xref: /minix/minix/servers/vm/main.c (revision 77e79d33)
1 
2 #define _SYSTEM		1
3 
4 #include <minix/callnr.h>
5 #include <minix/com.h>
6 #include <minix/config.h>
7 #include <minix/const.h>
8 #include <minix/ds.h>
9 #include <minix/endpoint.h>
10 #include <minix/minlib.h>
11 #include <minix/type.h>
12 #include <minix/ipc.h>
13 #include <minix/sysutil.h>
14 #include <minix/syslib.h>
15 #include <minix/const.h>
16 #include <minix/bitmap.h>
17 #include <minix/rs.h>
18 #include <minix/vfsif.h>
19 
20 #include <sys/exec.h>
21 
22 #include <libexec.h>
23 #include <ctype.h>
24 #include <errno.h>
25 #include <string.h>
26 #include <stdio.h>
27 #include <assert.h>
28 
29 #define _MAIN 1
30 #include "glo.h"
31 #include "proto.h"
32 #include "util.h"
33 #include "vm.h"
34 #include "sanitycheck.h"
35 
36 extern int missing_spares;
37 
38 #include <machine/archtypes.h>
39 #include <sys/param.h>
40 #include "kernel/const.h"
41 #include "kernel/config.h"
42 #include "kernel/proc.h"
43 
44 #include <signal.h>
45 #include <lib.h>
46 
47 /* Table of calls and a macro to test for being in range. */
48 struct {
49 	int (*vmc_func)(message *);	/* Call handles message. */
50 	const char *vmc_name;			/* Human-readable string. */
51 } vm_calls[NR_VM_CALLS];
52 
53 /* Macro to verify call range and map 'high' range to 'base' range
54  * (starting at 0) in one. Evaluates to zero-based call number if call
55  * number is valid, returns -1 otherwise.
56  */
57 #define CALLNUMBER(c) (((c) >= VM_RQ_BASE && 				\
58 			(c) < VM_RQ_BASE + ELEMENTS(vm_calls)) ?	\
59 			((c) - VM_RQ_BASE) : -1)
60 
61 static int map_service(struct rprocpub *rpub);
62 
63 static struct rprocpub rprocpub[NR_SYS_PROCS];
64 int __vm_init_fresh;
65 
66 /* SEF functions and variables. */
67 static void sef_local_startup(void);
68 static int sef_cb_init_lu_restart(int type, sef_init_info_t *info);
69 static int sef_cb_init_fresh(int type, sef_init_info_t *info);
70 static void sef_cb_signal_handler(int signo);
71 
72 void init_vm(void);
73 
74 int do_sef_init_request(message *);
75 
76 /*===========================================================================*
77  *				is_first_time				     *
78  *===========================================================================*/
79 static int is_first_time(void)
80 {
81 	struct proc rs_proc;
82 	int r;
83 
84 	if ((r = sys_getproc(&rs_proc, RS_PROC_NR)) != OK)
85 		panic("VM: couldn't get RS process data: %d", r);
86 
87 	return RTS_ISSET(&rs_proc, RTS_BOOTINHIBIT);
88 }
89 
90 /*===========================================================================*
91  *				main					     *
92  *===========================================================================*/
93 int main(void)
94 {
95   message msg;
96   int result, who_e, rcv_sts;
97   int caller_slot;
98 
99   /* Initialize system so that all processes are runnable the first time. */
100   if (is_first_time()) {
101 	init_vm();
102 	__vm_init_fresh=1;
103   }
104 
105   /* SEF local startup. */
106   sef_local_startup();
107   __vm_init_fresh=0;
108 
109   SANITYCHECK(SCL_TOP);
110 
111   /* This is VM's main loop. */
112   while (TRUE) {
113 	int r, c;
114 	int type;
115 	int transid = 0;	/* VFS transid if any */
116 
117 	SANITYCHECK(SCL_TOP);
118 	if(missing_spares > 0) {
119 		alloc_cycle();	/* mem alloc code wants to be called */
120 	}
121 
122   	if ((r=sef_receive_status(ANY, &msg, &rcv_sts)) != OK)
123 		panic("sef_receive_status() error: %d", r);
124 
125 	if (is_ipc_notify(rcv_sts)) {
126 		/* Unexpected ipc_notify(). */
127 		printf("VM: ignoring ipc_notify() from %d\n", msg.m_source);
128 		continue;
129 	}
130 	who_e = msg.m_source;
131 	if(vm_isokendpt(who_e, &caller_slot) != OK)
132 		panic("invalid caller %d", who_e);
133 
134 	/* We depend on this being false for the initialized value. */
135 	assert(!IS_VFS_FS_TRANSID(transid));
136 
137 	type = msg.m_type;
138 	c = CALLNUMBER(type);
139 	result = ENOSYS; /* Out of range or restricted calls return this. */
140 
141 	transid = TRNS_GET_ID(msg.m_type);
142 
143 	if((msg.m_source == VFS_PROC_NR) && IS_VFS_FS_TRANSID(transid)) {
144 		/* If it's a request from VFS, it might have a transaction id. */
145 		msg.m_type = TRNS_DEL_ID(msg.m_type);
146 
147 		/* Calls that use the transid */
148 		result = do_procctl(&msg, transid);
149 	} else if(msg.m_type == RS_INIT && msg.m_source == RS_PROC_NR) {
150 		result = do_sef_init_request(&msg);
151 		if(result != OK) panic("do_sef_init_request failed!\n");
152 		result = SUSPEND;	/* do not reply to RS */
153 	} else if (msg.m_type == VM_PAGEFAULT) {
154 		if (!IPC_STATUS_FLAGS_TEST(rcv_sts, IPC_FLG_MSG_FROM_KERNEL)) {
155 			printf("VM: process %d faked VM_PAGEFAULT "
156 					"message!\n", msg.m_source);
157 		}
158 		do_pagefaults(&msg);
159 		/*
160 		 * do not reply to this call, the caller is unblocked by
161 		 * a sys_vmctl() call in do_pagefaults if success. VM panics
162 		 * otherwise
163 		 */
164 		continue;
165 	} else if(c < 0 || !vm_calls[c].vmc_func) {
166 		/* out of range or missing callnr */
167 	} else {
168 		if (acl_check(&vmproc[caller_slot], c) != OK) {
169 			printf("VM: unauthorized %s by %d\n",
170 					vm_calls[c].vmc_name, who_e);
171 		} else {
172 			SANITYCHECK(SCL_FUNCTIONS);
173 			result = vm_calls[c].vmc_func(&msg);
174 			SANITYCHECK(SCL_FUNCTIONS);
175 		}
176 	}
177 
178 	/* Send reply message, unless the return code is SUSPEND,
179 	 * which is a pseudo-result suppressing the reply message.
180 	 */
181 	if(result != SUSPEND) {
182 		msg.m_type = result;
183 
184 		assert(!IS_VFS_FS_TRANSID(transid));
185 
186 		if((r=ipc_send(who_e, &msg)) != OK) {
187 			printf("VM: couldn't send %d to %d (err %d)\n",
188 				msg.m_type, who_e, r);
189 			panic("ipc_send() error");
190 		}
191 	}
192   }
193   return(OK);
194 }
195 
196 static void sef_cb_lu_state_changed(int old_state, int state)
197 {
198 /* Called whenever the live-update state changes. We need to restore certain
199  * state in the old VM instance after a live update has failed, because some
200  * but not all memory is shared between the two VM instances.
201  */
202   struct vmproc *vmp;
203 
204   if (state == SEF_LU_STATE_NULL) {
205 	/* Undo some of the changes that may have been made by the new VM
206 	 * instance.  If the new VM instance is us, nothing happens.
207 	 */
208 	vmp = &vmproc[VM_PROC_NR];
209 
210 	/* Rebind page tables. */
211 	pt_bind(&vmp->vm_pt, vmp);
212 	pt_clearmapcache();
213 
214 	/* Readjust process references. */
215 	adjust_proc_refs();
216   }
217 }
218 
219 static void sef_local_startup(void)
220 {
221 	/* Register init callbacks. */
222 	sef_setcb_init_fresh(sef_cb_init_fresh);
223 	sef_setcb_init_lu(sef_cb_init_lu_restart);
224 	sef_setcb_init_restart(sef_cb_init_lu_restart);
225 	/* In order to avoid a deadlock at boot time, send the first RS_INIT
226 	 * reply to RS asynchronously. After that, use sendrec as usual.
227 	 */
228 	if (__vm_init_fresh)
229 		sef_setcb_init_response(sef_cb_init_response_rs_asyn_once);
230 
231 	/* Register live update callbacks. */
232 	sef_setcb_lu_state_changed(sef_cb_lu_state_changed);
233 
234 	/* Register signal callbacks. */
235 	sef_setcb_signal_handler(sef_cb_signal_handler);
236 
237 	/* Let SEF perform startup. */
238 	sef_startup();
239 }
240 
241 static int sef_cb_init_fresh(int type, sef_init_info_t *info)
242 {
243 	int s, i;
244 
245 	/* Map all the services in the boot image. */
246 	if((s = sys_safecopyfrom(RS_PROC_NR, info->rproctab_gid, 0,
247 		(vir_bytes) rprocpub, sizeof(rprocpub))) != OK) {
248 		panic("vm: sys_safecopyfrom (rs) failed: %d", s);
249 	}
250 
251 	for(i=0;i < NR_BOOT_PROCS;i++) {
252 		if(rprocpub[i].in_use) {
253 			if((s = map_service(&rprocpub[i])) != OK) {
254 				panic("unable to map service: %d", s);
255 			}
256 		}
257 	}
258 
259 	return(OK);
260 }
261 
262 static struct vmproc *init_proc(endpoint_t ep_nr)
263 {
264 	struct boot_image *ip;
265 
266 	for (ip = &kernel_boot_info.boot_procs[0];
267 		ip < &kernel_boot_info.boot_procs[NR_BOOT_PROCS]; ip++) {
268 		struct vmproc *vmp;
269 
270 		if(ip->proc_nr != ep_nr) continue;
271 
272 		if(ip->proc_nr >= _NR_PROCS || ip->proc_nr < 0)
273 			panic("proc: %d", ip->proc_nr);
274 
275 		vmp = &vmproc[ip->proc_nr];
276 		assert(!(vmp->vm_flags & VMF_INUSE));	/* no double procs */
277 		clear_proc(vmp);
278 		vmp->vm_flags = VMF_INUSE;
279 		vmp->vm_endpoint = ip->endpoint;
280 		vmp->vm_boot = ip;
281 
282 		return vmp;
283 	}
284 
285 	panic("no init_proc");
286 }
287 
288 struct vm_exec_info {
289 	struct exec_info execi;
290 	struct boot_image *ip;
291 	struct vmproc *vmp;
292 };
293 
294 static int libexec_copy_physcopy(struct exec_info *execi,
295 	off_t off, vir_bytes vaddr, size_t len)
296 {
297 	vir_bytes end;
298 	struct vm_exec_info *ei = execi->opaque;
299 	end = ei->ip->start_addr + ei->ip->len;
300 	assert(ei->ip->start_addr + off + len <= end);
301 	return sys_physcopy(NONE, ei->ip->start_addr + off,
302 		execi->proc_e, vaddr, len, 0);
303 }
304 
305 static void boot_alloc(struct exec_info *execi, off_t vaddr,
306 	size_t len, int flags)
307 {
308 	struct vmproc *vmp = ((struct vm_exec_info *) execi->opaque)->vmp;
309 
310 	if(!(map_page_region(vmp, vaddr, 0, len,
311 		VR_ANON | VR_WRITABLE | VR_UNINITIALIZED, flags,
312 		&mem_type_anon))) {
313 		panic("VM: exec: map_page_region for boot process failed");
314 	}
315 }
316 
317 static int libexec_alloc_vm_prealloc(struct exec_info *execi,
318 	vir_bytes vaddr, size_t len)
319 {
320 	boot_alloc(execi, vaddr, len, MF_PREALLOC);
321 	return OK;
322 }
323 
324 static int libexec_alloc_vm_ondemand(struct exec_info *execi,
325 	vir_bytes vaddr, size_t len)
326 {
327 	boot_alloc(execi, vaddr, len, 0);
328 	return OK;
329 }
330 
331 static void exec_bootproc(struct vmproc *vmp, struct boot_image *ip)
332 {
333 	struct vm_exec_info vmexeci;
334 	struct exec_info *execi = &vmexeci.execi;
335 	/* libexec need proper alignment for casting to structures */
336 	char hdr[VM_PAGE_SIZE] __aligned(8);
337 
338 	size_t frame_size = 0;	/* Size of the new initial stack. */
339 	int argc = 0;		/* Argument count. */
340 	int envc = 0;		/* Environment count */
341 	char overflow = 0;	/* No overflow yet. */
342 	struct ps_strings *psp;
343 
344 	int vsp = 0;	/* (virtual) Stack pointer in new address space. */
345 	char *argv[] = { ip->proc_name, NULL };
346 	char *envp[] = { NULL };
347 	char *path = ip->proc_name;
348 	char frame[VM_PAGE_SIZE] __aligned(sizeof(void *));
349 
350 	memset(&vmexeci, 0, sizeof(vmexeci));
351 
352 	if(pt_new(&vmp->vm_pt) != OK)
353 		panic("VM: no new pagetable");
354 
355 	if(pt_bind(&vmp->vm_pt, vmp) != OK)
356 		panic("VM: pt_bind failed");
357 
358 	if(sys_physcopy(NONE, ip->start_addr, SELF,
359 		(vir_bytes) hdr, sizeof(hdr), 0) != OK)
360 		panic("can't look at boot proc header");
361 
362 	execi->stack_high = kernel_boot_info.user_sp;
363 	execi->stack_size = DEFAULT_STACK_LIMIT;
364 	execi->proc_e = vmp->vm_endpoint;
365 	execi->hdr = hdr;
366 	execi->hdr_len = sizeof(hdr);
367 	strlcpy(execi->progname, ip->proc_name, sizeof(execi->progname));
368 	execi->frame_len = 0;
369 	execi->opaque = &vmexeci;
370 	execi->filesize = ip->len;
371 
372 	vmexeci.ip = ip;
373 	vmexeci.vmp = vmp;
374 
375 	/* callback functions and data */
376 	execi->copymem = libexec_copy_physcopy;
377 	execi->clearproc = NULL;
378 	execi->clearmem = libexec_clear_sys_memset;
379 	execi->allocmem_prealloc_junk = libexec_alloc_vm_prealloc;
380 	execi->allocmem_prealloc_cleared = libexec_alloc_vm_prealloc;
381 	execi->allocmem_ondemand = libexec_alloc_vm_ondemand;
382 
383 	if (libexec_load_elf(execi) != OK)
384 		panic("vm: boot process load of process %s (ep=%d) failed\n",
385 			execi->progname, vmp->vm_endpoint);
386 
387 	/* Setup a minimal stack. */
388 	minix_stack_params(path, argv, envp, &frame_size, &overflow, &argc,
389 		&envc);
390 
391 	/* The party is off if there is an overflow, or it is too big for our
392 	 * pre-allocated space. */
393 	if(overflow || frame_size > sizeof(frame))
394 		panic("vm: could not alloc stack for boot process %s (ep=%d)\n",
395 			execi->progname, vmp->vm_endpoint);
396 
397 	minix_stack_fill(path, argc, argv, envc, envp, frame_size, frame, &vsp,
398 		&psp);
399 
400 	if(handle_memory_once(vmp, vsp, frame_size, 1) != OK)
401 		panic("vm: could not map stack for boot process %s (ep=%d)\n",
402 			execi->progname, vmp->vm_endpoint);
403 
404 	if(sys_datacopy(SELF, (vir_bytes)frame, vmp->vm_endpoint, vsp, frame_size) != OK)
405 		panic("vm: could not copy stack for boot process %s (ep=%d)\n",
406 			execi->progname, vmp->vm_endpoint);
407 
408 	if(sys_exec(vmp->vm_endpoint, (vir_bytes)vsp,
409 		   (vir_bytes)execi->progname, execi->pc,
410 		   vsp + ((int)psp - (int)frame)) != OK)
411 		panic("vm: boot process exec of process %s (ep=%d) failed\n",
412 			execi->progname,vmp->vm_endpoint);
413 
414 	/* make it runnable */
415 	if(sys_vmctl(vmp->vm_endpoint, VMCTL_BOOTINHIBIT_CLEAR, 0) != OK)
416 		panic("VMCTL_BOOTINHIBIT_CLEAR failed");
417 }
418 
419 static int do_procctl_notrans(message *msg)
420 {
421 	int transid = 0;
422 
423 	assert(!IS_VFS_FS_TRANSID(transid));
424 
425 	return do_procctl(msg, transid);
426 }
427 
428 void init_vm(void)
429 {
430 	int s, i;
431 	static struct memory mem_chunks[NR_MEMS];
432 	struct boot_image *ip;
433 	extern void __minix_init(void);
434 	multiboot_module_t *mod;
435 	vir_bytes kern_dyn, kern_static;
436 
437 #if SANITYCHECKS
438 	incheck = nocheck = 0;
439 #endif
440 
441 	/* Retrieve various crucial boot parameters */
442 	if(OK != (s=sys_getkinfo(&kernel_boot_info))) {
443 		panic("couldn't get bootinfo: %d", s);
444 	}
445 
446 	/* Turn file mmap on? */
447 	enable_filemap=1;	/* yes by default */
448 	env_parse("filemap", "d", 0, &enable_filemap, 0, 1);
449 
450 	/* Sanity check */
451 	assert(kernel_boot_info.mmap_size > 0);
452 	assert(kernel_boot_info.mods_with_kernel > 0);
453 
454 	/* Get chunks of available memory. */
455 	get_mem_chunks(mem_chunks);
456 
457 	/* Set table to 0. This invalidates all slots (clear VMF_INUSE). */
458 	memset(vmproc, 0, sizeof(vmproc));
459 
460 	for(i = 0; i < ELEMENTS(vmproc); i++) {
461 		vmproc[i].vm_slot = i;
462 	}
463 
464 	/* Initialize ACL data structures. */
465 	acl_init();
466 
467 	/* region management initialization. */
468 	map_region_init();
469 
470 	/* Initialize tables to all physical memory. */
471 	mem_init(mem_chunks);
472 
473 	/* Architecture-dependent initialization. */
474 	init_proc(VM_PROC_NR);
475 	pt_init();
476 
477 	/* Acquire kernel ipc vectors that weren't available
478 	 * before VM had determined kernel mappings
479 	 */
480 	__minix_init();
481 
482 	/* The kernel's freelist does not include boot-time modules; let
483 	 * the allocator know that the total memory is bigger.
484 	 */
485 	for (mod = &kernel_boot_info.module_list[0];
486 		mod < &kernel_boot_info.module_list[kernel_boot_info.mods_with_kernel-1]; mod++) {
487 		phys_bytes len = mod->mod_end-mod->mod_start+1;
488 		len = roundup(len, VM_PAGE_SIZE);
489 		mem_add_total_pages(len/VM_PAGE_SIZE);
490 	}
491 
492 	kern_dyn = kernel_boot_info.kernel_allocated_bytes_dynamic;
493 	kern_static = kernel_boot_info.kernel_allocated_bytes;
494 	kern_static = roundup(kern_static, VM_PAGE_SIZE);
495 	mem_add_total_pages((kern_dyn + kern_static)/VM_PAGE_SIZE);
496 
497 	/* Give these processes their own page table. */
498 	for (ip = &kernel_boot_info.boot_procs[0];
499 		ip < &kernel_boot_info.boot_procs[NR_BOOT_PROCS]; ip++) {
500 		struct vmproc *vmp;
501 
502 		if(ip->proc_nr < 0) continue;
503 
504 		assert(ip->start_addr);
505 
506 		/* VM has already been set up by the kernel and pt_init().
507 		 * Any other boot process is already in memory and is set up
508 		 * here.
509 		 */
510 		if(ip->proc_nr == VM_PROC_NR) continue;
511 
512 		vmp = init_proc(ip->proc_nr);
513 
514 		exec_bootproc(vmp, ip);
515 
516 		/* Free the file blob */
517 		assert(!(ip->start_addr % VM_PAGE_SIZE));
518 		ip->len = roundup(ip->len, VM_PAGE_SIZE);
519 		free_mem(ABS2CLICK(ip->start_addr), ABS2CLICK(ip->len));
520 	}
521 
522 	/* Set up table of calls. */
523 #define CALLMAP(code, func) { int _cmi;		      \
524 	_cmi=CALLNUMBER(code);				\
525 	assert(_cmi >= 0);					\
526 	assert(_cmi < NR_VM_CALLS);		\
527 	vm_calls[_cmi].vmc_func = (func); 	      \
528 	vm_calls[_cmi].vmc_name = #code;	      \
529 }
530 
531 	/* Set call table to 0. This invalidates all calls (clear
532 	 * vmc_func).
533 	 */
534 	memset(vm_calls, 0, sizeof(vm_calls));
535 
536 	/* Basic VM calls. */
537 	CALLMAP(VM_MMAP, do_mmap);
538 	CALLMAP(VM_MUNMAP, do_munmap);
539 	CALLMAP(VM_MAP_PHYS, do_map_phys);
540 	CALLMAP(VM_UNMAP_PHYS, do_munmap);
541 
542 	/* Calls from PM. */
543 	CALLMAP(VM_EXIT, do_exit);
544 	CALLMAP(VM_FORK, do_fork);
545 	CALLMAP(VM_BRK, do_brk);
546 	CALLMAP(VM_WILLEXIT, do_willexit);
547 
548 	CALLMAP(VM_PROCCTL, do_procctl_notrans);
549 
550 	/* Calls from VFS. */
551 	CALLMAP(VM_VFS_REPLY, do_vfs_reply);
552 	CALLMAP(VM_VFS_MMAP, do_vfs_mmap);
553 
554 	/* Calls from RS */
555 	CALLMAP(VM_RS_SET_PRIV, do_rs_set_priv);
556 	CALLMAP(VM_RS_PREPARE, do_rs_prepare);
557 	CALLMAP(VM_RS_UPDATE, do_rs_update);
558 	CALLMAP(VM_RS_MEMCTL, do_rs_memctl);
559 
560 	/* Generic calls. */
561 	CALLMAP(VM_REMAP, do_remap);
562 	CALLMAP(VM_REMAP_RO, do_remap);
563 	CALLMAP(VM_GETPHYS, do_get_phys);
564 	CALLMAP(VM_SHM_UNMAP, do_munmap);
565 	CALLMAP(VM_GETREF, do_get_refcount);
566 	CALLMAP(VM_INFO, do_info);
567 
568 	/* Cache blocks. */
569 	CALLMAP(VM_MAPCACHEPAGE, do_mapcache);
570 	CALLMAP(VM_SETCACHEPAGE, do_setcache);
571 	CALLMAP(VM_FORGETCACHEPAGE, do_forgetcache);
572 	CALLMAP(VM_CLEARCACHE, do_clearcache);
573 
574 	/* getrusage */
575 	CALLMAP(VM_GETRUSAGE, do_getrusage);
576 
577 	/* Mark VM instances. */
578 	num_vm_instances = 1;
579 	vmproc[VM_PROC_NR].vm_flags |= VMF_VM_INSTANCE;
580 
581 	/* Let SEF know about VM mmapped regions. */
582 	s = sef_llvm_add_special_mem_region((void*)VM_OWN_HEAPBASE,
583 	    VM_OWN_MMAPTOP-VM_OWN_HEAPBASE, "%MMAP_ALL");
584 	if(s < 0) {
585 	    printf("VM: st_add_special_mmapped_region failed %d\n", s);
586 	}
587 }
588 
589 /*===========================================================================*
590  *			      sef_cb_init_vm_multi_lu			     *
591  *===========================================================================*/
592 static int sef_cb_init_vm_multi_lu(int type, sef_init_info_t *info)
593 {
594 	message m;
595 	int i, r;
596 	ipc_filter_el_t ipc_filter[IPCF_MAX_ELEMENTS];
597 	int num_elements;
598 
599 	if(type != SEF_INIT_LU || !(info->flags & SEF_LU_MULTI)) {
600 	    return OK;
601 	}
602 
603 	/* If this is a multi-component update, we need to perform the update
604 	 * for services that need to be updated. In addition, make sure VM
605 	 * can only receive messages from RS, tasks, and other services being
606 	 * updated until RS specifically sends a special update cancel message.
607 	 * This is necessary to limit the number of VM state changes to support
608 	 * rollback. Allow only safe message types for safe updates.
609 	 */
610 	memset(ipc_filter, 0, sizeof(ipc_filter));
611 	num_elements = 0;
612 	ipc_filter[num_elements].flags = IPCF_MATCH_M_SOURCE;
613 	ipc_filter[num_elements++].m_source = RS_PROC_NR;
614 	if((r = sys_safecopyfrom(RS_PROC_NR, info->rproctab_gid, 0,
615 	    (vir_bytes) rprocpub, NR_SYS_PROCS*sizeof(struct rprocpub))) != OK) {
616 	    panic("sys_safecopyfrom failed: %d", r);
617 	}
618 	m.m_source = VM_PROC_NR;
619 	for(i=0;i < NR_SYS_PROCS;i++) {
620 	    if(rprocpub[i].in_use && rprocpub[i].old_endpoint != NONE) {
621 	        if(num_elements <= IPCF_MAX_ELEMENTS-5) {
622                     /* VM_BRK is needed for normal operation during the live
623                      * update.  VM_INFO is needed for state transfer in the
624                      * light of holes.  Pagefaults and handle-memory requests
625                      * are blocked intentionally, as handling these would
626                      * prevent VM from being able to roll back.
627                      */
628 	            ipc_filter[num_elements].flags = IPCF_MATCH_M_SOURCE | IPCF_MATCH_M_TYPE;
629 	            ipc_filter[num_elements].m_source = rprocpub[i].old_endpoint;
630 	            ipc_filter[num_elements++].m_type = VM_BRK;
631 	            ipc_filter[num_elements].flags = IPCF_MATCH_M_SOURCE | IPCF_MATCH_M_TYPE;
632 	            ipc_filter[num_elements].m_source = rprocpub[i].new_endpoint;
633 	            ipc_filter[num_elements++].m_type = VM_BRK;
634 	            ipc_filter[num_elements].flags = IPCF_MATCH_M_SOURCE | IPCF_MATCH_M_TYPE;
635 	            ipc_filter[num_elements].m_source = rprocpub[i].old_endpoint;
636 	            ipc_filter[num_elements++].m_type = VM_INFO;
637 	            ipc_filter[num_elements].flags = IPCF_MATCH_M_SOURCE | IPCF_MATCH_M_TYPE;
638 	            ipc_filter[num_elements].m_source = rprocpub[i].new_endpoint;
639 	            ipc_filter[num_elements++].m_type = VM_INFO;
640 	            /* Make sure we can talk to any RS instance. */
641 	            if(rprocpub[i].old_endpoint == RS_PROC_NR) {
642 	                ipc_filter[num_elements].flags = IPCF_MATCH_M_SOURCE;
643 	                ipc_filter[num_elements++].m_source = rprocpub[i].new_endpoint;
644 	            }
645 	            else if(rprocpub[i].new_endpoint == RS_PROC_NR) {
646 	                ipc_filter[num_elements].flags = IPCF_MATCH_M_SOURCE;
647 	                ipc_filter[num_elements++].m_source = rprocpub[i].old_endpoint;
648 	            }
649 	        }
650 	        else {
651 	            printf("sef_cb_init_vm_multi_lu: skipping ipc filter elements for %d and %d\n",
652 	                rprocpub[i].old_endpoint, rprocpub[i].new_endpoint);
653 	        }
654 	        if(rprocpub[i].sys_flags & SF_VM_UPDATE) {
655 	            m.m_lsys_vm_update.src = rprocpub[i].new_endpoint;
656 	            m.m_lsys_vm_update.dst = rprocpub[i].old_endpoint;
657 	            m.m_lsys_vm_update.flags = rprocpub[i].sys_flags;
658 	            r = do_rs_update(&m);
659 	            if(r != OK && r != SUSPEND) {
660 	                printf("sef_cb_init_vm_multi_lu: do_rs_update failed: %d", r);
661 	            }
662 	        }
663 	    }
664 	}
665 
666 	r = sys_statectl(SYS_STATE_ADD_IPC_WL_FILTER, ipc_filter, num_elements*sizeof(ipc_filter_el_t));
667 	if(r != OK) {
668 	    printf("sef_cb_init_vm_multi_lu: sys_statectl failed: %d", r);
669 	}
670 
671 	return OK;
672 }
673 
674 /*===========================================================================*
675  *			     sef_cb_init_lu_restart			     *
676  *===========================================================================*/
677 static int sef_cb_init_lu_restart(int type, sef_init_info_t *info)
678 {
679 /* Restart the vm server. */
680         int r;
681         endpoint_t old_e;
682         int old_p;
683         struct vmproc *old_vmp, *new_vmp;
684 
685         /* Perform default state transfer first. */
686         if(type == SEF_INIT_LU) {
687 		sef_setcb_init_restart(SEF_CB_INIT_RESTART_STATEFUL);
688 		r = SEF_CB_INIT_LU_DEFAULT(type, info);
689         }
690         else {
691 		r = SEF_CB_INIT_RESTART_STATEFUL(type, info);
692         }
693         if(r != OK) {
694 		return r;
695         }
696 
697 	/* Lookup slots for old process. */
698 	old_e = info->old_endpoint;
699 	if(vm_isokendpt(old_e, &old_p) != OK) {
700 		printf("sef_cb_init_lu_restart: bad old endpoint %d\n", old_e);
701 		return EINVAL;
702 	}
703 	old_vmp = &vmproc[old_p];
704 	new_vmp = &vmproc[VM_PROC_NR];
705 
706 	/* Swap proc slots and dynamic data. */
707 	if((r = swap_proc_slot(old_vmp, new_vmp)) != OK) {
708 		printf("sef_cb_init_lu_restart: swap_proc_slot failed\n");
709 		return r;
710 	}
711         if((r = swap_proc_dyn_data(old_vmp, new_vmp, 0)) != OK) {
712 		printf("sef_cb_init_lu_restart: swap_proc_dyn_data failed\n");
713 		return r;
714 	}
715 
716 	/* Rebind page tables. */
717 	pt_bind(&new_vmp->vm_pt, new_vmp);
718 	pt_bind(&old_vmp->vm_pt, old_vmp);
719 	pt_clearmapcache();
720 
721 	/* Adjust process references. */
722 	adjust_proc_refs();
723 
724 	/* Handle multi-component live update when necessary. */
725 	return sef_cb_init_vm_multi_lu(type, info);
726 }
727 
728 /*===========================================================================*
729  *                         sef_cb_signal_handler                             *
730  *===========================================================================*/
731 static void sef_cb_signal_handler(int signo)
732 {
733 	/* Check for known kernel signals, ignore anything else. */
734 	switch(signo) {
735 		/* There is a pending memory request from the kernel. */
736 		case SIGKMEM:
737 			do_memory();
738 		break;
739 	}
740 
741 	/* It can happen that we get stuck receiving signals
742 	 * without sef_receive() returning. We could need more memory
743 	 * though.
744 	 */
745 	if(missing_spares > 0) {
746 		alloc_cycle();	/* pagetable code wants to be called */
747 	}
748 
749 	pt_clearmapcache();
750 }
751 
752 /*===========================================================================*
753  *                             map_service                                   *
754  *===========================================================================*/
755 static int map_service(struct rprocpub *rpub)
756 {
757 /* Map a new service by initializing its call mask. */
758 	int r, proc_nr;
759 
760 	if ((r = vm_isokendpt(rpub->endpoint, &proc_nr)) != OK) {
761 		return r;
762 	}
763 
764 	/* Copy the call mask. */
765 	acl_set(&vmproc[proc_nr], rpub->vm_call_mask, !IS_RPUB_BOOT_USR(rpub));
766 
767 	return(OK);
768 }
769