xref: /minix/minix/kernel/proc.c (revision e3b78ef1)
1 /* This file contains essentially all of the process and message handling.
2  * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
3  * There is one entry point from the outside:
4  *
5  *   sys_call: 	      a system call, i.e., the kernel is trapped with an INT
6  *
7  * Changes:
8  *   Aug 19, 2005     rewrote scheduling code  (Jorrit N. Herder)
9  *   Jul 25, 2005     rewrote system call handling  (Jorrit N. Herder)
10  *   May 26, 2005     rewrote message passing functions  (Jorrit N. Herder)
11  *   May 24, 2005     new notification system call  (Jorrit N. Herder)
12  *   Oct 28, 2004     nonblocking send and receive calls  (Jorrit N. Herder)
13  *
14  * The code here is critical to make everything work and is important for the
15  * overall performance of the system. A large fraction of the code deals with
16  * list manipulation. To make this both easy to understand and fast to execute
17  * pointer pointers are used throughout the code. Pointer pointers prevent
18  * exceptions for the head or tail of a linked list.
19  *
20  *  node_t *queue, *new_node;	// assume these as global variables
21  *  node_t **xpp = &queue; 	// get pointer pointer to head of queue
22  *  while (*xpp != NULL) 	// find last pointer of the linked list
23  *      xpp = &(*xpp)->next;	// get pointer to next pointer
24  *  *xpp = new_node;		// now replace the end (the NULL pointer)
25  *  new_node->next = NULL;	// and mark the new end of the list
26  *
27  * For example, when adding a new node to the end of the list, one normally
28  * makes an exception for an empty list and looks up the end of the list for
29  * nonempty lists. As shown above, this is not required with pointer pointers.
30  */
31 
32 #include <minix/com.h>
33 #include <minix/ipcconst.h>
34 #include <stddef.h>
35 #include <signal.h>
36 #include <assert.h>
37 #include <string.h>
38 
39 #include "kernel/kernel.h"
40 #include "vm.h"
41 #include "clock.h"
42 #include "spinlock.h"
43 #include "arch_proto.h"
44 
45 #include <minix/syslib.h>
46 
47 /* Scheduling and message passing functions */
48 static void idle(void);
49 /**
50  * Made public for use in clock.c (for user-space scheduling)
51 static int mini_send(struct proc *caller_ptr, endpoint_t dst_e, message
52 	*m_ptr, int flags);
53 */
54 static int mini_receive(struct proc *caller_ptr, endpoint_t src,
55 	message *m_ptr, int flags);
56 static int mini_senda(struct proc *caller_ptr, asynmsg_t *table, size_t
57 	size);
58 static int deadlock(int function, register struct proc *caller,
59 	endpoint_t src_dst_e);
60 static int try_async(struct proc *caller_ptr);
61 static int try_one(struct proc *src_ptr, struct proc *dst_ptr);
62 static struct proc * pick_proc(void);
63 static void enqueue_head(struct proc *rp);
64 
65 /* all idles share the same idle_priv structure */
66 static struct priv idle_priv;
67 
68 static void set_idle_name(char * name, int n)
69 {
70         int i, c;
71         int p_z = 0;
72 
73         if (n > 999)
74                 n = 999;
75 
76         name[0] = 'i';
77         name[1] = 'd';
78         name[2] = 'l';
79         name[3] = 'e';
80 
81         for (i = 4, c = 100; c > 0; c /= 10) {
82                 int digit;
83 
84                 digit = n / c;
85                 n -= digit * c;
86 
87                 if (p_z || digit != 0 || c == 1) {
88                         p_z = 1;
89                         name[i++] = '0' + digit;
90                 }
91         }
92 
93         name[i] = '\0';
94 
95 }
96 
97 
98 #define PICK_ANY	1
99 #define PICK_HIGHERONLY	2
100 
101 #define BuildNotifyMessage(m_ptr, src, dst_ptr) \
102 	memset((m_ptr), 0, sizeof(*(m_ptr)));				\
103 	(m_ptr)->m_type = NOTIFY_MESSAGE;				\
104 	(m_ptr)->m_notify.timestamp = get_monotonic();		\
105 	switch (src) {							\
106 	case HARDWARE:							\
107 		(m_ptr)->m_notify.interrupts =			\
108 			priv(dst_ptr)->s_int_pending;			\
109 		priv(dst_ptr)->s_int_pending = 0;			\
110 		break;							\
111 	case SYSTEM:							\
112 		memcpy(&(m_ptr)->m_notify.sigset,			\
113 			&priv(dst_ptr)->s_sig_pending,			\
114 			sizeof(sigset_t));				\
115 		sigemptyset(&priv(dst_ptr)->s_sig_pending);		\
116 		break;							\
117 	}
118 
119 void proc_init(void)
120 {
121 	struct proc * rp;
122 	struct priv *sp;
123 	int i;
124 
125 	/* Clear the process table. Announce each slot as empty and set up
126 	 * mappings for proc_addr() and proc_nr() macros. Do the same for the
127 	 * table with privilege structures for the system processes.
128 	 */
129 	for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
130 		rp->p_rts_flags = RTS_SLOT_FREE;/* initialize free slot */
131 		rp->p_magic = PMAGIC;
132 		rp->p_nr = i;			/* proc number from ptr */
133 		rp->p_endpoint = _ENDPOINT(0, rp->p_nr); /* generation no. 0 */
134 		rp->p_scheduler = NULL;		/* no user space scheduler */
135 		rp->p_priority = 0;		/* no priority */
136 		rp->p_quantum_size_ms = 0;	/* no quantum size */
137 
138 		/* arch-specific initialization */
139 		arch_proc_reset(rp);
140 	}
141 	for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
142 		sp->s_proc_nr = NONE;		/* initialize as free */
143 		sp->s_id = (sys_id_t) i;	/* priv structure index */
144 		ppriv_addr[i] = sp;		/* priv ptr from number */
145 		sp->s_sig_mgr = NONE;		/* clear signal managers */
146 		sp->s_bak_sig_mgr = NONE;
147 	}
148 
149 	idle_priv.s_flags = IDL_F;
150 	/* initialize IDLE structures for every CPU */
151 	for (i = 0; i < CONFIG_MAX_CPUS; i++) {
152 		struct proc * ip = get_cpu_var_ptr(i, idle_proc);
153 		ip->p_endpoint = IDLE;
154 		ip->p_priv = &idle_priv;
155 		/* must not let idle ever get scheduled */
156 		ip->p_rts_flags |= RTS_PROC_STOP;
157 		set_idle_name(ip->p_name, i);
158 	}
159 }
160 
161 static void switch_address_space_idle(void)
162 {
163 #ifdef CONFIG_SMP
164 	/*
165 	 * currently we bet that VM is always alive and its pages available so
166 	 * when the CPU wakes up the kernel is mapped and no surprises happen.
167 	 * This is only a problem if more than 1 cpus are available
168 	 */
169 	switch_address_space(proc_addr(VM_PROC_NR));
170 #endif
171 }
172 
173 /*===========================================================================*
174  *				idle					     *
175  *===========================================================================*/
176 static void idle(void)
177 {
178 	struct proc * p;
179 
180 	/* This function is called whenever there is no work to do.
181 	 * Halt the CPU, and measure how many timestamp counter ticks are
182 	 * spent not doing anything. This allows test setups to measure
183 	 * the CPU utilization of certain workloads with high precision.
184 	 */
185 
186 	p = get_cpulocal_var(proc_ptr) = get_cpulocal_var_ptr(idle_proc);
187 	if (priv(p)->s_flags & BILLABLE)
188 		get_cpulocal_var(bill_ptr) = p;
189 
190 	switch_address_space_idle();
191 
192 #ifdef CONFIG_SMP
193 	get_cpulocal_var(cpu_is_idle) = 1;
194 	/* we don't need to keep time on APs as it is handled on the BSP */
195 	if (cpuid != bsp_cpu_id)
196 		stop_local_timer();
197 	else
198 #endif
199 	{
200 		/*
201 		 * If the timer has expired while in kernel we must
202 		 * rearm it before we go to sleep
203 		 */
204 		restart_local_timer();
205 	}
206 
207 	/* start accounting for the idle time */
208 	context_stop(proc_addr(KERNEL));
209 #if !SPROFILE
210 	halt_cpu();
211 #else
212 	if (!sprofiling)
213 		halt_cpu();
214 	else {
215 		volatile int * v;
216 
217 		v = get_cpulocal_var_ptr(idle_interrupted);
218 		interrupts_enable();
219 		while (!*v)
220 			arch_pause();
221 		interrupts_disable();
222 		*v = 0;
223 	}
224 #endif
225 	/*
226 	 * end of accounting for the idle task does not happen here, the kernel
227 	 * is handling stuff for quite a while before it gets back here!
228 	 */
229 }
230 
231 /*===========================================================================*
232  *				switch_to_user				     *
233  *===========================================================================*/
234 void switch_to_user(void)
235 {
236 	/* This function is called an instant before proc_ptr is
237 	 * to be scheduled again.
238 	 */
239 	struct proc * p;
240 #ifdef CONFIG_SMP
241 	int tlb_must_refresh = 0;
242 #endif
243 
244 	p = get_cpulocal_var(proc_ptr);
245 	/*
246 	 * if the current process is still runnable check the misc flags and let
247 	 * it run unless it becomes not runnable in the meantime
248 	 */
249 	if (proc_is_runnable(p))
250 		goto check_misc_flags;
251 	/*
252 	 * if a process becomes not runnable while handling the misc flags, we
253 	 * need to pick a new one here and start from scratch. Also if the
254 	 * current process wasn't runnable, we pick a new one here
255 	 */
256 not_runnable_pick_new:
257 	if (proc_is_preempted(p)) {
258 		p->p_rts_flags &= ~RTS_PREEMPTED;
259 		if (proc_is_runnable(p)) {
260 			if (p->p_cpu_time_left)
261 				enqueue_head(p);
262 			else
263 				enqueue(p);
264 		}
265 	}
266 
267 	/*
268 	 * if we have no process to run, set IDLE as the current process for
269 	 * time accounting and put the cpu in an idle state. After the next
270 	 * timer interrupt the execution resumes here and we can pick another
271 	 * process. If there is still nothing runnable we "schedule" IDLE again
272 	 */
273 	while (!(p = pick_proc())) {
274 		idle();
275 	}
276 
277 	/* update the global variable */
278 	get_cpulocal_var(proc_ptr) = p;
279 
280 #ifdef CONFIG_SMP
281 	if (p->p_misc_flags & MF_FLUSH_TLB && get_cpulocal_var(ptproc) == p)
282 		tlb_must_refresh = 1;
283 #endif
284 	switch_address_space(p);
285 
286 check_misc_flags:
287 
288 	assert(p);
289 	assert(proc_is_runnable(p));
290 	while (p->p_misc_flags &
291 		(MF_KCALL_RESUME | MF_DELIVERMSG |
292 		 MF_SC_DEFER | MF_SC_TRACE | MF_SC_ACTIVE)) {
293 
294 		assert(proc_is_runnable(p));
295 		if (p->p_misc_flags & MF_KCALL_RESUME) {
296 			kernel_call_resume(p);
297 		}
298 		else if (p->p_misc_flags & MF_DELIVERMSG) {
299 			TRACE(VF_SCHEDULING, printf("delivering to %s / %d\n",
300 				p->p_name, p->p_endpoint););
301 			delivermsg(p);
302 		}
303 		else if (p->p_misc_flags & MF_SC_DEFER) {
304 			/* Perform the system call that we deferred earlier. */
305 
306 			assert (!(p->p_misc_flags & MF_SC_ACTIVE));
307 
308 			arch_do_syscall(p);
309 
310 			/* If the process is stopped for signal delivery, and
311 			 * not blocked sending a message after the system call,
312 			 * inform PM.
313 			 */
314 			if ((p->p_misc_flags & MF_SIG_DELAY) &&
315 					!RTS_ISSET(p, RTS_SENDING))
316 				sig_delay_done(p);
317 		}
318 		else if (p->p_misc_flags & MF_SC_TRACE) {
319 			/* Trigger a system call leave event if this was a
320 			 * system call. We must do this after processing the
321 			 * other flags above, both for tracing correctness and
322 			 * to be able to use 'break'.
323 			 */
324 			if (!(p->p_misc_flags & MF_SC_ACTIVE))
325 				break;
326 
327 			p->p_misc_flags &=
328 				~(MF_SC_TRACE | MF_SC_ACTIVE);
329 
330 			/* Signal the "leave system call" event.
331 			 * Block the process.
332 			 */
333 			cause_sig(proc_nr(p), SIGTRAP);
334 		}
335 		else if (p->p_misc_flags & MF_SC_ACTIVE) {
336 			/* If MF_SC_ACTIVE was set, remove it now:
337 			 * we're leaving the system call.
338 			 */
339 			p->p_misc_flags &= ~MF_SC_ACTIVE;
340 
341 			break;
342 		}
343 
344 		/*
345 		 * the selected process might not be runnable anymore. We have
346 		 * to checkit and schedule another one
347 		 */
348 		if (!proc_is_runnable(p))
349 			goto not_runnable_pick_new;
350 	}
351 	/*
352 	 * check the quantum left before it runs again. We must do it only here
353 	 * as we are sure that a possible out-of-quantum message to the
354 	 * scheduler will not collide with the regular ipc
355 	 */
356 	if (!p->p_cpu_time_left)
357 		proc_no_time(p);
358 	/*
359 	 * After handling the misc flags the selected process might not be
360 	 * runnable anymore. We have to checkit and schedule another one
361 	 */
362 	if (!proc_is_runnable(p))
363 		goto not_runnable_pick_new;
364 
365 	TRACE(VF_SCHEDULING, printf("cpu %d starting %s / %d "
366 				"pc 0x%08x\n",
367 		cpuid, p->p_name, p->p_endpoint, p->p_reg.pc););
368 #if DEBUG_TRACE
369 	p->p_schedules++;
370 #endif
371 
372 	p = arch_finish_switch_to_user();
373 	assert(p->p_cpu_time_left);
374 
375 	context_stop(proc_addr(KERNEL));
376 
377 	/* If the process isn't the owner of FPU, enable the FPU exception */
378 	if (get_cpulocal_var(fpu_owner) != p)
379 		enable_fpu_exception();
380 	else
381 		disable_fpu_exception();
382 
383 	/* If MF_CONTEXT_SET is set, don't clobber process state within
384 	 * the kernel. The next kernel entry is OK again though.
385 	 */
386 	p->p_misc_flags &= ~MF_CONTEXT_SET;
387 
388 #if defined(__i386__)
389   	assert(p->p_seg.p_cr3 != 0);
390 #elif defined(__arm__)
391 	assert(p->p_seg.p_ttbr != 0);
392 #endif
393 #ifdef CONFIG_SMP
394 	if (p->p_misc_flags & MF_FLUSH_TLB) {
395 		if (tlb_must_refresh)
396 			refresh_tlb();
397 		p->p_misc_flags &= ~MF_FLUSH_TLB;
398 	}
399 #endif
400 
401 	restart_local_timer();
402 
403 	/*
404 	 * restore_user_context() carries out the actual mode switch from kernel
405 	 * to userspace. This function does not return
406 	 */
407 	restore_user_context(p);
408 	NOT_REACHABLE;
409 }
410 
411 /*
412  * handler for all synchronous IPC calls
413  */
414 static int do_sync_ipc(struct proc * caller_ptr, /* who made the call */
415 			int call_nr,	/* system call number and flags */
416 			endpoint_t src_dst_e,	/* src or dst of the call */
417 			message *m_ptr)	/* users pointer to a message */
418 {
419   int result;					/* the system call's result */
420   int src_dst_p;				/* Process slot number */
421   char *callname;
422 
423   /* Check destination. RECEIVE is the only call that accepts ANY (in addition
424    * to a real endpoint). The other calls (SEND, SENDREC, and NOTIFY) require an
425    * endpoint to corresponds to a process. In addition, it is necessary to check
426    * whether a process is allowed to send to a given destination.
427    */
428   assert(call_nr != SENDA);
429 
430   /* Only allow non-negative call_nr values less than 32 */
431   if (call_nr < 0 || call_nr > IPCNO_HIGHEST || call_nr >= 32
432       || !(callname = ipc_call_names[call_nr])) {
433 #if DEBUG_ENABLE_IPC_WARNINGS
434       printf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
435           call_nr, proc_nr(caller_ptr), src_dst_e);
436 #endif
437 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
438   }
439 
440   if (src_dst_e == ANY)
441   {
442 	if (call_nr != RECEIVE)
443 	{
444 #if 0
445 		printf("sys_call: %s by %d with bad endpoint %d\n",
446 			callname,
447 			proc_nr(caller_ptr), src_dst_e);
448 #endif
449 		return EINVAL;
450 	}
451 	src_dst_p = (int) src_dst_e;
452   }
453   else
454   {
455 	/* Require a valid source and/or destination process. */
456 	if(!isokendpt(src_dst_e, &src_dst_p)) {
457 #if 0
458 		printf("sys_call: %s by %d with bad endpoint %d\n",
459 			callname,
460 			proc_nr(caller_ptr), src_dst_e);
461 #endif
462 		return EDEADSRCDST;
463 	}
464 
465 	/* If the call is to send to a process, i.e., for SEND, SENDNB,
466 	 * SENDREC or NOTIFY, verify that the caller is allowed to send to
467 	 * the given destination.
468 	 */
469 	if (call_nr != RECEIVE)
470 	{
471 		if (!may_send_to(caller_ptr, src_dst_p)) {
472 #if DEBUG_ENABLE_IPC_WARNINGS
473 			printf(
474 			"sys_call: ipc mask denied %s from %d to %d\n",
475 				callname,
476 				caller_ptr->p_endpoint, src_dst_e);
477 #endif
478 			return(ECALLDENIED);	/* call denied by ipc mask */
479 		}
480 	}
481   }
482 
483   /* Check if the process has privileges for the requested call. Calls to the
484    * kernel may only be SENDREC, because tasks always reply and may not block
485    * if the caller doesn't do receive().
486    */
487   if (!(priv(caller_ptr)->s_trap_mask & (1 << call_nr))) {
488 #if DEBUG_ENABLE_IPC_WARNINGS
489       printf("sys_call: %s not allowed, caller %d, src_dst %d\n",
490           callname, proc_nr(caller_ptr), src_dst_p);
491 #endif
492 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
493   }
494 
495   if (call_nr != SENDREC && call_nr != RECEIVE && iskerneln(src_dst_p)) {
496 #if DEBUG_ENABLE_IPC_WARNINGS
497       printf("sys_call: trap %s not allowed, caller %d, src_dst %d\n",
498            callname, proc_nr(caller_ptr), src_dst_e);
499 #endif
500 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
501   }
502 
503   switch(call_nr) {
504   case SENDREC:
505 	/* A flag is set so that notifications cannot interrupt SENDREC. */
506 	caller_ptr->p_misc_flags |= MF_REPLY_PEND;
507 	/* fall through */
508   case SEND:
509 	result = mini_send(caller_ptr, src_dst_e, m_ptr, 0);
510 	if (call_nr == SEND || result != OK)
511 		break;				/* done, or SEND failed */
512 	/* fall through for SENDREC */
513   case RECEIVE:
514 	if (call_nr == RECEIVE) {
515 		caller_ptr->p_misc_flags &= ~MF_REPLY_PEND;
516 		IPC_STATUS_CLEAR(caller_ptr);  /* clear IPC status code */
517 	}
518 	result = mini_receive(caller_ptr, src_dst_e, m_ptr, 0);
519 	break;
520   case NOTIFY:
521 	result = mini_notify(caller_ptr, src_dst_e);
522 	break;
523   case SENDNB:
524         result = mini_send(caller_ptr, src_dst_e, m_ptr, NON_BLOCKING);
525         break;
526   default:
527 	result = EBADCALL;			/* illegal system call */
528   }
529 
530   /* Now, return the result of the system call to the caller. */
531   return(result);
532 }
533 
534 int do_ipc(reg_t r1, reg_t r2, reg_t r3)
535 {
536   struct proc *const caller_ptr = get_cpulocal_var(proc_ptr);	/* get pointer to caller */
537   int call_nr = (int) r1;
538 
539   assert(!RTS_ISSET(caller_ptr, RTS_SLOT_FREE));
540 
541   /* bill kernel time to this process. */
542   kbill_ipc = caller_ptr;
543 
544   /* If this process is subject to system call tracing, handle that first. */
545   if (caller_ptr->p_misc_flags & (MF_SC_TRACE | MF_SC_DEFER)) {
546 	/* Are we tracing this process, and is it the first sys_call entry? */
547 	if ((caller_ptr->p_misc_flags & (MF_SC_TRACE | MF_SC_DEFER)) ==
548 							MF_SC_TRACE) {
549 		/* We must notify the tracer before processing the actual
550 		 * system call. If we don't, the tracer could not obtain the
551 		 * input message. Postpone the entire system call.
552 		 */
553 		caller_ptr->p_misc_flags &= ~MF_SC_TRACE;
554 		assert(!(caller_ptr->p_misc_flags & MF_SC_DEFER));
555 		caller_ptr->p_misc_flags |= MF_SC_DEFER;
556 		caller_ptr->p_defer.r1 = r1;
557 		caller_ptr->p_defer.r2 = r2;
558 		caller_ptr->p_defer.r3 = r3;
559 
560 		/* Signal the "enter system call" event. Block the process. */
561 		cause_sig(proc_nr(caller_ptr), SIGTRAP);
562 
563 		/* Preserve the return register's value. */
564 		return caller_ptr->p_reg.retreg;
565 	}
566 
567 	/* If the MF_SC_DEFER flag is set, the syscall is now being resumed. */
568 	caller_ptr->p_misc_flags &= ~MF_SC_DEFER;
569 
570 	assert (!(caller_ptr->p_misc_flags & MF_SC_ACTIVE));
571 
572 	/* Set a flag to allow reliable tracing of leaving the system call. */
573 	caller_ptr->p_misc_flags |= MF_SC_ACTIVE;
574   }
575 
576   if(caller_ptr->p_misc_flags & MF_DELIVERMSG) {
577 	panic("sys_call: MF_DELIVERMSG on for %s / %d\n",
578 		caller_ptr->p_name, caller_ptr->p_endpoint);
579   }
580 
581   /* Now check if the call is known and try to perform the request. The only
582    * system calls that exist in MINIX are sending and receiving messages.
583    *   - SENDREC: combines SEND and RECEIVE in a single system call
584    *   - SEND:    sender blocks until its message has been delivered
585    *   - RECEIVE: receiver blocks until an acceptable message has arrived
586    *   - NOTIFY:  asynchronous call; deliver notification or mark pending
587    *   - SENDA:   list of asynchronous send requests
588    */
589   switch(call_nr) {
590   	case SENDREC:
591   	case SEND:
592   	case RECEIVE:
593   	case NOTIFY:
594   	case SENDNB:
595   	{
596   	    /* Process accounting for scheduling */
597 	    caller_ptr->p_accounting.ipc_sync++;
598 
599   	    return do_sync_ipc(caller_ptr, call_nr, (endpoint_t) r2,
600 			    (message *) r3);
601   	}
602   	case SENDA:
603   	{
604  	    /*
605   	     * Get and check the size of the argument in bytes as it is a
606   	     * table
607   	     */
608   	    size_t msg_size = (size_t) r2;
609 
610   	    /* Process accounting for scheduling */
611 	    caller_ptr->p_accounting.ipc_async++;
612 
613   	    /* Limit size to something reasonable. An arbitrary choice is 16
614   	     * times the number of process table entries.
615   	     */
616   	    if (msg_size > 16*(NR_TASKS + NR_PROCS))
617 	        return EDOM;
618   	    return mini_senda(caller_ptr, (asynmsg_t *) r3, msg_size);
619   	}
620   	case MINIX_KERNINFO:
621 	{
622 		/* It might not be initialized yet. */
623 	  	if(!minix_kerninfo_user) {
624 			return EBADCALL;
625 		}
626 
627   		arch_set_secondary_ipc_return(caller_ptr, minix_kerninfo_user);
628   		return OK;
629 	}
630   	default:
631 	return EBADCALL;		/* illegal system call */
632   }
633 }
634 
635 /*===========================================================================*
636  *				deadlock				     *
637  *===========================================================================*/
638 static int deadlock(function, cp, src_dst_e)
639 int function;					/* trap number */
640 register struct proc *cp;			/* pointer to caller */
641 endpoint_t src_dst_e;				/* src or dst process */
642 {
643 /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
644  * a cyclic dependency of blocking send and receive calls. The only cyclic
645  * dependency that is not fatal is if the caller and target directly SEND(REC)
646  * and RECEIVE to each other. If a deadlock is found, the group size is
647  * returned. Otherwise zero is returned.
648  */
649   register struct proc *xp;			/* process pointer */
650   int group_size = 1;				/* start with only caller */
651 #if DEBUG_ENABLE_IPC_WARNINGS
652   static struct proc *processes[NR_PROCS + NR_TASKS];
653   processes[0] = cp;
654 #endif
655 
656   while (src_dst_e != ANY) { 			/* check while process nr */
657       int src_dst_slot;
658       okendpt(src_dst_e, &src_dst_slot);
659       xp = proc_addr(src_dst_slot);		/* follow chain of processes */
660       assert(proc_ptr_ok(xp));
661       assert(!RTS_ISSET(xp, RTS_SLOT_FREE));
662 #if DEBUG_ENABLE_IPC_WARNINGS
663       processes[group_size] = xp;
664 #endif
665       group_size ++;				/* extra process in group */
666 
667       /* Check whether the last process in the chain has a dependency. If it
668        * has not, the cycle cannot be closed and we are done.
669        */
670       if((src_dst_e = P_BLOCKEDON(xp)) == NONE)
671 	return 0;
672 
673       /* Now check if there is a cyclic dependency. For group sizes of two,
674        * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
675        * or other combinations indicate a deadlock.
676        */
677       if (src_dst_e == cp->p_endpoint) {	/* possible deadlock */
678 	  if (group_size == 2) {		/* caller and src_dst */
679 	      /* The function number is magically converted to flags. */
680 	      if ((xp->p_rts_flags ^ (function << 2)) & RTS_SENDING) {
681 	          return(0);			/* not a deadlock */
682 	      }
683 	  }
684 #if DEBUG_ENABLE_IPC_WARNINGS
685 	  {
686 		int i;
687 		printf("deadlock between these processes:\n");
688 		for(i = 0; i < group_size; i++) {
689 			printf(" %10s ", processes[i]->p_name);
690 		}
691 		printf("\n\n");
692 		for(i = 0; i < group_size; i++) {
693 			print_proc(processes[i]);
694 			proc_stacktrace(processes[i]);
695 		}
696 	  }
697 #endif
698           return(group_size);			/* deadlock found */
699       }
700   }
701   return(0);					/* not a deadlock */
702 }
703 
704 /*===========================================================================*
705  *				has_pending				     *
706  *===========================================================================*/
707 static int has_pending(sys_map_t *map, int src_p, int asynm)
708 {
709 /* Check to see if there is a pending message from the desired source
710  * available.
711  */
712 
713   int src_id;
714   sys_id_t id = NULL_PRIV_ID;
715 #ifdef CONFIG_SMP
716   struct proc * p;
717 #endif
718 
719   /* Either check a specific bit in the mask map, or find the first bit set in
720    * it (if any), depending on whether the receive was called on a specific
721    * source endpoint.
722    */
723   if (src_p != ANY) {
724 	src_id = nr_to_id(src_p);
725 	if (get_sys_bit(*map, src_id)) {
726 #ifdef CONFIG_SMP
727 		p = proc_addr(id_to_nr(src_id));
728 		if (asynm && RTS_ISSET(p, RTS_VMINHIBIT))
729 			p->p_misc_flags |= MF_SENDA_VM_MISS;
730 		else
731 #endif
732 			id = src_id;
733 	}
734   } else {
735 	/* Find a source with a pending message */
736 	for (src_id = 0; src_id < NR_SYS_PROCS; src_id += BITCHUNK_BITS) {
737 		if (get_sys_bits(*map, src_id) != 0) {
738 #ifdef CONFIG_SMP
739 			while (src_id < NR_SYS_PROCS) {
740 				while (!get_sys_bit(*map, src_id)) {
741 					if (src_id == NR_SYS_PROCS)
742 						goto quit_search;
743 					src_id++;
744 				}
745 				p = proc_addr(id_to_nr(src_id));
746 				/*
747 				 * We must not let kernel fiddle with pages of a
748 				 * process which are currently being changed by
749 				 * VM.  It is dangerous! So do not report such a
750 				 * process as having pending async messages.
751 				 * Skip it.
752 				 */
753 				if (asynm && RTS_ISSET(p, RTS_VMINHIBIT)) {
754 					p->p_misc_flags |= MF_SENDA_VM_MISS;
755 					src_id++;
756 				} else
757 					goto quit_search;
758 			}
759 #else
760 			while (!get_sys_bit(*map, src_id)) src_id++;
761 			goto quit_search;
762 #endif
763 		}
764 	}
765 
766 quit_search:
767 	if (src_id < NR_SYS_PROCS)	/* Found one */
768 		id = src_id;
769   }
770 
771   return(id);
772 }
773 
774 /*===========================================================================*
775  *				has_pending_notify			     *
776  *===========================================================================*/
777 int has_pending_notify(struct proc * caller, int src_p)
778 {
779 	sys_map_t * map = &priv(caller)->s_notify_pending;
780 	return has_pending(map, src_p, 0);
781 }
782 
783 /*===========================================================================*
784  *				has_pending_asend			     *
785  *===========================================================================*/
786 int has_pending_asend(struct proc * caller, int src_p)
787 {
788 	sys_map_t * map = &priv(caller)->s_asyn_pending;
789 	return has_pending(map, src_p, 1);
790 }
791 
792 /*===========================================================================*
793  *				unset_notify_pending			     *
794  *===========================================================================*/
795 void unset_notify_pending(struct proc * caller, int src_p)
796 {
797 	sys_map_t * map = &priv(caller)->s_notify_pending;
798 	unset_sys_bit(*map, src_p);
799 }
800 
801 /*===========================================================================*
802  *				mini_send				     *
803  *===========================================================================*/
804 int mini_send(
805   register struct proc *caller_ptr,	/* who is trying to send a message? */
806   endpoint_t dst_e,			/* to whom is message being sent? */
807   message *m_ptr,			/* pointer to message buffer */
808   const int flags
809 )
810 {
811 /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
812  * for this message, copy the message to it and unblock 'dst'. If 'dst' is
813  * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
814  */
815   register struct proc *dst_ptr;
816   register struct proc **xpp;
817   int dst_p;
818   dst_p = _ENDPOINT_P(dst_e);
819   dst_ptr = proc_addr(dst_p);
820 
821   if (RTS_ISSET(dst_ptr, RTS_NO_ENDPOINT))
822   {
823 	return EDEADSRCDST;
824   }
825 
826   /* Check if 'dst' is blocked waiting for this message. The destination's
827    * RTS_SENDING flag may be set when its SENDREC call blocked while sending.
828    */
829   if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint)) {
830 	int call;
831 	/* Destination is indeed waiting for this message. */
832 	assert(!(dst_ptr->p_misc_flags & MF_DELIVERMSG));
833 
834 	if (!(flags & FROM_KERNEL)) {
835 		if(copy_msg_from_user(m_ptr, &dst_ptr->p_delivermsg))
836 			return EFAULT;
837 	} else {
838 		dst_ptr->p_delivermsg = *m_ptr;
839 		IPC_STATUS_ADD_FLAGS(dst_ptr, IPC_FLG_MSG_FROM_KERNEL);
840 	}
841 
842 	dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
843 	dst_ptr->p_misc_flags |= MF_DELIVERMSG;
844 
845 	call = (caller_ptr->p_misc_flags & MF_REPLY_PEND ? SENDREC
846 		: (flags & NON_BLOCKING ? SENDNB : SEND));
847 	IPC_STATUS_ADD_CALL(dst_ptr, call);
848 
849 	if (dst_ptr->p_misc_flags & MF_REPLY_PEND)
850 		dst_ptr->p_misc_flags &= ~MF_REPLY_PEND;
851 
852 	RTS_UNSET(dst_ptr, RTS_RECEIVING);
853 
854 #if DEBUG_IPC_HOOK
855 	hook_ipc_msgsend(&dst_ptr->p_delivermsg, caller_ptr, dst_ptr);
856 	hook_ipc_msgrecv(&dst_ptr->p_delivermsg, caller_ptr, dst_ptr);
857 #endif
858   } else {
859 	if(flags & NON_BLOCKING) {
860 		return(ENOTREADY);
861 	}
862 
863 	/* Check for a possible deadlock before actually blocking. */
864 	if (deadlock(SEND, caller_ptr, dst_e)) {
865 		return(ELOCKED);
866 	}
867 
868 	/* Destination is not waiting.  Block and dequeue caller. */
869 	if (!(flags & FROM_KERNEL)) {
870 		if(copy_msg_from_user(m_ptr, &caller_ptr->p_sendmsg))
871 			return EFAULT;
872 	} else {
873 		caller_ptr->p_sendmsg = *m_ptr;
874 		/*
875 		 * we need to remember that this message is from kernel so we
876 		 * can set the delivery status flags when the message is
877 		 * actually delivered
878 		 */
879 		caller_ptr->p_misc_flags |= MF_SENDING_FROM_KERNEL;
880 	}
881 
882 	RTS_SET(caller_ptr, RTS_SENDING);
883 	caller_ptr->p_sendto_e = dst_e;
884 
885 	/* Process is now blocked.  Put in on the destination's queue. */
886 	assert(caller_ptr->p_q_link == NULL);
887 	xpp = &dst_ptr->p_caller_q;		/* find end of list */
888 	while (*xpp) xpp = &(*xpp)->p_q_link;
889 	*xpp = caller_ptr;			/* add caller to end */
890 
891 #if DEBUG_IPC_HOOK
892 	hook_ipc_msgsend(&caller_ptr->p_sendmsg, caller_ptr, dst_ptr);
893 #endif
894   }
895   return(OK);
896 }
897 
898 /*===========================================================================*
899  *				mini_receive				     *
900  *===========================================================================*/
901 static int mini_receive(struct proc * caller_ptr,
902 			endpoint_t src_e, /* which message source is wanted */
903 			message * m_buff_usr, /* pointer to message buffer */
904 			const int flags)
905 {
906 /* A process or task wants to get a message.  If a message is already queued,
907  * acquire it and deblock the sender.  If no message from the desired source
908  * is available block the caller.
909  */
910   register struct proc **xpp;
911   int r, src_id, src_proc_nr, src_p;
912 
913   assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
914 
915   /* This is where we want our message. */
916   caller_ptr->p_delivermsg_vir = (vir_bytes) m_buff_usr;
917 
918   if(src_e == ANY) src_p = ANY;
919   else
920   {
921 	okendpt(src_e, &src_p);
922 	if (RTS_ISSET(proc_addr(src_p), RTS_NO_ENDPOINT))
923 	{
924 		return EDEADSRCDST;
925 	}
926   }
927 
928 
929   /* Check to see if a message from desired source is already available.  The
930    * caller's RTS_SENDING flag may be set if SENDREC couldn't send. If it is
931    * set, the process should be blocked.
932    */
933   if (!RTS_ISSET(caller_ptr, RTS_SENDING)) {
934 
935     /* Check if there are pending notifications, except for SENDREC. */
936     if (! (caller_ptr->p_misc_flags & MF_REPLY_PEND)) {
937 
938 	/* Check for pending notifications */
939         if ((src_id = has_pending_notify(caller_ptr, src_p)) != NULL_PRIV_ID) {
940             endpoint_t hisep;
941 
942             src_proc_nr = id_to_nr(src_id);		/* get source proc */
943 #if DEBUG_ENABLE_IPC_WARNINGS
944 	    if(src_proc_nr == NONE) {
945 		printf("mini_receive: sending notify from NONE\n");
946 	    }
947 #endif
948 	    assert(src_proc_nr != NONE);
949             unset_notify_pending(caller_ptr, src_id);	/* no longer pending */
950 
951             /* Found a suitable source, deliver the notification message. */
952 	    hisep = proc_addr(src_proc_nr)->p_endpoint;
953 	    assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
954 	    assert(src_e == ANY || hisep == src_e);
955 
956 	    /* assemble message */
957 	    BuildNotifyMessage(&caller_ptr->p_delivermsg, src_proc_nr, caller_ptr);
958 	    caller_ptr->p_delivermsg.m_source = hisep;
959 	    caller_ptr->p_misc_flags |= MF_DELIVERMSG;
960 
961 	    IPC_STATUS_ADD_CALL(caller_ptr, NOTIFY);
962 
963 	    goto receive_done;
964         }
965     }
966 
967     /* Check for pending asynchronous messages */
968     if (has_pending_asend(caller_ptr, src_p) != NULL_PRIV_ID) {
969         if (src_p != ANY)
970         	r = try_one(proc_addr(src_p), caller_ptr);
971         else
972         	r = try_async(caller_ptr);
973 
974 	if (r == OK) {
975             IPC_STATUS_ADD_CALL(caller_ptr, SENDA);
976             goto receive_done;
977         }
978     }
979 
980     /* Check caller queue. Use pointer pointers to keep code simple. */
981     xpp = &caller_ptr->p_caller_q;
982     while (*xpp) {
983 	struct proc * sender = *xpp;
984 
985         if (src_e == ANY || src_p == proc_nr(sender)) {
986             int call;
987 	    assert(!RTS_ISSET(sender, RTS_SLOT_FREE));
988 	    assert(!RTS_ISSET(sender, RTS_NO_ENDPOINT));
989 
990 	    /* Found acceptable message. Copy it and update status. */
991   	    assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
992 	    caller_ptr->p_delivermsg = sender->p_sendmsg;
993 	    caller_ptr->p_delivermsg.m_source = sender->p_endpoint;
994 	    caller_ptr->p_misc_flags |= MF_DELIVERMSG;
995 	    RTS_UNSET(sender, RTS_SENDING);
996 
997 	    call = (sender->p_misc_flags & MF_REPLY_PEND ? SENDREC : SEND);
998 	    IPC_STATUS_ADD_CALL(caller_ptr, call);
999 
1000 	    /*
1001 	     * if the message is originally from the kernel on behalf of this
1002 	     * process, we must send the status flags accordingly
1003 	     */
1004 	    if (sender->p_misc_flags & MF_SENDING_FROM_KERNEL) {
1005 		IPC_STATUS_ADD_FLAGS(caller_ptr, IPC_FLG_MSG_FROM_KERNEL);
1006 		/* we can clean the flag now, not need anymore */
1007 		sender->p_misc_flags &= ~MF_SENDING_FROM_KERNEL;
1008 	    }
1009 	    if (sender->p_misc_flags & MF_SIG_DELAY)
1010 		sig_delay_done(sender);
1011 
1012 #if DEBUG_IPC_HOOK
1013             hook_ipc_msgrecv(&caller_ptr->p_delivermsg, *xpp, caller_ptr);
1014 #endif
1015 
1016             *xpp = sender->p_q_link;		/* remove from queue */
1017 	    sender->p_q_link = NULL;
1018 	    goto receive_done;
1019 	}
1020 	xpp = &sender->p_q_link;		/* proceed to next */
1021     }
1022   }
1023 
1024   /* No suitable message is available or the caller couldn't send in SENDREC.
1025    * Block the process trying to receive, unless the flags tell otherwise.
1026    */
1027   if ( ! (flags & NON_BLOCKING)) {
1028       /* Check for a possible deadlock before actually blocking. */
1029       if (deadlock(RECEIVE, caller_ptr, src_e)) {
1030           return(ELOCKED);
1031       }
1032 
1033       caller_ptr->p_getfrom_e = src_e;
1034       RTS_SET(caller_ptr, RTS_RECEIVING);
1035       return(OK);
1036   } else {
1037 	return(ENOTREADY);
1038   }
1039 
1040 receive_done:
1041   if (caller_ptr->p_misc_flags & MF_REPLY_PEND)
1042 	  caller_ptr->p_misc_flags &= ~MF_REPLY_PEND;
1043   return OK;
1044 }
1045 
1046 /*===========================================================================*
1047  *				mini_notify				     *
1048  *===========================================================================*/
1049 int mini_notify(
1050   const struct proc *caller_ptr,	/* sender of the notification */
1051   endpoint_t dst_e			/* which process to notify */
1052 )
1053 {
1054   register struct proc *dst_ptr;
1055   int src_id;				/* source id for late delivery */
1056   int dst_p;
1057 
1058   if (!isokendpt(dst_e, &dst_p)) {
1059 	util_stacktrace();
1060 	printf("mini_notify: bogus endpoint %d\n", dst_e);
1061 	return EDEADSRCDST;
1062   }
1063 
1064   dst_ptr = proc_addr(dst_p);
1065 
1066   /* Check to see if target is blocked waiting for this message. A process
1067    * can be both sending and receiving during a SENDREC system call.
1068    */
1069     if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint) &&
1070       ! (dst_ptr->p_misc_flags & MF_REPLY_PEND)) {
1071       /* Destination is indeed waiting for a message. Assemble a notification
1072        * message and deliver it. Copy from pseudo-source HARDWARE, since the
1073        * message is in the kernel's address space.
1074        */
1075       assert(!(dst_ptr->p_misc_flags & MF_DELIVERMSG));
1076 
1077       BuildNotifyMessage(&dst_ptr->p_delivermsg, proc_nr(caller_ptr), dst_ptr);
1078       dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
1079       dst_ptr->p_misc_flags |= MF_DELIVERMSG;
1080 
1081       IPC_STATUS_ADD_CALL(dst_ptr, NOTIFY);
1082       RTS_UNSET(dst_ptr, RTS_RECEIVING);
1083 
1084       return(OK);
1085   }
1086 
1087   /* Destination is not ready to receive the notification. Add it to the
1088    * bit map with pending notifications. Note the indirectness: the privilege id
1089    * instead of the process number is used in the pending bit map.
1090    */
1091   src_id = priv(caller_ptr)->s_id;
1092   set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id);
1093   return(OK);
1094 }
1095 
1096 #define ASCOMPLAIN(caller, entry, field)	\
1097 	printf("kernel:%s:%d: asyn failed for %s in %s "	\
1098 	"(%d/%zu, tab 0x%lx)\n",__FILE__,__LINE__,	\
1099 field, caller->p_name, entry, priv(caller)->s_asynsize, priv(caller)->s_asyntab)
1100 
1101 #define A_RETR_FLD(entry, field)	\
1102   if(data_copy(caller_ptr->p_endpoint,	\
1103 	 table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
1104 		KERNEL, (vir_bytes) &tabent.field,	\
1105 			sizeof(tabent.field)) != OK) {\
1106 		ASCOMPLAIN(caller_ptr, entry, #field);	\
1107 		r = EFAULT; \
1108 	        goto asyn_error; \
1109 	}
1110 
1111 #define A_RETR(entry) do {			\
1112   if (data_copy(				\
1113   		caller_ptr->p_endpoint, table_v + (entry)*sizeof(asynmsg_t),\
1114   		KERNEL, (vir_bytes) &tabent,	\
1115   		sizeof(tabent)) != OK) {	\
1116   			ASCOMPLAIN(caller_ptr, entry, "message entry");	\
1117   			r = EFAULT;		\
1118 	                goto asyn_error; \
1119   }						\
1120   			 } while(0)
1121 
1122 #define A_INSRT_FLD(entry, field)	\
1123   if(data_copy(KERNEL, (vir_bytes) &tabent.field, \
1124 	caller_ptr->p_endpoint,	\
1125  	table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
1126 		sizeof(tabent.field)) != OK) {\
1127 		ASCOMPLAIN(caller_ptr, entry, #field);	\
1128 		r = EFAULT; \
1129 	        goto asyn_error; \
1130 	}
1131 
1132 #define A_INSRT(entry) do {			\
1133   if (data_copy(KERNEL, (vir_bytes) &tabent,	\
1134   		caller_ptr->p_endpoint, table_v + (entry)*sizeof(asynmsg_t),\
1135   		sizeof(tabent)) != OK) {	\
1136   			ASCOMPLAIN(caller_ptr, entry, "message entry");	\
1137   			r = EFAULT;		\
1138 	                goto asyn_error; \
1139   }						\
1140   			  } while(0)
1141 
1142 /*===========================================================================*
1143  *				try_deliver_senda			     *
1144  *===========================================================================*/
1145 int try_deliver_senda(struct proc *caller_ptr,
1146 				asynmsg_t *table,
1147 				size_t size)
1148 {
1149   int r, dst_p, done, do_notify;
1150   unsigned int i;
1151   unsigned flags;
1152   endpoint_t dst;
1153   struct proc *dst_ptr;
1154   struct priv *privp;
1155   asynmsg_t tabent;
1156   const vir_bytes table_v = (vir_bytes) table;
1157 
1158   privp = priv(caller_ptr);
1159 
1160   /* Clear table */
1161   privp->s_asyntab = -1;
1162   privp->s_asynsize = 0;
1163 
1164   if (size == 0) return(OK);  /* Nothing to do, just return */
1165 
1166   /* Scan the table */
1167   do_notify = FALSE;
1168   done = TRUE;
1169 
1170   /* Limit size to something reasonable. An arbitrary choice is 16
1171    * times the number of process table entries.
1172    *
1173    * (this check has been duplicated in sys_call but is left here
1174    * as a sanity check)
1175    */
1176   if (size > 16*(NR_TASKS + NR_PROCS)) {
1177     r = EDOM;
1178     return r;
1179   }
1180 
1181   for (i = 0; i < size; i++) {
1182 	/* Process each entry in the table and store the result in the table.
1183 	 * If we're done handling a message, copy the result to the sender. */
1184 
1185 	dst = NONE;
1186 	/* Copy message to kernel */
1187 	A_RETR(i);
1188 	flags = tabent.flags;
1189 	dst = tabent.dst;
1190 
1191 	if (flags == 0) continue; /* Skip empty entries */
1192 
1193 	/* 'flags' field must contain only valid bits */
1194 	if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR)) {
1195 		r = EINVAL;
1196 		goto asyn_error;
1197 	}
1198 	if (!(flags & AMF_VALID)) { /* Must contain message */
1199 		r = EINVAL;
1200 		goto asyn_error;
1201 	}
1202 	if (flags & AMF_DONE) continue;	/* Already done processing */
1203 
1204 	r = OK;
1205 	if (!isokendpt(tabent.dst, &dst_p))
1206 		r = EDEADSRCDST; /* Bad destination, report the error */
1207 	else if (iskerneln(dst_p))
1208 		r = ECALLDENIED; /* Asyn sends to the kernel are not allowed */
1209 	else if (!may_send_to(caller_ptr, dst_p))
1210 		r = ECALLDENIED; /* Send denied by IPC mask */
1211 	else 	/* r == OK */
1212 		dst_ptr = proc_addr(dst_p);
1213 
1214 	/* XXX: RTS_NO_ENDPOINT should be removed */
1215 	if (r == OK && RTS_ISSET(dst_ptr, RTS_NO_ENDPOINT)) {
1216 		r = EDEADSRCDST;
1217 	}
1218 
1219 	/* Check if 'dst' is blocked waiting for this message.
1220 	 * If AMF_NOREPLY is set, do not satisfy the receiving part of
1221 	 * a SENDREC.
1222 	 */
1223 	if (r == OK && WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint) &&
1224 	    (!(flags&AMF_NOREPLY) || !(dst_ptr->p_misc_flags&MF_REPLY_PEND))) {
1225 		/* Destination is indeed waiting for this message. */
1226 		dst_ptr->p_delivermsg = tabent.msg;
1227 		dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
1228 		dst_ptr->p_misc_flags |= MF_DELIVERMSG;
1229 		IPC_STATUS_ADD_CALL(dst_ptr, SENDA);
1230 		RTS_UNSET(dst_ptr, RTS_RECEIVING);
1231 #if DEBUG_IPC_HOOK
1232 		hook_ipc_msgrecv(&dst_ptr->p_delivermsg, caller_ptr, dst_ptr);
1233 #endif
1234 	} else if (r == OK) {
1235 		/* Inform receiver that something is pending */
1236 		set_sys_bit(priv(dst_ptr)->s_asyn_pending,
1237 			    priv(caller_ptr)->s_id);
1238 		done = FALSE;
1239 		continue;
1240 	}
1241 
1242 	/* Store results */
1243 	tabent.result = r;
1244 	tabent.flags = flags | AMF_DONE;
1245 	if (flags & AMF_NOTIFY)
1246 		do_notify = TRUE;
1247 	else if (r != OK && (flags & AMF_NOTIFY_ERR))
1248 		do_notify = TRUE;
1249 	A_INSRT(i);	/* Copy results to caller */
1250 	continue;
1251 
1252 asyn_error:
1253 	if (dst != NONE)
1254 		printf("KERNEL senda error %d to %d\n", r, dst);
1255 	else
1256 		printf("KERNEL senda error %d\n", r);
1257   }
1258 
1259   if (do_notify)
1260 	mini_notify(proc_addr(ASYNCM), caller_ptr->p_endpoint);
1261 
1262   if (!done) {
1263 	privp->s_asyntab = (vir_bytes) table;
1264 	privp->s_asynsize = size;
1265   }
1266 
1267   return(OK);
1268 }
1269 
1270 /*===========================================================================*
1271  *				mini_senda				     *
1272  *===========================================================================*/
1273 static int mini_senda(struct proc *caller_ptr, asynmsg_t *table, size_t size)
1274 {
1275   struct priv *privp;
1276 
1277   privp = priv(caller_ptr);
1278   if (!(privp->s_flags & SYS_PROC)) {
1279 	printf( "mini_senda: warning caller has no privilege structure\n");
1280 	return(EPERM);
1281   }
1282 
1283   return try_deliver_senda(caller_ptr, table, size);
1284 }
1285 
1286 
1287 /*===========================================================================*
1288  *				try_async				     *
1289  *===========================================================================*/
1290 static int try_async(caller_ptr)
1291 struct proc *caller_ptr;
1292 {
1293   int r;
1294   struct priv *privp;
1295   struct proc *src_ptr;
1296   sys_map_t *map;
1297 
1298   map = &priv(caller_ptr)->s_asyn_pending;
1299 
1300   /* Try all privilege structures */
1301   for (privp = BEG_PRIV_ADDR; privp < END_PRIV_ADDR; ++privp)  {
1302 	if (privp->s_proc_nr == NONE)
1303 		continue;
1304 
1305 	if (!get_sys_bit(*map, privp->s_id))
1306 		continue;
1307 
1308 	src_ptr = proc_addr(privp->s_proc_nr);
1309 
1310 #ifdef CONFIG_SMP
1311 	/*
1312 	 * Do not copy from a process which does not have a stable address space
1313 	 * due to VM fiddling with it
1314 	 */
1315 	if (RTS_ISSET(src_ptr, RTS_VMINHIBIT)) {
1316 		src_ptr->p_misc_flags |= MF_SENDA_VM_MISS;
1317 		continue;
1318 	}
1319 #endif
1320 
1321 	assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
1322 	if ((r = try_one(src_ptr, caller_ptr)) == OK)
1323 		return(r);
1324   }
1325 
1326   return(ESRCH);
1327 }
1328 
1329 
1330 /*===========================================================================*
1331  *				try_one					     *
1332  *===========================================================================*/
1333 static int try_one(struct proc *src_ptr, struct proc *dst_ptr)
1334 {
1335 /* Try to receive an asynchronous message from 'src_ptr' */
1336   int r = EAGAIN, done, do_notify;
1337   unsigned int flags, i;
1338   size_t size;
1339   endpoint_t dst;
1340   struct proc *caller_ptr;
1341   struct priv *privp;
1342   asynmsg_t tabent;
1343   vir_bytes table_v;
1344 
1345   privp = priv(src_ptr);
1346   if (!(privp->s_flags & SYS_PROC)) return(EPERM);
1347   size = privp->s_asynsize;
1348   table_v = privp->s_asyntab;
1349 
1350   /* Clear table pending message flag. We're done unless we're not. */
1351   unset_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
1352 
1353   if (size == 0) return(EAGAIN);
1354   if (!may_send_to(src_ptr, proc_nr(dst_ptr))) return(ECALLDENIED);
1355 
1356   caller_ptr = src_ptr;	/* Needed for A_ macros later on */
1357 
1358   /* Scan the table */
1359   do_notify = FALSE;
1360   done = TRUE;
1361 
1362   for (i = 0; i < size; i++) {
1363   	/* Process each entry in the table and store the result in the table.
1364   	 * If we're done handling a message, copy the result to the sender.
1365   	 * Some checks done in mini_senda are duplicated here, as the sender
1366   	 * could've altered the contents of the table in the meantime.
1367   	 */
1368 
1369 	/* Copy message to kernel */
1370 	A_RETR(i);
1371 	flags = tabent.flags;
1372 	dst = tabent.dst;
1373 
1374 	if (flags == 0) continue;	/* Skip empty entries */
1375 
1376 	/* 'flags' field must contain only valid bits */
1377 	if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR))
1378 		r = EINVAL;
1379 	else if (!(flags & AMF_VALID)) /* Must contain message */
1380 		r = EINVAL;
1381 	else if (flags & AMF_DONE) continue; /* Already done processing */
1382 
1383 	/* Clear done flag. The sender is done sending when all messages in the
1384 	 * table are marked done or empty. However, we will know that only
1385 	 * the next time we enter this function or when the sender decides to
1386 	 * send additional asynchronous messages and manages to deliver them
1387 	 * all.
1388 	 */
1389 	done = FALSE;
1390 
1391 	if (r == EINVAL)
1392 		goto store_result;
1393 
1394 	/* Message must be directed at receiving end */
1395 	if (dst != dst_ptr->p_endpoint) continue;
1396 
1397 	/* If AMF_NOREPLY is set, then this message is not a reply to a
1398 	 * SENDREC and thus should not satisfy the receiving part of the
1399 	 * SENDREC. This message is to be delivered later.
1400 	 */
1401 	if ((flags & AMF_NOREPLY) && (dst_ptr->p_misc_flags & MF_REPLY_PEND))
1402 		continue;
1403 
1404 	/* Destination is ready to receive the message; deliver it */
1405 	r = OK;
1406 	dst_ptr->p_delivermsg = tabent.msg;
1407 	dst_ptr->p_delivermsg.m_source = src_ptr->p_endpoint;
1408 	dst_ptr->p_misc_flags |= MF_DELIVERMSG;
1409 #if DEBUG_IPC_HOOK
1410 	hook_ipc_msgrecv(&dst_ptr->p_delivermsg, src_ptr, dst_ptr);
1411 #endif
1412 
1413 store_result:
1414 	/* Store results for sender */
1415 	tabent.result = r;
1416 	tabent.flags = flags | AMF_DONE;
1417 	if (flags & AMF_NOTIFY) do_notify = TRUE;
1418 	else if (r != OK && (flags & AMF_NOTIFY_ERR)) do_notify = TRUE;
1419 	A_INSRT(i);	/* Copy results to sender */
1420 
1421 	break;
1422   }
1423 
1424   if (do_notify)
1425 	mini_notify(proc_addr(ASYNCM), src_ptr->p_endpoint);
1426 
1427   if (done) {
1428 	privp->s_asyntab = -1;
1429 	privp->s_asynsize = 0;
1430   } else {
1431 	set_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
1432   }
1433 
1434 asyn_error:
1435   return(r);
1436 }
1437 
1438 /*===========================================================================*
1439  *				cancel_async				     *
1440  *===========================================================================*/
1441 int cancel_async(struct proc *src_ptr, struct proc *dst_ptr)
1442 {
1443 /* Cancel asynchronous messages from src to dst, because dst is not interested
1444  * in them (e.g., dst has been restarted) */
1445   int done, do_notify;
1446   unsigned int flags, i;
1447   size_t size;
1448   endpoint_t dst;
1449   struct proc *caller_ptr;
1450   struct priv *privp;
1451   asynmsg_t tabent;
1452   vir_bytes table_v;
1453 
1454   privp = priv(src_ptr);
1455   if (!(privp->s_flags & SYS_PROC)) return(EPERM);
1456   size = privp->s_asynsize;
1457   table_v = privp->s_asyntab;
1458 
1459   /* Clear table pending message flag. We're done unless we're not. */
1460   privp->s_asyntab = -1;
1461   privp->s_asynsize = 0;
1462   unset_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
1463 
1464   if (size == 0) return(EAGAIN);
1465   if (!may_send_to(src_ptr, proc_nr(dst_ptr))) return(ECALLDENIED);
1466 
1467   caller_ptr = src_ptr;	/* Needed for A_ macros later on */
1468 
1469   /* Scan the table */
1470   do_notify = FALSE;
1471   done = TRUE;
1472 
1473 
1474   for (i = 0; i < size; i++) {
1475   	/* Process each entry in the table and store the result in the table.
1476   	 * If we're done handling a message, copy the result to the sender.
1477   	 * Some checks done in mini_senda are duplicated here, as the sender
1478   	 * could've altered the contents of the table in the mean time.
1479   	 */
1480 
1481   	int r = EDEADSRCDST;	/* Cancel delivery due to dead dst */
1482 
1483 	/* Copy message to kernel */
1484 	A_RETR(i);
1485 	flags = tabent.flags;
1486 	dst = tabent.dst;
1487 
1488 	if (flags == 0) continue;	/* Skip empty entries */
1489 
1490 	/* 'flags' field must contain only valid bits */
1491 	if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR))
1492 		r = EINVAL;
1493 	else if (!(flags & AMF_VALID)) /* Must contain message */
1494 		r = EINVAL;
1495 	else if (flags & AMF_DONE) continue; /* Already done processing */
1496 
1497 	/* Message must be directed at receiving end */
1498 	if (dst != dst_ptr->p_endpoint) {
1499 		done = FALSE;
1500 		continue;
1501 	}
1502 
1503 	/* Store results for sender */
1504 	tabent.result = r;
1505 	tabent.flags = flags | AMF_DONE;
1506 	if (flags & AMF_NOTIFY) do_notify = TRUE;
1507 	else if (r != OK && (flags & AMF_NOTIFY_ERR)) do_notify = TRUE;
1508 	A_INSRT(i);	/* Copy results to sender */
1509   }
1510 
1511   if (do_notify)
1512 	mini_notify(proc_addr(ASYNCM), src_ptr->p_endpoint);
1513 
1514   if (!done) {
1515 	privp->s_asyntab = table_v;
1516 	privp->s_asynsize = size;
1517   }
1518 
1519 asyn_error:
1520   return(OK);
1521 }
1522 
1523 /*===========================================================================*
1524  *				enqueue					     *
1525  *===========================================================================*/
1526 void enqueue(
1527   register struct proc *rp	/* this process is now runnable */
1528 )
1529 {
1530 /* Add 'rp' to one of the queues of runnable processes.  This function is
1531  * responsible for inserting a process into one of the scheduling queues.
1532  * The mechanism is implemented here.   The actual scheduling policy is
1533  * defined in sched() and pick_proc().
1534  *
1535  * This function can be used x-cpu as it always uses the queues of the cpu the
1536  * process is assigned to.
1537  */
1538   int q = rp->p_priority;	 		/* scheduling queue to use */
1539   struct proc **rdy_head, **rdy_tail;
1540 
1541   assert(proc_is_runnable(rp));
1542 
1543   assert(q >= 0);
1544 
1545   rdy_head = get_cpu_var(rp->p_cpu, run_q_head);
1546   rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
1547 
1548   /* Now add the process to the queue. */
1549   if (!rdy_head[q]) {		/* add to empty queue */
1550       rdy_head[q] = rdy_tail[q] = rp; 		/* create a new queue */
1551       rp->p_nextready = NULL;		/* mark new end */
1552   }
1553   else {					/* add to tail of queue */
1554       rdy_tail[q]->p_nextready = rp;		/* chain tail of queue */
1555       rdy_tail[q] = rp;				/* set new queue tail */
1556       rp->p_nextready = NULL;		/* mark new end */
1557   }
1558 
1559   if (cpuid == rp->p_cpu) {
1560 	  /*
1561 	   * enqueueing a process with a higher priority than the current one,
1562 	   * it gets preempted. The current process must be preemptible. Testing
1563 	   * the priority also makes sure that a process does not preempt itself
1564 	   */
1565 	  struct proc * p;
1566 	  p = get_cpulocal_var(proc_ptr);
1567 	  assert(p);
1568 	  if((p->p_priority > rp->p_priority) &&
1569 			  (priv(p)->s_flags & PREEMPTIBLE))
1570 		  RTS_SET(p, RTS_PREEMPTED); /* calls dequeue() */
1571   }
1572 #ifdef CONFIG_SMP
1573   /*
1574    * if the process was enqueued on a different cpu and the cpu is idle, i.e.
1575    * the time is off, we need to wake up that cpu and let it schedule this new
1576    * process
1577    */
1578   else if (get_cpu_var(rp->p_cpu, cpu_is_idle)) {
1579 	  smp_schedule(rp->p_cpu);
1580   }
1581 #endif
1582 
1583   /* Make note of when this process was added to queue */
1584   read_tsc_64(&(get_cpulocal_var(proc_ptr)->p_accounting.enter_queue));
1585 
1586 
1587 #if DEBUG_SANITYCHECKS
1588   assert(runqueues_ok_local());
1589 #endif
1590 }
1591 
1592 /*===========================================================================*
1593  *				enqueue_head				     *
1594  *===========================================================================*/
1595 /*
1596  * put a process at the front of its run queue. It comes handy when a process is
1597  * preempted and removed from run queue to not to have a currently not-runnable
1598  * process on a run queue. We have to put this process back at the fron to be
1599  * fair
1600  */
1601 static void enqueue_head(struct proc *rp)
1602 {
1603   const int q = rp->p_priority;	 		/* scheduling queue to use */
1604 
1605   struct proc **rdy_head, **rdy_tail;
1606 
1607   assert(proc_ptr_ok(rp));
1608   assert(proc_is_runnable(rp));
1609 
1610   /*
1611    * the process was runnable without its quantum expired when dequeued. A
1612    * process with no time left should have been handled else and differently
1613    */
1614   assert(rp->p_cpu_time_left);
1615 
1616   assert(q >= 0);
1617 
1618 
1619   rdy_head = get_cpu_var(rp->p_cpu, run_q_head);
1620   rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
1621 
1622   /* Now add the process to the queue. */
1623   if (!rdy_head[q]) {		/* add to empty queue */
1624 	rdy_head[q] = rdy_tail[q] = rp; 	/* create a new queue */
1625 	rp->p_nextready = NULL;			/* mark new end */
1626   } else {					/* add to head of queue */
1627 	rp->p_nextready = rdy_head[q];		/* chain head of queue */
1628 	rdy_head[q] = rp;			/* set new queue head */
1629   }
1630 
1631   /* Make note of when this process was added to queue */
1632   read_tsc_64(&(get_cpulocal_var(proc_ptr->p_accounting.enter_queue)));
1633 
1634 
1635   /* Process accounting for scheduling */
1636   rp->p_accounting.dequeues--;
1637   rp->p_accounting.preempted++;
1638 
1639 #if DEBUG_SANITYCHECKS
1640   assert(runqueues_ok_local());
1641 #endif
1642 }
1643 
1644 /*===========================================================================*
1645  *				dequeue					     *
1646  *===========================================================================*/
1647 void dequeue(struct proc *rp)
1648 /* this process is no longer runnable */
1649 {
1650 /* A process must be removed from the scheduling queues, for example, because
1651  * it has blocked.  If the currently active process is removed, a new process
1652  * is picked to run by calling pick_proc().
1653  *
1654  * This function can operate x-cpu as it always removes the process from the
1655  * queue of the cpu the process is currently assigned to.
1656  */
1657   int q = rp->p_priority;		/* queue to use */
1658   struct proc **xpp;			/* iterate over queue */
1659   struct proc *prev_xp;
1660   u64_t tsc, tsc_delta;
1661 
1662   struct proc **rdy_tail;
1663 
1664   assert(proc_ptr_ok(rp));
1665   assert(!proc_is_runnable(rp));
1666 
1667   /* Side-effect for kernel: check if the task's stack still is ok? */
1668   assert (!iskernelp(rp) || *priv(rp)->s_stack_guard == STACK_GUARD);
1669 
1670   rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
1671 
1672   /* Now make sure that the process is not in its ready queue. Remove the
1673    * process if it is found. A process can be made unready even if it is not
1674    * running by being sent a signal that kills it.
1675    */
1676   prev_xp = NULL;
1677   for (xpp = get_cpu_var_ptr(rp->p_cpu, run_q_head[q]); *xpp;
1678 		  xpp = &(*xpp)->p_nextready) {
1679       if (*xpp == rp) {				/* found process to remove */
1680           *xpp = (*xpp)->p_nextready;		/* replace with next chain */
1681           if (rp == rdy_tail[q]) {		/* queue tail removed */
1682               rdy_tail[q] = prev_xp;		/* set new tail */
1683 	  }
1684 
1685           break;
1686       }
1687       prev_xp = *xpp;				/* save previous in chain */
1688   }
1689 
1690 
1691   /* Process accounting for scheduling */
1692   rp->p_accounting.dequeues++;
1693 
1694   /* this is not all that accurate on virtual machines, especially with
1695      IO bound processes that only spend a short amount of time in the queue
1696      at a time. */
1697   if (rp->p_accounting.enter_queue) {
1698 	read_tsc_64(&tsc);
1699 	tsc_delta = tsc - rp->p_accounting.enter_queue;
1700 	rp->p_accounting.time_in_queue = rp->p_accounting.time_in_queue +
1701 		tsc_delta;
1702 	rp->p_accounting.enter_queue = 0;
1703   }
1704 
1705 
1706 #if DEBUG_SANITYCHECKS
1707   assert(runqueues_ok_local());
1708 #endif
1709 }
1710 
1711 /*===========================================================================*
1712  *				pick_proc				     *
1713  *===========================================================================*/
1714 static struct proc * pick_proc(void)
1715 {
1716 /* Decide who to run now.  A new process is selected an returned.
1717  * When a billable process is selected, record it in 'bill_ptr', so that the
1718  * clock task can tell who to bill for system time.
1719  *
1720  * This function always uses the run queues of the local cpu!
1721  */
1722   register struct proc *rp;			/* process to run */
1723   struct proc **rdy_head;
1724   int q;				/* iterate over queues */
1725 
1726   /* Check each of the scheduling queues for ready processes. The number of
1727    * queues is defined in proc.h, and priorities are set in the task table.
1728    * If there are no processes ready to run, return NULL.
1729    */
1730   rdy_head = get_cpulocal_var(run_q_head);
1731   for (q=0; q < NR_SCHED_QUEUES; q++) {
1732 	if(!(rp = rdy_head[q])) {
1733 		TRACE(VF_PICKPROC, printf("cpu %d queue %d empty\n", cpuid, q););
1734 		continue;
1735 	}
1736 	assert(proc_is_runnable(rp));
1737 	if (priv(rp)->s_flags & BILLABLE)
1738 		get_cpulocal_var(bill_ptr) = rp; /* bill for system time */
1739 	return rp;
1740   }
1741   return NULL;
1742 }
1743 
1744 /*===========================================================================*
1745  *				endpoint_lookup				     *
1746  *===========================================================================*/
1747 struct proc *endpoint_lookup(endpoint_t e)
1748 {
1749 	int n;
1750 
1751 	if(!isokendpt(e, &n)) return NULL;
1752 
1753 	return proc_addr(n);
1754 }
1755 
1756 /*===========================================================================*
1757  *				isokendpt_f				     *
1758  *===========================================================================*/
1759 #if DEBUG_ENABLE_IPC_WARNINGS
1760 int isokendpt_f(file, line, e, p, fatalflag)
1761 const char *file;
1762 int line;
1763 #else
1764 int isokendpt_f(e, p, fatalflag)
1765 #endif
1766 endpoint_t e;
1767 int *p;
1768 const int fatalflag;
1769 {
1770 	int ok = 0;
1771 	/* Convert an endpoint number into a process number.
1772 	 * Return nonzero if the process is alive with the corresponding
1773 	 * generation number, zero otherwise.
1774 	 *
1775 	 * This function is called with file and line number by the
1776 	 * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
1777 	 * otherwise without. This allows us to print the where the
1778 	 * conversion was attempted, making the errors verbose without
1779 	 * adding code for that at every call.
1780 	 *
1781 	 * If fatalflag is nonzero, we must panic if the conversion doesn't
1782 	 * succeed.
1783 	 */
1784 	*p = _ENDPOINT_P(e);
1785 	ok = 0;
1786 	if(isokprocn(*p) && !isemptyn(*p) && proc_addr(*p)->p_endpoint == e)
1787 		ok = 1;
1788 	if(!ok && fatalflag)
1789 		panic("invalid endpoint: %d",  e);
1790 	return ok;
1791 }
1792 
1793 static void notify_scheduler(struct proc *p)
1794 {
1795 	message m_no_quantum;
1796 	int err;
1797 
1798 	assert(!proc_kernel_scheduler(p));
1799 
1800 	/* dequeue the process */
1801 	RTS_SET(p, RTS_NO_QUANTUM);
1802 	/*
1803 	 * Notify the process's scheduler that it has run out of
1804 	 * quantum. This is done by sending a message to the scheduler
1805 	 * on the process's behalf
1806 	 */
1807 	m_no_quantum.m_source = p->p_endpoint;
1808 	m_no_quantum.m_type   = SCHEDULING_NO_QUANTUM;
1809 	m_no_quantum.m_krn_lsys_schedule.acnt_queue = cpu_time_2_ms(p->p_accounting.time_in_queue);
1810 	m_no_quantum.m_krn_lsys_schedule.acnt_deqs      = p->p_accounting.dequeues;
1811 	m_no_quantum.m_krn_lsys_schedule.acnt_ipc_sync  = p->p_accounting.ipc_sync;
1812 	m_no_quantum.m_krn_lsys_schedule.acnt_ipc_async = p->p_accounting.ipc_async;
1813 	m_no_quantum.m_krn_lsys_schedule.acnt_preempt   = p->p_accounting.preempted;
1814 	m_no_quantum.m_krn_lsys_schedule.acnt_cpu       = cpuid;
1815 	m_no_quantum.m_krn_lsys_schedule.acnt_cpu_load  = cpu_load();
1816 
1817 	/* Reset accounting */
1818 	reset_proc_accounting(p);
1819 
1820 	if ((err = mini_send(p, p->p_scheduler->p_endpoint,
1821 					&m_no_quantum, FROM_KERNEL))) {
1822 		panic("WARNING: Scheduling: mini_send returned %d\n", err);
1823 	}
1824 }
1825 
1826 void proc_no_time(struct proc * p)
1827 {
1828 	if (!proc_kernel_scheduler(p) && priv(p)->s_flags & PREEMPTIBLE) {
1829 		/* this dequeues the process */
1830 		notify_scheduler(p);
1831 	}
1832 	else {
1833 		/*
1834 		 * non-preemptible processes only need their quantum to
1835 		 * be renewed. In fact, they by pass scheduling
1836 		 */
1837 		p->p_cpu_time_left = ms_2_cpu_time(p->p_quantum_size_ms);
1838 #if DEBUG_RACE
1839 		RTS_SET(p, RTS_PREEMPTED);
1840 		RTS_UNSET(p, RTS_PREEMPTED);
1841 #endif
1842 	}
1843 }
1844 
1845 void reset_proc_accounting(struct proc *p)
1846 {
1847   p->p_accounting.preempted = 0;
1848   p->p_accounting.ipc_sync  = 0;
1849   p->p_accounting.ipc_async = 0;
1850   p->p_accounting.dequeues  = 0;
1851   p->p_accounting.time_in_queue = 0;
1852   p->p_accounting.enter_queue = 0;
1853 }
1854 
1855 void copr_not_available_handler(void)
1856 {
1857 	struct proc * p;
1858 	struct proc ** local_fpu_owner;
1859 	/*
1860 	 * Disable the FPU exception (both for the kernel and for the process
1861 	 * once it's scheduled), and initialize or restore the FPU state.
1862 	 */
1863 
1864 	disable_fpu_exception();
1865 
1866 	p = get_cpulocal_var(proc_ptr);
1867 
1868 	/* if FPU is not owned by anyone, do not store anything */
1869 	local_fpu_owner = get_cpulocal_var_ptr(fpu_owner);
1870 	if (*local_fpu_owner != NULL) {
1871 		assert(*local_fpu_owner != p);
1872 		save_local_fpu(*local_fpu_owner, FALSE /*retain*/);
1873 	}
1874 
1875 	/*
1876 	 * restore the current process' state and let it run again, do not
1877 	 * schedule!
1878 	 */
1879 	if (restore_fpu(p) != OK) {
1880 		/* Restoring FPU state failed. This is always the process's own
1881 		 * fault. Send a signal, and schedule another process instead.
1882 		 */
1883 		*local_fpu_owner = NULL;		/* release FPU */
1884 		cause_sig(proc_nr(p), SIGFPE);
1885 		return;
1886 	}
1887 
1888 	*local_fpu_owner = p;
1889 	context_stop(proc_addr(KERNEL));
1890 	restore_user_context(p);
1891 	NOT_REACHABLE;
1892 }
1893 
1894 void release_fpu(struct proc * p) {
1895 	struct proc ** fpu_owner_ptr;
1896 
1897 	fpu_owner_ptr = get_cpu_var_ptr(p->p_cpu, fpu_owner);
1898 
1899 	if (*fpu_owner_ptr == p)
1900 		*fpu_owner_ptr = NULL;
1901 }
1902 
1903 void ser_dump_proc()
1904 {
1905         struct proc *pp;
1906 
1907         for (pp= BEG_PROC_ADDR; pp < END_PROC_ADDR; pp++)
1908         {
1909                 if (isemptyp(pp))
1910                         continue;
1911                 print_proc_recursive(pp);
1912         }
1913 }
1914 
1915 void increase_proc_signals(struct proc *p)
1916 {
1917 	p->p_signal_received++;
1918 }
1919