xref: /minix/sys/fs/udf/udf_strat_sequential.c (revision ebfedea0)
1 /* $NetBSD: udf_strat_sequential.c,v 1.12 2013/10/18 19:56:55 christos Exp $ */
2 
3 /*
4  * Copyright (c) 2006, 2008 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 #include <sys/cdefs.h>
30 #ifndef lint
31 __KERNEL_RCSID(0, "$NetBSD: udf_strat_sequential.c,v 1.12 2013/10/18 19:56:55 christos Exp $");
32 #endif /* not lint */
33 
34 
35 #if defined(_KERNEL_OPT)
36 #include "opt_compat_netbsd.h"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/namei.h>
43 #include <sys/proc.h>
44 #include <sys/kernel.h>
45 #include <sys/vnode.h>
46 #include <miscfs/genfs/genfs_node.h>
47 #include <sys/mount.h>
48 #include <sys/buf.h>
49 #include <sys/file.h>
50 #include <sys/device.h>
51 #include <sys/disklabel.h>
52 #include <sys/ioctl.h>
53 #include <sys/malloc.h>
54 #include <sys/dirent.h>
55 #include <sys/stat.h>
56 #include <sys/conf.h>
57 #include <sys/kauth.h>
58 #include <sys/kthread.h>
59 #include <dev/clock_subr.h>
60 
61 #include <fs/udf/ecma167-udf.h>
62 #include <fs/udf/udf_mount.h>
63 
64 #include "udf.h"
65 #include "udf_subr.h"
66 #include "udf_bswap.h"
67 
68 
69 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
70 #define PRIV(ump) ((struct strat_private *) ump->strategy_private)
71 
72 /* --------------------------------------------------------------------- */
73 
74 /* BUFQ's */
75 #define UDF_SHED_MAX 3
76 
77 #define UDF_SHED_READING	0
78 #define UDF_SHED_WRITING	1
79 #define UDF_SHED_SEQWRITING	2
80 
81 struct strat_private {
82 	struct pool		 desc_pool;	 	/* node descriptors */
83 
84 	lwp_t			*queue_lwp;
85 	kcondvar_t		 discstrat_cv;		/* to wait on       */
86 	kmutex_t		 discstrat_mutex;	/* disc strategy    */
87 
88 	int			 run_thread;		/* thread control */
89 	int			 cur_queue;
90 
91 	struct disk_strategy	 old_strategy_setting;
92 	struct bufq_state	*queues[UDF_SHED_MAX];
93 	struct timespec		 last_queued[UDF_SHED_MAX];
94 };
95 
96 
97 /* --------------------------------------------------------------------- */
98 
99 static void
100 udf_wr_nodedscr_callback(struct buf *buf)
101 {
102 	struct udf_node *udf_node;
103 
104 	KASSERT(buf);
105 	KASSERT(buf->b_data);
106 
107 	/* called when write action is done */
108 	DPRINTF(WRITE, ("udf_wr_nodedscr_callback(): node written out\n"));
109 
110 	udf_node = VTOI(buf->b_vp);
111 	if (udf_node == NULL) {
112 		putiobuf(buf);
113 		printf("udf_wr_node_callback: NULL node?\n");
114 		return;
115 	}
116 
117 	/* XXX right flags to mark dirty again on error? */
118 	if (buf->b_error) {
119 		udf_node->i_flags |= IN_MODIFIED | IN_ACCESSED;
120 		/* XXX TODO reshedule on error */
121 	}
122 
123 	/* decrement outstanding_nodedscr */
124 	KASSERT(udf_node->outstanding_nodedscr >= 1);
125 	udf_node->outstanding_nodedscr--;
126 	if (udf_node->outstanding_nodedscr == 0) {
127 		/* first unlock the node */
128 		UDF_UNLOCK_NODE(udf_node, 0);
129 		wakeup(&udf_node->outstanding_nodedscr);
130 	}
131 
132 	/* unreference the vnode so it can be recycled */
133 	holdrele(udf_node->vnode);
134 
135 	putiobuf(buf);
136 }
137 
138 /* --------------------------------------------------------------------- */
139 
140 static int
141 udf_create_logvol_dscr_seq(struct udf_strat_args *args)
142 {
143 	union dscrptr   **dscrptr = &args->dscr;
144 	struct udf_mount *ump = args->ump;
145 	struct strat_private *priv = PRIV(ump);
146 	uint32_t lb_size;
147 
148 	lb_size = udf_rw32(ump->logical_vol->lb_size);
149 	*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
150 	memset(*dscrptr, 0, lb_size);
151 
152 	return 0;
153 }
154 
155 
156 static void
157 udf_free_logvol_dscr_seq(struct udf_strat_args *args)
158 {
159 	union dscrptr    *dscr = args->dscr;
160 	struct udf_mount *ump  = args->ump;
161 	struct strat_private *priv = PRIV(ump);
162 
163 	pool_put(&priv->desc_pool, dscr);
164 }
165 
166 
167 static int
168 udf_read_logvol_dscr_seq(struct udf_strat_args *args)
169 {
170 	union dscrptr   **dscrptr = &args->dscr;
171 	union dscrptr    *tmpdscr;
172 	struct udf_mount *ump = args->ump;
173 	struct long_ad   *icb = args->icb;
174 	struct strat_private *priv = PRIV(ump);
175 	uint32_t lb_size;
176 	uint32_t sector, dummy;
177 	int error;
178 
179 	lb_size = udf_rw32(ump->logical_vol->lb_size);
180 
181 	error = udf_translate_vtop(ump, icb, &sector, &dummy);
182 	if (error)
183 		return error;
184 
185 	/* try to read in fe/efe */
186 	error = udf_read_phys_dscr(ump, sector, M_UDFTEMP, &tmpdscr);
187 	if (error)
188 		return error;
189 
190 	*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
191 	memcpy(*dscrptr, tmpdscr, lb_size);
192 	free(tmpdscr, M_UDFTEMP);
193 
194 	return 0;
195 }
196 
197 
198 static int
199 udf_write_logvol_dscr_seq(struct udf_strat_args *args)
200 {
201 	union dscrptr    *dscr     = args->dscr;
202 	struct udf_mount *ump      = args->ump;
203 	struct udf_node  *udf_node = args->udf_node;
204 	struct long_ad   *icb      = args->icb;
205 	int               waitfor  = args->waitfor;
206 	uint32_t logsectornr, sectornr, dummy;
207 	int error, vpart;
208 
209 	/*
210 	 * we have to decide if we write it out sequential or at its fixed
211 	 * position by examining the partition its (to be) written on.
212 	 */
213 	vpart       = udf_rw16(udf_node->loc.loc.part_num);
214 	logsectornr = udf_rw32(icb->loc.lb_num);
215 	sectornr    = 0;
216 	if (ump->vtop_tp[vpart] != UDF_VTOP_TYPE_VIRT) {
217 		error = udf_translate_vtop(ump, icb, &sectornr, &dummy);
218 		if (error)
219 			goto out;
220 	}
221 
222 	/* add reference to the vnode to prevent recycling */
223 	vhold(udf_node->vnode);
224 
225 	if (waitfor) {
226 		DPRINTF(WRITE, ("udf_write_logvol_dscr: sync write\n"));
227 
228 		error = udf_write_phys_dscr_sync(ump, udf_node, UDF_C_NODE,
229 			dscr, sectornr, logsectornr);
230 	} else {
231 		DPRINTF(WRITE, ("udf_write_logvol_dscr: no wait, async write\n"));
232 
233 		error = udf_write_phys_dscr_async(ump, udf_node, UDF_C_NODE,
234 			dscr, sectornr, logsectornr, udf_wr_nodedscr_callback);
235 		/* will be UNLOCKED in call back */
236 		return error;
237 	}
238 
239 	holdrele(udf_node->vnode);
240 out:
241 	udf_node->outstanding_nodedscr--;
242 	if (udf_node->outstanding_nodedscr == 0) {
243 		UDF_UNLOCK_NODE(udf_node, 0);
244 		wakeup(&udf_node->outstanding_nodedscr);
245 	}
246 
247 	return error;
248 }
249 
250 /* --------------------------------------------------------------------- */
251 
252 /*
253  * Main file-system specific sheduler. Due to the nature of optical media
254  * sheduling can't be performed in the traditional way. Most OS
255  * implementations i've seen thus read or write a file atomically giving all
256  * kinds of side effects.
257  *
258  * This implementation uses a kernel thread to shedule the queued requests in
259  * such a way that is semi-optimal for optical media; this means aproximately
260  * (R*|(Wr*|Ws*))* since switching between reading and writing is expensive in
261  * time.
262  */
263 
264 static void
265 udf_queuebuf_seq(struct udf_strat_args *args)
266 {
267 	struct udf_mount *ump = args->ump;
268 	struct buf *nestbuf = args->nestbuf;
269 	struct strat_private *priv = PRIV(ump);
270 	int queue;
271 	int what;
272 
273 	KASSERT(ump);
274 	KASSERT(nestbuf);
275 	KASSERT(nestbuf->b_iodone == nestiobuf_iodone);
276 
277 	what = nestbuf->b_udf_c_type;
278 	queue = UDF_SHED_READING;
279 	if ((nestbuf->b_flags & B_READ) == 0) {
280 		/* writing */
281 		queue = UDF_SHED_SEQWRITING;
282 		if (what == UDF_C_ABSOLUTE)
283 			queue = UDF_SHED_WRITING;
284 	}
285 
286 	/* use our own sheduler lists for more complex sheduling */
287 	mutex_enter(&priv->discstrat_mutex);
288 		bufq_put(priv->queues[queue], nestbuf);
289 		vfs_timestamp(&priv->last_queued[queue]);
290 	mutex_exit(&priv->discstrat_mutex);
291 
292 	/* signal our thread that there might be something to do */
293 	cv_signal(&priv->discstrat_cv);
294 }
295 
296 /* --------------------------------------------------------------------- */
297 
298 /* TODO convert to lb_size */
299 static void
300 udf_VAT_mapping_update(struct udf_mount *ump, struct buf *buf, uint32_t lb_map)
301 {
302 	union dscrptr    *fdscr = (union dscrptr *) buf->b_data;
303 	struct vnode     *vp = buf->b_vp;
304 	struct udf_node  *udf_node = VTOI(vp);
305 	uint32_t lb_num;
306 	uint32_t udf_rw32_lbmap;
307 	int c_type = buf->b_udf_c_type;
308 	int error;
309 
310 	/* only interested when we're using a VAT */
311 	KASSERT(ump->vat_node);
312 	KASSERT(ump->vtop_alloc[ump->node_part] == UDF_ALLOC_VAT);
313 
314 	/* only nodes are recorded in the VAT */
315 	/* NOTE: and the fileset descriptor (FIXME ?) */
316 	if (c_type != UDF_C_NODE)
317 		return;
318 
319 	udf_rw32_lbmap = udf_rw32(lb_map);
320 
321 	/* if we're the VAT itself, only update our assigned sector number */
322 	if (udf_node == ump->vat_node) {
323 		fdscr->tag.tag_loc = udf_rw32_lbmap;
324 		udf_validate_tag_sum(fdscr);
325 		DPRINTF(TRANSLATE, ("VAT assigned to sector %u\n",
326 			udf_rw32(udf_rw32_lbmap)));
327 		/* no use mapping the VAT node in the VAT */
328 		return;
329 	}
330 
331 	/* record new position in VAT file */
332 	lb_num = udf_rw32(fdscr->tag.tag_loc);
333 
334 	/* lb_num = udf_rw32(udf_node->write_loc.loc.lb_num); */
335 
336 	DPRINTF(TRANSLATE, ("VAT entry change (log %u -> phys %u)\n",
337 			lb_num, lb_map));
338 
339 	/* VAT should be the longer than this write, can't go wrong */
340 	KASSERT(lb_num <= ump->vat_entries);
341 
342 	mutex_enter(&ump->allocate_mutex);
343 	error = udf_vat_write(ump->vat_node,
344 			(uint8_t *) &udf_rw32_lbmap, 4,
345 			ump->vat_offset + lb_num * 4);
346 	mutex_exit(&ump->allocate_mutex);
347 
348 	if (error)
349 		panic( "udf_VAT_mapping_update: HELP! i couldn't "
350 			"write in the VAT file ?\n");
351 }
352 
353 
354 static void
355 udf_issue_buf(struct udf_mount *ump, int queue, struct buf *buf)
356 {
357 	union dscrptr *dscr;
358 	struct long_ad *node_ad_cpy;
359 	struct part_desc *pdesc;
360 	uint64_t *lmapping, *lmappos;
361 	uint32_t sectornr, bpos;
362 	uint32_t ptov;
363 	uint16_t vpart_num;
364 	uint8_t *fidblk;
365 	int sector_size = ump->discinfo.sector_size;
366 	int blks = sector_size / DEV_BSIZE;
367 	int len, buf_len;
368 
369 	/* if reading, just pass to the device's STRATEGY */
370 	if (queue == UDF_SHED_READING) {
371 		DPRINTF(SHEDULE, ("\nudf_issue_buf READ %p : sector %d type %d,"
372 			"b_resid %d, b_bcount %d, b_bufsize %d\n",
373 			buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
374 			buf->b_resid, buf->b_bcount, buf->b_bufsize));
375 		VOP_STRATEGY(ump->devvp, buf);
376 		return;
377 	}
378 
379 	if (queue == UDF_SHED_WRITING) {
380 		DPRINTF(SHEDULE, ("\nudf_issue_buf WRITE %p : sector %d "
381 			"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
382 			buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
383 			buf->b_resid, buf->b_bcount, buf->b_bufsize));
384 		KASSERT(buf->b_udf_c_type == UDF_C_ABSOLUTE);
385 
386 		// udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
387 		VOP_STRATEGY(ump->devvp, buf);
388 		return;
389 	}
390 
391 	KASSERT(queue == UDF_SHED_SEQWRITING);
392 	DPRINTF(SHEDULE, ("\nudf_issue_buf SEQWRITE %p : sector XXXX "
393 		"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
394 		buf, buf->b_udf_c_type, buf->b_resid, buf->b_bcount,
395 		buf->b_bufsize));
396 
397 	/*
398 	 * Buffers should not have been allocated to disc addresses yet on
399 	 * this queue. Note that a buffer can get multiple extents allocated.
400 	 *
401 	 * lmapping contains lb_num relative to base partition.
402 	 */
403 	lmapping    = ump->la_lmapping;
404 	node_ad_cpy = ump->la_node_ad_cpy;
405 
406 	/* logically allocate buf and map it in the file */
407 	udf_late_allocate_buf(ump, buf, lmapping, node_ad_cpy, &vpart_num);
408 
409 	/*
410 	 * NOTE We are using the knowledge here that sequential media will
411 	 * always be mapped linearly. Thus no use to explicitly translate the
412 	 * lmapping list.
413 	 */
414 
415 	/* calculate offset from physical base partition */
416 	pdesc = ump->partitions[ump->vtop[vpart_num]];
417 	ptov  = udf_rw32(pdesc->start_loc);
418 
419 	/* set buffers blkno to the physical block number */
420 	buf->b_blkno = (*lmapping + ptov) * blks;
421 
422 	/* fixate floating descriptors */
423 	if (buf->b_udf_c_type == UDF_C_FLOAT_DSCR) {
424 		/* set our tag location to the absolute position */
425 		dscr = (union dscrptr *) buf->b_data;
426 		dscr->tag.tag_loc = udf_rw32(*lmapping + ptov);
427 		udf_validate_tag_and_crc_sums(dscr);
428 	}
429 
430 	/* update mapping in the VAT */
431 	if (buf->b_udf_c_type == UDF_C_NODE) {
432 		udf_VAT_mapping_update(ump, buf, *lmapping);
433 		udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
434 	}
435 
436 	/* if we have FIDs, fixup using the new allocation table */
437 	if (buf->b_udf_c_type == UDF_C_FIDS) {
438 		buf_len = buf->b_bcount;
439 		bpos = 0;
440 		lmappos = lmapping;
441 		while (buf_len) {
442 			sectornr = *lmappos++;
443 			len = MIN(buf_len, sector_size);
444 			fidblk = (uint8_t *) buf->b_data + bpos;
445 			udf_fixup_fid_block(fidblk, sector_size,
446 				0, len, sectornr);
447 			bpos += len;
448 			buf_len -= len;
449 		}
450 	}
451 
452 	VOP_STRATEGY(ump->devvp, buf);
453 }
454 
455 
456 static void
457 udf_doshedule(struct udf_mount *ump)
458 {
459 	struct buf *buf;
460 	struct timespec now, *last;
461 	struct strat_private *priv = PRIV(ump);
462 	void (*b_callback)(struct buf *);
463 	int new_queue;
464 	int error;
465 
466 	buf = bufq_get(priv->queues[priv->cur_queue]);
467 	if (buf) {
468 		/* transfer from the current queue to the device queue */
469 		mutex_exit(&priv->discstrat_mutex);
470 
471 		/* transform buffer to synchronous; XXX needed? */
472 		b_callback = buf->b_iodone;
473 		buf->b_iodone = NULL;
474 		CLR(buf->b_flags, B_ASYNC);
475 
476 		/* issue and wait on completion */
477 		udf_issue_buf(ump, priv->cur_queue, buf);
478 		biowait(buf);
479 
480 		mutex_enter(&priv->discstrat_mutex);
481 
482 		/* if there is an error, repair this error, otherwise propagate */
483 		if (buf->b_error && ((buf->b_flags & B_READ) == 0)) {
484 			/* check what we need to do */
485 			panic("UDF write error, can't handle yet!\n");
486 		}
487 
488 		/* propagate result to higher layers */
489 		if (b_callback) {
490 			buf->b_iodone = b_callback;
491 			(*buf->b_iodone)(buf);
492 		}
493 
494 		return;
495 	}
496 
497 	/* Check if we're idling in this state */
498 	vfs_timestamp(&now);
499 	last = &priv->last_queued[priv->cur_queue];
500 	if (ump->discinfo.mmc_class == MMC_CLASS_CD) {
501 		/* dont switch too fast for CD media; its expensive in time */
502 		if (now.tv_sec - last->tv_sec < 3)
503 			return;
504 	}
505 
506 	/* check if we can/should switch */
507 	new_queue = priv->cur_queue;
508 
509 	if (bufq_peek(priv->queues[UDF_SHED_READING]))
510 		new_queue = UDF_SHED_READING;
511 	if (bufq_peek(priv->queues[UDF_SHED_WRITING]))		/* only for unmount */
512 		new_queue = UDF_SHED_WRITING;
513 	if (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]))
514 		new_queue = UDF_SHED_SEQWRITING;
515 	if (priv->cur_queue == UDF_SHED_READING) {
516 		if (new_queue == UDF_SHED_SEQWRITING) {
517 			/* TODO use flag to signal if this is needed */
518 			mutex_exit(&priv->discstrat_mutex);
519 
520 			/* update trackinfo for data and metadata */
521 			error = udf_update_trackinfo(ump,
522 					&ump->data_track);
523 			assert(error == 0);
524 			error = udf_update_trackinfo(ump,
525 					&ump->metadata_track);
526 			assert(error == 0);
527 			mutex_enter(&priv->discstrat_mutex);
528 		}
529 	}
530 
531 	if (new_queue != priv->cur_queue) {
532 		DPRINTF(SHEDULE, ("switching from %d to %d\n",
533 			priv->cur_queue, new_queue));
534 	}
535 
536 	priv->cur_queue = new_queue;
537 }
538 
539 
540 static void
541 udf_discstrat_thread(void *arg)
542 {
543 	struct udf_mount *ump = (struct udf_mount *) arg;
544 	struct strat_private *priv = PRIV(ump);
545 	int empty;
546 
547 	empty = 1;
548 	mutex_enter(&priv->discstrat_mutex);
549 	while (priv->run_thread || !empty) {
550 		/* process the current selected queue */
551 		udf_doshedule(ump);
552 		empty  = (bufq_peek(priv->queues[UDF_SHED_READING]) == NULL);
553 		empty &= (bufq_peek(priv->queues[UDF_SHED_WRITING]) == NULL);
554 		empty &= (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]) == NULL);
555 
556 		/* wait for more if needed */
557 		if (empty)
558 			cv_timedwait(&priv->discstrat_cv,
559 				&priv->discstrat_mutex, hz/8);
560 	}
561 	mutex_exit(&priv->discstrat_mutex);
562 
563 	wakeup(&priv->run_thread);
564 	kthread_exit(0);
565 	/* not reached */
566 }
567 
568 /* --------------------------------------------------------------------- */
569 
570 static void
571 udf_discstrat_init_seq(struct udf_strat_args *args)
572 {
573 	struct udf_mount *ump = args->ump;
574 	struct strat_private *priv = PRIV(ump);
575 	struct disk_strategy dkstrat;
576 	uint32_t lb_size;
577 
578 	KASSERT(ump);
579 	KASSERT(ump->logical_vol);
580 	KASSERT(priv == NULL);
581 
582 	lb_size = udf_rw32(ump->logical_vol->lb_size);
583 	KASSERT(lb_size > 0);
584 
585 	/* initialise our memory space */
586 	ump->strategy_private = malloc(sizeof(struct strat_private),
587 		M_UDFTEMP, M_WAITOK);
588 	priv = ump->strategy_private;
589 	memset(priv, 0 , sizeof(struct strat_private));
590 
591 	/* initialise locks */
592 	cv_init(&priv->discstrat_cv, "udfstrat");
593 	mutex_init(&priv->discstrat_mutex, MUTEX_DEFAULT, IPL_NONE);
594 
595 	/*
596 	 * Initialise pool for descriptors associated with nodes. This is done
597 	 * in lb_size units though currently lb_size is dictated to be
598 	 * sector_size.
599 	 */
600 	pool_init(&priv->desc_pool, lb_size, 0, 0, 0, "udf_desc_pool", NULL,
601 	    IPL_NONE);
602 
603 	/*
604 	 * remember old device strategy method and explicit set method
605 	 * `discsort' since we have our own more complex strategy that is not
606 	 * implementable on the CD device and other strategies will get in the
607 	 * way.
608 	 */
609 	memset(&priv->old_strategy_setting, 0,
610 		sizeof(struct disk_strategy));
611 	VOP_IOCTL(ump->devvp, DIOCGSTRATEGY, &priv->old_strategy_setting,
612 		FREAD | FKIOCTL, NOCRED);
613 	memset(&dkstrat, 0, sizeof(struct disk_strategy));
614 	strcpy(dkstrat.dks_name, "discsort");
615 	VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &dkstrat, FWRITE | FKIOCTL,
616 		NOCRED);
617 
618 	/* initialise our internal sheduler */
619 	priv->cur_queue = UDF_SHED_READING;
620 	bufq_alloc(&priv->queues[UDF_SHED_READING], "disksort",
621 		BUFQ_SORT_RAWBLOCK);
622 	bufq_alloc(&priv->queues[UDF_SHED_WRITING], "disksort",
623 		BUFQ_SORT_RAWBLOCK);
624 	bufq_alloc(&priv->queues[UDF_SHED_SEQWRITING], "fcfs", 0);
625 	vfs_timestamp(&priv->last_queued[UDF_SHED_READING]);
626 	vfs_timestamp(&priv->last_queued[UDF_SHED_WRITING]);
627 	vfs_timestamp(&priv->last_queued[UDF_SHED_SEQWRITING]);
628 
629 	/* create our disk strategy thread */
630 	priv->run_thread = 1;
631 	if (kthread_create(PRI_NONE, 0 /* KTHREAD_MPSAFE*/, NULL /* cpu_info*/,
632 		udf_discstrat_thread, ump, &priv->queue_lwp,
633 		"%s", "udf_rw")) {
634 		panic("fork udf_rw");
635 	}
636 }
637 
638 
639 static void
640 udf_discstrat_finish_seq(struct udf_strat_args *args)
641 {
642 	struct udf_mount *ump = args->ump;
643 	struct strat_private *priv = PRIV(ump);
644 	int error;
645 
646 	if (ump == NULL)
647 		return;
648 
649 	/* stop our sheduling thread */
650 	KASSERT(priv->run_thread == 1);
651 	priv->run_thread = 0;
652 	wakeup(priv->queue_lwp);
653 	do {
654 		error = tsleep(&priv->run_thread, PRIBIO+1,
655 			"udfshedfin", hz);
656 	} while (error);
657 	/* kthread should be finished now */
658 
659 	/* set back old device strategy method */
660 	VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &priv->old_strategy_setting,
661 			FWRITE, NOCRED);
662 
663 	/* destroy our pool */
664 	pool_destroy(&priv->desc_pool);
665 
666 	mutex_destroy(&priv->discstrat_mutex);
667 	cv_destroy(&priv->discstrat_cv);
668 
669 	/* free our private space */
670 	free(ump->strategy_private, M_UDFTEMP);
671 	ump->strategy_private = NULL;
672 }
673 
674 /* --------------------------------------------------------------------- */
675 
676 struct udf_strategy udf_strat_sequential =
677 {
678 	udf_create_logvol_dscr_seq,
679 	udf_free_logvol_dscr_seq,
680 	udf_read_logvol_dscr_seq,
681 	udf_write_logvol_dscr_seq,
682 	udf_queuebuf_seq,
683 	udf_discstrat_init_seq,
684 	udf_discstrat_finish_seq
685 };
686 
687 
688