  * Request a physical mapping and put the result in the given prt
836  * Note that ptr will only be valid once the callback happened.
837  */
838 int kern_phys_map_ptr(
839 	phys_bytes base_address,
840 	vir_bytes io_size,
841 	int vm_flags,
842 	kern_phys_map * priv,
843 	vir_bytes ptr)
844 {
845 	return kern_req_phys_map(base_address,io_size,vm_flags,priv,kern_phys_map_mapped_ptr,ptr);
846 }
847 
848