xref: /minix/minix/lib/liblwip/dist/src/core/ipv6/ip6_frag.c (revision 9f81acbc)
1 /**
2  * @file
3  *
4  * IPv6 fragmentation and reassembly.
5  */
6 
7 /*
8  * Copyright (c) 2010 Inico Technologies Ltd.
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without modification,
12  * are permitted provided that the following conditions are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright notice,
15  *    this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright notice,
17  *    this list of conditions and the following disclaimer in the documentation
18  *    and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31  * OF SUCH DAMAGE.
32  *
33  * This file is part of the lwIP TCP/IP stack.
34  *
35  * Author: Ivan Delamer <delamer@inicotech.com>
36  *
37  *
38  * Please coordinate changes and requests with Ivan Delamer
39  * <delamer@inicotech.com>
40  */
41 
42 #include "lwip/opt.h"
43 #include "lwip/ip6_frag.h"
44 #include "lwip/ip6.h"
45 #include "lwip/icmp6.h"
46 #include "lwip/nd6.h"
47 #include "lwip/ip.h"
48 
49 #include "lwip/pbuf.h"
50 #include "lwip/memp.h"
51 #include "lwip/stats.h"
52 
53 #include <string.h>
54 
55 #if LWIP_IPV6 && LWIP_IPV6_REASS  /* don't build if not configured for use in lwipopts.h */
56 
57 
58 /** Setting this to 0, you can turn off checking the fragments for overlapping
59  * regions. The code gets a little smaller. Only use this if you know that
60  * overlapping won't occur on your network! */
61 #ifndef IP_REASS_CHECK_OVERLAP
62 #define IP_REASS_CHECK_OVERLAP 1
63 #endif /* IP_REASS_CHECK_OVERLAP */
64 
65 /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
66  * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
67  * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
68  * is set to 1, so one datagram can be reassembled at a time, only. */
69 #ifndef IP_REASS_FREE_OLDEST
70 #define IP_REASS_FREE_OLDEST 1
71 #endif /* IP_REASS_FREE_OLDEST */
72 
73 #if IPV6_FRAG_COPYHEADER
74 /* The number of bytes we need to "borrow" from (i.e., overwrite in) the header
75  * that precedes the fragment header for reassembly pruposes. */
76 #define IPV6_FRAG_REQROOM ((s16_t)(sizeof(struct ip6_reass_helper) - IP6_FRAG_HLEN))
77 #endif
78 
79 #define IP_REASS_FLAG_LASTFRAG 0x01
80 
81 /** This is a helper struct which holds the starting
82  * offset and the ending offset of this fragment to
83  * easily chain the fragments.
84  * It has the same packing requirements as the IPv6 header, since it replaces
85  * the Fragment Header in memory in incoming fragments to keep
86  * track of the various fragments.
87  */
88 #ifdef PACK_STRUCT_USE_INCLUDES
89 #  include "arch/bpstruct.h"
90 #endif
91 PACK_STRUCT_BEGIN
92 struct ip6_reass_helper {
93   PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
94   PACK_STRUCT_FIELD(u16_t start);
95   PACK_STRUCT_FIELD(u16_t end);
96 } PACK_STRUCT_STRUCT;
97 PACK_STRUCT_END
98 #ifdef PACK_STRUCT_USE_INCLUDES
99 #  include "arch/epstruct.h"
100 #endif
101 
102 /* static variables */
103 static struct ip6_reassdata *reassdatagrams;
104 static u16_t ip6_reass_pbufcount;
105 
106 /* Forward declarations. */
107 static void ip6_reass_free_complete_datagram(struct ip6_reassdata *ipr);
108 #if IP_REASS_FREE_OLDEST
109 static void ip6_reass_remove_oldest_datagram(struct ip6_reassdata *ipr, int pbufs_needed);
110 #endif /* IP_REASS_FREE_OLDEST */
111 
112 void
113 ip6_reass_tmr(void)
114 {
115   struct ip6_reassdata *r, *tmp;
116 
117 #if !IPV6_FRAG_COPYHEADER
118   LWIP_ASSERT("sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN, set IPV6_FRAG_COPYHEADER to 1",
119     sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN);
120 #endif /* !IPV6_FRAG_COPYHEADER */
121 
122   r = reassdatagrams;
123   while (r != NULL) {
124     /* Decrement the timer. Once it reaches 0,
125      * clean up the incomplete fragment assembly */
126     if (r->timer > 0) {
127       r->timer--;
128       r = r->next;
129     } else {
130       /* reassembly timed out */
131       tmp = r;
132       /* get the next pointer before freeing */
133       r = r->next;
134       /* free the helper struct and all enqueued pbufs */
135       ip6_reass_free_complete_datagram(tmp);
136      }
137    }
138 }
139 
140 /**
141  * Free a datagram (struct ip6_reassdata) and all its pbufs.
142  * Updates the total count of enqueued pbufs (ip6_reass_pbufcount),
143  * sends an ICMP time exceeded packet.
144  *
145  * @param ipr datagram to free
146  */
147 static void
148 ip6_reass_free_complete_datagram(struct ip6_reassdata *ipr)
149 {
150   struct ip6_reassdata *prev;
151   u16_t pbufs_freed = 0;
152   u16_t clen;
153   struct pbuf *p;
154   struct ip6_reass_helper *iprh;
155 
156 #if LWIP_ICMP6
157   iprh = (struct ip6_reass_helper *)ipr->p->payload;
158   if (iprh->start == 0) {
159     /* The first fragment was received, send ICMP time exceeded. */
160     /* First, de-queue the first pbuf from r->p. */
161     p = ipr->p;
162     ipr->p = iprh->next_pbuf;
163     /* Restore the part that we've overwritten with our helper structure, or we
164      * might send garbage (and disclose a pointer) in the ICMPv6 reply. */
165     MEMCPY(p->payload, ipr->orig_hdr, sizeof(iprh));
166     /* Then, move back to the original ipv6 header (we are now pointing to Fragment header).
167        This cannot fail since we already checked when receiving this fragment. */
168     if (pbuf_header_force(p, (s16_t)((u8_t*)p->payload - (u8_t*)ipr->iphdr))) {
169       LWIP_ASSERT("ip6_reass_free: moving p->payload to ip6 header failed\n", 0);
170     }
171     else {
172       /* Reconstruct the zoned source and destination addresses, so that we do
173        * not end up sending the ICMP response over the wrong link. */
174       ip6_addr_t src_addr, dest_addr;
175       ip6_addr_copy_from_packed(src_addr, IPV6_FRAG_SRC(ipr));
176       ip6_addr_set_zone(&src_addr, ipr->src_zone);
177       ip6_addr_copy_from_packed(dest_addr, IPV6_FRAG_DEST(ipr));
178       ip6_addr_set_zone(&dest_addr, ipr->dest_zone);
179       /* Send the actual ICMP response. */
180       icmp6_time_exceeded_with_addrs(p, ICMP6_TE_FRAG, &src_addr, &dest_addr);
181     }
182     clen = pbuf_clen(p);
183     LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
184     pbufs_freed += clen;
185     pbuf_free(p);
186   }
187 #endif /* LWIP_ICMP6 */
188 
189   /* First, free all received pbufs.  The individual pbufs need to be released
190      separately as they have not yet been chained */
191   p = ipr->p;
192   while (p != NULL) {
193     struct pbuf *pcur;
194     iprh = (struct ip6_reass_helper *)p->payload;
195     pcur = p;
196     /* get the next pointer before freeing */
197     p = iprh->next_pbuf;
198     clen = pbuf_clen(pcur);
199     LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
200     pbufs_freed += clen;
201     pbuf_free(pcur);
202   }
203 
204   /* Then, unchain the struct ip6_reassdata from the list and free it. */
205   if (ipr == reassdatagrams) {
206     reassdatagrams = ipr->next;
207   } else {
208     prev = reassdatagrams;
209     while (prev != NULL) {
210       if (prev->next == ipr) {
211         break;
212       }
213       prev = prev->next;
214     }
215     if (prev != NULL) {
216       prev->next = ipr->next;
217     }
218   }
219   memp_free(MEMP_IP6_REASSDATA, ipr);
220 
221   /* Finally, update number of pbufs in reassembly queue */
222   LWIP_ASSERT("ip_reass_pbufcount >= clen", ip6_reass_pbufcount >= pbufs_freed);
223   ip6_reass_pbufcount -= pbufs_freed;
224 }
225 
226 #if IP_REASS_FREE_OLDEST
227 /**
228  * Free the oldest datagram to make room for enqueueing new fragments.
229  * The datagram ipr is not freed!
230  *
231  * @param ipr ip6_reassdata for the current fragment
232  * @param pbufs_needed number of pbufs needed to enqueue
233  *        (used for freeing other datagrams if not enough space)
234  */
235 static void
236 ip6_reass_remove_oldest_datagram(struct ip6_reassdata *ipr, int pbufs_needed)
237 {
238   struct ip6_reassdata *r, *oldest;
239 
240   /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
241    * but don't free the current datagram! */
242   do {
243     r = oldest = reassdatagrams;
244     while (r != NULL) {
245       if (r != ipr) {
246         if (r->timer <= oldest->timer) {
247           /* older than the previous oldest */
248           oldest = r;
249         }
250       }
251       r = r->next;
252     }
253     if (oldest == ipr) {
254       /* nothing to free, ipr is the only element on the list */
255       return;
256     }
257     if (oldest != NULL) {
258       ip6_reass_free_complete_datagram(oldest);
259     }
260   } while (((ip6_reass_pbufcount + pbufs_needed) > IP_REASS_MAX_PBUFS) && (reassdatagrams != NULL));
261 }
262 #endif /* IP_REASS_FREE_OLDEST */
263 
264 /**
265  * Reassembles incoming IPv6 fragments into an IPv6 datagram.
266  *
267  * @param p points to the IPv6 Fragment Header
268  * @return NULL if reassembly is incomplete, pbuf pointing to
269  *         IPv6 Header if reassembly is complete
270  */
271 struct pbuf *
272 ip6_reass(struct pbuf *p)
273 {
274   struct ip6_reassdata *ipr, *ipr_prev;
275   struct ip6_reass_helper *iprh, *iprh_tmp, *iprh_prev=NULL;
276   struct ip6_frag_hdr *frag_hdr;
277   u16_t offset, len, start, end;
278   u16_t clen;
279   u8_t valid = 1;
280   struct pbuf *q, *next_pbuf;
281 
282   IP6_FRAG_STATS_INC(ip6_frag.recv);
283 
284   /* ip6_frag_hdr must be in the first pbuf, not chained. Checked by caller. */
285   LWIP_ASSERT("IPv6 fragment header does not fit in first pbuf",
286     p->len >= sizeof(struct ip6_frag_hdr));
287 
288   frag_hdr = (struct ip6_frag_hdr *) p->payload;
289 
290   clen = pbuf_clen(p);
291 
292   offset = lwip_ntohs(frag_hdr->_fragment_offset);
293 
294   /* Calculate fragment length from IPv6 payload length.
295    * Adjust for headers before Fragment Header.
296    * And finally adjust by Fragment Header length. */
297   len = lwip_ntohs(ip6_current_header()->_plen);
298   len -= (u16_t)(((u8_t*)p->payload - (const u8_t*)ip6_current_header()) - IP6_HLEN);
299   len -= IP6_FRAG_HLEN;
300 
301   /* Look for the datagram the fragment belongs to in the current datagram queue,
302    * remembering the previous in the queue for later dequeueing. */
303   for (ipr = reassdatagrams, ipr_prev = NULL; ipr != NULL; ipr = ipr->next) {
304     /* Check if the incoming fragment matches the one currently present
305        in the reassembly buffer. If so, we proceed with copying the
306        fragment into the buffer. */
307     if ((frag_hdr->_identification == ipr->identification) &&
308         ip6_addr_cmp_packed(ip6_current_src_addr(), &(IPV6_FRAG_SRC(ipr)), ipr->src_zone) &&
309         ip6_addr_cmp_packed(ip6_current_dest_addr(), &(IPV6_FRAG_DEST(ipr)), ipr->dest_zone)) {
310       IP6_FRAG_STATS_INC(ip6_frag.cachehit);
311       break;
312     }
313     ipr_prev = ipr;
314   }
315 
316   if (ipr == NULL) {
317   /* Enqueue a new datagram into the datagram queue */
318     ipr = (struct ip6_reassdata *)memp_malloc(MEMP_IP6_REASSDATA);
319     if (ipr == NULL) {
320 #if IP_REASS_FREE_OLDEST
321       /* Make room and try again. */
322       ip6_reass_remove_oldest_datagram(ipr, clen);
323       ipr = (struct ip6_reassdata *)memp_malloc(MEMP_IP6_REASSDATA);
324       if (ipr != NULL) {
325         /* re-search ipr_prev since it might have been removed */
326         for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
327           if (ipr_prev->next == ipr) {
328             break;
329           }
330         }
331       } else
332 #endif /* IP_REASS_FREE_OLDEST */
333       {
334         IP6_FRAG_STATS_INC(ip6_frag.memerr);
335         IP6_FRAG_STATS_INC(ip6_frag.drop);
336         goto nullreturn;
337       }
338     }
339 
340     memset(ipr, 0, sizeof(struct ip6_reassdata));
341     ipr->timer = IP_REASS_MAXAGE;
342 
343     /* enqueue the new structure to the front of the list */
344     ipr->next = reassdatagrams;
345     reassdatagrams = ipr;
346 
347     /* Use the current IPv6 header for src/dest address reference.
348      * Eventually, we will replace it when we get the first fragment
349      * (it might be this one, in any case, it is done later). */
350     /* need to use the none-const pointer here: */
351     ipr->iphdr = ip_data.current_ip6_header;
352 #if IPV6_FRAG_COPYHEADER
353     MEMCPY(&ipr->src, &ip6_current_header()->src, sizeof(ipr->src));
354     MEMCPY(&ipr->dest, &ip6_current_header()->dest, sizeof(ipr->dest));
355 #endif /* IPV6_FRAG_COPYHEADER */
356 #if LWIP_IPV6_SCOPES
357     /* Also store the address zone information.
358      * @todo It is possible that due to netif destruction and recreation, the
359      * stored zones end up resolving to a different interface. In that case, we
360      * risk sending a "time exceeded" ICMP response over the wrong link.
361      * Ideally, netif destruction would clean up matching pending reassembly
362      * structures, but custom zone mappings would make that non-trivial. */
363     ipr->src_zone = ip6_addr_zone(ip6_current_src_addr());
364     ipr->dest_zone = ip6_addr_zone(ip6_current_dest_addr());
365 #endif /* LWIP_IPV6_SCOPES */
366     /* copy the fragmented packet id. */
367     ipr->identification = frag_hdr->_identification;
368 
369     /* copy the nexth field */
370     ipr->nexth = frag_hdr->_nexth;
371   }
372 
373   /* Check if we are allowed to enqueue more datagrams. */
374   if ((ip6_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
375 #if IP_REASS_FREE_OLDEST
376     ip6_reass_remove_oldest_datagram(ipr, clen);
377     if ((ip6_reass_pbufcount + clen) <= IP_REASS_MAX_PBUFS) {
378       /* re-search ipr_prev since it might have been removed */
379       for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
380         if (ipr_prev->next == ipr) {
381           break;
382         }
383       }
384     } else
385 #endif /* IP_REASS_FREE_OLDEST */
386     {
387       /* @todo: send ICMPv6 time exceeded here? */
388       /* drop this pbuf */
389       IP6_FRAG_STATS_INC(ip6_frag.memerr);
390       IP6_FRAG_STATS_INC(ip6_frag.drop);
391       goto nullreturn;
392     }
393   }
394 
395   /* Overwrite Fragment Header with our own helper struct. */
396 #if IPV6_FRAG_COPYHEADER
397   if (IPV6_FRAG_REQROOM > 0) {
398     /* Make room for struct ip6_reass_helper (only required if sizeof(void*) > 4).
399        This cannot fail since we already checked when receiving this fragment. */
400     u8_t hdrerr = pbuf_header_force(p, IPV6_FRAG_REQROOM);
401     LWIP_UNUSED_ARG(hdrerr); /* in case of LWIP_NOASSERT */
402     LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0);
403   }
404 #else /* IPV6_FRAG_COPYHEADER */
405   LWIP_ASSERT("sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN, set IPV6_FRAG_COPYHEADER to 1",
406     sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN);
407 #endif /* IPV6_FRAG_COPYHEADER */
408 
409   /* Prepare the pointer to the helper structure, and its initial values.
410    * Do not yet write to the structure itself, as we still have to make a
411    * backup of the original data, and we should not do that until we know for
412    * sure that we are going to add this packet to the list. */
413   iprh = (struct ip6_reass_helper *)p->payload;
414   next_pbuf = NULL;
415   start = (offset & IP6_FRAG_OFFSET_MASK);
416   end = (offset & IP6_FRAG_OFFSET_MASK) + len;
417 
418   /* find the right place to insert this pbuf */
419   /* Iterate through until we either get to the end of the list (append),
420    * or we find on with a larger offset (insert). */
421   for (q = ipr->p; q != NULL;) {
422     iprh_tmp = (struct ip6_reass_helper*)q->payload;
423     if (start < iprh_tmp->start) {
424 #if IP_REASS_CHECK_OVERLAP
425       if (end > iprh_tmp->start) {
426         /* fragment overlaps with following, throw away */
427         IP6_FRAG_STATS_INC(ip6_frag.proterr);
428         IP6_FRAG_STATS_INC(ip6_frag.drop);
429         goto nullreturn;
430       }
431       if (iprh_prev != NULL) {
432         if (start < iprh_prev->end) {
433           /* fragment overlaps with previous, throw away */
434           IP6_FRAG_STATS_INC(ip6_frag.proterr);
435           IP6_FRAG_STATS_INC(ip6_frag.drop);
436           goto nullreturn;
437         }
438       }
439 #endif /* IP_REASS_CHECK_OVERLAP */
440       /* the new pbuf should be inserted before this */
441       next_pbuf = q;
442       if (iprh_prev != NULL) {
443         /* not the fragment with the lowest offset */
444         iprh_prev->next_pbuf = p;
445       } else {
446         /* fragment with the lowest offset */
447         ipr->p = p;
448       }
449       break;
450     } else if (start == iprh_tmp->start) {
451       /* received the same datagram twice: no need to keep the datagram */
452       IP6_FRAG_STATS_INC(ip6_frag.drop);
453       goto nullreturn;
454 #if IP_REASS_CHECK_OVERLAP
455     } else if (start < iprh_tmp->end) {
456       /* overlap: no need to keep the new datagram */
457       IP6_FRAG_STATS_INC(ip6_frag.proterr);
458       IP6_FRAG_STATS_INC(ip6_frag.drop);
459       goto nullreturn;
460 #endif /* IP_REASS_CHECK_OVERLAP */
461     } else {
462       /* Check if the fragments received so far have no gaps. */
463       if (iprh_prev != NULL) {
464         if (iprh_prev->end != iprh_tmp->start) {
465           /* There is a fragment missing between the current
466            * and the previous fragment */
467           valid = 0;
468         }
469       }
470     }
471     q = iprh_tmp->next_pbuf;
472     iprh_prev = iprh_tmp;
473   }
474 
475   /* If q is NULL, then we made it to the end of the list. Determine what to do now */
476   if (q == NULL) {
477     if (iprh_prev != NULL) {
478       /* this is (for now), the fragment with the highest offset:
479        * chain it to the last fragment */
480 #if IP_REASS_CHECK_OVERLAP
481       LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= start);
482 #endif /* IP_REASS_CHECK_OVERLAP */
483       iprh_prev->next_pbuf = p;
484       if (iprh_prev->end != start) {
485         valid = 0;
486       }
487     } else {
488 #if IP_REASS_CHECK_OVERLAP
489       LWIP_ASSERT("no previous fragment, this must be the first fragment!",
490         ipr->p == NULL);
491 #endif /* IP_REASS_CHECK_OVERLAP */
492       /* this is the first fragment we ever received for this ip datagram */
493       ipr->p = p;
494     }
495   }
496 
497   /* Track the current number of pbufs current 'in-flight', in order to limit
498   the number of fragments that may be enqueued at any one time */
499   ip6_reass_pbufcount += clen;
500 
501   /* Remember IPv6 header if this is the first fragment. */
502   if (start == 0) {
503     /* need to use the none-const pointer here: */
504     ipr->iphdr = ip_data.current_ip6_header;
505     /* Make a backup of the part of the packet data that we are about to
506      * overwrite, so that we can restore the original later. */
507     MEMCPY(ipr->orig_hdr, p->payload, sizeof(*iprh));
508     /* For IPV6_FRAG_COPYHEADER there is no need to copy src/dst again, as they
509      * will be the same as they were. With LWIP_IPV6_SCOPES, the same applies
510      * to the source/destination zones. */
511   }
512   /* Only after the backup do we get to fill in the actual helper structure. */
513   iprh->next_pbuf = next_pbuf;
514   iprh->start = start;
515   iprh->end = end;
516 
517   /* If this is the last fragment, calculate total packet length. */
518   if ((offset & IP6_FRAG_MORE_FLAG) == 0) {
519     ipr->datagram_len = iprh->end;
520   }
521 
522   /* Additional validity tests: we have received first and last fragment. */
523   iprh_tmp = (struct ip6_reass_helper*)ipr->p->payload;
524   if (iprh_tmp->start != 0) {
525     valid = 0;
526   }
527   if (ipr->datagram_len == 0) {
528     valid = 0;
529   }
530 
531   /* Final validity test: no gaps between current and last fragment. */
532   iprh_prev = iprh;
533   q = iprh->next_pbuf;
534   while ((q != NULL) && valid) {
535     iprh = (struct ip6_reass_helper*)q->payload;
536     if (iprh_prev->end != iprh->start) {
537       valid = 0;
538       break;
539     }
540     iprh_prev = iprh;
541     q = iprh->next_pbuf;
542   }
543 
544   if (valid) {
545     /* All fragments have been received */
546     struct ip6_hdr* iphdr_ptr;
547 
548     /* chain together the pbufs contained within the ip6_reassdata list. */
549     iprh = (struct ip6_reass_helper*) ipr->p->payload;
550     while (iprh != NULL) {
551       next_pbuf = iprh->next_pbuf;
552       if (next_pbuf != NULL) {
553         /* Save next helper struct (will be hidden in next step). */
554         iprh_tmp = (struct ip6_reass_helper*)next_pbuf->payload;
555 
556         /* hide the fragment header for every succeeding fragment */
557         pbuf_header(next_pbuf, -IP6_FRAG_HLEN);
558 #if IPV6_FRAG_COPYHEADER
559         if (IPV6_FRAG_REQROOM > 0) {
560           /* hide the extra bytes borrowed from ip6_hdr for struct ip6_reass_helper */
561           u8_t hdrerr = pbuf_header(next_pbuf, -(s16_t)(IPV6_FRAG_REQROOM));
562           LWIP_UNUSED_ARG(hdrerr); /* in case of LWIP_NOASSERT */
563           LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0);
564         }
565 #endif
566         pbuf_cat(ipr->p, next_pbuf);
567       }
568       else {
569         iprh_tmp = NULL;
570       }
571 
572       iprh = iprh_tmp;
573     }
574 
575     /* Get the first pbuf. */
576     p = ipr->p;
577 
578 #if IPV6_FRAG_COPYHEADER
579     if (IPV6_FRAG_REQROOM > 0) {
580       u8_t hdrerr;
581       /* Restore (only) the bytes that we overwrote beyond the fragment header.
582        * Those bytes may belong to either the IPv6 header or an extension
583        * header placed before the fragment header. */
584       MEMCPY(p->payload, ipr->orig_hdr, IPV6_FRAG_REQROOM);
585       /* get back room for struct ip6_reass_helper (only required if sizeof(void*) > 4) */
586       hdrerr = pbuf_header(p, -(s16_t)(IPV6_FRAG_REQROOM));
587       LWIP_UNUSED_ARG(hdrerr); /* in case of LWIP_NOASSERT */
588       LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0);
589     }
590 #endif
591 
592     /* We need to get rid of the fragment header itself, which is somewhere in
593      * the middle of the packet (but still in the first pbuf of the chain).
594      * Getting rid of the header is required by RFC 2460 Sec. 4.5 and necessary
595      * in order to be able to reassemble packets that are close to full size
596      * (i.e., around 65535 bytes). We simply move up all the headers before the
597      * fragment header, including the IPv6 header, and adjust the payload start
598      * accordingly. This works because all these headers are in the first pbuf
599      * of the chain, and because the caller adjusts all its pointers on
600      * successful reassembly. */
601     MEMMOVE((u8_t*)ipr->iphdr + sizeof(struct ip6_frag_hdr), ipr->iphdr,
602       (u8_t*)p->payload - (u8_t*)ipr->iphdr);
603 
604     /* This is where the IPv6 header is now. */
605     iphdr_ptr = (struct ip6_hdr*)((u8_t*)ipr->iphdr +
606       sizeof(struct ip6_frag_hdr));
607 
608     /* Adjust datagram length by adding header lengths. */
609     ipr->datagram_len += (u16_t)(((u8_t*)p->payload - (u8_t*)iphdr_ptr)
610                          - IP6_HLEN);
611 
612     /* Set payload length in ip header. */
613     iphdr_ptr->_plen = lwip_htons(ipr->datagram_len);
614 
615     /* With the fragment header gone, we now need to adjust the next-header
616      * field of whatever header was originally before it. Since the packet made
617      * it through the original header processing routines at least up to the
618      * fragment header, we do not need any further sanity checks here. */
619     if (IP6H_NEXTH(iphdr_ptr) == IP6_NEXTH_FRAGMENT) {
620       iphdr_ptr->_nexth = ipr->nexth;
621     } else {
622       u8_t *ptr = (u8_t *)iphdr_ptr + IP6_HLEN;
623       while (*ptr != IP6_NEXTH_FRAGMENT) {
624         ptr += 8 * (1 + ptr[1]);
625       }
626       *ptr = ipr->nexth;
627     }
628 
629     /* release the resources allocated for the fragment queue entry */
630     if (reassdatagrams == ipr) {
631       /* it was the first in the list */
632       reassdatagrams = ipr->next;
633     } else {
634       /* it wasn't the first, so it must have a valid 'prev' */
635       LWIP_ASSERT("sanity check linked list", ipr_prev != NULL);
636       ipr_prev->next = ipr->next;
637     }
638     memp_free(MEMP_IP6_REASSDATA, ipr);
639 
640     /* adjust the number of pbufs currently queued for reassembly. */
641     ip6_reass_pbufcount -= pbuf_clen(p);
642 
643     /* Move pbuf back to IPv6 header. This should never fail. */
644     if (pbuf_header_force(p, (s16_t)((u8_t*)p->payload - (u8_t*)iphdr_ptr))) {
645       LWIP_ASSERT("ip6_reass: moving p->payload to ip6 header failed\n", 0);
646       pbuf_free(p);
647       return NULL;
648     }
649 
650     /* Return the pbuf chain */
651     return p;
652   }
653   /* the datagram is not (yet?) reassembled completely */
654   return NULL;
655 
656 nullreturn:
657   pbuf_free(p);
658   return NULL;
659 }
660 
661 #endif /* LWIP_IPV6 && LWIP_IPV6_REASS */
662 
663 #if LWIP_IPV6 && LWIP_IPV6_FRAG
664 
665 #if !LWIP_NETIF_TX_SINGLE_PBUF
666 /** Allocate a new struct pbuf_custom_ref */
667 static struct pbuf_custom_ref*
668 ip6_frag_alloc_pbuf_custom_ref(void)
669 {
670   return (struct pbuf_custom_ref*)memp_malloc(MEMP_FRAG_PBUF);
671 }
672 
673 /** Free a struct pbuf_custom_ref */
674 static void
675 ip6_frag_free_pbuf_custom_ref(struct pbuf_custom_ref* p)
676 {
677   LWIP_ASSERT("p != NULL", p != NULL);
678   memp_free(MEMP_FRAG_PBUF, p);
679 }
680 
681 /** Free-callback function to free a 'struct pbuf_custom_ref', called by
682  * pbuf_free. */
683 static void
684 ip6_frag_free_pbuf_custom(struct pbuf *p)
685 {
686   struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref*)p;
687   LWIP_ASSERT("pcr != NULL", pcr != NULL);
688   LWIP_ASSERT("pcr == p", (void*)pcr == (void*)p);
689   if (pcr->original != NULL) {
690     pbuf_free(pcr->original);
691   }
692   ip6_frag_free_pbuf_custom_ref(pcr);
693 }
694 #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */
695 
696 /**
697  * Fragment an IPv6 datagram if too large for the netif or path MTU.
698  *
699  * Chop the datagram in MTU sized chunks and send them in order
700  * by pointing PBUF_REFs into p
701  *
702  * @param p ipv6 packet to send
703  * @param netif the netif on which to send
704  * @param dest destination ipv6 address to which to send
705  *
706  * @return ERR_OK if sent successfully, err_t otherwise
707  */
708 err_t
709 ip6_frag(struct pbuf *p, struct netif *netif, const ip6_addr_t *dest)
710 {
711   struct ip6_hdr *original_ip6hdr;
712   struct ip6_hdr *ip6hdr;
713   struct ip6_frag_hdr *frag_hdr;
714   struct pbuf *rambuf;
715 #if !LWIP_NETIF_TX_SINGLE_PBUF
716   struct pbuf *newpbuf;
717   u16_t newpbuflen = 0;
718   u16_t left_to_copy;
719 #endif
720   static u32_t identification;
721   u16_t nfb;
722   u16_t left, cop;
723   u16_t mtu;
724   u16_t fragment_offset = 0;
725   u16_t last;
726   u16_t poff = IP6_HLEN;
727 
728   identification++;
729 
730   original_ip6hdr = (struct ip6_hdr *)p->payload;
731 
732   mtu = nd6_get_destination_mtu(dest, netif);
733 
734   /* @todo we assume there are no options in the unfragmentable part (IPv6 header). */
735   left = p->tot_len - IP6_HLEN;
736 
737   nfb = (mtu - (IP6_HLEN + IP6_FRAG_HLEN)) & IP6_FRAG_OFFSET_MASK;
738 
739   while (left) {
740     last = (left <= nfb);
741 
742     /* Fill this fragment */
743     cop = last ? left : nfb;
744 
745 #if LWIP_NETIF_TX_SINGLE_PBUF
746     rambuf = pbuf_alloc(PBUF_IP, cop + IP6_FRAG_HLEN, PBUF_RAM);
747     if (rambuf == NULL) {
748       IP6_FRAG_STATS_INC(ip6_frag.memerr);
749       return ERR_MEM;
750     }
751     LWIP_ASSERT("this needs a pbuf in one piece!",
752       (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL));
753     poff += pbuf_copy_partial(p, (u8_t*)rambuf->payload + IP6_FRAG_HLEN, cop, poff);
754     /* make room for the IP header */
755     if (pbuf_header(rambuf, IP6_HLEN)) {
756       pbuf_free(rambuf);
757       IP6_FRAG_STATS_INC(ip6_frag.memerr);
758       return ERR_MEM;
759     }
760     /* fill in the IP header */
761     SMEMCPY(rambuf->payload, original_ip6hdr, IP6_HLEN);
762     ip6hdr = (struct ip6_hdr *)rambuf->payload;
763     frag_hdr = (struct ip6_frag_hdr *)((u8_t*)rambuf->payload + IP6_HLEN);
764 #else
765     /* When not using a static buffer, create a chain of pbufs.
766      * The first will be a PBUF_RAM holding the link, IPv6, and Fragment header.
767      * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
768      * but limited to the size of an mtu.
769      */
770     rambuf = pbuf_alloc(PBUF_LINK, IP6_HLEN + IP6_FRAG_HLEN, PBUF_RAM);
771     if (rambuf == NULL) {
772       IP6_FRAG_STATS_INC(ip6_frag.memerr);
773       return ERR_MEM;
774     }
775     LWIP_ASSERT("this needs a pbuf in one piece!",
776                 (p->len >= (IP6_HLEN)));
777     SMEMCPY(rambuf->payload, original_ip6hdr, IP6_HLEN);
778     ip6hdr = (struct ip6_hdr *)rambuf->payload;
779     frag_hdr = (struct ip6_frag_hdr *)((u8_t*)rambuf->payload + IP6_HLEN);
780 
781     /* Can just adjust p directly for needed offset. */
782     p->payload = (u8_t *)p->payload + poff;
783     p->len -= poff;
784     p->tot_len -= poff;
785 
786     left_to_copy = cop;
787     while (left_to_copy) {
788       struct pbuf_custom_ref *pcr;
789       newpbuflen = (left_to_copy < p->len) ? left_to_copy : p->len;
790       /* Is this pbuf already empty? */
791       if (!newpbuflen) {
792         p = p->next;
793         continue;
794       }
795       pcr = ip6_frag_alloc_pbuf_custom_ref();
796       if (pcr == NULL) {
797         pbuf_free(rambuf);
798         IP6_FRAG_STATS_INC(ip6_frag.memerr);
799         return ERR_MEM;
800       }
801       /* Mirror this pbuf, although we might not need all of it. */
802       newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc, p->payload, newpbuflen);
803       if (newpbuf == NULL) {
804         ip6_frag_free_pbuf_custom_ref(pcr);
805         pbuf_free(rambuf);
806         IP6_FRAG_STATS_INC(ip6_frag.memerr);
807         return ERR_MEM;
808       }
809       pbuf_ref(p);
810       pcr->original = p;
811       pcr->pc.custom_free_function = ip6_frag_free_pbuf_custom;
812 
813       /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
814        * so that it is removed when pbuf_dechain is later called on rambuf.
815        */
816       pbuf_cat(rambuf, newpbuf);
817       left_to_copy -= newpbuflen;
818       if (left_to_copy) {
819         p = p->next;
820       }
821     }
822     poff = newpbuflen;
823 #endif /* LWIP_NETIF_TX_SINGLE_PBUF */
824 
825     /* Set headers */
826     frag_hdr->_nexth = original_ip6hdr->_nexth;
827     frag_hdr->reserved = 0;
828     frag_hdr->_fragment_offset = lwip_htons((fragment_offset & IP6_FRAG_OFFSET_MASK) | (last ? 0 : IP6_FRAG_MORE_FLAG));
829     frag_hdr->_identification = lwip_htonl(identification);
830 
831     IP6H_NEXTH_SET(ip6hdr, IP6_NEXTH_FRAGMENT);
832     IP6H_PLEN_SET(ip6hdr, cop + IP6_FRAG_HLEN);
833 
834     /* No need for separate header pbuf - we allowed room for it in rambuf
835      * when allocated.
836      */
837     IP6_FRAG_STATS_INC(ip6_frag.xmit);
838     netif->output_ip6(netif, rambuf, dest);
839 
840     /* Unfortunately we can't reuse rambuf - the hardware may still be
841      * using the buffer. Instead we free it (and the ensuing chain) and
842      * recreate it next time round the loop. If we're lucky the hardware
843      * will have already sent the packet, the free will really free, and
844      * there will be zero memory penalty.
845      */
846 
847     pbuf_free(rambuf);
848     left -= cop;
849     fragment_offset += cop;
850   }
851   return ERR_OK;
852 }
853 
854 #endif /* LWIP_IPV6 && LWIP_IPV6_FRAG */
855