xref: /minix/minix/lib/libminixfs/cache.c (revision 045e0ed3)
1 
2 #define _SYSTEM
3 
4 #include <assert.h>
5 #include <string.h>
6 #include <errno.h>
7 #include <math.h>
8 #include <stdlib.h>
9 
10 #include <machine/vmparam.h>
11 
12 #include <sys/param.h>
13 #include <sys/mman.h>
14 
15 #include <minix/dmap.h>
16 #include <minix/libminixfs.h>
17 #include <minix/syslib.h>
18 #include <minix/sysutil.h>
19 #include <minix/u64.h>
20 #include <minix/bdev.h>
21 #include <minix/bitmap.h>
22 
23 #include "inc.h"
24 
25 /* Buffer (block) cache.  To acquire a block, a routine calls lmfs_get_block(),
26  * telling which block it wants.  The block is then regarded as "in use" and
27  * has its reference count incremented.  All the blocks that are not in use are
28  * chained together in an LRU list, with 'front' pointing to the least recently
29  * used block, and 'rear' to the most recently used block.  A reverse chain is
30  * also maintained.  Usage for LRU is measured by the time the put_block() is
31  * done.  The second parameter to put_block() can violate the LRU order and put
32  * a block on the front of the list, if it will probably not be needed again.
33  * This is used internally only; the lmfs_put_block() API call has no second
34  * parameter.  If a block is modified, the modifying routine must mark the
35  * block as dirty, so the block will eventually be rewritten to the disk.
36  */
37 
38 /* Flags to put_block(). */
39 #define ONE_SHOT      0x1	/* set if block will not be needed again */
40 
41 #define BUFHASH(b) ((unsigned int)((b) % nr_bufs))
42 #define MARKCLEAN  lmfs_markclean
43 
44 #define MINBUFS 6 	/* minimal no of bufs for sanity check */
45 
46 static struct buf *front;       /* points to least recently used free block */
47 static struct buf *rear;        /* points to most recently used free block */
48 static unsigned int bufs_in_use;/* # bufs currently in use (not on free list)*/
49 
50 static void rm_lru(struct buf *bp);
51 static int read_block(struct buf *bp, size_t size);
52 static void freeblock(struct buf *bp);
53 static void cache_heuristic_check(void);
54 static void put_block(struct buf *bp, int put_flags);
55 
56 static int vmcache = 0; /* are we using vm's secondary cache? (initially not) */
57 
58 static struct buf *buf;
59 static struct buf **buf_hash;   /* the buffer hash table */
60 static unsigned int nr_bufs;
61 static int may_use_vmcache;
62 
63 static size_t fs_block_size = PAGE_SIZE;	/* raw i/o block size */
64 
65 static fsblkcnt_t fs_btotal = 0, fs_bused = 0;
66 
67 static int quiet = 0;
68 
69 typedef struct buf *noxfer_buf_ptr_t; /* annotation for temporary buf ptrs */
70 
71 void lmfs_setquiet(int q) { quiet = q; }
72 
73 static int fs_bufs_heuristic(int minbufs, fsblkcnt_t btotal,
74 	fsblkcnt_t bused, int blocksize)
75 {
76   struct vm_stats_info vsi;
77   int bufs;
78   u32_t kbytes_used_fs, kbytes_total_fs, kbcache, kb_fsmax;
79   u32_t kbytes_remain_mem;
80 
81   /* set a reasonable cache size; cache at most a certain
82    * portion of the used FS, and at most a certain %age of remaining
83    * memory
84    */
85   if(vm_info_stats(&vsi) != OK) {
86 	bufs = 1024;
87 	if(!quiet)
88 	  printf("fslib: heuristic info fail: default to %d bufs\n", bufs);
89 	return bufs;
90   }
91 
92   /* remaining free memory is unused memory plus memory in used for cache,
93    * as the cache can be evicted
94    */
95   kbytes_remain_mem = (u64_t)(vsi.vsi_free + vsi.vsi_cached) *
96 	vsi.vsi_pagesize / 1024;
97 
98   /* check fs usage. */
99   kbytes_used_fs  = (unsigned long)(((u64_t)bused * blocksize) / 1024);
100   kbytes_total_fs = (unsigned long)(((u64_t)btotal * blocksize) / 1024);
101 
102   /* heuristic for a desired cache size based on FS usage;
103    * but never bigger than half of the total filesystem
104    */
105   kb_fsmax = sqrt_approx(kbytes_used_fs)*40;
106   kb_fsmax = MIN(kb_fsmax, kbytes_total_fs/2);
107 
108   /* heuristic for a maximum usage - 10% of remaining memory */
109   kbcache = MIN(kbytes_remain_mem/10, kb_fsmax);
110   bufs = kbcache * 1024 / blocksize;
111 
112   /* but we simply need MINBUFS no matter what */
113   if(bufs < minbufs)
114 	bufs = minbufs;
115 
116   return bufs;
117 }
118 
119 void lmfs_change_blockusage(int delta)
120 {
121         /* Change the number of allocated blocks by 'delta.'
122          * Also accumulate the delta since the last cache re-evaluation.
123          * If it is outside a certain band, ask the cache library to
124          * re-evaluate the cache size.
125          */
126         static int bitdelta = 0, warn_low = TRUE, warn_high = TRUE;
127 
128 	/* Adjust the file system block usage counter accordingly. Do bounds
129 	 * checking, and report file system misbehavior.
130 	 */
131 	if (delta > 0 && (fsblkcnt_t)delta > fs_btotal - fs_bused) {
132 		if (warn_high) {
133 			printf("libminixfs: block usage overflow\n");
134 			warn_high = FALSE;
135 		}
136 		delta = (int)(fs_btotal - fs_bused);
137 	} else if (delta < 0 && (fsblkcnt_t)-delta > fs_bused) {
138 		if (warn_low) {
139 			printf("libminixfs: block usage underflow\n");
140 			warn_low = FALSE;
141 		}
142 		delta = -(int)fs_bused;
143 	}
144 	fs_bused += delta;
145 
146 	bitdelta += delta;
147 
148 #define BAND_KB (10*1024)	/* recheck cache every 10MB change */
149 
150 	/* If the accumulated delta exceeds the configured threshold, resize
151 	 * the cache, but only if the cache isn't in use any more. In order to
152 	 * avoid that the latter case blocks a resize forever, we also call
153 	 * this function from lmfs_flushall(). Since lmfs_buf_pool() may call
154 	 * lmfs_flushall(), reset 'bitdelta' before doing the heuristics check.
155 	 */
156 	if (bufs_in_use == 0 &&
157 	    (bitdelta*(int)fs_block_size/1024 > BAND_KB ||
158 	    bitdelta*(int)fs_block_size/1024 < -BAND_KB)) {
159 		bitdelta = 0;
160 		cache_heuristic_check();
161 	}
162 }
163 
164 void lmfs_markdirty(struct buf *bp)
165 {
166 	bp->lmfs_flags |= VMMC_DIRTY;
167 }
168 
169 void lmfs_markclean(struct buf *bp)
170 {
171 	bp->lmfs_flags &= ~VMMC_DIRTY;
172 }
173 
174 int lmfs_isclean(struct buf *bp)
175 {
176 	return !(bp->lmfs_flags & VMMC_DIRTY);
177 }
178 
179 static void free_unused_blocks(void)
180 {
181 	struct buf *bp;
182 
183 	int freed = 0, bytes = 0;
184 	printf("libminixfs: freeing; %d blocks in use\n", bufs_in_use);
185 	for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
186   		if(bp->lmfs_bytes > 0 && bp->lmfs_count == 0) {
187 			freed++;
188 			bytes += bp->lmfs_bytes;
189 			freeblock(bp);
190 		}
191 	}
192 	printf("libminixfs: freeing; %d blocks, %d bytes\n", freed, bytes);
193 }
194 
195 static void lmfs_alloc_block(struct buf *bp, size_t block_size)
196 {
197   ASSERT(!bp->data);
198   ASSERT(bp->lmfs_bytes == 0);
199 
200   if((bp->data = mmap(0, block_size, PROT_READ|PROT_WRITE,
201       MAP_PREALLOC|MAP_ANON, -1, 0)) == MAP_FAILED) {
202 	free_unused_blocks();
203 	if((bp->data = mmap(0, block_size, PROT_READ|PROT_WRITE,
204 		MAP_PREALLOC|MAP_ANON, -1, 0)) == MAP_FAILED) {
205 		panic("libminixfs: could not allocate block");
206 	}
207   }
208   assert(bp->data);
209   bp->lmfs_bytes = block_size;
210   bp->lmfs_needsetcache = 1;
211 }
212 
213 /*===========================================================================*
214  *				lmfs_get_block				     *
215  *===========================================================================*/
216 int lmfs_get_block(struct buf **bpp, dev_t dev, block64_t block, int how)
217 {
218 	return lmfs_get_block_ino(bpp, dev, block, how, VMC_NO_INODE, 0);
219 }
220 
221 static void munmap_t(void *a, int len)
222 {
223 	assert(a);
224 	assert(a != MAP_FAILED);
225 	assert(!((vir_bytes)a % PAGE_SIZE));
226 	assert(len > 0);
227 
228 	len = roundup(len, PAGE_SIZE);
229 
230 	assert(!(len % PAGE_SIZE));
231 
232 	if(munmap(a, len) < 0)
233 		panic("libminixfs cache: munmap failed");
234 }
235 
236 static void raisecount(struct buf *bp)
237 {
238   ASSERT(bp->lmfs_count < CHAR_MAX);
239   bp->lmfs_count++;
240   if(bp->lmfs_count == 1) bufs_in_use++;
241   assert(bufs_in_use > 0);
242 }
243 
244 static void lowercount(struct buf *bp)
245 {
246   assert(bufs_in_use > 0);
247   ASSERT(bp->lmfs_count > 0);
248   bp->lmfs_count--;
249   if(bp->lmfs_count == 0) bufs_in_use--;
250 }
251 
252 static void freeblock(struct buf *bp)
253 {
254   ASSERT(bp->lmfs_count == 0);
255   /* If the block taken is dirty, make it clean by writing it to the disk.
256    * Avoid hysteresis by flushing all other dirty blocks for the same device.
257    */
258   if (bp->lmfs_dev != NO_DEV) {
259 	if (!lmfs_isclean(bp)) lmfs_flushdev(bp->lmfs_dev);
260 	assert(bp->lmfs_bytes > 0);
261 	bp->lmfs_dev = NO_DEV;
262   }
263 
264   /* Fill in block's parameters and add it to the hash chain where it goes. */
265   MARKCLEAN(bp);		/* NO_DEV blocks may be marked dirty */
266   if(bp->lmfs_bytes > 0) {
267 	assert(bp->data);
268 	munmap_t(bp->data, bp->lmfs_bytes);
269 	bp->lmfs_bytes = 0;
270 	bp->data = NULL;
271   } else assert(!bp->data);
272 }
273 
274 /*===========================================================================*
275  *				find_block				     *
276  *===========================================================================*/
277 static struct buf *find_block(dev_t dev, block64_t block)
278 {
279 /* Search the hash chain for (dev, block). Return the buffer structure if
280  * found, or NULL otherwise.
281  */
282   struct buf *bp;
283   int b;
284 
285   assert(dev != NO_DEV);
286 
287   b = BUFHASH(block);
288   for (bp = buf_hash[b]; bp != NULL; bp = bp->lmfs_hash)
289 	if (bp->lmfs_blocknr == block && bp->lmfs_dev == dev)
290 		return bp;
291 
292   return NULL;
293 }
294 
295 /*===========================================================================*
296  *				get_block_ino				     *
297  *===========================================================================*/
298 static int get_block_ino(struct buf **bpp, dev_t dev, block64_t block, int how,
299 	ino_t ino, u64_t ino_off, size_t block_size)
300 {
301 /* Check to see if the requested block is in the block cache.  The requested
302  * block is identified by the block number in 'block' on device 'dev', counted
303  * in the file system block size.  The amount of data requested for this block
304  * is given in 'block_size', which may be less than the file system block size
305  * iff the requested block is the last (partial) block on a device.  Note that
306  * the given block size does *not* affect the conversion of 'block' to a byte
307  * offset!  Either way, if the block could be obtained, either from the cache
308  * or by reading from the device, return OK, with a pointer to the buffer
309  * structure stored in 'bpp'.  If not, return a negative error code (and no
310  * buffer).  If necessary, evict some other block and fetch the contents from
311  * disk (if 'how' is NORMAL).  If 'how' is NO_READ, the caller intends to
312  * overwrite the requested block in its entirety, so it is only necessary to
313  * see if it is in the cache; if it is not, any free buffer will do.  If 'how'
314  * is PEEK, the function returns the block if it is in the cache or the VM
315  * cache, and an ENOENT error code otherwise.
316  * In addition to the LRU chain, there is also a hash chain to link together
317  * blocks whose block numbers end with the same bit strings, for fast lookup.
318  */
319   int b, r;
320   static struct buf *bp;
321   uint64_t dev_off;
322   struct buf *prev_ptr;
323 
324   assert(buf_hash);
325   assert(buf);
326   assert(nr_bufs > 0);
327 
328   ASSERT(fs_block_size > 0);
329 
330   assert(dev != NO_DEV);
331 
332   assert(block <= UINT64_MAX / fs_block_size);
333 
334   dev_off = block * fs_block_size;
335 
336   if((ino_off % fs_block_size)) {
337 
338 	printf("cache: unaligned lmfs_get_block_ino ino_off %llu\n",
339 		ino_off);
340   	util_stacktrace();
341   }
342 
343   /* See if the block is in the cache. If so, we can return it right away. */
344   bp = find_block(dev, block);
345   if (bp != NULL && !(bp->lmfs_flags & VMMC_EVICTED)) {
346 	ASSERT(bp->lmfs_dev == dev);
347 	ASSERT(bp->lmfs_dev != NO_DEV);
348 
349 	/* The block must have exactly the requested number of bytes. */
350 	if (bp->lmfs_bytes != block_size)
351 		return EIO;
352 
353 	/* Block needed has been found. */
354 	if (bp->lmfs_count == 0) {
355 		rm_lru(bp);
356 		ASSERT(bp->lmfs_needsetcache == 0);
357 		ASSERT(!(bp->lmfs_flags & VMMC_BLOCK_LOCKED));
358 		/* FIXME: race condition against the VMMC_EVICTED check */
359 		bp->lmfs_flags |= VMMC_BLOCK_LOCKED;
360 	}
361 	raisecount(bp);
362 	ASSERT(bp->lmfs_flags & VMMC_BLOCK_LOCKED);
363 	ASSERT(bp->data);
364 
365 	if(ino != VMC_NO_INODE) {
366 		if(bp->lmfs_inode == VMC_NO_INODE
367 		|| bp->lmfs_inode != ino
368 		|| bp->lmfs_inode_offset != ino_off) {
369 			bp->lmfs_inode = ino;
370 			bp->lmfs_inode_offset = ino_off;
371 			bp->lmfs_needsetcache = 1;
372 		}
373 	}
374 
375 	*bpp = bp;
376 	return OK;
377   }
378 
379   /* We had the block in the cache but VM evicted it; invalidate it. */
380   if (bp != NULL) {
381 	assert(bp->lmfs_flags & VMMC_EVICTED);
382 	ASSERT(bp->lmfs_count == 0);
383 	ASSERT(!(bp->lmfs_flags & VMMC_BLOCK_LOCKED));
384 	ASSERT(!(bp->lmfs_flags & VMMC_DIRTY));
385 	bp->lmfs_dev = NO_DEV;
386 	bp->lmfs_bytes = 0;
387 	bp->data = NULL;
388   }
389 
390   /* Desired block is not on available chain. Find a free block to use. */
391   if(bp) {
392   	ASSERT(bp->lmfs_flags & VMMC_EVICTED);
393   } else {
394 	if ((bp = front) == NULL) panic("all buffers in use: %d", nr_bufs);
395   }
396   assert(bp);
397 
398   rm_lru(bp);
399 
400   /* Remove the block that was just taken from its hash chain. */
401   b = BUFHASH(bp->lmfs_blocknr);
402   prev_ptr = buf_hash[b];
403   if (prev_ptr == bp) {
404 	buf_hash[b] = bp->lmfs_hash;
405   } else {
406 	/* The block just taken is not on the front of its hash chain. */
407 	while (prev_ptr->lmfs_hash != NULL)
408 		if (prev_ptr->lmfs_hash == bp) {
409 			prev_ptr->lmfs_hash = bp->lmfs_hash;	/* found it */
410 			break;
411 		} else {
412 			prev_ptr = prev_ptr->lmfs_hash;	/* keep looking */
413 		}
414   }
415 
416   freeblock(bp);
417 
418   bp->lmfs_inode = ino;
419   bp->lmfs_inode_offset = ino_off;
420 
421   bp->lmfs_flags = VMMC_BLOCK_LOCKED;
422   bp->lmfs_needsetcache = 0;
423   bp->lmfs_dev = dev;		/* fill in device number */
424   bp->lmfs_blocknr = block;	/* fill in block number */
425   ASSERT(bp->lmfs_count == 0);
426   raisecount(bp);
427   b = BUFHASH(bp->lmfs_blocknr);
428   bp->lmfs_hash = buf_hash[b];
429 
430   buf_hash[b] = bp;		/* add to hash list */
431 
432   assert(dev != NO_DEV);
433 
434   /* The block is not found in our cache, but we do want it if it's in the VM
435    * cache. The exception is NO_READ, purely for context switching performance
436    * reasons. NO_READ is used for 1) newly allocated blocks, 2) blocks being
437    * prefetched, and 3) blocks about to be fully overwritten. In the first two
438    * cases, VM will not have the block in its cache anyway, and for the third
439    * we save on one VM call only if the block is in the VM cache.
440    */
441   assert(!bp->data);
442   assert(!bp->lmfs_bytes);
443   if (how != NO_READ && vmcache) {
444 	if((bp->data = vm_map_cacheblock(dev, dev_off, ino, ino_off,
445 	    &bp->lmfs_flags, roundup(block_size, PAGE_SIZE))) != MAP_FAILED) {
446 		bp->lmfs_bytes = block_size;
447 		ASSERT(!bp->lmfs_needsetcache);
448 		*bpp = bp;
449 		return OK;
450 	}
451   }
452   bp->data = NULL;
453 
454   /* The block is not in the cache, and VM does not know about it. If we were
455    * requested to search for the block only, we can now return failure to the
456    * caller. Return the block to the pool without allocating data pages, since
457    * these would be freed upon recycling the block anyway.
458    */
459   if (how == PEEK) {
460 	bp->lmfs_dev = NO_DEV;
461 
462 	put_block(bp, ONE_SHOT);
463 
464 	return ENOENT;
465   }
466 
467   /* Not in the cache; reserve memory for its contents. */
468 
469   lmfs_alloc_block(bp, block_size);
470 
471   assert(bp->data);
472 
473   if (how == NORMAL) {
474 	/* Try to read the block. Return an error code on failure. */
475 	if ((r = read_block(bp, block_size)) != OK) {
476 		put_block(bp, 0);
477 
478 		return r;
479 	}
480   } else if(how == NO_READ) {
481   	/* This block will be overwritten by new contents. */
482   } else
483 	panic("unexpected 'how' value: %d", how);
484 
485   assert(bp->data);
486 
487   *bpp = bp;			/* return the newly acquired block */
488   return OK;
489 }
490 
491 /*===========================================================================*
492  *				lmfs_get_block_ino			     *
493  *===========================================================================*/
494 int lmfs_get_block_ino(struct buf **bpp, dev_t dev, block64_t block, int how,
495 	ino_t ino, u64_t ino_off)
496 {
497   return get_block_ino(bpp, dev, block, how, ino, ino_off, fs_block_size);
498 }
499 
500 /*===========================================================================*
501  *				lmfs_get_partial_block			     *
502  *===========================================================================*/
503 int lmfs_get_partial_block(struct buf **bpp, dev_t dev, block64_t block,
504 	int how, size_t block_size)
505 {
506   return get_block_ino(bpp, dev, block, how, VMC_NO_INODE, 0, block_size);
507 }
508 
509 /*===========================================================================*
510  *				put_block				     *
511  *===========================================================================*/
512 static void put_block(struct buf *bp, int put_flags)
513 {
514 /* Return a block to the list of available blocks.   Depending on 'put_flags'
515  * it may be put on the front or rear of the LRU chain.  Blocks that are
516  * expected to be needed again at some point go on the rear; blocks that are
517  * unlikely to be needed again at all go on the front.
518  */
519   dev_t dev;
520   uint64_t dev_off;
521   int r, setflags;
522 
523   assert(bp != NULL);
524 
525   dev = bp->lmfs_dev;
526 
527   dev_off = bp->lmfs_blocknr * fs_block_size;
528 
529   lowercount(bp);
530   if (bp->lmfs_count != 0) return;	/* block is still in use */
531 
532   /* Put this block back on the LRU chain.  */
533   if (dev == NO_DEV || dev == DEV_RAM || (put_flags & ONE_SHOT)) {
534 	/* Block will not be needed again. Put it on front of chain.
535   	 * It will be the next block to be evicted from the cache.
536   	 */
537 	bp->lmfs_prev = NULL;
538 	bp->lmfs_next = front;
539 	if (front == NULL)
540 		rear = bp;	/* LRU chain was empty */
541 	else
542 		front->lmfs_prev = bp;
543 	front = bp;
544   }
545   else {
546 	/* Block may be needed again.  Put it on rear of chain.
547   	 * It will not be evicted from the cache for a long time.
548   	 */
549 	bp->lmfs_prev = rear;
550 	bp->lmfs_next = NULL;
551 	if (rear == NULL)
552 		front = bp;
553 	else
554 		rear->lmfs_next = bp;
555 	rear = bp;
556   }
557 
558   assert(bp->lmfs_flags & VMMC_BLOCK_LOCKED);
559   bp->lmfs_flags &= ~VMMC_BLOCK_LOCKED;
560 
561   /* block has sensible content - if necessary, identify it to VM */
562   if(vmcache && bp->lmfs_needsetcache && dev != NO_DEV) {
563 	assert(bp->data);
564 
565 	setflags = (put_flags & ONE_SHOT) ? VMSF_ONCE : 0;
566 
567 	if ((r = vm_set_cacheblock(bp->data, dev, dev_off, bp->lmfs_inode,
568 	    bp->lmfs_inode_offset, &bp->lmfs_flags,
569 	    roundup(bp->lmfs_bytes, PAGE_SIZE), setflags)) != OK) {
570 		if(r == ENOSYS) {
571 			printf("libminixfs: ENOSYS, disabling VM calls\n");
572 			vmcache = 0;
573 		} else if (r == ENOMEM) {
574 			/* Do not panic in this case. Running out of memory is
575 			 * bad, especially since it may lead to applications
576 			 * crashing when trying to access memory-mapped pages
577 			 * we haven't been able to pass off to the VM cache,
578 			 * but the entire file system crashing is always worse.
579 			 */
580 			printf("libminixfs: no memory for cache block!\n");
581 		} else {
582 			panic("libminixfs: setblock of %p dev 0x%llx off "
583 				"0x%llx failed\n", bp->data, dev, dev_off);
584 		}
585 	}
586   }
587   bp->lmfs_needsetcache = 0;
588 
589   /* Now that we (may) have given the block to VM, invalidate the block if it
590    * is a one-shot block.  Otherwise, it may still be reobtained immediately
591    * after, which could be a problem if VM already forgot the block and we are
592    * expected to pass it to VM again, which then wouldn't happen.
593    */
594   if (put_flags & ONE_SHOT)
595 	bp->lmfs_dev = NO_DEV;
596 }
597 
598 /*===========================================================================*
599  *				lmfs_put_block				     *
600  *===========================================================================*/
601 void lmfs_put_block(struct buf *bp)
602 {
603 /* User interface to put_block(). */
604 
605   if (bp == NULL) return;	/* for poorly written file systems */
606 
607   put_block(bp, 0);
608 }
609 
610 /*===========================================================================*
611  *				lmfs_free_block				     *
612  *===========================================================================*/
613 void lmfs_free_block(dev_t dev, block64_t block)
614 {
615 /* The file system has just freed the given block. The block may previously
616  * have been in use as data block for an inode. Therefore, we now need to tell
617  * VM that the block is no longer associated with an inode. If we fail to do so
618  * and the inode now has a hole at this location, mapping in the hole would
619  * yield the old block contents rather than a zeroed page. In addition, if the
620  * block is in the cache, it will be removed, even if it was dirty.
621  */
622   struct buf *bp;
623   int r;
624 
625   /* Tell VM to forget about the block. The primary purpose of this call is to
626    * break the inode association, but since the block is part of a mounted file
627    * system, it is not expected to be accessed directly anyway. So, save some
628    * cache memory by throwing it out of the VM cache altogether.
629    */
630   if (vmcache) {
631 	if ((r = vm_forget_cacheblock(dev, block * fs_block_size,
632 	    fs_block_size)) != OK)
633 		printf("libminixfs: vm_forget_cacheblock failed (%d)\n", r);
634   }
635 
636   if ((bp = find_block(dev, block)) != NULL) {
637 	lmfs_markclean(bp);
638 
639 	/* Invalidate the block. The block may or may not be in use right now,
640 	 * so don't be smart about freeing memory or repositioning in the LRU.
641 	 */
642 	bp->lmfs_dev = NO_DEV;
643   }
644 
645   /* Note that this is *not* the right place to implement TRIM support. Even
646    * though the block is freed, on the device it may still be part of a
647    * previous checkpoint or snapshot of some sort. Only the file system can
648    * be trusted to decide which blocks can be reused on the device!
649    */
650 }
651 
652 /*===========================================================================*
653  *				lmfs_zero_block_ino			     *
654  *===========================================================================*/
655 void lmfs_zero_block_ino(dev_t dev, ino_t ino, u64_t ino_off)
656 {
657 /* Files may have holes. From an application perspective, these are just file
658  * regions filled with zeroes. From a file system perspective however, holes
659  * may represent unallocated regions on disk. Thus, these holes do not have
660  * corresponding blocks on the disk, and therefore also no block number.
661  * Therefore, we cannot simply use lmfs_get_block_ino() for them. For reads,
662  * this is not a problem, since the file system can just zero out the target
663  * application buffer instead. For mapped pages however, this *is* a problem,
664  * since the VM cache needs to be told about the corresponding block, and VM
665  * does not accept blocks without a device offset. The role of this function is
666  * therefore to tell VM about the hole using a fake device offset. The device
667  * offsets are picked so that the VM cache will see a block memory-mapped for
668  * the hole in the file, while the same block is not visible when
669  * memory-mapping the block device.
670  */
671   struct buf *bp;
672   static block64_t fake_block = 0;
673   int r;
674 
675   if (!vmcache)
676 	return;
677 
678   assert(fs_block_size > 0);
679 
680   /* Pick a block number which is above the threshold of what can possibly be
681    * mapped in by mmap'ing the device, since off_t is signed, and it is safe to
682    * say that it will take a while before we have 8-exabyte devices. Pick a
683    * different block number each time to avoid possible concurrency issues.
684    * FIXME: it does not seem like VM actually verifies mmap offsets though..
685    */
686   if (fake_block == 0 || ++fake_block >= UINT64_MAX / fs_block_size)
687 	fake_block = ((uint64_t)INT64_MAX + 1) / fs_block_size;
688 
689   /* Obtain a block. */
690   if ((r = lmfs_get_block_ino(&bp, dev, fake_block, NO_READ, ino,
691       ino_off)) != OK)
692 	panic("libminixfs: getting a NO_READ block failed: %d", r);
693   assert(bp != NULL);
694   assert(bp->lmfs_dev != NO_DEV);
695 
696   /* The block is already zeroed, as it has just been allocated with mmap. File
697    * systems do not rely on this assumption yet, so if VM ever gets changed to
698    * not clear the blocks we allocate (e.g., by recycling pages in the VM cache
699    * for the same process, which would be safe), we need to add a memset here.
700    */
701 
702   /* Release the block. We don't expect it to be accessed ever again. Moreover,
703    * if we keep the block around in the VM cache, it may erroneously be mapped
704    * in beyond the file end later. Hence, use VMSF_ONCE when passing it to VM.
705    * TODO: tell VM that it is an all-zeroes block, so that VM can deduplicate
706    * all such pages in its cache.
707    */
708   put_block(bp, ONE_SHOT);
709 }
710 
711 void lmfs_set_blockusage(fsblkcnt_t btotal, fsblkcnt_t bused)
712 {
713 
714   assert(bused <= btotal);
715   fs_btotal = btotal;
716   fs_bused = bused;
717 
718   /* if the cache isn't in use, we could resize it. */
719   if (bufs_in_use == 0)
720 	cache_heuristic_check();
721 }
722 
723 /*===========================================================================*
724  *				read_block				     *
725  *===========================================================================*/
726 static int read_block(struct buf *bp, size_t block_size)
727 {
728 /* Read a disk block of 'size' bytes.  The given size is always the FS block
729  * size, except for the last block of a device.  If an I/O error occurs,
730  * invalidate the block and return an error code.
731  */
732   ssize_t r;
733   off_t pos;
734   dev_t dev = bp->lmfs_dev;
735 
736   assert(dev != NO_DEV);
737 
738   ASSERT(bp->lmfs_bytes == block_size);
739   ASSERT(fs_block_size > 0);
740 
741   pos = (off_t)bp->lmfs_blocknr * fs_block_size;
742   if (block_size > PAGE_SIZE) {
743 #define MAXPAGES 20
744 	vir_bytes blockrem, vaddr = (vir_bytes) bp->data;
745 	int p = 0;
746   	static iovec_t iovec[MAXPAGES];
747 	blockrem = block_size;
748 	while(blockrem > 0) {
749 		vir_bytes chunk = blockrem >= PAGE_SIZE ? PAGE_SIZE : blockrem;
750 		iovec[p].iov_addr = vaddr;
751 		iovec[p].iov_size = chunk;
752 		vaddr += chunk;
753 		blockrem -= chunk;
754 		p++;
755 	}
756   	r = bdev_gather(dev, pos, iovec, p, BDEV_NOFLAGS);
757   } else {
758 	r = bdev_read(dev, pos, bp->data, block_size, BDEV_NOFLAGS);
759   }
760   if (r != (ssize_t)block_size) {
761 	/* Aesthetics: do not report EOF errors on superblock reads, because
762 	 * this is a fairly common occurrence, e.g. during system installation.
763 	 */
764 	if (bp->lmfs_blocknr != 0 /*first block*/ || r != 0 /*EOF*/)
765 		printf("fs cache: I/O error on device %d/%d, block %"PRIu64
766 		    " (%zd)\n", major(dev), minor(dev), bp->lmfs_blocknr, r);
767 
768 	if (r >= 0)
769 		r = EIO; /* TODO: retry retrieving (just) the remaining part */
770 
771 	bp->lmfs_dev = NO_DEV;	/* invalidate block */
772 
773 	return r;
774   }
775 
776   return OK;
777 }
778 
779 /*===========================================================================*
780  *				lmfs_invalidate				     *
781  *===========================================================================*/
782 void lmfs_invalidate(
783   dev_t device			/* device whose blocks are to be purged */
784 )
785 {
786 /* Remove all the blocks belonging to some device from the cache. */
787 
788   register struct buf *bp;
789 
790   assert(device != NO_DEV);
791 
792   for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
793 	if (bp->lmfs_dev == device) {
794 		assert(bp->data);
795 		assert(bp->lmfs_bytes > 0);
796 		munmap_t(bp->data, bp->lmfs_bytes);
797 		bp->lmfs_dev = NO_DEV;
798 		bp->lmfs_bytes = 0;
799 		bp->data = NULL;
800 	}
801   }
802 
803   /* Clear the cache even if VM caching is disabled for the file system:
804    * caching may be disabled as side effect of an error, leaving blocks behind
805    * in the actual VM cache.
806    */
807   vm_clear_cache(device);
808 }
809 
810 /*===========================================================================*
811  *				sort_blocks				     *
812  *===========================================================================*/
813 static void sort_blocks(struct buf **bufq, unsigned int bufqsize)
814 {
815   struct buf *bp;
816   int i, j, gap;
817 
818   gap = 1;
819   do
820 	gap = 3 * gap + 1;
821   while ((unsigned int)gap <= bufqsize);
822 
823   while (gap != 1) {
824 	gap /= 3;
825 	for (j = gap; (unsigned int)j < bufqsize; j++) {
826 		for (i = j - gap; i >= 0 &&
827 		    bufq[i]->lmfs_blocknr > bufq[i + gap]->lmfs_blocknr;
828 		    i -= gap) {
829 			bp = bufq[i];
830 			bufq[i] = bufq[i + gap];
831 			bufq[i + gap] = bp;
832 		}
833 	}
834   }
835 }
836 
837 /*===========================================================================*
838  *				rw_scattered				     *
839  *===========================================================================*/
840 static void rw_scattered(
841   dev_t dev,			/* major-minor device number */
842   struct buf **bufq,		/* pointer to array of buffers */
843   unsigned int bufqsize,	/* number of buffers */
844   int rw_flag			/* READING or WRITING */
845 )
846 {
847 /* Read or write scattered data from a device. */
848 
849   register struct buf *bp;
850   register iovec_t *iop;
851   static iovec_t iovec[NR_IOREQS];
852   off_t pos;
853   unsigned int i, iov_per_block;
854 #if !defined(NDEBUG)
855   unsigned int start_in_use = bufs_in_use, start_bufqsize = bufqsize;
856 #endif /* !defined(NDEBUG) */
857 
858   if(bufqsize == 0) return;
859 
860 #if !defined(NDEBUG)
861   /* for READING, check all buffers on the list are obtained and held
862    * (count > 0)
863    */
864   if (rw_flag == READING) {
865 	assert(bufqsize <= LMFS_MAX_PREFETCH);
866 
867 	for(i = 0; i < bufqsize; i++) {
868 		assert(bufq[i] != NULL);
869 		assert(bufq[i]->lmfs_count > 0);
870   	}
871 
872   	/* therefore they are all 'in use' and must be at least this many */
873 	assert(start_in_use >= start_bufqsize);
874   }
875 
876   assert(dev != NO_DEV);
877   assert(fs_block_size > 0);
878   assert(howmany(fs_block_size, PAGE_SIZE) <= NR_IOREQS);
879 #endif /* !defined(NDEBUG) */
880 
881   /* For WRITING, (Shell) sort buffers on lmfs_blocknr.
882    * For READING, the buffers are already sorted.
883    */
884   if (rw_flag == WRITING)
885 	sort_blocks(bufq, bufqsize);
886 
887   /* Set up I/O vector and do I/O.  The result of bdev I/O is OK if everything
888    * went fine, otherwise the error code for the first failed transfer.
889    */
890   while (bufqsize > 0) {
891 	unsigned int p, nblocks = 0, niovecs = 0;
892 	int r;
893 	for (iop = iovec; nblocks < bufqsize; nblocks++) {
894 		vir_bytes vdata, blockrem;
895 		bp = bufq[nblocks];
896 		if (bp->lmfs_blocknr != bufq[0]->lmfs_blocknr + nblocks)
897 			break;
898 		blockrem = bp->lmfs_bytes;
899 		iov_per_block = howmany(blockrem, PAGE_SIZE);
900 		if (niovecs > NR_IOREQS - iov_per_block) break;
901 		vdata = (vir_bytes) bp->data;
902 		for(p = 0; p < iov_per_block; p++) {
903 			vir_bytes chunk =
904 			    blockrem < PAGE_SIZE ? blockrem : PAGE_SIZE;
905 			iop->iov_addr = vdata;
906 			iop->iov_size = chunk;
907 			vdata += PAGE_SIZE;
908 			blockrem -= chunk;
909 			iop++;
910 			niovecs++;
911 		}
912 		assert(p == iov_per_block);
913 		assert(blockrem == 0);
914 	}
915 
916 	assert(nblocks > 0);
917 	assert(niovecs > 0 && niovecs <= NR_IOREQS);
918 
919 	pos = (off_t)bufq[0]->lmfs_blocknr * fs_block_size;
920 	if (rw_flag == READING)
921 		r = bdev_gather(dev, pos, iovec, niovecs, BDEV_NOFLAGS);
922 	else
923 		r = bdev_scatter(dev, pos, iovec, niovecs, BDEV_NOFLAGS);
924 
925 	/* Harvest the results.  The driver may have returned an error, or it
926 	 * may have done less than what we asked for.
927 	 */
928 	if (r < 0) {
929 		printf("fs cache: I/O error %d on device %d/%d, "
930 		    "block %"PRIu64"\n",
931 		    r, major(dev), minor(dev), bufq[0]->lmfs_blocknr);
932 	}
933 	for (i = 0; i < nblocks; i++) {
934 		bp = bufq[i];
935 		if (r < (ssize_t)bp->lmfs_bytes) {
936 			/* Transfer failed. */
937 			if (i == 0) {
938 				bp->lmfs_dev = NO_DEV;	/* Invalidate block */
939 			}
940 			break;
941 		}
942 		if (rw_flag == READING) {
943 			lmfs_put_block(bp);
944 		} else {
945 			MARKCLEAN(bp);
946 		}
947 		r -= bp->lmfs_bytes;
948 	}
949 
950 	bufq += i;
951 	bufqsize -= i;
952 
953 	if (rw_flag == READING) {
954 		/* Don't bother reading more than the device is willing to
955 		 * give at this time.  Don't forget to release those extras.
956 		 */
957 		while (bufqsize > 0) {
958 			bp = *bufq++;
959 			bp->lmfs_dev = NO_DEV;	/* invalidate block */
960 			lmfs_put_block(bp);
961 			bufqsize--;
962 		}
963 	}
964 	if (rw_flag == WRITING && i == 0) {
965 		/* We're not making progress, this means we might keep
966 		 * looping. Buffers remain dirty if un-written. Buffers are
967 		 * lost if invalidate()d or LRU-removed while dirty. This
968 		 * is better than keeping unwritable blocks around forever..
969 		 */
970 		break;
971 	}
972   }
973 
974 #if !defined(NDEBUG)
975   if(rw_flag == READING) {
976   	assert(start_in_use >= start_bufqsize);
977 
978 	/* READING callers assume all bufs are released. */
979 	assert(start_in_use - start_bufqsize == bufs_in_use);
980   }
981 #endif /* !defined(NDEBUG) */
982 }
983 
984 /*===========================================================================*
985  *				lmfs_readahead				     *
986  *===========================================================================*/
987 void lmfs_readahead(dev_t dev, block64_t base_block, unsigned int nblocks,
988 	size_t last_size)
989 {
990 /* Read ahead 'nblocks' blocks starting from the block 'base_block' on device
991  * 'dev'. The number of blocks must be between 1 and LMFS_MAX_PREFETCH,
992  * inclusive. All blocks have the file system's block size, possibly except the
993  * last block in the range, which is of size 'last_size'. The caller must
994  * ensure that none of the blocks in the range are already in the cache.
995  * However, the caller must also not rely on all or even any of the blocks to
996  * be present in the cache afterwards--failures are (deliberately!) ignored.
997  */
998   static noxfer_buf_ptr_t bufq[LMFS_MAX_PREFETCH]; /* static for size only */
999   struct buf *bp;
1000   unsigned int count;
1001   int r;
1002 
1003   assert(nblocks >= 1 && nblocks <= LMFS_MAX_PREFETCH);
1004 
1005   for (count = 0; count < nblocks; count++) {
1006 	if (count == nblocks - 1)
1007 		r = lmfs_get_partial_block(&bp, dev, base_block + count,
1008 		    NO_READ, last_size);
1009 	else
1010 		r = lmfs_get_block(&bp, dev, base_block + count, NO_READ);
1011 
1012 	if (r != OK)
1013 		break;
1014 
1015 	/* We could add a flag that makes the get_block() calls fail if the
1016 	 * block is already in the cache, but it is not a major concern if it
1017 	 * is: we just perform a useless read in that case. However, if the
1018 	 * block is cached *and* dirty, we are about to lose its new contents.
1019 	 */
1020 	assert(lmfs_isclean(bp));
1021 
1022 	bufq[count] = bp;
1023   }
1024 
1025   rw_scattered(dev, bufq, count, READING);
1026 }
1027 
1028 /*===========================================================================*
1029  *				lmfs_prefetch				     *
1030  *===========================================================================*/
1031 unsigned int lmfs_readahead_limit(void)
1032 {
1033 /* Return the maximum number of blocks that should be read ahead at once. The
1034  * return value is guaranteed to be between 1 and LMFS_MAX_PREFETCH, inclusive.
1035  */
1036   unsigned int max_transfer, max_bufs;
1037 
1038   /* The returned value is the minimum of two factors: the maximum number of
1039    * blocks that can be transferred in a single I/O gather request (see how
1040    * rw_scattered() generates I/O requests), and a policy limit on the number
1041    * of buffers that any read-ahead operation may use (that is, thrash).
1042    */
1043   max_transfer = NR_IOREQS / MAX(fs_block_size / PAGE_SIZE, 1);
1044 
1045   /* The constants have been imported from MFS as is, and may need tuning. */
1046   if (nr_bufs < 50)
1047 	max_bufs = 18;
1048   else
1049 	max_bufs = nr_bufs - 4;
1050 
1051   return MIN(max_transfer, max_bufs);
1052 }
1053 
1054 /*===========================================================================*
1055  *				lmfs_prefetch				     *
1056  *===========================================================================*/
1057 void lmfs_prefetch(dev_t dev, const block64_t *blockset, unsigned int nblocks)
1058 {
1059 /* The given set of blocks is expected to be needed soon, so prefetch a
1060  * convenient subset. The blocks are expected to be sorted by likelihood of
1061  * being accessed soon, making the first block of the set the most important
1062  * block to prefetch right now. The caller must have made sure that the blocks
1063  * are not in the cache already. The array may have duplicate block numbers.
1064  */
1065   bitchunk_t blocks_before[BITMAP_CHUNKS(LMFS_MAX_PREFETCH)];
1066   bitchunk_t blocks_after[BITMAP_CHUNKS(LMFS_MAX_PREFETCH)];
1067   block64_t block, base_block;
1068   unsigned int i, bit, nr_before, nr_after, span, limit, nr_blocks;
1069 
1070   if (nblocks == 0)
1071 	return;
1072 
1073   /* Here is the deal. We are going to prefetch one range only, because seeking
1074    * is too expensive for just prefetching. The range we select should at least
1075    * include the first ("base") block of the given set, since that is the block
1076    * the caller is primarily interested in. Thus, the rest of the range is
1077    * going to have to be directly around this base block. We first check which
1078    * blocks from the set fall just before and after the base block, which then
1079    * allows us to construct a contiguous range of desired blocks directly
1080    * around the base block, in O(n) time. As a natural part of this, we ignore
1081    * duplicate blocks in the given set. We then read from the beginning of this
1082    * range, in order to maximize the chance that a next prefetch request will
1083    * continue from the last disk position without requiring a seek. However, we
1084    * do correct for the maximum number of blocks we can (or should) read in at
1085    * once, such that we will still end up reading the base block.
1086    */
1087   base_block = blockset[0];
1088 
1089   memset(blocks_before, 0, sizeof(blocks_before));
1090   memset(blocks_after, 0, sizeof(blocks_after));
1091 
1092   for (i = 1; i < nblocks; i++) {
1093 	block = blockset[i];
1094 
1095 	if (block < base_block && block + LMFS_MAX_PREFETCH >= base_block) {
1096 		bit = base_block - block - 1;
1097 		assert(bit < LMFS_MAX_PREFETCH);
1098 		SET_BIT(blocks_before, bit);
1099 	} else if (block > base_block &&
1100 	    block - LMFS_MAX_PREFETCH <= base_block) {
1101 		bit = block - base_block - 1;
1102 		assert(bit < LMFS_MAX_PREFETCH);
1103 		SET_BIT(blocks_after, bit);
1104 	}
1105   }
1106 
1107   for (nr_before = 0; nr_before < LMFS_MAX_PREFETCH; nr_before++)
1108 	if (!GET_BIT(blocks_before, nr_before))
1109 		break;
1110 
1111   for (nr_after = 0; nr_after < LMFS_MAX_PREFETCH; nr_after++)
1112 	if (!GET_BIT(blocks_after, nr_after))
1113 		break;
1114 
1115   /* The number of blocks to prefetch is the minimum of two factors: the number
1116    * of blocks in the range around the base block, and the maximum number of
1117    * blocks that should be read ahead at once at all.
1118    */
1119   span = nr_before + 1 + nr_after;
1120   limit = lmfs_readahead_limit();
1121 
1122   nr_blocks = MIN(span, limit);
1123   assert(nr_blocks >= 1 && nr_blocks <= LMFS_MAX_PREFETCH);
1124 
1125   /* Start prefetching from the lowest block within the contiguous range, but
1126    * make sure that we read at least the original base block itself, too.
1127    */
1128   base_block -= MIN(nr_before, nr_blocks - 1);
1129 
1130   lmfs_readahead(dev, base_block, nr_blocks, fs_block_size);
1131 }
1132 
1133 /*===========================================================================*
1134  *				lmfs_flushdev				     *
1135  *===========================================================================*/
1136 void lmfs_flushdev(dev_t dev)
1137 {
1138 /* Flush all dirty blocks for one device. */
1139 
1140   register struct buf *bp;
1141   static noxfer_buf_ptr_t *dirty;
1142   static unsigned int dirtylistsize = 0;
1143   unsigned int ndirty;
1144 
1145   if(dirtylistsize != nr_bufs) {
1146 	if(dirtylistsize > 0) {
1147 		assert(dirty != NULL);
1148 		free(dirty);
1149 	}
1150 	if(!(dirty = malloc(sizeof(dirty[0])*nr_bufs)))
1151 		panic("couldn't allocate dirty buf list");
1152 	dirtylistsize = nr_bufs;
1153   }
1154 
1155   for (bp = &buf[0], ndirty = 0; bp < &buf[nr_bufs]; bp++) {
1156 	/* Do not flush dirty blocks that are in use (lmfs_count>0): the file
1157 	 * system may mark the block as dirty before changing its contents, in
1158 	 * which case the new contents could end up being lost.
1159 	 */
1160 	if (!lmfs_isclean(bp) && bp->lmfs_dev == dev && bp->lmfs_count == 0) {
1161 		dirty[ndirty++] = bp;
1162 	}
1163   }
1164 
1165   rw_scattered(dev, dirty, ndirty, WRITING);
1166 }
1167 
1168 /*===========================================================================*
1169  *				rm_lru					     *
1170  *===========================================================================*/
1171 static void rm_lru(struct buf *bp)
1172 {
1173 /* Remove a block from its LRU chain. */
1174   struct buf *next_ptr, *prev_ptr;
1175 
1176   next_ptr = bp->lmfs_next;	/* successor on LRU chain */
1177   prev_ptr = bp->lmfs_prev;	/* predecessor on LRU chain */
1178   if (prev_ptr != NULL)
1179 	prev_ptr->lmfs_next = next_ptr;
1180   else
1181 	front = next_ptr;	/* this block was at front of chain */
1182 
1183   if (next_ptr != NULL)
1184 	next_ptr->lmfs_prev = prev_ptr;
1185   else
1186 	rear = prev_ptr;	/* this block was at rear of chain */
1187 }
1188 
1189 /*===========================================================================*
1190  *				cache_resize				     *
1191  *===========================================================================*/
1192 static void cache_resize(size_t blocksize, unsigned int bufs)
1193 {
1194   struct buf *bp;
1195 
1196   assert(blocksize > 0);
1197   assert(bufs >= MINBUFS);
1198 
1199   for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
1200 	if(bp->lmfs_count != 0) panic("change blocksize with buffer in use");
1201 
1202   lmfs_buf_pool(bufs);
1203 
1204   fs_block_size = blocksize;
1205 }
1206 
1207 static void cache_heuristic_check(void)
1208 {
1209   int bufs, d;
1210 
1211   bufs = fs_bufs_heuristic(MINBUFS, fs_btotal, fs_bused, fs_block_size);
1212 
1213   /* set the cache to the new heuristic size if the new one
1214    * is more than 10% off from the current one.
1215    */
1216   d = bufs-nr_bufs;
1217   if(d < 0) d = -d;
1218   if(d*100/nr_bufs > 10) {
1219 	cache_resize(fs_block_size, bufs);
1220   }
1221 }
1222 
1223 /*===========================================================================*
1224  *			lmfs_set_blocksize				     *
1225  *===========================================================================*/
1226 void lmfs_set_blocksize(size_t new_block_size)
1227 {
1228   cache_resize(new_block_size, MINBUFS);
1229   cache_heuristic_check();
1230 
1231   /* Decide whether to use seconday cache or not.
1232    * Only do this if the block size is a multiple of the page size, and using
1233    * the VM cache has been enabled for this FS.
1234    */
1235 
1236   vmcache = 0;
1237 
1238   if(may_use_vmcache && !(new_block_size % PAGE_SIZE))
1239 	vmcache = 1;
1240 }
1241 
1242 /*===========================================================================*
1243  *                              lmfs_buf_pool                                *
1244  *===========================================================================*/
1245 void lmfs_buf_pool(int new_nr_bufs)
1246 {
1247 /* Initialize the buffer pool. */
1248   register struct buf *bp;
1249 
1250   assert(new_nr_bufs >= MINBUFS);
1251 
1252   if(nr_bufs > 0) {
1253 	assert(buf);
1254 	lmfs_flushall();
1255   	for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
1256 		if(bp->data) {
1257 			assert(bp->lmfs_bytes > 0);
1258 			munmap_t(bp->data, bp->lmfs_bytes);
1259 		}
1260 	}
1261   }
1262 
1263   if(buf)
1264 	free(buf);
1265 
1266   if(!(buf = calloc(sizeof(buf[0]), new_nr_bufs)))
1267 	panic("couldn't allocate buf list (%d)", new_nr_bufs);
1268 
1269   if(buf_hash)
1270 	free(buf_hash);
1271   if(!(buf_hash = calloc(sizeof(buf_hash[0]), new_nr_bufs)))
1272 	panic("couldn't allocate buf hash list (%d)", new_nr_bufs);
1273 
1274   nr_bufs = new_nr_bufs;
1275 
1276   bufs_in_use = 0;
1277   front = &buf[0];
1278   rear = &buf[nr_bufs - 1];
1279 
1280   for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
1281         bp->lmfs_blocknr = NO_BLOCK;
1282         bp->lmfs_dev = NO_DEV;
1283         bp->lmfs_next = bp + 1;
1284         bp->lmfs_prev = bp - 1;
1285         bp->data = NULL;
1286         bp->lmfs_bytes = 0;
1287   }
1288   front->lmfs_prev = NULL;
1289   rear->lmfs_next = NULL;
1290 
1291   for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) bp->lmfs_hash = bp->lmfs_next;
1292   buf_hash[0] = front;
1293 }
1294 
1295 void lmfs_flushall(void)
1296 {
1297 	struct buf *bp;
1298 	for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
1299 		if(bp->lmfs_dev != NO_DEV && !lmfs_isclean(bp))
1300 			lmfs_flushdev(bp->lmfs_dev);
1301 
1302 	/* This is the moment where it is least likely (although certainly not
1303 	 * impossible!) that there are buffers in use, since buffers should not
1304 	 * be held across file system syncs. See if we already intended to
1305 	 * resize the buffer cache, but couldn't. Be aware that we may be
1306 	 * called indirectly from within lmfs_change_blockusage(), so care must
1307 	 * be taken not to recurse infinitely. TODO: see if it is better to
1308 	 * resize the cache from here *only*, thus guaranteeing a clean cache.
1309 	 */
1310 	lmfs_change_blockusage(0);
1311 }
1312 
1313 size_t lmfs_fs_block_size(void)
1314 {
1315 	return fs_block_size;
1316 }
1317 
1318 void lmfs_may_use_vmcache(int ok)
1319 {
1320 	may_use_vmcache = ok;
1321 }
1322