xref: /minix/minix/lib/liblwip/dist/src/core/ipv4/ip4_frag.c (revision bb9622b5)
1 /**
2  * @file
3  * This is the IPv4 packet segmentation and reassembly implementation.
4  *
5  */
6 
7 /*
8  * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without modification,
12  * are permitted provided that the following conditions are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright notice,
15  *    this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright notice,
17  *    this list of conditions and the following disclaimer in the documentation
18  *    and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31  * OF SUCH DAMAGE.
32  *
33  * This file is part of the lwIP TCP/IP stack.
34  *
35  * Author: Jani Monoses <jani@iv.ro>
36  *         Simon Goldschmidt
37  * original reassembly code by Adam Dunkels <adam@sics.se>
38  *
39  */
40 
41 #include "lwip/opt.h"
42 
43 #if LWIP_IPV4
44 
45 #include "lwip/ip4_frag.h"
46 #include "lwip/def.h"
47 #include "lwip/inet_chksum.h"
48 #include "lwip/netif.h"
49 #include "lwip/stats.h"
50 #include "lwip/icmp.h"
51 
52 #include <string.h>
53 
54 #if IP_REASSEMBLY
55 /**
56  * The IP reassembly code currently has the following limitations:
57  * - IP header options are not supported
58  * - fragments must not overlap (e.g. due to different routes),
59  *   currently, overlapping or duplicate fragments are thrown away
60  *   if IP_REASS_CHECK_OVERLAP=1 (the default)!
61  *
62  * @todo: work with IP header options
63  */
64 
65 /** Setting this to 0, you can turn off checking the fragments for overlapping
66  * regions. The code gets a little smaller. Only use this if you know that
67  * overlapping won't occur on your network! */
68 #ifndef IP_REASS_CHECK_OVERLAP
69 #define IP_REASS_CHECK_OVERLAP 1
70 #endif /* IP_REASS_CHECK_OVERLAP */
71 
72 /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
73  * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
74  * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
75  * is set to 1, so one datagram can be reassembled at a time, only. */
76 #ifndef IP_REASS_FREE_OLDEST
77 #define IP_REASS_FREE_OLDEST 1
78 #endif /* IP_REASS_FREE_OLDEST */
79 
80 #define IP_REASS_FLAG_LASTFRAG 0x01
81 
82 /** This is a helper struct which holds the starting
83  * offset and the ending offset of this fragment to
84  * easily chain the fragments.
85  * It has the same packing requirements as the IP header, since it replaces
86  * the IP header in memory in incoming fragments (after copying it) to keep
87  * track of the various fragments. (-> If the IP header doesn't need packing,
88  * this struct doesn't need packing, too.)
89  */
90 #ifdef PACK_STRUCT_USE_INCLUDES
91 #  include "arch/bpstruct.h"
92 #endif
93 PACK_STRUCT_BEGIN
94 struct ip_reass_helper {
95   PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
96   PACK_STRUCT_FIELD(u16_t start);
97   PACK_STRUCT_FIELD(u16_t end);
98 } PACK_STRUCT_STRUCT;
99 PACK_STRUCT_END
100 #ifdef PACK_STRUCT_USE_INCLUDES
101 #  include "arch/epstruct.h"
102 #endif
103 
104 #define IP_ADDRESSES_AND_ID_MATCH(iphdrA, iphdrB)  \
105   (ip4_addr_cmp(&(iphdrA)->src, &(iphdrB)->src) && \
106    ip4_addr_cmp(&(iphdrA)->dest, &(iphdrB)->dest) && \
107    IPH_ID(iphdrA) == IPH_ID(iphdrB)) ? 1 : 0
108 
109 /* global variables */
110 static struct ip_reassdata *reassdatagrams;
111 static u16_t ip_reass_pbufcount;
112 
113 /* function prototypes */
114 static void ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
115 static int ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
116 
117 /**
118  * Reassembly timer base function
119  * for both NO_SYS == 0 and 1 (!).
120  *
121  * Should be called every 1000 msec (defined by IP_TMR_INTERVAL).
122  */
123 void
124 ip_reass_tmr(void)
125 {
126   struct ip_reassdata *r, *prev = NULL;
127 
128   r = reassdatagrams;
129   while (r != NULL) {
130     /* Decrement the timer. Once it reaches 0,
131      * clean up the incomplete fragment assembly */
132     if (r->timer > 0) {
133       r->timer--;
134       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n",(u16_t)r->timer));
135       prev = r;
136       r = r->next;
137     } else {
138       /* reassembly timed out */
139       struct ip_reassdata *tmp;
140       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer timed out\n"));
141       tmp = r;
142       /* get the next pointer before freeing */
143       r = r->next;
144       /* free the helper struct and all enqueued pbufs */
145       ip_reass_free_complete_datagram(tmp, prev);
146      }
147    }
148 }
149 
150 /**
151  * Free a datagram (struct ip_reassdata) and all its pbufs.
152  * Updates the total count of enqueued pbufs (ip_reass_pbufcount),
153  * SNMP counters and sends an ICMP time exceeded packet.
154  *
155  * @param ipr datagram to free
156  * @param prev the previous datagram in the linked list
157  * @return the number of pbufs freed
158  */
159 static int
160 ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
161 {
162   u16_t pbufs_freed = 0;
163   u16_t clen;
164   struct pbuf *p;
165   struct ip_reass_helper *iprh;
166 
167   LWIP_ASSERT("prev != ipr", prev != ipr);
168   if (prev != NULL) {
169     LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
170   }
171 
172   MIB2_STATS_INC(mib2.ipreasmfails);
173 #if LWIP_ICMP
174   iprh = (struct ip_reass_helper *)ipr->p->payload;
175   if (iprh->start == 0) {
176     /* The first fragment was received, send ICMP time exceeded. */
177     /* First, de-queue the first pbuf from r->p. */
178     p = ipr->p;
179     ipr->p = iprh->next_pbuf;
180     /* Then, copy the original header into it. */
181     SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
182     icmp_time_exceeded(p, ICMP_TE_FRAG);
183     clen = pbuf_clen(p);
184     LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
185     pbufs_freed += clen;
186     pbuf_free(p);
187   }
188 #endif /* LWIP_ICMP */
189 
190   /* First, free all received pbufs.  The individual pbufs need to be released
191      separately as they have not yet been chained */
192   p = ipr->p;
193   while (p != NULL) {
194     struct pbuf *pcur;
195     iprh = (struct ip_reass_helper *)p->payload;
196     pcur = p;
197     /* get the next pointer before freeing */
198     p = iprh->next_pbuf;
199     clen = pbuf_clen(pcur);
200     LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
201     pbufs_freed += clen;
202     pbuf_free(pcur);
203   }
204   /* Then, unchain the struct ip_reassdata from the list and free it. */
205   ip_reass_dequeue_datagram(ipr, prev);
206   LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= pbufs_freed);
207   ip_reass_pbufcount -= pbufs_freed;
208 
209   return pbufs_freed;
210 }
211 
212 #if IP_REASS_FREE_OLDEST
213 /**
214  * Free the oldest datagram to make room for enqueueing new fragments.
215  * The datagram 'fraghdr' belongs to is not freed!
216  *
217  * @param fraghdr IP header of the current fragment
218  * @param pbufs_needed number of pbufs needed to enqueue
219  *        (used for freeing other datagrams if not enough space)
220  * @return the number of pbufs freed
221  */
222 static int
223 ip_reass_remove_oldest_datagram(struct ip_hdr *fraghdr, int pbufs_needed)
224 {
225   /* @todo Can't we simply remove the last datagram in the
226    *       linked list behind reassdatagrams?
227    */
228   struct ip_reassdata *r, *oldest, *prev, *oldest_prev;
229   int pbufs_freed = 0, pbufs_freed_current;
230   int other_datagrams;
231 
232   /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
233    * but don't free the datagram that 'fraghdr' belongs to! */
234   do {
235     oldest = NULL;
236     prev = NULL;
237     oldest_prev = NULL;
238     other_datagrams = 0;
239     r = reassdatagrams;
240     while (r != NULL) {
241       if (!IP_ADDRESSES_AND_ID_MATCH(&r->iphdr, fraghdr)) {
242         /* Not the same datagram as fraghdr */
243         other_datagrams++;
244         if (oldest == NULL) {
245           oldest = r;
246           oldest_prev = prev;
247         } else if (r->timer <= oldest->timer) {
248           /* older than the previous oldest */
249           oldest = r;
250           oldest_prev = prev;
251         }
252       }
253       if (r->next != NULL) {
254         prev = r;
255       }
256       r = r->next;
257     }
258     if (oldest != NULL) {
259       pbufs_freed_current = ip_reass_free_complete_datagram(oldest, oldest_prev);
260       pbufs_freed += pbufs_freed_current;
261     }
262   } while ((pbufs_freed < pbufs_needed) && (other_datagrams > 1));
263   return pbufs_freed;
264 }
265 #endif /* IP_REASS_FREE_OLDEST */
266 
267 /**
268  * Enqueues a new fragment into the fragment queue
269  * @param fraghdr points to the new fragments IP hdr
270  * @param clen number of pbufs needed to enqueue (used for freeing other datagrams if not enough space)
271  * @return A pointer to the queue location into which the fragment was enqueued
272  */
273 static struct ip_reassdata*
274 ip_reass_enqueue_new_datagram(struct ip_hdr *fraghdr, int clen)
275 {
276   struct ip_reassdata* ipr;
277 #if ! IP_REASS_FREE_OLDEST
278   LWIP_UNUSED_ARG(clen);
279 #endif
280 
281   /* No matching previous fragment found, allocate a new reassdata struct */
282   ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
283   if (ipr == NULL) {
284 #if IP_REASS_FREE_OLDEST
285     if (ip_reass_remove_oldest_datagram(fraghdr, clen) >= clen) {
286       ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
287     }
288     if (ipr == NULL)
289 #endif /* IP_REASS_FREE_OLDEST */
290     {
291       IPFRAG_STATS_INC(ip_frag.memerr);
292       LWIP_DEBUGF(IP_REASS_DEBUG,("Failed to alloc reassdata struct\n"));
293       return NULL;
294     }
295   }
296   memset(ipr, 0, sizeof(struct ip_reassdata));
297   ipr->timer = IP_REASS_MAXAGE;
298 
299   /* enqueue the new structure to the front of the list */
300   ipr->next = reassdatagrams;
301   reassdatagrams = ipr;
302   /* copy the ip header for later tests and input */
303   /* @todo: no ip options supported? */
304   SMEMCPY(&(ipr->iphdr), fraghdr, IP_HLEN);
305   return ipr;
306 }
307 
308 /**
309  * Dequeues a datagram from the datagram queue. Doesn't deallocate the pbufs.
310  * @param ipr points to the queue entry to dequeue
311  */
312 static void
313 ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
314 {
315   /* dequeue the reass struct  */
316   if (reassdatagrams == ipr) {
317     /* it was the first in the list */
318     reassdatagrams = ipr->next;
319   } else {
320     /* it wasn't the first, so it must have a valid 'prev' */
321     LWIP_ASSERT("sanity check linked list", prev != NULL);
322     prev->next = ipr->next;
323   }
324 
325   /* now we can free the ip_reassdata struct */
326   memp_free(MEMP_REASSDATA, ipr);
327 }
328 
329 /**
330  * Chain a new pbuf into the pbuf list that composes the datagram.  The pbuf list
331  * will grow over time as  new pbufs are rx.
332  * Also checks that the datagram passes basic continuity checks (if the last
333  * fragment was received at least once).
334  * @param ipr points to the reassembly state
335  * @param new_p points to the pbuf for the current fragment
336  * @return 0 if invalid, >0 otherwise
337  */
338 static int
339 ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata *ipr, struct pbuf *new_p)
340 {
341   struct ip_reass_helper *iprh, *iprh_tmp, *iprh_prev=NULL;
342   struct pbuf *q;
343   u16_t offset, len;
344   struct ip_hdr *fraghdr;
345   int valid = 1;
346 
347   /* Extract length and fragment offset from current fragment */
348   fraghdr = (struct ip_hdr*)new_p->payload;
349   len = lwip_ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
350   offset = (lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
351 
352   /* overwrite the fragment's ip header from the pbuf with our helper struct,
353    * and setup the embedded helper structure. */
354   /* make sure the struct ip_reass_helper fits into the IP header */
355   LWIP_ASSERT("sizeof(struct ip_reass_helper) <= IP_HLEN",
356               sizeof(struct ip_reass_helper) <= IP_HLEN);
357   iprh = (struct ip_reass_helper*)new_p->payload;
358   iprh->next_pbuf = NULL;
359   iprh->start = offset;
360   iprh->end = offset + len;
361 
362   /* Iterate through until we either get to the end of the list (append),
363    * or we find one with a larger offset (insert). */
364   for (q = ipr->p; q != NULL;) {
365     iprh_tmp = (struct ip_reass_helper*)q->payload;
366     if (iprh->start < iprh_tmp->start) {
367       /* the new pbuf should be inserted before this */
368       iprh->next_pbuf = q;
369       if (iprh_prev != NULL) {
370         /* not the fragment with the lowest offset */
371 #if IP_REASS_CHECK_OVERLAP
372         if ((iprh->start < iprh_prev->end) || (iprh->end > iprh_tmp->start)) {
373           /* fragment overlaps with previous or following, throw away */
374           goto freepbuf;
375         }
376 #endif /* IP_REASS_CHECK_OVERLAP */
377         iprh_prev->next_pbuf = new_p;
378       } else {
379         /* fragment with the lowest offset */
380         ipr->p = new_p;
381       }
382       break;
383     } else if (iprh->start == iprh_tmp->start) {
384       /* received the same datagram twice: no need to keep the datagram */
385       goto freepbuf;
386 #if IP_REASS_CHECK_OVERLAP
387     } else if (iprh->start < iprh_tmp->end) {
388       /* overlap: no need to keep the new datagram */
389       goto freepbuf;
390 #endif /* IP_REASS_CHECK_OVERLAP */
391     } else {
392       /* Check if the fragments received so far have no holes. */
393       if (iprh_prev != NULL) {
394         if (iprh_prev->end != iprh_tmp->start) {
395           /* There is a fragment missing between the current
396            * and the previous fragment */
397           valid = 0;
398         }
399       }
400     }
401     q = iprh_tmp->next_pbuf;
402     iprh_prev = iprh_tmp;
403   }
404 
405   /* If q is NULL, then we made it to the end of the list. Determine what to do now */
406   if (q == NULL) {
407     if (iprh_prev != NULL) {
408       /* this is (for now), the fragment with the highest offset:
409        * chain it to the last fragment */
410 #if IP_REASS_CHECK_OVERLAP
411       LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start);
412 #endif /* IP_REASS_CHECK_OVERLAP */
413       iprh_prev->next_pbuf = new_p;
414       if (iprh_prev->end != iprh->start) {
415         valid = 0;
416       }
417     } else {
418 #if IP_REASS_CHECK_OVERLAP
419       LWIP_ASSERT("no previous fragment, this must be the first fragment!",
420         ipr->p == NULL);
421 #endif /* IP_REASS_CHECK_OVERLAP */
422       /* this is the first fragment we ever received for this ip datagram */
423       ipr->p = new_p;
424     }
425   }
426 
427   /* At this point, the validation part begins: */
428   /* If we already received the last fragment */
429   if ((ipr->flags & IP_REASS_FLAG_LASTFRAG) != 0) {
430     /* and had no holes so far */
431     if (valid) {
432       /* then check if the rest of the fragments is here */
433       /* Check if the queue starts with the first datagram */
434       if ((ipr->p == NULL) || (((struct ip_reass_helper*)ipr->p->payload)->start != 0)) {
435         valid = 0;
436       } else {
437         /* and check that there are no holes after this datagram */
438         iprh_prev = iprh;
439         q = iprh->next_pbuf;
440         while (q != NULL) {
441           iprh = (struct ip_reass_helper*)q->payload;
442           if (iprh_prev->end != iprh->start) {
443             valid = 0;
444             break;
445           }
446           iprh_prev = iprh;
447           q = iprh->next_pbuf;
448         }
449         /* if still valid, all fragments are received
450          * (because to the MF==0 already arrived */
451         if (valid) {
452           LWIP_ASSERT("sanity check", ipr->p != NULL);
453           LWIP_ASSERT("sanity check",
454             ((struct ip_reass_helper*)ipr->p->payload) != iprh);
455           LWIP_ASSERT("validate_datagram:next_pbuf!=NULL",
456             iprh->next_pbuf == NULL);
457           LWIP_ASSERT("validate_datagram:datagram end!=datagram len",
458             iprh->end == ipr->datagram_len);
459         }
460       }
461     }
462     /* If valid is 0 here, there are some fragments missing in the middle
463      * (since MF == 0 has already arrived). Such datagrams simply time out if
464      * no more fragments are received... */
465     return valid;
466   }
467   /* If we come here, not all fragments were received, yet! */
468   return 0; /* not yet valid! */
469 #if IP_REASS_CHECK_OVERLAP
470 freepbuf:
471   ip_reass_pbufcount -= pbuf_clen(new_p);
472   pbuf_free(new_p);
473   return 0;
474 #endif /* IP_REASS_CHECK_OVERLAP */
475 }
476 
477 /**
478  * Reassembles incoming IP fragments into an IP datagram.
479  *
480  * @param p points to a pbuf chain of the fragment
481  * @return NULL if reassembly is incomplete, ? otherwise
482  */
483 struct pbuf *
484 ip4_reass(struct pbuf *p)
485 {
486   struct pbuf *r;
487   struct ip_hdr *fraghdr;
488   struct ip_reassdata *ipr;
489   struct ip_reass_helper *iprh;
490   u16_t offset, len, clen;
491 
492   IPFRAG_STATS_INC(ip_frag.recv);
493   MIB2_STATS_INC(mib2.ipreasmreqds);
494 
495   fraghdr = (struct ip_hdr*)p->payload;
496 
497   if ((IPH_HL(fraghdr) * 4) != IP_HLEN) {
498     LWIP_DEBUGF(IP_REASS_DEBUG,("ip4_reass: IP options currently not supported!\n"));
499     IPFRAG_STATS_INC(ip_frag.err);
500     goto nullreturn;
501   }
502 
503   offset = (lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
504   len = lwip_ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
505 
506   /* Check if we are allowed to enqueue more datagrams. */
507   clen = pbuf_clen(p);
508   if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
509 #if IP_REASS_FREE_OLDEST
510     if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
511         ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
512 #endif /* IP_REASS_FREE_OLDEST */
513     {
514       /* No datagram could be freed and still too many pbufs enqueued */
515       LWIP_DEBUGF(IP_REASS_DEBUG,("ip4_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
516         ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
517       IPFRAG_STATS_INC(ip_frag.memerr);
518       /* @todo: send ICMP time exceeded here? */
519       /* drop this pbuf */
520       goto nullreturn;
521     }
522   }
523 
524   /* Look for the datagram the fragment belongs to in the current datagram queue,
525    * remembering the previous in the queue for later dequeueing. */
526   for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
527     /* Check if the incoming fragment matches the one currently present
528        in the reassembly buffer. If so, we proceed with copying the
529        fragment into the buffer. */
530     if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
531       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: matching previous fragment ID=%"X16_F"\n",
532         lwip_ntohs(IPH_ID(fraghdr))));
533       IPFRAG_STATS_INC(ip_frag.cachehit);
534       break;
535     }
536   }
537 
538   if (ipr == NULL) {
539   /* Enqueue a new datagram into the datagram queue */
540     ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
541     /* Bail if unable to enqueue */
542     if (ipr == NULL) {
543       goto nullreturn;
544     }
545   } else {
546     if (((lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) &&
547       ((lwip_ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
548       /* ipr->iphdr is not the header from the first fragment, but fraghdr is
549        * -> copy fraghdr into ipr->iphdr since we want to have the header
550        * of the first fragment (for ICMP time exceeded and later, for copying
551        * all options, if supported)*/
552       SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
553     }
554   }
555   /* Track the current number of pbufs current 'in-flight', in order to limit
556   the number of fragments that may be enqueued at any one time */
557   ip_reass_pbufcount += clen;
558 
559   /* At this point, we have either created a new entry or pointing
560    * to an existing one */
561 
562   /* check for 'no more fragments', and update queue entry*/
563   if ((IPH_OFFSET(fraghdr) & PP_NTOHS(IP_MF)) == 0) {
564     ipr->flags |= IP_REASS_FLAG_LASTFRAG;
565     ipr->datagram_len = offset + len;
566     LWIP_DEBUGF(IP_REASS_DEBUG,
567      ("ip4_reass: last fragment seen, total len %"S16_F"\n",
568       ipr->datagram_len));
569   }
570   /* find the right place to insert this pbuf */
571   /* @todo: trim pbufs if fragments are overlapping */
572   if (ip_reass_chain_frag_into_datagram_and_validate(ipr, p)) {
573     struct ip_reassdata *ipr_prev;
574     /* the totally last fragment (flag more fragments = 0) was received at least
575      * once AND all fragments are received */
576     ipr->datagram_len += IP_HLEN;
577 
578     /* save the second pbuf before copying the header over the pointer */
579     r = ((struct ip_reass_helper*)ipr->p->payload)->next_pbuf;
580 
581     /* copy the original ip header back to the first pbuf */
582     fraghdr = (struct ip_hdr*)(ipr->p->payload);
583     SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
584     IPH_LEN_SET(fraghdr, lwip_htons(ipr->datagram_len));
585     IPH_OFFSET_SET(fraghdr, 0);
586     IPH_CHKSUM_SET(fraghdr, 0);
587     /* @todo: do we need to set/calculate the correct checksum? */
588 #if CHECKSUM_GEN_IP
589     IF__NETIF_CHECKSUM_ENABLED(ip_current_input_netif(), NETIF_CHECKSUM_GEN_IP) {
590       IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
591     }
592 #endif /* CHECKSUM_GEN_IP */
593 
594     p = ipr->p;
595 
596     /* chain together the pbufs contained within the reass_data list. */
597     while (r != NULL) {
598       iprh = (struct ip_reass_helper*)r->payload;
599 
600       /* hide the ip header for every succeeding fragment */
601       pbuf_header(r, -IP_HLEN);
602       pbuf_cat(p, r);
603       r = iprh->next_pbuf;
604     }
605 
606     /* find the previous entry in the linked list */
607     if (ipr == reassdatagrams) {
608       ipr_prev = NULL;
609     } else {
610       for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
611         if (ipr_prev->next == ipr) {
612           break;
613         }
614       }
615     }
616 
617     /* release the sources allocate for the fragment queue entry */
618     ip_reass_dequeue_datagram(ipr, ipr_prev);
619 
620     /* and adjust the number of pbufs currently queued for reassembly. */
621     ip_reass_pbufcount -= pbuf_clen(p);
622 
623     MIB2_STATS_INC(mib2.ipreasmoks);
624 
625     /* Return the pbuf chain */
626     return p;
627   }
628   /* the datagram is not (yet?) reassembled completely */
629   LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass_pbufcount: %d out\n", ip_reass_pbufcount));
630   return NULL;
631 
632 nullreturn:
633   LWIP_DEBUGF(IP_REASS_DEBUG,("ip4_reass: nullreturn\n"));
634   IPFRAG_STATS_INC(ip_frag.drop);
635   pbuf_free(p);
636   return NULL;
637 }
638 #endif /* IP_REASSEMBLY */
639 
640 #if IP_FRAG
641 #if !LWIP_NETIF_TX_SINGLE_PBUF
642 /** Allocate a new struct pbuf_custom_ref */
643 static struct pbuf_custom_ref*
644 ip_frag_alloc_pbuf_custom_ref(void)
645 {
646   return (struct pbuf_custom_ref*)memp_malloc(MEMP_FRAG_PBUF);
647 }
648 
649 /** Free a struct pbuf_custom_ref */
650 static void
651 ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref* p)
652 {
653   LWIP_ASSERT("p != NULL", p != NULL);
654   memp_free(MEMP_FRAG_PBUF, p);
655 }
656 
657 /** Free-callback function to free a 'struct pbuf_custom_ref', called by
658  * pbuf_free. */
659 static void
660 ipfrag_free_pbuf_custom(struct pbuf *p)
661 {
662   struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref*)p;
663   LWIP_ASSERT("pcr != NULL", pcr != NULL);
664   LWIP_ASSERT("pcr == p", (void*)pcr == (void*)p);
665   if (pcr->original != NULL) {
666     pbuf_free(pcr->original);
667   }
668   ip_frag_free_pbuf_custom_ref(pcr);
669 }
670 #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */
671 
672 /**
673  * Fragment an IP datagram if too large for the netif.
674  *
675  * Chop the datagram in MTU sized chunks and send them in order
676  * by pointing PBUF_REFs into p.
677  *
678  * @param p ip packet to send
679  * @param netif the netif on which to send
680  * @param dest destination ip address to which to send
681  *
682  * @return ERR_OK if sent successfully, err_t otherwise
683  */
684 err_t
685 ip4_frag(struct pbuf *p, struct netif *netif, const ip4_addr_t *dest)
686 {
687   struct pbuf *rambuf;
688 #if !LWIP_NETIF_TX_SINGLE_PBUF
689   struct pbuf *newpbuf;
690   u16_t newpbuflen = 0;
691   u16_t left_to_copy;
692 #endif
693   struct ip_hdr *original_iphdr;
694   struct ip_hdr *iphdr;
695   const u16_t nfb = (netif->mtu - IP_HLEN) / 8;
696   u16_t left, fragsize;
697   u16_t ofo;
698   int last;
699   u16_t poff = IP_HLEN;
700   u16_t tmp;
701 
702   original_iphdr = (struct ip_hdr *)p->payload;
703   iphdr = original_iphdr;
704   LWIP_ERROR("ip4_frag() does not support IP options", IPH_HL(iphdr) * 4 == IP_HLEN, return ERR_VAL);
705 
706   /* Save original offset */
707   tmp = lwip_ntohs(IPH_OFFSET(iphdr));
708   ofo = tmp & IP_OFFMASK;
709   LWIP_ERROR("ip_frag(): MF already set", (tmp & IP_MF) == 0, return ERR_VAL);
710 
711   left = p->tot_len - IP_HLEN;
712 
713   while (left) {
714     /* Fill this fragment */
715     fragsize = LWIP_MIN(left, nfb * 8);
716 
717 #if LWIP_NETIF_TX_SINGLE_PBUF
718     rambuf = pbuf_alloc(PBUF_IP, fragsize, PBUF_RAM);
719     if (rambuf == NULL) {
720       goto memerr;
721     }
722     LWIP_ASSERT("this needs a pbuf in one piece!",
723       (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL));
724     poff += pbuf_copy_partial(p, rambuf->payload, fragsize, poff);
725     /* make room for the IP header */
726     if (pbuf_header(rambuf, IP_HLEN)) {
727       pbuf_free(rambuf);
728       goto memerr;
729     }
730     /* fill in the IP header */
731     SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
732     iphdr = (struct ip_hdr*)rambuf->payload;
733 #else /* LWIP_NETIF_TX_SINGLE_PBUF */
734     /* When not using a static buffer, create a chain of pbufs.
735      * The first will be a PBUF_RAM holding the link and IP header.
736      * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
737      * but limited to the size of an mtu.
738      */
739     rambuf = pbuf_alloc(PBUF_LINK, IP_HLEN, PBUF_RAM);
740     if (rambuf == NULL) {
741       goto memerr;
742     }
743     LWIP_ASSERT("this needs a pbuf in one piece!",
744                 (p->len >= (IP_HLEN)));
745     SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
746     iphdr = (struct ip_hdr *)rambuf->payload;
747 
748     left_to_copy = fragsize;
749     while (left_to_copy) {
750       struct pbuf_custom_ref *pcr;
751       u16_t plen = p->len - poff;
752       newpbuflen = LWIP_MIN(left_to_copy, plen);
753       /* Is this pbuf already empty? */
754       if (!newpbuflen) {
755         poff = 0;
756         p = p->next;
757         continue;
758       }
759       pcr = ip_frag_alloc_pbuf_custom_ref();
760       if (pcr == NULL) {
761         pbuf_free(rambuf);
762         goto memerr;
763       }
764       /* Mirror this pbuf, although we might not need all of it. */
765       newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc,
766         (u8_t*)p->payload + poff, newpbuflen);
767       if (newpbuf == NULL) {
768         ip_frag_free_pbuf_custom_ref(pcr);
769         pbuf_free(rambuf);
770         goto memerr;
771       }
772       pbuf_ref(p);
773       pcr->original = p;
774       pcr->pc.custom_free_function = ipfrag_free_pbuf_custom;
775 
776       /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
777        * so that it is removed when pbuf_dechain is later called on rambuf.
778        */
779       pbuf_cat(rambuf, newpbuf);
780       left_to_copy -= newpbuflen;
781       if (left_to_copy) {
782         poff = 0;
783         p = p->next;
784       }
785     }
786     poff += newpbuflen;
787 #endif /* LWIP_NETIF_TX_SINGLE_PBUF */
788 
789     /* Correct header */
790     last = (left <= netif->mtu - IP_HLEN);
791 
792     /* Set new offset and MF flag */
793     tmp = (IP_OFFMASK & (ofo));
794     if (!last) {
795       tmp = tmp | IP_MF;
796     }
797     IPH_OFFSET_SET(iphdr, lwip_htons(tmp));
798     IPH_LEN_SET(iphdr, lwip_htons(fragsize + IP_HLEN));
799     IPH_CHKSUM_SET(iphdr, 0);
800 #if CHECKSUM_GEN_IP
801     IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_IP) {
802       IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
803     }
804 #endif /* CHECKSUM_GEN_IP */
805 
806     /* No need for separate header pbuf - we allowed room for it in rambuf
807      * when allocated.
808      */
809     netif->output(netif, rambuf, dest);
810     IPFRAG_STATS_INC(ip_frag.xmit);
811 
812     /* Unfortunately we can't reuse rambuf - the hardware may still be
813      * using the buffer. Instead we free it (and the ensuing chain) and
814      * recreate it next time round the loop. If we're lucky the hardware
815      * will have already sent the packet, the free will really free, and
816      * there will be zero memory penalty.
817      */
818 
819     pbuf_free(rambuf);
820     left -= fragsize;
821     ofo += nfb;
822   }
823   MIB2_STATS_INC(mib2.ipfragoks);
824   return ERR_OK;
825 memerr:
826   MIB2_STATS_INC(mib2.ipfragfails);
827   return ERR_MEM;
828 }
829 #endif /* IP_FRAG */
830 
831 #endif /* LWIP_IPV4 */
832