xref: /minix/minix/servers/vfs/pipe.c (revision 00e393ca)
1 /* This file deals with the suspension and revival of processes.  A process can
2  * be suspended because it wants to read or write from a pipe and can't, or
3  * because it wants to read or write from a special file and can't.  When a
4  * process can't continue it is suspended, and revived later when it is able
5  * to continue.
6  *
7  * The entry points into this file are
8  *   do_pipe2:	  perform the PIPE2 system call
9  *   pipe_check:  check to see that a read or write on a pipe is feasible now
10  *   suspend:	  suspend a process that cannot do a requested read or write
11  *   release:	  check to see if a suspended process can be released and do
12  *                it
13  *   revive:	  mark a suspended process as able to run again
14  *   unsuspend_by_endpt: revive all processes blocking on a given process
15  *   do_unpause:  a signal has been sent to a process; see if it suspended
16  */
17 
18 #include "fs.h"
19 #include <fcntl.h>
20 #include <signal.h>
21 #include <string.h>
22 #include <assert.h>
23 #include <minix/callnr.h>
24 #include <minix/endpoint.h>
25 #include <minix/com.h>
26 #include <minix/u64.h>
27 #include <sys/select.h>
28 #include <sys/time.h>
29 #include "file.h"
30 #include <minix/vfsif.h>
31 #include "vnode.h"
32 #include "vmnt.h"
33 
34 static int create_pipe(int fil_des[2], int flags);
35 
36 /*===========================================================================*
37  *				do_pipe2				     *
38  *===========================================================================*/
39 int do_pipe2(void)
40 {
41 /* Perform the pipe2(fil_des[2], flags) system call. */
42   int r, flags;
43   int fil_des[2];		/* reply goes here */
44 
45   flags = job_m_in.m_lc_vfs_pipe2.flags;
46   flags |= job_m_in.m_lc_vfs_pipe2.oflags;	/* backward compatibility */
47 
48   r = create_pipe(fil_des, flags);
49   if (r == OK) {
50 	job_m_out.m_vfs_lc_fdpair.fd0 = fil_des[0];
51 	job_m_out.m_vfs_lc_fdpair.fd1 = fil_des[1];
52   }
53 
54   return r;
55 }
56 
57 /*===========================================================================*
58  *				create_pipe				     *
59  *===========================================================================*/
60 static int create_pipe(int fil_des[2], int flags)
61 {
62   register struct fproc *rfp;
63   int r;
64   struct filp *fil_ptr0, *fil_ptr1;
65   struct vnode *vp;
66   struct vmnt *vmp;
67   struct node_details res;
68 
69   /* Get a lock on PFS */
70   if ((vmp = find_vmnt(PFS_PROC_NR)) == NULL) panic("PFS gone");
71   if ((r = lock_vmnt(vmp, VMNT_READ)) != OK) return(r);
72 
73   /* See if a free vnode is available */
74   if ((vp = get_free_vnode()) == NULL) {
75 	unlock_vmnt(vmp);
76 	return(err_code);
77   }
78   lock_vnode(vp, VNODE_OPCL);
79 
80   /* Acquire two file descriptors. */
81   rfp = fp;
82   if ((r = get_fd(fp, 0, R_BIT, &fil_des[0], &fil_ptr0)) != OK) {
83 	unlock_vnode(vp);
84 	unlock_vmnt(vmp);
85 	return(r);
86   }
87   rfp->fp_filp[fil_des[0]] = fil_ptr0;
88   fil_ptr0->filp_count = 1;		/* mark filp in use */
89   if ((r = get_fd(fp, 0, W_BIT, &fil_des[1], &fil_ptr1)) != OK) {
90 	rfp->fp_filp[fil_des[0]] = NULL;
91 	fil_ptr0->filp_count = 0;	/* mark filp free */
92 	unlock_filp(fil_ptr0);
93 	unlock_vnode(vp);
94 	unlock_vmnt(vmp);
95 	return(r);
96   }
97   rfp->fp_filp[fil_des[1]] = fil_ptr1;
98   fil_ptr1->filp_count = 1;
99 
100   /* Create a named pipe inode on PipeFS */
101   r = req_newnode(PFS_PROC_NR, fp->fp_effuid, fp->fp_effgid, I_NAMED_PIPE,
102 		  NO_DEV, &res);
103 
104   if (r != OK) {
105 	rfp->fp_filp[fil_des[0]] = NULL;
106 	fil_ptr0->filp_count = 0;
107 	rfp->fp_filp[fil_des[1]] = NULL;
108 	fil_ptr1->filp_count = 0;
109 	unlock_filp(fil_ptr1);
110 	unlock_filp(fil_ptr0);
111 	unlock_vnode(vp);
112 	unlock_vmnt(vmp);
113 	return(r);
114   }
115 
116   /* Fill in vnode */
117   vp->v_fs_e = res.fs_e;
118   vp->v_mapfs_e = res.fs_e;
119   vp->v_inode_nr = res.inode_nr;
120   vp->v_mapinode_nr = res.inode_nr;
121   vp->v_mode = res.fmode;
122   vp->v_fs_count = 1;
123   vp->v_mapfs_count = 1;
124   vp->v_ref_count = 1;
125   vp->v_size = 0;
126   vp->v_vmnt = NULL;
127   vp->v_dev = NO_DEV;
128 
129   /* Fill in filp objects */
130   fil_ptr0->filp_vno = vp;
131   dup_vnode(vp);
132   fil_ptr1->filp_vno = vp;
133   fil_ptr0->filp_flags = O_RDONLY | (flags & ~O_ACCMODE);
134   fil_ptr1->filp_flags = O_WRONLY | (flags & ~O_ACCMODE);
135   if (flags & O_CLOEXEC) {
136 	FD_SET(fil_des[0], &rfp->fp_cloexec_set);
137 	FD_SET(fil_des[1], &rfp->fp_cloexec_set);
138   }
139 
140   unlock_filps(fil_ptr0, fil_ptr1);
141   unlock_vmnt(vmp);
142 
143   return(OK);
144 }
145 
146 
147 /*===========================================================================*
148  *				map_vnode				     *
149  *===========================================================================*/
150 int map_vnode(vp, map_to_fs_e)
151 struct vnode *vp;
152 endpoint_t map_to_fs_e;
153 {
154   int r;
155   struct vmnt *vmp;
156   struct node_details res;
157 
158   if(vp->v_mapfs_e != NONE) return(OK);	/* Already mapped; nothing to do. */
159 
160   if ((vmp = find_vmnt(map_to_fs_e)) == NULL)
161 	panic("Can't map to unknown endpoint");
162   if ((r = lock_vmnt(vmp, VMNT_WRITE)) != OK) {
163 	if (r == EBUSY)
164 		vmp = NULL;	/* Already locked, do not unlock */
165 	else
166 		return(r);
167 
168   }
169 
170   /* Create a temporary mapping of this inode to another FS. Read and write
171    * operations on data will be handled by that FS. The rest by the 'original'
172    * FS that holds the inode. */
173   if ((r = req_newnode(map_to_fs_e, fp->fp_effuid, fp->fp_effgid, I_NAMED_PIPE,
174 		       vp->v_dev, &res)) == OK) {
175 	vp->v_mapfs_e = res.fs_e;
176 	vp->v_mapinode_nr = res.inode_nr;
177 	vp->v_mapfs_count = 1;
178   }
179 
180   if (vmp) unlock_vmnt(vmp);
181 
182   return(r);
183 }
184 
185 /*===========================================================================*
186  *				pipe_check				     *
187  *===========================================================================*/
188 int pipe_check(
189 struct filp *filp,	/* the filp of the pipe */
190 int rw_flag,		/* READING or WRITING */
191 int oflags,		/* flags set by open or fcntl */
192 int bytes,		/* bytes to be read or written (all chunks) */
193 int notouch		/* check only */
194 )
195 {
196 /* Pipes are a little different.  If a process reads from an empty pipe for
197  * which a writer still exists, suspend the reader.  If the pipe is empty
198  * and there is no writer, return 0 bytes.  If a process is writing to a
199  * pipe and no one is reading from it, give a broken pipe error.
200  */
201   struct vnode *vp;
202   off_t pos;
203   int r = OK;
204 
205   vp = filp->filp_vno;
206 
207   /* Reads start at the beginning; writes append to pipes */
208   if (notouch) /* In this case we don't actually care whether data transfer
209 		* would succeed. See POSIX 1003.1-2008 */
210 	pos = 0;
211   else if (rw_flag == READING)
212 	pos = 0;
213   else {
214 	pos = vp->v_size;
215   }
216 
217   /* If reading, check for empty pipe. */
218   if (rw_flag == READING) {
219 	if (vp->v_size == 0) {
220 		/* Process is reading from an empty pipe. */
221 		if (find_filp(vp, W_BIT) != NULL) {
222 			/* Writer exists */
223 			if (oflags & O_NONBLOCK)
224 				r = EAGAIN;
225 			else
226 				r = SUSPEND;
227 
228 			/* If need be, activate sleeping writers. */
229 			/* We ignore notouch voluntary here. */
230 			if (susp_count > 0)
231 				release(vp, VFS_WRITE, susp_count);
232 		}
233 		return(r);
234 	}
235 	return(bytes);
236   }
237 
238   /* Process is writing to a pipe. */
239   if (find_filp(vp, R_BIT) == NULL) {
240 	return(EPIPE);
241   }
242 
243   /* Calculate how many bytes can be written. */
244   if (pos + bytes > PIPE_BUF) {
245 	if (oflags & O_NONBLOCK) {
246 		if (bytes <= PIPE_BUF) {
247 			/* Write has to be atomic */
248 			return(EAGAIN);
249 		}
250 
251 		/* Compute available space */
252 		bytes = PIPE_BUF - pos;
253 
254 		if (bytes > 0)  {
255 			/* Do a partial write. Need to wakeup reader */
256 			if (!notouch)
257 				release(vp, VFS_READ, susp_count);
258 			return(bytes);
259 		} else {
260 			/* Pipe is full */
261 			return(EAGAIN);
262 		}
263 	}
264 
265 	if (bytes > PIPE_BUF) {
266 		/* Compute available space */
267 		bytes = PIPE_BUF - pos;
268 
269 		if (bytes > 0) {
270 			/* Do a partial write. Need to wakeup reader
271 			 * since we'll suspend ourself in read_write()
272 			 */
273 			if (!notouch)
274 				release(vp, VFS_READ, susp_count);
275 			return(bytes);
276 		}
277 	}
278 
279 	/* Pipe is full */
280 	return(SUSPEND);
281   }
282 
283   /* Writing to an empty pipe.  Search for suspended reader. */
284   if (pos == 0 && !notouch)
285 	release(vp, VFS_READ, susp_count);
286 
287   /* Requested amount fits */
288   return(bytes);
289 }
290 
291 
292 /*===========================================================================*
293  *				suspend					     *
294  *===========================================================================*/
295 void suspend(int why)
296 {
297 /* Take measures to suspend the processing of the present system call.  The
298  * caller must store the parameters to be used upon resuming in the process
299  * table as appropriate.  The SUSPEND pseudo error should be returned after
300  * calling suspend().
301  */
302 
303   assert(fp->fp_blocked_on == FP_BLOCKED_ON_NONE);
304 
305   if (why == FP_BLOCKED_ON_POPEN || why == FP_BLOCKED_ON_PIPE)
306 	/* #procs susp'ed on pipe*/
307 	susp_count++;
308 
309   fp->fp_blocked_on = why;
310 }
311 
312 
313 /*===========================================================================*
314  *				pipe_suspend				     *
315  *===========================================================================*/
316 void pipe_suspend(int callnr, int fd, vir_bytes buf, size_t size,
317 	size_t cum_io)
318 {
319 /* Take measures to suspend the processing of the present system call.
320  * Store the parameters to be used upon resuming in the process table.
321  */
322 
323   fp->fp_pipe.callnr = callnr;
324   fp->fp_pipe.fd = fd;
325   fp->fp_pipe.buf = buf;
326   fp->fp_pipe.nbytes = size;
327   fp->fp_pipe.cum_io = cum_io;
328   suspend(FP_BLOCKED_ON_PIPE);
329 }
330 
331 
332 /*===========================================================================*
333  *				unsuspend_by_endpt			     *
334  *===========================================================================*/
335 void unsuspend_by_endpt(endpoint_t proc_e)
336 {
337 /* Revive processes waiting for drivers (SUSPENDed) that have disappeared, with
338  * return code EIO.
339  */
340   struct fproc *rp;
341 
342   for (rp = &fproc[0]; rp < &fproc[NR_PROCS]; rp++) {
343 	if (rp->fp_pid == PID_FREE) continue;
344 	if (rp->fp_blocked_on == FP_BLOCKED_ON_CDEV &&
345 	    rp->fp_cdev.endpt == proc_e)
346 		revive(rp->fp_endpoint, EIO);
347   }
348 
349   /* Revive processes waiting in drivers on select()s with EAGAIN too */
350   select_unsuspend_by_endpt(proc_e);
351 
352   return;
353 }
354 
355 
356 /*===========================================================================*
357  *				release					     *
358  *===========================================================================*/
359 void release(struct vnode * vp, int op, int count)
360 {
361 /* Check to see if any process is hanging on pipe vnode 'vp'. If one is, and it
362  * was trying to perform the call indicated by 'op' - one of VFS_OPEN,
363  * VFS_READ, or VFS_WRITE - release it.  The 'count' parameter indicates the
364  * maximum number of processes to release, which allows us to stop searching
365  * early in some cases.
366  */
367 
368   register struct fproc *rp;
369   struct filp *f;
370   int fd, selop;
371 
372   /* Trying to perform the call also includes SELECTing on it with that
373    * operation.
374    */
375   if (op == VFS_READ || op == VFS_WRITE) {
376 	if (op == VFS_READ)
377 		selop = SEL_RD;
378 	else
379 		selop = SEL_WR;
380 
381 	for (f = &filp[0]; f < &filp[NR_FILPS]; f++) {
382 		if (f->filp_count < 1 || !(f->filp_pipe_select_ops & selop) ||
383 		    f->filp_vno != vp)
384 			continue;
385 
386 		select_callback(f, selop);
387 
388 		f->filp_pipe_select_ops &= ~selop;
389 	}
390   }
391 
392   /* Search the proc table. */
393   for (rp = &fproc[0]; rp < &fproc[NR_PROCS] && count > 0; rp++) {
394 	/* Just to make sure:
395 	 * - FP_BLOCKED_ON_POPEN implies the original request was VFS_OPEN;
396 	 * - FP_BLOCKED_ON_PIPE may be the result of VFS_READ and VFS_WRITE,
397 	 *   and one of those two numbers is stored in fp_pipe.callnr.
398 	 */
399 	if (rp->fp_pid != PID_FREE && fp_is_blocked(rp) &&
400 	    !(rp->fp_flags & FP_REVIVED) &&
401 	    ((op == VFS_OPEN && rp->fp_blocked_on == FP_BLOCKED_ON_POPEN) ||
402 	     (op != VFS_OPEN && rp->fp_blocked_on == FP_BLOCKED_ON_PIPE &&
403 	      op == rp->fp_pipe.callnr))) {
404 		/* Find the vnode. Depending on the reason the process was
405 		 * suspended, there are different ways of finding it.
406 		 */
407 		if (rp->fp_blocked_on == FP_BLOCKED_ON_POPEN)
408 			fd = rp->fp_popen.fd;
409 		else
410 			fd = rp->fp_pipe.fd;
411 		f = rp->fp_filp[fd];
412 		if (f == NULL || f->filp_mode == FILP_CLOSED)
413 			continue;
414 		if (f->filp_vno != vp)
415 			continue;
416 
417 		/* We found the vnode. Revive process. */
418 		revive(rp->fp_endpoint, 0);
419 		susp_count--;	/* keep track of who is suspended */
420 		if(susp_count < 0)
421 			panic("susp_count now negative: %d", susp_count);
422 		if (--count == 0) return;
423 	}
424   }
425 }
426 
427 
428 /*===========================================================================*
429  *				revive					     *
430  *===========================================================================*/
431 void revive(endpoint_t proc_e, int returned)
432 {
433 /* Revive a previously blocked process. When a process hangs on tty, this
434  * is the way it is eventually released. For processes blocked on _SELECT and
435  * _CDEV, this function MUST NOT block its calling thread.
436  */
437   struct fproc *rfp;
438   int blocked_on;
439   int slot;
440 
441   if (proc_e == NONE || isokendpt(proc_e, &slot) != OK) return;
442 
443   rfp = &fproc[slot];
444   if (!fp_is_blocked(rfp) || (rfp->fp_flags & FP_REVIVED)) return;
445 
446   /* The 'reviving' flag applies to pipe I/O and file locks.  Processes waiting
447    * on those suspension types need more processing, and will be unblocked from
448    * the main loop later.  Processes suspended for other reasons get a reply
449    * right away, and as such, have their suspension cleared right here as well.
450    */
451   blocked_on = rfp->fp_blocked_on;
452   if (blocked_on == FP_BLOCKED_ON_PIPE || blocked_on == FP_BLOCKED_ON_FLOCK) {
453 	/* Revive a process suspended on a pipe or lock. */
454 	rfp->fp_flags |= FP_REVIVED;
455 	reviving++;		/* process was waiting on pipe or lock */
456   } else {
457 	rfp->fp_blocked_on = FP_BLOCKED_ON_NONE;
458 	if (blocked_on == FP_BLOCKED_ON_POPEN) {
459 		/* process blocked in open or create */
460 		replycode(proc_e, rfp->fp_popen.fd);
461 	} else if (blocked_on == FP_BLOCKED_ON_SELECT) {
462 		replycode(proc_e, returned);
463 	} else {
464 		assert(blocked_on == FP_BLOCKED_ON_CDEV);
465 		/* If a grant has been issued by FS for this I/O, revoke
466 		 * it again now that I/O is done.
467 		 */
468 		if (GRANT_VALID(rfp->fp_cdev.grant)) {
469 			if (cpf_revoke(rfp->fp_cdev.grant) == -1) {
470 				panic("VFS: revoke failed for grant: %d",
471 				    rfp->fp_cdev.grant);
472 			}
473 		}
474 		replycode(proc_e, returned);/* unblock the process */
475 	}
476   }
477 }
478 
479 
480 /*===========================================================================*
481  *				unpause					     *
482  *===========================================================================*/
483 void unpause(void)
484 {
485 /* A signal has been sent to a user who is paused on the file system.
486  * Abort the system call with the EINTR error message.
487  */
488   int blocked_on, status = EINTR;
489   int wasreviving = 0;
490 
491   if (!fp_is_blocked(fp)) return;
492   blocked_on = fp->fp_blocked_on;
493 
494   /* Clear the block status now. The procedure below might make blocking calls
495    * and it is imperative that while at least cdev_cancel() is executing, other
496    * parts of VFS do not perceive this process as blocked on something.
497    */
498   fp->fp_blocked_on = FP_BLOCKED_ON_NONE;
499 
500   if (fp->fp_flags & FP_REVIVED) {
501 	fp->fp_flags &= ~FP_REVIVED;
502 	reviving--;
503 	wasreviving = 1;
504   }
505 
506   switch (blocked_on) {
507 	case FP_BLOCKED_ON_PIPE:/* process trying to read or write a pipe */
508 		/* If the operation succeeded partially, return the bytes
509 		 * processed so far.  Otherwise, return EINTR as usual.
510 		 */
511 		if (fp->fp_pipe.cum_io > 0)
512 			status = fp->fp_pipe.cum_io;
513 		break;
514 
515 	case FP_BLOCKED_ON_FLOCK:/* process trying to set a lock with FCNTL */
516 		break;
517 
518 	case FP_BLOCKED_ON_SELECT:/* process blocking on select() */
519 		select_forget();
520 		break;
521 
522 	case FP_BLOCKED_ON_POPEN:	/* process trying to open a fifo */
523 		break;
524 
525 	case FP_BLOCKED_ON_CDEV: /* process blocked on character device I/O */
526 		status = cdev_cancel(fp->fp_cdev.dev, fp->fp_cdev.endpt,
527 		    fp->fp_cdev.grant);
528 
529 		break;
530 	default :
531 		panic("VFS: unknown block reason: %d", blocked_on);
532   }
533 
534   if ((blocked_on == FP_BLOCKED_ON_PIPE || blocked_on == FP_BLOCKED_ON_POPEN)&&
535 	!wasreviving) {
536 	susp_count--;
537   }
538 
539   replycode(fp->fp_endpoint, status);	/* signal interrupted call */
540 }
541