1 /* $NetBSD: udf_strat_sequential.c,v 1.14 2015/10/06 08:57:34 hannken Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 #include <sys/cdefs.h> 30 #ifndef lint 31 __KERNEL_RCSID(0, "$NetBSD: udf_strat_sequential.c,v 1.14 2015/10/06 08:57:34 hannken Exp $"); 32 #endif /* not lint */ 33 34 35 #if defined(_KERNEL_OPT) 36 #include "opt_compat_netbsd.h" 37 #endif 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/sysctl.h> 42 #include <sys/namei.h> 43 #include <sys/proc.h> 44 #include <sys/kernel.h> 45 #include <sys/vnode.h> 46 #include <miscfs/genfs/genfs_node.h> 47 #include <sys/mount.h> 48 #include <sys/buf.h> 49 #include <sys/file.h> 50 #include <sys/device.h> 51 #include <sys/disklabel.h> 52 #include <sys/ioctl.h> 53 #include <sys/malloc.h> 54 #include <sys/dirent.h> 55 #include <sys/stat.h> 56 #include <sys/conf.h> 57 #include <sys/kauth.h> 58 #include <sys/kthread.h> 59 #include <dev/clock_subr.h> 60 61 #include <fs/udf/ecma167-udf.h> 62 #include <fs/udf/udf_mount.h> 63 64 #include "udf.h" 65 #include "udf_subr.h" 66 #include "udf_bswap.h" 67 68 69 #define VTOI(vnode) ((struct udf_node *) vnode->v_data) 70 #define PRIV(ump) ((struct strat_private *) ump->strategy_private) 71 72 /* --------------------------------------------------------------------- */ 73 74 /* BUFQ's */ 75 #define UDF_SHED_MAX 3 76 77 #define UDF_SHED_READING 0 78 #define UDF_SHED_WRITING 1 79 #define UDF_SHED_SEQWRITING 2 80 81 struct strat_private { 82 struct pool desc_pool; /* node descriptors */ 83 84 lwp_t *queue_lwp; 85 kcondvar_t discstrat_cv; /* to wait on */ 86 kmutex_t discstrat_mutex; /* disc strategy */ 87 88 int run_thread; /* thread control */ 89 int cur_queue; 90 91 struct disk_strategy old_strategy_setting; 92 struct bufq_state *queues[UDF_SHED_MAX]; 93 struct timespec last_queued[UDF_SHED_MAX]; 94 }; 95 96 97 /* --------------------------------------------------------------------- */ 98 99 static void 100 udf_wr_nodedscr_callback(struct buf *buf) 101 { 102 struct udf_node *udf_node; 103 104 KASSERT(buf); 105 KASSERT(buf->b_data); 106 107 /* called when write action is done */ 108 DPRINTF(WRITE, ("udf_wr_nodedscr_callback(): node written out\n")); 109 110 udf_node = VTOI(buf->b_vp); 111 if (udf_node == NULL) { 112 putiobuf(buf); 113 printf("udf_wr_node_callback: NULL node?\n"); 114 return; 115 } 116 117 /* XXX right flags to mark dirty again on error? */ 118 if (buf->b_error) { 119 udf_node->i_flags |= IN_MODIFIED | IN_ACCESSED; 120 /* XXX TODO reshedule on error */ 121 } 122 123 /* decrement outstanding_nodedscr */ 124 KASSERT(udf_node->outstanding_nodedscr >= 1); 125 udf_node->outstanding_nodedscr--; 126 if (udf_node->outstanding_nodedscr == 0) { 127 /* first unlock the node */ 128 UDF_UNLOCK_NODE(udf_node, 0); 129 wakeup(&udf_node->outstanding_nodedscr); 130 } 131 132 putiobuf(buf); 133 } 134 135 /* --------------------------------------------------------------------- */ 136 137 static int 138 udf_create_logvol_dscr_seq(struct udf_strat_args *args) 139 { 140 union dscrptr **dscrptr = &args->dscr; 141 struct udf_mount *ump = args->ump; 142 struct strat_private *priv = PRIV(ump); 143 uint32_t lb_size; 144 145 lb_size = udf_rw32(ump->logical_vol->lb_size); 146 *dscrptr = pool_get(&priv->desc_pool, PR_WAITOK); 147 memset(*dscrptr, 0, lb_size); 148 149 return 0; 150 } 151 152 153 static void 154 udf_free_logvol_dscr_seq(struct udf_strat_args *args) 155 { 156 union dscrptr *dscr = args->dscr; 157 struct udf_mount *ump = args->ump; 158 struct strat_private *priv = PRIV(ump); 159 160 pool_put(&priv->desc_pool, dscr); 161 } 162 163 164 static int 165 udf_read_logvol_dscr_seq(struct udf_strat_args *args) 166 { 167 union dscrptr **dscrptr = &args->dscr; 168 union dscrptr *tmpdscr; 169 struct udf_mount *ump = args->ump; 170 struct long_ad *icb = args->icb; 171 struct strat_private *priv = PRIV(ump); 172 uint32_t lb_size; 173 uint32_t sector, dummy; 174 int error; 175 176 lb_size = udf_rw32(ump->logical_vol->lb_size); 177 178 error = udf_translate_vtop(ump, icb, §or, &dummy); 179 if (error) 180 return error; 181 182 /* try to read in fe/efe */ 183 error = udf_read_phys_dscr(ump, sector, M_UDFTEMP, &tmpdscr); 184 if (error) 185 return error; 186 187 *dscrptr = pool_get(&priv->desc_pool, PR_WAITOK); 188 memcpy(*dscrptr, tmpdscr, lb_size); 189 free(tmpdscr, M_UDFTEMP); 190 191 return 0; 192 } 193 194 195 static int 196 udf_write_logvol_dscr_seq(struct udf_strat_args *args) 197 { 198 union dscrptr *dscr = args->dscr; 199 struct udf_mount *ump = args->ump; 200 struct udf_node *udf_node = args->udf_node; 201 struct long_ad *icb = args->icb; 202 int waitfor = args->waitfor; 203 uint32_t logsectornr, sectornr, dummy; 204 int error, vpart; 205 206 /* 207 * we have to decide if we write it out sequential or at its fixed 208 * position by examining the partition its (to be) written on. 209 */ 210 vpart = udf_rw16(udf_node->loc.loc.part_num); 211 logsectornr = udf_rw32(icb->loc.lb_num); 212 sectornr = 0; 213 if (ump->vtop_tp[vpart] != UDF_VTOP_TYPE_VIRT) { 214 error = udf_translate_vtop(ump, icb, §ornr, &dummy); 215 if (error) 216 goto out; 217 } 218 219 if (waitfor) { 220 DPRINTF(WRITE, ("udf_write_logvol_dscr: sync write\n")); 221 222 error = udf_write_phys_dscr_sync(ump, udf_node, UDF_C_NODE, 223 dscr, sectornr, logsectornr); 224 } else { 225 DPRINTF(WRITE, ("udf_write_logvol_dscr: no wait, async write\n")); 226 227 error = udf_write_phys_dscr_async(ump, udf_node, UDF_C_NODE, 228 dscr, sectornr, logsectornr, udf_wr_nodedscr_callback); 229 /* will be UNLOCKED in call back */ 230 return error; 231 } 232 out: 233 udf_node->outstanding_nodedscr--; 234 if (udf_node->outstanding_nodedscr == 0) { 235 UDF_UNLOCK_NODE(udf_node, 0); 236 wakeup(&udf_node->outstanding_nodedscr); 237 } 238 239 return error; 240 } 241 242 /* --------------------------------------------------------------------- */ 243 244 /* 245 * Main file-system specific sheduler. Due to the nature of optical media 246 * sheduling can't be performed in the traditional way. Most OS 247 * implementations i've seen thus read or write a file atomically giving all 248 * kinds of side effects. 249 * 250 * This implementation uses a kernel thread to shedule the queued requests in 251 * such a way that is semi-optimal for optical media; this means aproximately 252 * (R*|(Wr*|Ws*))* since switching between reading and writing is expensive in 253 * time. 254 */ 255 256 static void 257 udf_queuebuf_seq(struct udf_strat_args *args) 258 { 259 struct udf_mount *ump = args->ump; 260 struct buf *nestbuf = args->nestbuf; 261 struct strat_private *priv = PRIV(ump); 262 int queue; 263 int what; 264 265 KASSERT(ump); 266 KASSERT(nestbuf); 267 KASSERT(nestbuf->b_iodone == nestiobuf_iodone); 268 269 what = nestbuf->b_udf_c_type; 270 queue = UDF_SHED_READING; 271 if ((nestbuf->b_flags & B_READ) == 0) { 272 /* writing */ 273 queue = UDF_SHED_SEQWRITING; 274 if (what == UDF_C_ABSOLUTE) 275 queue = UDF_SHED_WRITING; 276 } 277 278 /* use our own sheduler lists for more complex sheduling */ 279 mutex_enter(&priv->discstrat_mutex); 280 bufq_put(priv->queues[queue], nestbuf); 281 vfs_timestamp(&priv->last_queued[queue]); 282 mutex_exit(&priv->discstrat_mutex); 283 284 /* signal our thread that there might be something to do */ 285 cv_signal(&priv->discstrat_cv); 286 } 287 288 /* --------------------------------------------------------------------- */ 289 290 /* TODO convert to lb_size */ 291 static void 292 udf_VAT_mapping_update(struct udf_mount *ump, struct buf *buf, uint32_t lb_map) 293 { 294 union dscrptr *fdscr = (union dscrptr *) buf->b_data; 295 struct vnode *vp = buf->b_vp; 296 struct udf_node *udf_node = VTOI(vp); 297 uint32_t lb_num; 298 uint32_t udf_rw32_lbmap; 299 int c_type = buf->b_udf_c_type; 300 int error; 301 302 /* only interested when we're using a VAT */ 303 KASSERT(ump->vat_node); 304 KASSERT(ump->vtop_alloc[ump->node_part] == UDF_ALLOC_VAT); 305 306 /* only nodes are recorded in the VAT */ 307 /* NOTE: and the fileset descriptor (FIXME ?) */ 308 if (c_type != UDF_C_NODE) 309 return; 310 311 udf_rw32_lbmap = udf_rw32(lb_map); 312 313 /* if we're the VAT itself, only update our assigned sector number */ 314 if (udf_node == ump->vat_node) { 315 fdscr->tag.tag_loc = udf_rw32_lbmap; 316 udf_validate_tag_sum(fdscr); 317 DPRINTF(TRANSLATE, ("VAT assigned to sector %u\n", 318 udf_rw32(udf_rw32_lbmap))); 319 /* no use mapping the VAT node in the VAT */ 320 return; 321 } 322 323 /* record new position in VAT file */ 324 lb_num = udf_rw32(fdscr->tag.tag_loc); 325 326 /* lb_num = udf_rw32(udf_node->write_loc.loc.lb_num); */ 327 328 DPRINTF(TRANSLATE, ("VAT entry change (log %u -> phys %u)\n", 329 lb_num, lb_map)); 330 331 /* VAT should be the longer than this write, can't go wrong */ 332 KASSERT(lb_num <= ump->vat_entries); 333 334 mutex_enter(&ump->allocate_mutex); 335 error = udf_vat_write(ump->vat_node, 336 (uint8_t *) &udf_rw32_lbmap, 4, 337 ump->vat_offset + lb_num * 4); 338 mutex_exit(&ump->allocate_mutex); 339 340 if (error) 341 panic( "udf_VAT_mapping_update: HELP! i couldn't " 342 "write in the VAT file ?\n"); 343 } 344 345 346 static void 347 udf_issue_buf(struct udf_mount *ump, int queue, struct buf *buf) 348 { 349 union dscrptr *dscr; 350 struct long_ad *node_ad_cpy; 351 struct part_desc *pdesc; 352 uint64_t *lmapping, *lmappos; 353 uint32_t sectornr, bpos; 354 uint32_t ptov; 355 uint16_t vpart_num; 356 uint8_t *fidblk; 357 int sector_size = ump->discinfo.sector_size; 358 int blks = sector_size / DEV_BSIZE; 359 int len, buf_len; 360 361 /* if reading, just pass to the device's STRATEGY */ 362 if (queue == UDF_SHED_READING) { 363 DPRINTF(SHEDULE, ("\nudf_issue_buf READ %p : sector %d type %d," 364 "b_resid %d, b_bcount %d, b_bufsize %d\n", 365 buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type, 366 buf->b_resid, buf->b_bcount, buf->b_bufsize)); 367 VOP_STRATEGY(ump->devvp, buf); 368 return; 369 } 370 371 if (queue == UDF_SHED_WRITING) { 372 DPRINTF(SHEDULE, ("\nudf_issue_buf WRITE %p : sector %d " 373 "type %d, b_resid %d, b_bcount %d, b_bufsize %d\n", 374 buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type, 375 buf->b_resid, buf->b_bcount, buf->b_bufsize)); 376 KASSERT(buf->b_udf_c_type == UDF_C_ABSOLUTE); 377 378 // udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type); 379 VOP_STRATEGY(ump->devvp, buf); 380 return; 381 } 382 383 KASSERT(queue == UDF_SHED_SEQWRITING); 384 DPRINTF(SHEDULE, ("\nudf_issue_buf SEQWRITE %p : sector XXXX " 385 "type %d, b_resid %d, b_bcount %d, b_bufsize %d\n", 386 buf, buf->b_udf_c_type, buf->b_resid, buf->b_bcount, 387 buf->b_bufsize)); 388 389 /* 390 * Buffers should not have been allocated to disc addresses yet on 391 * this queue. Note that a buffer can get multiple extents allocated. 392 * 393 * lmapping contains lb_num relative to base partition. 394 */ 395 lmapping = ump->la_lmapping; 396 node_ad_cpy = ump->la_node_ad_cpy; 397 398 /* logically allocate buf and map it in the file */ 399 udf_late_allocate_buf(ump, buf, lmapping, node_ad_cpy, &vpart_num); 400 401 /* 402 * NOTE We are using the knowledge here that sequential media will 403 * always be mapped linearly. Thus no use to explicitly translate the 404 * lmapping list. 405 */ 406 407 /* calculate offset from physical base partition */ 408 pdesc = ump->partitions[ump->vtop[vpart_num]]; 409 ptov = udf_rw32(pdesc->start_loc); 410 411 /* set buffers blkno to the physical block number */ 412 buf->b_blkno = (*lmapping + ptov) * blks; 413 414 /* fixate floating descriptors */ 415 if (buf->b_udf_c_type == UDF_C_FLOAT_DSCR) { 416 /* set our tag location to the absolute position */ 417 dscr = (union dscrptr *) buf->b_data; 418 dscr->tag.tag_loc = udf_rw32(*lmapping + ptov); 419 udf_validate_tag_and_crc_sums(dscr); 420 } 421 422 /* update mapping in the VAT */ 423 if (buf->b_udf_c_type == UDF_C_NODE) { 424 udf_VAT_mapping_update(ump, buf, *lmapping); 425 udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type); 426 } 427 428 /* if we have FIDs, fixup using the new allocation table */ 429 if (buf->b_udf_c_type == UDF_C_FIDS) { 430 buf_len = buf->b_bcount; 431 bpos = 0; 432 lmappos = lmapping; 433 while (buf_len) { 434 sectornr = *lmappos++; 435 len = MIN(buf_len, sector_size); 436 fidblk = (uint8_t *) buf->b_data + bpos; 437 udf_fixup_fid_block(fidblk, sector_size, 438 0, len, sectornr); 439 bpos += len; 440 buf_len -= len; 441 } 442 } 443 444 VOP_STRATEGY(ump->devvp, buf); 445 } 446 447 448 static void 449 udf_doshedule(struct udf_mount *ump) 450 { 451 struct buf *buf; 452 struct timespec now, *last; 453 struct strat_private *priv = PRIV(ump); 454 void (*b_callback)(struct buf *); 455 int new_queue; 456 int error; 457 458 buf = bufq_get(priv->queues[priv->cur_queue]); 459 if (buf) { 460 /* transfer from the current queue to the device queue */ 461 mutex_exit(&priv->discstrat_mutex); 462 463 /* transform buffer to synchronous; XXX needed? */ 464 b_callback = buf->b_iodone; 465 buf->b_iodone = NULL; 466 CLR(buf->b_flags, B_ASYNC); 467 468 /* issue and wait on completion */ 469 udf_issue_buf(ump, priv->cur_queue, buf); 470 biowait(buf); 471 472 mutex_enter(&priv->discstrat_mutex); 473 474 /* if there is an error, repair this error, otherwise propagate */ 475 if (buf->b_error && ((buf->b_flags & B_READ) == 0)) { 476 /* check what we need to do */ 477 panic("UDF write error, can't handle yet!\n"); 478 } 479 480 /* propagate result to higher layers */ 481 if (b_callback) { 482 buf->b_iodone = b_callback; 483 (*buf->b_iodone)(buf); 484 } 485 486 return; 487 } 488 489 /* Check if we're idling in this state */ 490 vfs_timestamp(&now); 491 last = &priv->last_queued[priv->cur_queue]; 492 if (ump->discinfo.mmc_class == MMC_CLASS_CD) { 493 /* dont switch too fast for CD media; its expensive in time */ 494 if (now.tv_sec - last->tv_sec < 3) 495 return; 496 } 497 498 /* check if we can/should switch */ 499 new_queue = priv->cur_queue; 500 501 if (bufq_peek(priv->queues[UDF_SHED_READING])) 502 new_queue = UDF_SHED_READING; 503 if (bufq_peek(priv->queues[UDF_SHED_WRITING])) /* only for unmount */ 504 new_queue = UDF_SHED_WRITING; 505 if (bufq_peek(priv->queues[UDF_SHED_SEQWRITING])) 506 new_queue = UDF_SHED_SEQWRITING; 507 if (priv->cur_queue == UDF_SHED_READING) { 508 if (new_queue == UDF_SHED_SEQWRITING) { 509 /* TODO use flag to signal if this is needed */ 510 mutex_exit(&priv->discstrat_mutex); 511 512 /* update trackinfo for data and metadata */ 513 error = udf_update_trackinfo(ump, 514 &ump->data_track); 515 assert(error == 0); 516 error = udf_update_trackinfo(ump, 517 &ump->metadata_track); 518 assert(error == 0); 519 mutex_enter(&priv->discstrat_mutex); 520 __USE(error); 521 } 522 } 523 524 if (new_queue != priv->cur_queue) { 525 DPRINTF(SHEDULE, ("switching from %d to %d\n", 526 priv->cur_queue, new_queue)); 527 } 528 529 priv->cur_queue = new_queue; 530 } 531 532 533 static void 534 udf_discstrat_thread(void *arg) 535 { 536 struct udf_mount *ump = (struct udf_mount *) arg; 537 struct strat_private *priv = PRIV(ump); 538 int empty; 539 540 empty = 1; 541 mutex_enter(&priv->discstrat_mutex); 542 while (priv->run_thread || !empty) { 543 /* process the current selected queue */ 544 udf_doshedule(ump); 545 empty = (bufq_peek(priv->queues[UDF_SHED_READING]) == NULL); 546 empty &= (bufq_peek(priv->queues[UDF_SHED_WRITING]) == NULL); 547 empty &= (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]) == NULL); 548 549 /* wait for more if needed */ 550 if (empty) 551 cv_timedwait(&priv->discstrat_cv, 552 &priv->discstrat_mutex, hz/8); 553 } 554 mutex_exit(&priv->discstrat_mutex); 555 556 wakeup(&priv->run_thread); 557 kthread_exit(0); 558 /* not reached */ 559 } 560 561 /* --------------------------------------------------------------------- */ 562 563 static void 564 udf_discstrat_init_seq(struct udf_strat_args *args) 565 { 566 struct udf_mount *ump = args->ump; 567 struct strat_private *priv = PRIV(ump); 568 struct disk_strategy dkstrat; 569 uint32_t lb_size; 570 571 KASSERT(ump); 572 KASSERT(ump->logical_vol); 573 KASSERT(priv == NULL); 574 575 lb_size = udf_rw32(ump->logical_vol->lb_size); 576 KASSERT(lb_size > 0); 577 578 /* initialise our memory space */ 579 ump->strategy_private = malloc(sizeof(struct strat_private), 580 M_UDFTEMP, M_WAITOK); 581 priv = ump->strategy_private; 582 memset(priv, 0 , sizeof(struct strat_private)); 583 584 /* initialise locks */ 585 cv_init(&priv->discstrat_cv, "udfstrat"); 586 mutex_init(&priv->discstrat_mutex, MUTEX_DEFAULT, IPL_NONE); 587 588 /* 589 * Initialise pool for descriptors associated with nodes. This is done 590 * in lb_size units though currently lb_size is dictated to be 591 * sector_size. 592 */ 593 pool_init(&priv->desc_pool, lb_size, 0, 0, 0, "udf_desc_pool", NULL, 594 IPL_NONE); 595 596 /* 597 * remember old device strategy method and explicit set method 598 * `discsort' since we have our own more complex strategy that is not 599 * implementable on the CD device and other strategies will get in the 600 * way. 601 */ 602 memset(&priv->old_strategy_setting, 0, 603 sizeof(struct disk_strategy)); 604 VOP_IOCTL(ump->devvp, DIOCGSTRATEGY, &priv->old_strategy_setting, 605 FREAD | FKIOCTL, NOCRED); 606 memset(&dkstrat, 0, sizeof(struct disk_strategy)); 607 strcpy(dkstrat.dks_name, "discsort"); 608 VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &dkstrat, FWRITE | FKIOCTL, 609 NOCRED); 610 611 /* initialise our internal sheduler */ 612 priv->cur_queue = UDF_SHED_READING; 613 bufq_alloc(&priv->queues[UDF_SHED_READING], "disksort", 614 BUFQ_SORT_RAWBLOCK); 615 bufq_alloc(&priv->queues[UDF_SHED_WRITING], "disksort", 616 BUFQ_SORT_RAWBLOCK); 617 bufq_alloc(&priv->queues[UDF_SHED_SEQWRITING], "fcfs", 0); 618 vfs_timestamp(&priv->last_queued[UDF_SHED_READING]); 619 vfs_timestamp(&priv->last_queued[UDF_SHED_WRITING]); 620 vfs_timestamp(&priv->last_queued[UDF_SHED_SEQWRITING]); 621 622 /* create our disk strategy thread */ 623 priv->run_thread = 1; 624 if (kthread_create(PRI_NONE, 0 /* KTHREAD_MPSAFE*/, NULL /* cpu_info*/, 625 udf_discstrat_thread, ump, &priv->queue_lwp, 626 "%s", "udf_rw")) { 627 panic("fork udf_rw"); 628 } 629 } 630 631 632 static void 633 udf_discstrat_finish_seq(struct udf_strat_args *args) 634 { 635 struct udf_mount *ump = args->ump; 636 struct strat_private *priv = PRIV(ump); 637 int error; 638 639 if (ump == NULL) 640 return; 641 642 /* stop our sheduling thread */ 643 KASSERT(priv->run_thread == 1); 644 priv->run_thread = 0; 645 wakeup(priv->queue_lwp); 646 do { 647 error = tsleep(&priv->run_thread, PRIBIO+1, 648 "udfshedfin", hz); 649 } while (error); 650 /* kthread should be finished now */ 651 652 /* set back old device strategy method */ 653 VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &priv->old_strategy_setting, 654 FWRITE, NOCRED); 655 656 /* destroy our pool */ 657 pool_destroy(&priv->desc_pool); 658 659 mutex_destroy(&priv->discstrat_mutex); 660 cv_destroy(&priv->discstrat_cv); 661 662 /* free our private space */ 663 free(ump->strategy_private, M_UDFTEMP); 664 ump->strategy_private = NULL; 665 } 666 667 /* --------------------------------------------------------------------- */ 668 669 struct udf_strategy udf_strat_sequential = 670 { 671 udf_create_logvol_dscr_seq, 672 udf_free_logvol_dscr_seq, 673 udf_read_logvol_dscr_seq, 674 udf_write_logvol_dscr_seq, 675 udf_queuebuf_seq, 676 udf_discstrat_init_seq, 677 udf_discstrat_finish_seq 678 }; 679 680 681