xref: /minix/minix/kernel/arch/earm/pre_init.c (revision 045e0ed3)
1 #define UNPAGED 1	/* for proper kmain() prototype */
2 
3 #include "kernel/kernel.h"
4 #include <assert.h>
5 #include <stdlib.h>
6 #include <minix/minlib.h>
7 #include <minix/const.h>
8 #include <minix/type.h>
9 #include <minix/board.h>
10 #include <minix/com.h>
11 #include <sys/types.h>
12 #include <sys/param.h>
13 #include <sys/reboot.h>
14 #include "string.h"
15 #include "arch_proto.h"
16 #include "direct_utils.h"
17 #include "bsp_serial.h"
18 #include "glo.h"
19 #include <machine/multiboot.h>
20 
21 #if USE_SYSDEBUG
22 #define MULTIBOOT_VERBOSE 1
23 #endif
24 
25 /* to-be-built kinfo struct, diagnostics buffer */
26 kinfo_t kinfo;
27 struct kmessages kmessages;
28 
29 /* pg_utils.c uses this; in this phase, there is a 1:1 mapping. */
30 phys_bytes vir2phys(void *addr) { return (phys_bytes) addr; }
31 
32 static void setup_mbi(multiboot_info_t *mbi, char *bootargs);
33 
34 /* String length used for mb_itoa */
35 #define ITOA_BUFFER_SIZE 20
36 
37 /* Kernel may use memory */
38 int kernel_may_alloc = 1;
39 
40 /* kernel bss */
41 extern u32_t _edata;
42 extern u32_t _end;
43 
44 /* kernel unpaged bss */
45 extern char _kern_unpaged_edata;
46 extern char _kern_unpaged_end;
47 
48 /**
49  *
50  * The following function combines a few things together
51  * that can well be done using standard libc like strlen/strstr
52  * and such but these are not available in pre_init stage.
53  *
54  * The function expects content to be in the form of space separated
55  * key value pairs.
56  * param content the contents to search in
57  * param key the key to find (this *should* include the key/value delimiter)
58  * param value a pointer to an initialized char * of at least value_max_len length
59  * param value_max_len the maximum length of the value to store in value including
60  *       the end char
61  *
62 **/
63 int find_value(char * content,char * key,char *value,int value_max_len){
64 
65 	char *iter,*keyp;
66 	int key_len,content_len,match_len,value_len;
67 
68 	/* return if the input is invalid */
69 	if  (key == NULL || content == NULL || value == NULL) {
70 		return 1;
71 	}
72 
73 	/* find the key and content length */
74 	key_len = content_len =0;
75 	for(iter = key ; *iter != '\0'; iter++, key_len++);
76 	for(iter = content ; *iter != '\0'; iter++, content_len++);
77 
78 	/* return if key or content length invalid */
79 	if (key_len == 0 || content_len == 0) {
80 		return 1;
81 	}
82 
83 	/* now find the key in the contents */
84 	match_len =0;
85 	for (iter = content ,keyp=key; match_len < key_len && *iter != '\0' ; iter++) {
86 		if (*iter == *keyp) {
87 			match_len++;
88 			keyp++;
89 			continue;
90 		}
91 		/* The current key does not match the value , reset */
92 		match_len =0;
93 		keyp=key;
94 	}
95 
96 	if (match_len == key_len) {
97 		printf("key found at %d %s\n", match_len, &content[match_len]);
98 		value_len = 0;
99 		/* copy the content to the value char iter already points to the first
100 		   char value */
101 		while(*iter != '\0' && *iter != ' ' && value_len  + 1< value_max_len) {
102 			*value++ = *iter++;
103 			value_len++;
104 		}
105 		*value='\0';
106 		return 0;
107 	}
108 	return 1; /* not found */
109 }
110 
111 static int mb_set_param(char *bigbuf,char *name,char *value, kinfo_t *cbi)
112 {
113 	/* bigbuf contains a list of key=value pairs separated by \0 char.
114 	 * The list itself is ended by a second \0 terminator*/
115 	char *p = bigbuf;
116 	char *bufend = bigbuf + MULTIBOOT_PARAM_BUF_SIZE;
117 	char *q;
118 	int namelen = strlen(name);
119 	int valuelen = strlen(value);
120 
121 	/* Some variables we recognize */
122 	if(!strcmp(name, SERVARNAME)) { cbi->do_serial_debug = 1; }
123 	if(!strcmp(name, SERBAUDVARNAME)) { cbi->serial_debug_baud = atoi(value); }
124 
125 	/* Delete the item if already exists */
126 	while (*p) {
127 		if (strncmp(p, name, namelen) == 0 && p[namelen] == '=') {
128 			q = p;
129 			/* let q point to the end of the entry */
130 			while (*q) q++;
131 			/* now copy the remained of the buffer */
132 			for (q++; q < bufend; q++, p++)
133 				*p = *q;
134 			break;
135 		}
136 
137 		/* find the end of the buffer */
138 		while (*p++);
139 		p++;
140 	}
141 
142 
143 	/* find the first empty spot */
144 	for (p = bigbuf; p < bufend && (*p || *(p + 1)); p++);
145 
146 	/* unless we are the first entry step over the delimiter */
147 	if (p > bigbuf) p++;
148 
149 	/* Make sure there's enough space for the new parameter */
150 	if (p + namelen + valuelen + 3 > bufend) {
151 		return -1;
152 	}
153 
154 	strcpy(p, name);
155 	p[namelen] = '=';
156 	strcpy(p + namelen + 1, value);
157 	p[namelen + valuelen + 1] = 0;
158 	p[namelen + valuelen + 2] = 0; /* end with a second delimiter */
159 	return 0;
160 }
161 
162 int overlaps(multiboot_module_t *mod, int n, int cmp_mod)
163 {
164 	multiboot_module_t *cmp = &mod[cmp_mod];
165 	int m;
166 
167 #define INRANGE(mod, v) ((v) >= mod->mod_start && (v) <= thismod->mod_end)
168 #define OVERLAP(mod1, mod2) (INRANGE(mod1, mod2->mod_start) || \
169 	    INRANGE(mod1, mod2->mod_end))
170 	for(m = 0; m < n; m++) {
171 		multiboot_module_t *thismod = &mod[m];
172 		if(m == cmp_mod) continue;
173 		if(OVERLAP(thismod, cmp)) {
174 			return 1;
175 		}
176 	}
177 	return 0;
178 }
179 
180 /* XXX: hard-coded stuff for modules */
181 #define MB_MODS_NR NR_BOOT_MODULES
182 #define MB_MODS_BASE  0x82000000
183 #define MB_MODS_ALIGN 0x00800000 /* 8 MB */
184 #define MB_MMAP_START 0x80000000
185 #define MB_MMAP_SIZE  0x10000000 /* 256 MB */
186 
187 multiboot_module_t mb_modlist[MB_MODS_NR];
188 multiboot_memory_map_t mb_memmap;
189 
190 void setup_mbi(multiboot_info_t *mbi, char *bootargs)
191 {
192 	memset(mbi, 0, sizeof(*mbi));
193 	mbi->flags = MULTIBOOT_INFO_MODS | MULTIBOOT_INFO_MEM_MAP |
194 			MULTIBOOT_INFO_CMDLINE;
195 	mbi->mi_mods_count = MB_MODS_NR;
196 	mbi->mods_addr = (u32_t)&mb_modlist;
197 
198 	int i;
199 	for (i = 0; i < MB_MODS_NR; ++i) {
200 		mb_modlist[i].mod_start = MB_MODS_BASE + i * MB_MODS_ALIGN;
201 		mb_modlist[i].mod_end = mb_modlist[i].mod_start + MB_MODS_ALIGN
202 		    - ARM_PAGE_SIZE;
203 		mb_modlist[i].cmdline = 0;
204 	}
205 
206 	/* morph the bootargs into multiboot */
207 	mbi->cmdline = (u32_t) bootargs;
208 
209 	mbi->mmap_addr =(u32_t)&mb_memmap;
210 	mbi->mmap_length = sizeof(mb_memmap);
211 
212 	mb_memmap.size = sizeof(multiboot_memory_map_t);
213 	mb_memmap.mm_base_addr = MB_MMAP_START;
214 	mb_memmap.mm_length  = MB_MMAP_SIZE;
215 	mb_memmap.type = MULTIBOOT_MEMORY_AVAILABLE;
216 }
217 
218 void get_parameters(kinfo_t *cbi, char *bootargs)
219 {
220 	multiboot_memory_map_t *mmap;
221 	multiboot_info_t *mbi = &cbi->mbi;
222 	int var_i,value_i, m, k;
223 	char *p;
224 	extern char _kern_phys_base, _kern_vir_base, _kern_size,
225 	    _kern_unpaged_start, _kern_unpaged_end;
226 	phys_bytes kernbase = (phys_bytes) &_kern_phys_base,
227 	    kernsize = (phys_bytes) &_kern_size;
228 #define BUF 1024
229 	static char cmdline[BUF];
230 
231 	/* get our own copy of the multiboot info struct and module list */
232 	setup_mbi(mbi, bootargs);
233 
234 	/* Set various bits of info for the higher-level kernel. */
235 	cbi->mem_high_phys = 0;
236 	cbi->user_sp = (vir_bytes) &_kern_vir_base;
237 	cbi->vir_kern_start = (vir_bytes) &_kern_vir_base;
238 	cbi->bootstrap_start = (vir_bytes) &_kern_unpaged_start;
239 	cbi->bootstrap_len = (vir_bytes) &_kern_unpaged_end -
240 		cbi->bootstrap_start;
241 	cbi->kmess = &kmess;
242 
243 	/* set some configurable defaults */
244 	cbi->do_serial_debug = 1;
245 	cbi->serial_debug_baud = 115200;
246 
247 	/* parse boot command line */
248 	if (mbi->flags&MULTIBOOT_INFO_CMDLINE) {
249 		static char var[BUF];
250 		static char value[BUF];
251 
252 		/* Override values with cmdline argument */
253 		memcpy(cmdline, (void *) mbi->cmdline, BUF);
254 		p = cmdline;
255 		while (*p) {
256 			var_i = 0;
257 			value_i = 0;
258 			while (*p == ' ') p++; /* skip spaces */
259 			if (!*p) break; /* is this the end? */
260 			while (*p && *p != '=' && *p != ' ' && var_i < BUF - 1)
261 				var[var_i++] = *p++ ;
262 			var[var_i] = 0;
263 			if (*p++ != '=') continue; /* skip if not name=value */
264 			while (*p && *p != ' ' && value_i < BUF - 1) {
265 				value[value_i++] = *p++ ;
266 			}
267 			value[value_i] = 0;
268 
269 			mb_set_param(cbi->param_buf, var, value, cbi);
270 		}
271 	}
272 
273 	/* let higher levels know what we are booting on */
274 	mb_set_param(cbi->param_buf, ARCHVARNAME, (char *)get_board_arch_name(machine.board_id), cbi);
275 	mb_set_param(cbi->param_buf, BOARDVARNAME,(char *)get_board_name(machine.board_id) , cbi);
276 
277 
278 	/* move user stack/data down to leave a gap to catch kernel
279 	 * stack overflow; and to distinguish kernel and user addresses
280 	 * at a glance (0xf.. vs 0xe..)
281 	 */
282 	cbi->user_sp = USR_STACKTOP;
283 	cbi->user_end = USR_DATATOP;
284 
285 	/* kernel bytes without bootstrap code/data that is currently
286 	 * still needed but will be freed after bootstrapping.
287 	 */
288 	kinfo.kernel_allocated_bytes = (phys_bytes) &_kern_size;
289 	kinfo.kernel_allocated_bytes -= cbi->bootstrap_len;
290 
291 	assert(!(cbi->bootstrap_start % ARM_PAGE_SIZE));
292 	cbi->bootstrap_len = rounddown(cbi->bootstrap_len, ARM_PAGE_SIZE);
293 	assert(mbi->flags & MULTIBOOT_INFO_MODS);
294 	assert(mbi->mi_mods_count < MULTIBOOT_MAX_MODS);
295 	assert(mbi->mi_mods_count > 0);
296 	memcpy(&cbi->module_list, (void *) mbi->mods_addr,
297 		mbi->mi_mods_count * sizeof(multiboot_module_t));
298 
299 	memset(cbi->memmap, 0, sizeof(cbi->memmap));
300 	/* mem_map has a variable layout */
301 	if(mbi->flags & MULTIBOOT_INFO_MEM_MAP) {
302 		cbi->mmap_size = 0;
303 	        for (mmap = (multiboot_memory_map_t *) mbi->mmap_addr;
304        	     (unsigned long) mmap < mbi->mmap_addr + mbi->mmap_length;
305        	       mmap = (multiboot_memory_map_t *)
306 		      	((unsigned long) mmap + mmap->size + sizeof(mmap->size))) {
307 			if(mmap->type != MULTIBOOT_MEMORY_AVAILABLE) continue;
308 			add_memmap(cbi, mmap->mm_base_addr, mmap->mm_length);
309 		}
310 	} else {
311 		assert(mbi->flags & MULTIBOOT_INFO_MEMORY);
312 		add_memmap(cbi, 0, mbi->mem_lower_unused*1024);
313 		add_memmap(cbi, 0x100000, mbi->mem_upper_unused*1024);
314 	}
315 
316 	/* Sanity check: the kernel nor any of the modules may overlap
317 	 * with each other. Pretend the kernel is an extra module for a
318 	 * second.
319 	 */
320 	k = mbi->mi_mods_count;
321 	assert(k < MULTIBOOT_MAX_MODS);
322 	cbi->module_list[k].mod_start = kernbase;
323 	cbi->module_list[k].mod_end = kernbase + kernsize;
324 	cbi->mods_with_kernel = mbi->mi_mods_count+1;
325 	cbi->kern_mod = k;
326 
327 	for(m = 0; m < cbi->mods_with_kernel; m++) {
328 #if 0
329 		printf("checking overlap of module %08lx-%08lx\n",
330 		  cbi->module_list[m].mod_start, cbi->module_list[m].mod_end);
331 #endif
332 		if(overlaps(cbi->module_list, cbi->mods_with_kernel, m))
333 			panic("overlapping boot modules/kernel");
334 		/* We cut out the bits of memory that we know are
335 		 * occupied by the kernel and boot modules.
336 		 */
337 		cut_memmap(cbi,
338 			cbi->module_list[m].mod_start,
339 			cbi->module_list[m].mod_end);
340 	}
341 }
342 
343 /*
344  * During low level init many things are not supposed to work
345  * serial being one of them. We therefore can't rely on the
346  * serial to debug. POORMANS_FAILURE_NOTIFICATION can be used
347  * before we setup our own vector table and will result in calling
348  * the bootloader's debugging methods that will hopefully show some
349  * information like the currnet PC at on the serial.
350  */
351 #define POORMANS_FAILURE_NOTIFICATION  asm volatile("svc #00\n")
352 
353 /* use the passed cmdline argument to determine the machine id */
354 void set_machine_id(char *cmdline)
355 {
356 
357 	char boardname[20];
358 	memset(boardname,'\0',20);
359 	if (find_value(cmdline,"board_name=",boardname,20)){
360 		/* we expect the bootloader to pass a board_name as argument
361 		 * this however did not happen and given we still are in early
362 		 * boot we can't use the serial. We therefore generate an interrupt
363 		 * and hope the bootloader will do something nice with it */
364 		POORMANS_FAILURE_NOTIFICATION;
365 	}
366 	machine.board_id = get_board_id_by_short_name(boardname);
367 
368 	if (machine.board_id ==0){
369 		/* same thing as above there is no safe escape */
370 		POORMANS_FAILURE_NOTIFICATION;
371 	}
372 }
373 
374 kinfo_t *pre_init(int argc, char **argv)
375 {
376 	char *bootargs;
377 	/* This is the main "c" entry point into the kernel. It gets called
378 	   from head.S */
379 
380 	/* Clear BSS */
381 	memset(&_edata, 0, (u32_t)&_end - (u32_t)&_edata);
382         memset(&_kern_unpaged_edata, 0, (u32_t)&_kern_unpaged_end - (u32_t)&_kern_unpaged_edata);
383 
384 	/* we get called in a c like fashion where the first arg
385          * is the program name (load address) and the rest are
386 	 * arguments. by convention the second argument is the
387 	 *  command line */
388 	if (argc != 2) {
389 		POORMANS_FAILURE_NOTIFICATION;
390 	}
391 
392 	bootargs = argv[1];
393 	set_machine_id(bootargs);
394 	bsp_ser_init();
395 	/* Get our own copy boot params pointed to by ebx.
396 	 * Here we find out whether we should do serial output.
397 	 */
398 	get_parameters(&kinfo, bootargs);
399 
400 	/* Make and load a pagetable that will map the kernel
401 	 * to where it should be; but first a 1:1 mapping so
402 	 * this code stays where it should be.
403 	 */
404 	dcache_clean(); /* clean the caches */
405 	pg_clear();
406 	pg_identity(&kinfo);
407 	kinfo.freepde_start = pg_mapkernel();
408 	pg_load();
409 	vm_enable_paging();
410 
411 	/* Done, return boot info so it can be passed to kmain(). */
412 	return &kinfo;
413 }
414 
415 /* pre_init gets executed at the memory location where the kernel was loaded by the boot loader.
416  * at that stage we only have a minimum set of functionality present (all symbols gets renamed to
417  * ensure this). The following methods are used in that context. Once we jump to kmain they are no
418  * longer used and the "real" implementations are visible
419  */
420 void send_diag_sig(void) { }
421 void minix_shutdown(int how) { arch_shutdown(how); }
422 void busy_delay_ms(int x) { }
423 int raise(int n) { panic("raise(%d)\n", n); }
424 int kern_phys_map_ptr( phys_bytes base_address, vir_bytes io_size, int vm_flags,
425 struct kern_phys_map * priv, vir_bytes ptr) { return -1; };
426 struct machine machine; /* pre init stage machine */
427