xref: /minix/sys/arch/arm/include/arm32/pmap.h (revision 0a6a1f1d)
1 /*	$NetBSD: pmap.h,v 1.142 2015/09/09 07:37:36 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 1994,1995 Mark Brinicombe.
40  * All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Mark Brinicombe
53  * 4. The name of the author may not be used to endorse or promote products
54  *    derived from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 #ifndef	_ARM32_PMAP_H_
69 #define	_ARM32_PMAP_H_
70 
71 #ifdef _KERNEL
72 
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #include "opt_multiprocessor.h"
79 #endif
80 #include <arm/cpufunc.h>
81 #include <arm/locore.h>
82 #include <uvm/uvm_object.h>
83 #endif
84 
85 #ifdef ARM_MMU_EXTENDED
86 #define PMAP_TLB_MAX			1
87 #define PMAP_TLB_HWPAGEWALKER		1
88 #if PMAP_TLB_MAX > 1
89 #define PMAP_NEED_TLB_SHOOTDOWN		1
90 #endif
91 #define PMAP_TLB_FLUSH_ASID_ON_RESET	(arm_has_tlbiasid_p)
92 #define PMAP_TLB_NUM_PIDS		256
93 #define cpu_set_tlb_info(ci, ti)        ((void)((ci)->ci_tlb_info = (ti)))
94 #if PMAP_TLB_MAX > 1
95 #define cpu_tlb_info(ci)		((ci)->ci_tlb_info)
96 #else
97 #define cpu_tlb_info(ci)		(&pmap_tlb0_info)
98 #endif
99 #define pmap_md_tlb_asid_max()		(PMAP_TLB_NUM_PIDS - 1)
100 #include <uvm/pmap/tlb.h>
101 #include <uvm/pmap/pmap_tlb.h>
102 
103 /*
104  * If we have an EXTENDED MMU and the address space is split evenly between
105  * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
106  * user and kernel address spaces.
107  */
108 #if (KERNEL_BASE & 0x80000000) == 0
109 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
110 #endif
111 #endif  /* ARM_MMU_EXTENDED */
112 
113 /*
114  * a pmap describes a processes' 4GB virtual address space.  this
115  * virtual address space can be broken up into 4096 1MB regions which
116  * are described by L1 PTEs in the L1 table.
117  *
118  * There is a line drawn at KERNEL_BASE.  Everything below that line
119  * changes when the VM context is switched.  Everything above that line
120  * is the same no matter which VM context is running.  This is achieved
121  * by making the L1 PTEs for those slots above KERNEL_BASE reference
122  * kernel L2 tables.
123  *
124  * The basic layout of the virtual address space thus looks like this:
125  *
126  *	0xffffffff
127  *	.
128  *	.
129  *	.
130  *	KERNEL_BASE
131  *	--------------------
132  *	.
133  *	.
134  *	.
135  *	0x00000000
136  */
137 
138 /*
139  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
140  * A bucket size of 16 provides for 16MB of contiguous virtual address
141  * space per l2_dtable. Most processes will, therefore, require only two or
142  * three of these to map their whole working set.
143  */
144 #define	L2_BUCKET_XLOG2	(L1_S_SHIFT)
145 #define L2_BUCKET_XSIZE	(1 << L2_BUCKET_XLOG2)
146 #define	L2_BUCKET_LOG2	4
147 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
148 
149 /*
150  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
151  * of l2_dtable structures required to track all possible page descriptors
152  * mappable by an L1 translation table is given by the following constants:
153  */
154 #define	L2_LOG2		(32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
155 #define	L2_SIZE		(1 << L2_LOG2)
156 
157 /*
158  * tell MI code that the cache is virtually-indexed.
159  * ARMv6 is physically-tagged but all others are virtually-tagged.
160  */
161 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
162 #define PMAP_CACHE_VIPT
163 #else
164 #define PMAP_CACHE_VIVT
165 #endif
166 
167 #ifndef _LOCORE
168 
169 #ifndef PMAP_MMU_EXTENDED
170 struct l1_ttable;
171 struct l2_dtable;
172 
173 /*
174  * Track cache/tlb occupancy using the following structure
175  */
176 union pmap_cache_state {
177 	struct {
178 		union {
179 			uint8_t csu_cache_b[2];
180 			uint16_t csu_cache;
181 		} cs_cache_u;
182 
183 		union {
184 			uint8_t csu_tlb_b[2];
185 			uint16_t csu_tlb;
186 		} cs_tlb_u;
187 	} cs_s;
188 	uint32_t cs_all;
189 };
190 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
191 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
192 #define	cs_cache	cs_s.cs_cache_u.csu_cache
193 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
194 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
195 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
196 
197 /*
198  * Assigned to cs_all to force cacheops to work for a particular pmap
199  */
200 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
201 #endif /* !ARM_MMU_EXTENDED */
202 
203 /*
204  * This structure is used by machine-dependent code to describe
205  * static mappings of devices, created at bootstrap time.
206  */
207 struct pmap_devmap {
208 	vaddr_t		pd_va;		/* virtual address */
209 	paddr_t		pd_pa;		/* physical address */
210 	psize_t		pd_size;	/* size of region */
211 	vm_prot_t	pd_prot;	/* protection code */
212 	int		pd_cache;	/* cache attributes */
213 };
214 
215 /*
216  * The pmap structure itself
217  */
218 struct pmap {
219 	struct uvm_object	pm_obj;
220 	kmutex_t		pm_obj_lock;
221 #define	pm_lock pm_obj.vmobjlock
222 #ifndef ARM_HAS_VBAR
223 	pd_entry_t		*pm_pl1vec;
224 	pd_entry_t		pm_l1vec;
225 #endif
226 	struct l2_dtable	*pm_l2[L2_SIZE];
227 	struct pmap_statistics	pm_stats;
228 	LIST_ENTRY(pmap)	pm_list;
229 #ifdef ARM_MMU_EXTENDED
230 	pd_entry_t		*pm_l1;
231 	paddr_t			pm_l1_pa;
232 	bool			pm_remove_all;
233 #ifdef MULTIPROCESSOR
234 	kcpuset_t		*pm_onproc;
235 	kcpuset_t		*pm_active;
236 #if PMAP_TLB_MAX > 1
237 	u_int			pm_shootdown_pending;
238 #endif
239 #endif
240 	struct pmap_asid_info	pm_pai[PMAP_TLB_MAX];
241 #else
242 	struct l1_ttable	*pm_l1;
243 	union pmap_cache_state	pm_cstate;
244 	uint8_t			pm_domain;
245 	bool			pm_activated;
246 	bool			pm_remove_all;
247 #endif
248 };
249 
250 struct pmap_kernel {
251 	struct pmap		kernel_pmap;
252 };
253 
254 /*
255  * Physical / virtual address structure. In a number of places (particularly
256  * during bootstrapping) we need to keep track of the physical and virtual
257  * addresses of various pages
258  */
259 typedef struct pv_addr {
260 	SLIST_ENTRY(pv_addr) pv_list;
261 	paddr_t pv_pa;
262 	vaddr_t pv_va;
263 	vsize_t pv_size;
264 	uint8_t pv_cache;
265 	uint8_t pv_prot;
266 } pv_addr_t;
267 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
268 
269 extern pv_addrqh_t pmap_freeq;
270 extern pv_addr_t kernelstack;
271 extern pv_addr_t abtstack;
272 extern pv_addr_t fiqstack;
273 extern pv_addr_t irqstack;
274 extern pv_addr_t undstack;
275 extern pv_addr_t idlestack;
276 extern pv_addr_t systempage;
277 extern pv_addr_t kernel_l1pt;
278 
279 #ifdef ARM_MMU_EXTENDED
280 extern bool arm_has_tlbiasid_p;	/* also in <arm/locore.h> */
281 #endif
282 
283 /*
284  * Determine various modes for PTEs (user vs. kernel, cacheable
285  * vs. non-cacheable).
286  */
287 #define	PTE_KERNEL	0
288 #define	PTE_USER	1
289 #define	PTE_NOCACHE	0
290 #define	PTE_CACHE	1
291 #define	PTE_PAGETABLE	2
292 
293 /*
294  * Flags that indicate attributes of pages or mappings of pages.
295  *
296  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
297  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
298  * pv_entry's for each page.  They live in the same "namespace" so
299  * that we can clear multiple attributes at a time.
300  *
301  * Note the "non-cacheable" flag generally means the page has
302  * multiple mappings in a given address space.
303  */
304 #define	PVF_MOD		0x01		/* page is modified */
305 #define	PVF_REF		0x02		/* page is referenced */
306 #define	PVF_WIRED	0x04		/* mapping is wired */
307 #define	PVF_WRITE	0x08		/* mapping is writable */
308 #define	PVF_EXEC	0x10		/* mapping is executable */
309 #ifdef PMAP_CACHE_VIVT
310 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
311 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
312 #define	PVF_NC		(PVF_UNC|PVF_KNC)
313 #endif
314 #ifdef PMAP_CACHE_VIPT
315 #define	PVF_NC		0x20		/* mapping is 'kernel' non-cacheable */
316 #define	PVF_MULTCLR	0x40		/* mapping is multi-colored */
317 #endif
318 #define	PVF_COLORED	0x80		/* page has or had a color */
319 #define	PVF_KENTRY	0x0100		/* page entered via pmap_kenter_pa */
320 #define	PVF_KMPAGE	0x0200		/* page is used for kmem */
321 #define	PVF_DIRTY	0x0400		/* page may have dirty cache lines */
322 #define	PVF_KMOD	0x0800		/* unmanaged page is modified  */
323 #define	PVF_KWRITE	(PVF_KENTRY|PVF_WRITE)
324 #define	PVF_DMOD	(PVF_MOD|PVF_KMOD|PVF_KMPAGE)
325 
326 /*
327  * Commonly referenced structures
328  */
329 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
330 extern int		arm_poolpage_vmfreelist;
331 
332 /*
333  * Macros that we need to export
334  */
335 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
336 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
337 
338 #define	pmap_is_modified(pg)	\
339 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
340 #define	pmap_is_referenced(pg)	\
341 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
342 #define	pmap_is_page_colored_p(md)	\
343 	(((md)->pvh_attrs & PVF_COLORED) != 0)
344 
345 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
346 
347 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
348 u_int arm32_mmap_flags(paddr_t);
349 #define ARM32_MMAP_WRITECOMBINE		0x40000000
350 #define ARM32_MMAP_CACHEABLE		0x20000000
351 #define pmap_mmap_flags(ppn)		arm32_mmap_flags(ppn)
352 
353 #define	PMAP_PTE			0x10000000 /* kenter_pa */
354 
355 /*
356  * Functions that we need to export
357  */
358 void	pmap_procwr(struct proc *, vaddr_t, int);
359 void	pmap_remove_all(pmap_t);
360 bool	pmap_extract(pmap_t, vaddr_t, paddr_t *);
361 
362 #define	PMAP_NEED_PROCWR
363 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
364 #define	PMAP_ENABLE_PMAP_KMPAGE	/* enable the PMAP_KMPAGE flag */
365 
366 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
367 #define	PMAP_PREFER(hint, vap, sz, td)	pmap_prefer((hint), (vap), (td))
368 void	pmap_prefer(vaddr_t, vaddr_t *, int);
369 #endif
370 
371 void	pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
372 
373 /* Functions we use internally. */
374 #ifdef PMAP_STEAL_MEMORY
375 void	pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
376 void	pmap_boot_pageadd(pv_addr_t *);
377 vaddr_t	pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
378 #endif
379 void	pmap_bootstrap(vaddr_t, vaddr_t);
380 
381 void	pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
382 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
383 int	pmap_prefetchabt_fixup(void *);
384 bool	pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
385 bool	pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
386 struct pcb;
387 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
388 
389 void	pmap_debug(int);
390 void	pmap_postinit(void);
391 
392 void	vector_page_setprot(int);
393 
394 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
395 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
396 
397 /* Bootstrapping routines. */
398 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
399 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
400 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
401 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
402 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
403 void	pmap_devmap_register(const struct pmap_devmap *);
404 
405 /*
406  * Special page zero routine for use by the idle loop (no cache cleans).
407  */
408 bool	pmap_pageidlezero(paddr_t);
409 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
410 
411 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
412 /*
413  * For the pmap, this is a more useful way to map a direct mapped page.
414  * It returns either the direct-mapped VA or the VA supplied if it can't
415  * be direct mapped.
416  */
417 vaddr_t	pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
418 #endif
419 
420 /*
421  * used by dumpsys to record the PA of the L1 table
422  */
423 uint32_t pmap_kernel_L1_addr(void);
424 /*
425  * The current top of kernel VM
426  */
427 extern vaddr_t	pmap_curmaxkvaddr;
428 
429 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
430 /*
431  * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
432  */
433 extern vaddr_t pmap_directlimit;
434 #endif
435 
436 /*
437  * Useful macros and constants
438  */
439 
440 /* Virtual address to page table entry */
441 static inline pt_entry_t *
vtopte(vaddr_t va)442 vtopte(vaddr_t va)
443 {
444 	pd_entry_t *pdep;
445 	pt_entry_t *ptep;
446 
447 	KASSERT(trunc_page(va) == va);
448 
449 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
450 		return (NULL);
451 	return (ptep);
452 }
453 
454 /*
455  * Virtual address to physical address
456  */
457 static inline paddr_t
vtophys(vaddr_t va)458 vtophys(vaddr_t va)
459 {
460 	paddr_t pa;
461 
462 	if (pmap_extract(pmap_kernel(), va, &pa) == false)
463 		return (0);	/* XXXSCW: Panic? */
464 
465 	return (pa);
466 }
467 
468 /*
469  * The new pmap ensures that page-tables are always mapping Write-Thru.
470  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
471  * on every change.
472  *
473  * Unfortunately, not all CPUs have a write-through cache mode.  So we
474  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
475  * and if there is the chance for PTE syncs to be needed, we define
476  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
477  * the code.
478  */
479 extern int pmap_needs_pte_sync;
480 #if defined(_KERNEL_OPT)
481 /*
482  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
483  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
484  * this at compile time.
485  */
486 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
487 #define	PMAP_INCLUDE_PTE_SYNC
488 #if (ARM_MMU_V6 > 0)
489 #define	PMAP_NEEDS_PTE_SYNC	1
490 #elif (ARM_MMU_SA1 == 0)
491 #define	PMAP_NEEDS_PTE_SYNC	0
492 #endif
493 #endif
494 #endif /* _KERNEL_OPT */
495 
496 /*
497  * Provide a fallback in case we were not able to determine it at
498  * compile-time.
499  */
500 #ifndef PMAP_NEEDS_PTE_SYNC
501 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
502 #define	PMAP_INCLUDE_PTE_SYNC
503 #endif
504 
505 static inline void
pmap_ptesync(pt_entry_t * ptep,size_t cnt)506 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
507 {
508 	if (PMAP_NEEDS_PTE_SYNC) {
509 		cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
510 #ifdef SHEEVA_L2_CACHE
511 		cpu_sdcache_wb_range((vaddr_t)ptep, -1,
512 		    cnt * sizeof(pt_entry_t));
513 #endif
514 	}
515 	arm_dsb();
516 }
517 
518 #define	PDE_SYNC(pdep)			pmap_ptesync((pdep), 1)
519 #define	PDE_SYNC_RANGE(pdep, cnt)	pmap_ptesync((pdep), (cnt))
520 #define	PTE_SYNC(ptep)			pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
521 #define	PTE_SYNC_RANGE(ptep, cnt)	pmap_ptesync((ptep), (cnt))
522 
523 #define l1pte_valid_p(pde)	((pde) != 0)
524 #define l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
525 #define l1pte_supersection_p(pde) (l1pte_section_p(pde)	\
526 				&& ((pde) & L1_S_V6_SUPER) != 0)
527 #define l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
528 #define l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
529 #define l1pte_pa(pde)		((pde) & L1_C_ADDR_MASK)
530 #define l1pte_index(v)		((vaddr_t)(v) >> L1_S_SHIFT)
531 #define l1pte_pgindex(v)	l1pte_index((v) & L1_ADDR_BITS \
532 		& ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
533 
534 static inline void
l1pte_setone(pt_entry_t * pdep,pt_entry_t pde)535 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
536 {
537 	*pdep = pde;
538 }
539 
540 static inline void
l1pte_set(pt_entry_t * pdep,pt_entry_t pde)541 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
542 {
543 	*pdep = pde;
544 	if (l1pte_page_p(pde)) {
545 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
546 		for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
547 			pde += L2_T_SIZE;
548 			pdep[k] = pde;
549 		}
550 	} else if (l1pte_supersection_p(pde)) {
551 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
552 		for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
553 			pdep[k] = pde;
554 		}
555 	}
556 }
557 
558 #define l2pte_index(v)		((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
559 #define l2pte_valid_p(pte)	(((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
560 #define l2pte_pa(pte)		((pte) & L2_S_FRAME)
561 #define l1pte_lpage_p(pte)	(((pte) & L2_TYPE_MASK) == L2_TYPE_L)
562 #define l2pte_minidata_p(pte)	(((pte) & \
563 				 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
564 				 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
565 
566 static inline void
l2pte_set(pt_entry_t * ptep,pt_entry_t pte,pt_entry_t opte)567 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
568 {
569 	if (l1pte_lpage_p(pte)) {
570 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
571 		for (size_t k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
572 			*ptep++ = pte;
573 		}
574 	} else {
575 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
576 		for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
577 			KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
578 			*ptep++ = pte;
579 			pte += L2_S_SIZE;
580 			if (opte)
581 				opte += L2_S_SIZE;
582 		}
583 	}
584 }
585 
586 static inline void
l2pte_reset(pt_entry_t * ptep)587 l2pte_reset(pt_entry_t *ptep)
588 {
589 	KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
590 	*ptep = 0;
591 	for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
592 		ptep[k] = 0;
593 	}
594 }
595 
596 /* L1 and L2 page table macros */
597 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
598 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
599 #define pmap_pde_supersection(pde)	l1pte_supersection_p(*(pde))
600 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
601 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
602 
603 #define	pmap_pte_v(pte)		l2pte_valid_p(*(pte))
604 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
605 
606 /* Size of the kernel part of the L1 page table */
607 #define KERNEL_PD_SIZE	\
608 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
609 
610 void	bzero_page(vaddr_t);
611 void	bcopy_page(vaddr_t, vaddr_t);
612 
613 #ifdef FPU_VFP
614 void	bzero_page_vfp(vaddr_t);
615 void	bcopy_page_vfp(vaddr_t, vaddr_t);
616 #endif
617 
618 /************************* ARM MMU configuration *****************************/
619 
620 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
621 void	pmap_copy_page_generic(paddr_t, paddr_t);
622 void	pmap_zero_page_generic(paddr_t);
623 
624 void	pmap_pte_init_generic(void);
625 #if defined(CPU_ARM8)
626 void	pmap_pte_init_arm8(void);
627 #endif
628 #if defined(CPU_ARM9)
629 void	pmap_pte_init_arm9(void);
630 #endif /* CPU_ARM9 */
631 #if defined(CPU_ARM10)
632 void	pmap_pte_init_arm10(void);
633 #endif /* CPU_ARM10 */
634 #if defined(CPU_ARM11)	/* ARM_MMU_V6 */
635 void	pmap_pte_init_arm11(void);
636 #endif /* CPU_ARM11 */
637 #if defined(CPU_ARM11MPCORE)	/* ARM_MMU_V6 */
638 void	pmap_pte_init_arm11mpcore(void);
639 #endif
640 #if ARM_MMU_V7 == 1
641 void	pmap_pte_init_armv7(void);
642 #endif /* ARM_MMU_V7 */
643 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
644 
645 #if ARM_MMU_SA1 == 1
646 void	pmap_pte_init_sa1(void);
647 #endif /* ARM_MMU_SA1 == 1 */
648 
649 #if ARM_MMU_XSCALE == 1
650 void	pmap_copy_page_xscale(paddr_t, paddr_t);
651 void	pmap_zero_page_xscale(paddr_t);
652 
653 void	pmap_pte_init_xscale(void);
654 
655 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
656 
657 #define	PMAP_UAREA(va)		pmap_uarea(va)
658 void	pmap_uarea(vaddr_t);
659 #endif /* ARM_MMU_XSCALE == 1 */
660 
661 extern pt_entry_t		pte_l1_s_cache_mode;
662 extern pt_entry_t		pte_l1_s_cache_mask;
663 
664 extern pt_entry_t		pte_l2_l_cache_mode;
665 extern pt_entry_t		pte_l2_l_cache_mask;
666 
667 extern pt_entry_t		pte_l2_s_cache_mode;
668 extern pt_entry_t		pte_l2_s_cache_mask;
669 
670 extern pt_entry_t		pte_l1_s_cache_mode_pt;
671 extern pt_entry_t		pte_l2_l_cache_mode_pt;
672 extern pt_entry_t		pte_l2_s_cache_mode_pt;
673 
674 extern pt_entry_t		pte_l1_s_wc_mode;
675 extern pt_entry_t		pte_l2_l_wc_mode;
676 extern pt_entry_t		pte_l2_s_wc_mode;
677 
678 extern pt_entry_t		pte_l1_s_prot_u;
679 extern pt_entry_t		pte_l1_s_prot_w;
680 extern pt_entry_t		pte_l1_s_prot_ro;
681 extern pt_entry_t		pte_l1_s_prot_mask;
682 
683 extern pt_entry_t		pte_l2_s_prot_u;
684 extern pt_entry_t		pte_l2_s_prot_w;
685 extern pt_entry_t		pte_l2_s_prot_ro;
686 extern pt_entry_t		pte_l2_s_prot_mask;
687 
688 extern pt_entry_t		pte_l2_l_prot_u;
689 extern pt_entry_t		pte_l2_l_prot_w;
690 extern pt_entry_t		pte_l2_l_prot_ro;
691 extern pt_entry_t		pte_l2_l_prot_mask;
692 
693 extern pt_entry_t		pte_l1_ss_proto;
694 extern pt_entry_t		pte_l1_s_proto;
695 extern pt_entry_t		pte_l1_c_proto;
696 extern pt_entry_t		pte_l2_s_proto;
697 
698 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
699 extern void (*pmap_zero_page_func)(paddr_t);
700 
701 #endif /* !_LOCORE */
702 
703 /*****************************************************************************/
704 
705 #define	KERNEL_PID		0	/* The kernel uses ASID 0 */
706 
707 /*
708  * Definitions for MMU domains
709  */
710 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
711 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel pmap uses domain #0 */
712 #ifdef ARM_MMU_EXTENDED
713 #define	PMAP_DOMAIN_USER	1	/* User pmaps use domain #1 */
714 #endif
715 
716 /*
717  * These macros define the various bit masks in the PTE.
718  *
719  * We use these macros since we use different bits on different processor
720  * models.
721  */
722 #define	L1_S_PROT_U_generic	(L1_S_AP(AP_U))
723 #define	L1_S_PROT_W_generic	(L1_S_AP(AP_W))
724 #define	L1_S_PROT_RO_generic	(0)
725 #define	L1_S_PROT_MASK_generic	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
726 
727 #define	L1_S_PROT_U_xscale	(L1_S_AP(AP_U))
728 #define	L1_S_PROT_W_xscale	(L1_S_AP(AP_W))
729 #define	L1_S_PROT_RO_xscale	(0)
730 #define	L1_S_PROT_MASK_xscale	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
731 
732 #define	L1_S_PROT_U_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
733 #define	L1_S_PROT_W_armv6	(L1_S_AP(AP_W))
734 #define	L1_S_PROT_RO_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
735 #define	L1_S_PROT_MASK_armv6	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
736 
737 #define	L1_S_PROT_U_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
738 #define	L1_S_PROT_W_armv7	(L1_S_AP(AP_W))
739 #define	L1_S_PROT_RO_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
740 #define	L1_S_PROT_MASK_armv7	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
741 
742 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
743 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
744 #define	L1_S_CACHE_MASK_armv6	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
745 #define	L1_S_CACHE_MASK_armv6n	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
746 #define	L1_S_CACHE_MASK_armv7	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
747 
748 #define	L2_L_PROT_U_generic	(L2_AP(AP_U))
749 #define	L2_L_PROT_W_generic	(L2_AP(AP_W))
750 #define	L2_L_PROT_RO_generic	(0)
751 #define	L2_L_PROT_MASK_generic	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
752 
753 #define	L2_L_PROT_U_xscale	(L2_AP(AP_U))
754 #define	L2_L_PROT_W_xscale	(L2_AP(AP_W))
755 #define	L2_L_PROT_RO_xscale	(0)
756 #define	L2_L_PROT_MASK_xscale	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
757 
758 #define	L2_L_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
759 #define	L2_L_PROT_W_armv6n	(L2_AP0(AP_W))
760 #define	L2_L_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
761 #define	L2_L_PROT_MASK_armv6n	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
762 
763 #define	L2_L_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
764 #define	L2_L_PROT_W_armv7	(L2_AP0(AP_W))
765 #define	L2_L_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
766 #define	L2_L_PROT_MASK_armv7	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
767 
768 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
769 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
770 #define	L2_L_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
771 #define	L2_L_CACHE_MASK_armv6n	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
772 #define	L2_L_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
773 
774 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
775 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
776 #define	L2_S_PROT_RO_generic	(0)
777 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
778 
779 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
780 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
781 #define	L2_S_PROT_RO_xscale	(0)
782 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
783 
784 #define	L2_S_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
785 #define	L2_S_PROT_W_armv6n	(L2_AP0(AP_W))
786 #define	L2_S_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
787 #define	L2_S_PROT_MASK_armv6n	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
788 
789 #define	L2_S_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
790 #define	L2_S_PROT_W_armv7	(L2_AP0(AP_W))
791 #define	L2_S_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
792 #define	L2_S_PROT_MASK_armv7	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
793 
794 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
795 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
796 #define	L2_XS_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
797 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
798 #define	L2_S_CACHE_MASK_armv6c	L2_XS_CACHE_MASK_armv6
799 #else
800 #define	L2_S_CACHE_MASK_armv6c	L2_S_CACHE_MASK_generic
801 #endif
802 #define	L2_S_CACHE_MASK_armv6n	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
803 #define	L2_S_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
804 
805 
806 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
807 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
808 #define	L1_S_PROTO_armv6	(L1_TYPE_S)
809 #define	L1_S_PROTO_armv7	(L1_TYPE_S)
810 
811 #define	L1_SS_PROTO_generic	0
812 #define	L1_SS_PROTO_xscale	0
813 #define	L1_SS_PROTO_armv6	(L1_TYPE_S | L1_S_V6_SS)
814 #define	L1_SS_PROTO_armv7	(L1_TYPE_S | L1_S_V6_SS)
815 
816 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
817 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
818 #define	L1_C_PROTO_armv6	(L1_TYPE_C)
819 #define	L1_C_PROTO_armv7	(L1_TYPE_C)
820 
821 #define	L2_L_PROTO		(L2_TYPE_L)
822 
823 #define	L2_S_PROTO_generic	(L2_TYPE_S)
824 #define	L2_S_PROTO_xscale	(L2_TYPE_XS)
825 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
826 #define	L2_S_PROTO_armv6c	(L2_TYPE_XS)    /* XP=0, extended small page */
827 #else
828 #define	L2_S_PROTO_armv6c	(L2_TYPE_S)	/* XP=0, subpage APs */
829 #endif
830 #ifdef ARM_MMU_EXTENDED
831 #define	L2_S_PROTO_armv6n	(L2_TYPE_S|L2_XS_XN)
832 #else
833 #define	L2_S_PROTO_armv6n	(L2_TYPE_S)	/* with XP=1 */
834 #endif
835 #ifdef ARM_MMU_EXTENDED
836 #define	L2_S_PROTO_armv7	(L2_TYPE_S|L2_XS_XN)
837 #else
838 #define	L2_S_PROTO_armv7	(L2_TYPE_S)
839 #endif
840 
841 /*
842  * User-visible names for the ones that vary with MMU class.
843  */
844 
845 #if ARM_NMMUS > 1
846 /* More than one MMU class configured; use variables. */
847 #define	L1_S_PROT_U		pte_l1_s_prot_u
848 #define	L1_S_PROT_W		pte_l1_s_prot_w
849 #define	L1_S_PROT_RO		pte_l1_s_prot_ro
850 #define	L1_S_PROT_MASK		pte_l1_s_prot_mask
851 
852 #define	L2_S_PROT_U		pte_l2_s_prot_u
853 #define	L2_S_PROT_W		pte_l2_s_prot_w
854 #define	L2_S_PROT_RO		pte_l2_s_prot_ro
855 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
856 
857 #define	L2_L_PROT_U		pte_l2_l_prot_u
858 #define	L2_L_PROT_W		pte_l2_l_prot_w
859 #define	L2_L_PROT_RO		pte_l2_l_prot_ro
860 #define	L2_L_PROT_MASK		pte_l2_l_prot_mask
861 
862 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
863 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
864 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
865 
866 #define	L1_SS_PROTO		pte_l1_ss_proto
867 #define	L1_S_PROTO		pte_l1_s_proto
868 #define	L1_C_PROTO		pte_l1_c_proto
869 #define	L2_S_PROTO		pte_l2_s_proto
870 
871 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
872 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
873 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
874 #define	L1_S_PROT_U		L1_S_PROT_U_generic
875 #define	L1_S_PROT_W		L1_S_PROT_W_generic
876 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
877 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
878 
879 #define	L2_S_PROT_U		L2_S_PROT_U_generic
880 #define	L2_S_PROT_W		L2_S_PROT_W_generic
881 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
882 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
883 
884 #define	L2_L_PROT_U		L2_L_PROT_U_generic
885 #define	L2_L_PROT_W		L2_L_PROT_W_generic
886 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
887 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
888 
889 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
890 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
891 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
892 
893 #define	L1_SS_PROTO		L1_SS_PROTO_generic
894 #define	L1_S_PROTO		L1_S_PROTO_generic
895 #define	L1_C_PROTO		L1_C_PROTO_generic
896 #define	L2_S_PROTO		L2_S_PROTO_generic
897 
898 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
899 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
900 #elif ARM_MMU_V6N != 0
901 #define	L1_S_PROT_U		L1_S_PROT_U_armv6
902 #define	L1_S_PROT_W		L1_S_PROT_W_armv6
903 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv6
904 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv6
905 
906 #define	L2_S_PROT_U		L2_S_PROT_U_armv6n
907 #define	L2_S_PROT_W		L2_S_PROT_W_armv6n
908 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv6n
909 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv6n
910 
911 #define	L2_L_PROT_U		L2_L_PROT_U_armv6n
912 #define	L2_L_PROT_W		L2_L_PROT_W_armv6n
913 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv6n
914 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv6n
915 
916 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv6n
917 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv6n
918 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv6n
919 
920 /* These prototypes make writeable mappings, while the other MMU types
921  * make read-only mappings. */
922 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
923 #define	L1_S_PROTO		L1_S_PROTO_armv6
924 #define	L1_C_PROTO		L1_C_PROTO_armv6
925 #define	L2_S_PROTO		L2_S_PROTO_armv6n
926 
927 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
928 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
929 #elif ARM_MMU_V6C != 0
930 #define	L1_S_PROT_U		L1_S_PROT_U_generic
931 #define	L1_S_PROT_W		L1_S_PROT_W_generic
932 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
933 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
934 
935 #define	L2_S_PROT_U		L2_S_PROT_U_generic
936 #define	L2_S_PROT_W		L2_S_PROT_W_generic
937 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
938 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
939 
940 #define	L2_L_PROT_U		L2_L_PROT_U_generic
941 #define	L2_L_PROT_W		L2_L_PROT_W_generic
942 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
943 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
944 
945 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
946 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
947 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
948 
949 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
950 #define	L1_S_PROTO		L1_S_PROTO_generic
951 #define	L1_C_PROTO		L1_C_PROTO_generic
952 #define	L2_S_PROTO		L2_S_PROTO_generic
953 
954 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
955 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
956 #elif ARM_MMU_XSCALE == 1
957 #define	L1_S_PROT_U		L1_S_PROT_U_generic
958 #define	L1_S_PROT_W		L1_S_PROT_W_generic
959 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
960 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
961 
962 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
963 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
964 #define	L2_S_PROT_RO		L2_S_PROT_RO_xscale
965 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
966 
967 #define	L2_L_PROT_U		L2_L_PROT_U_generic
968 #define	L2_L_PROT_W		L2_L_PROT_W_generic
969 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
970 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
971 
972 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
973 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
974 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
975 
976 #define	L1_SS_PROTO		L1_SS_PROTO_xscale
977 #define	L1_S_PROTO		L1_S_PROTO_xscale
978 #define	L1_C_PROTO		L1_C_PROTO_xscale
979 #define	L2_S_PROTO		L2_S_PROTO_xscale
980 
981 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
982 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
983 #elif ARM_MMU_V7 == 1
984 #define	L1_S_PROT_U		L1_S_PROT_U_armv7
985 #define	L1_S_PROT_W		L1_S_PROT_W_armv7
986 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv7
987 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv7
988 
989 #define	L2_S_PROT_U		L2_S_PROT_U_armv7
990 #define	L2_S_PROT_W		L2_S_PROT_W_armv7
991 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv7
992 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv7
993 
994 #define	L2_L_PROT_U		L2_L_PROT_U_armv7
995 #define	L2_L_PROT_W		L2_L_PROT_W_armv7
996 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv7
997 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv7
998 
999 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv7
1000 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv7
1001 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv7
1002 
1003 /* These prototypes make writeable mappings, while the other MMU types
1004  * make read-only mappings. */
1005 #define	L1_SS_PROTO		L1_SS_PROTO_armv7
1006 #define	L1_S_PROTO		L1_S_PROTO_armv7
1007 #define	L1_C_PROTO		L1_C_PROTO_armv7
1008 #define	L2_S_PROTO		L2_S_PROTO_armv7
1009 
1010 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
1011 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
1012 #endif /* ARM_NMMUS > 1 */
1013 
1014 /*
1015  * Macros to set and query the write permission on page descriptors.
1016  */
1017 #define l1pte_set_writable(pte)	(((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1018 #define l1pte_set_readonly(pte)	(((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1019 #define l2pte_set_writable(pte)	(((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1020 #define l2pte_set_readonly(pte)	(((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1021 
1022 #define l2pte_writable_p(pte)	(((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1023 				 (L2_S_PROT_RO == 0 || \
1024 				  ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1025 
1026 /*
1027  * These macros return various bits based on kernel/user and protection.
1028  * Note that the compiler will usually fold these at compile time.
1029  */
1030 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
1031 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
1032 
1033 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
1034 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
1035 
1036 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
1037 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
1038 
1039 /*
1040  * Macros to test if a mapping is mappable with an L1 SuperSection,
1041  * L1 Section, or an L2 Large Page mapping.
1042  */
1043 #define	L1_SS_MAPPABLE_P(va, pa, size)					\
1044 	((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1045 
1046 #define	L1_S_MAPPABLE_P(va, pa, size)					\
1047 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1048 
1049 #define	L2_L_MAPPABLE_P(va, pa, size)					\
1050 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1051 
1052 #ifndef _LOCORE
1053 /*
1054  * Hooks for the pool allocator.
1055  */
1056 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
1057 extern paddr_t physical_start, physical_end;
1058 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1059 struct vm_page *arm_pmap_alloc_poolpage(int);
1060 #define	PMAP_ALLOC_POOLPAGE	arm_pmap_alloc_poolpage
1061 #endif
1062 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1063 vaddr_t	pmap_map_poolpage(paddr_t);
1064 paddr_t	pmap_unmap_poolpage(vaddr_t);
1065 #define	PMAP_MAP_POOLPAGE(pa)	pmap_map_poolpage(pa)
1066 #define PMAP_UNMAP_POOLPAGE(va)	pmap_unmap_poolpage(va)
1067 #endif
1068 
1069 /*
1070  * pmap-specific data store in the vm_page structure.
1071  */
1072 #define	__HAVE_VM_PAGE_MD
1073 struct vm_page_md {
1074 	SLIST_HEAD(,pv_entry) pvh_list;		/* pv_entry list */
1075 	int pvh_attrs;				/* page attributes */
1076 	u_int uro_mappings;
1077 	u_int urw_mappings;
1078 	union {
1079 		u_short s_mappings[2];	/* Assume kernel count <= 65535 */
1080 		u_int i_mappings;
1081 	} k_u;
1082 #define	kro_mappings	k_u.s_mappings[0]
1083 #define	krw_mappings	k_u.s_mappings[1]
1084 #define	k_mappings	k_u.i_mappings
1085 };
1086 
1087 /*
1088  * Set the default color of each page.
1089  */
1090 #if ARM_MMU_V6 > 0
1091 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1092 	(pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
1093 #else
1094 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1095 	(pg)->mdpage.pvh_attrs = 0
1096 #endif
1097 
1098 #define	VM_MDPAGE_INIT(pg)						\
1099 do {									\
1100 	SLIST_INIT(&(pg)->mdpage.pvh_list);				\
1101 	VM_MDPAGE_PVH_ATTRS_INIT(pg);					\
1102 	(pg)->mdpage.uro_mappings = 0;					\
1103 	(pg)->mdpage.urw_mappings = 0;					\
1104 	(pg)->mdpage.k_mappings = 0;					\
1105 } while (/*CONSTCOND*/0)
1106 
1107 #endif /* !_LOCORE */
1108 
1109 #endif /* _KERNEL */
1110 
1111 #endif	/* _ARM32_PMAP_H_ */
1112