xref: /minix/sys/fs/udf/udf_subr.c (revision 9f988b79)
1 /* $NetBSD: udf_subr.c,v 1.122 2013/11/21 23:42:09 riz Exp $ */
2 
3 /*
4  * Copyright (c) 2006, 2008 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.122 2013/11/21 23:42:09 riz Exp $");
33 #endif /* not lint */
34 
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61 
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65 
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69 
70 
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72 
73 #define UDF_SET_SYSTEMFILE(vp) \
74 	/* XXXAD Is the vnode locked? */	\
75 	(vp)->v_vflag |= VV_SYSTEM;		\
76 	vref((vp));			\
77 	vput((vp));			\
78 
79 extern int syncer_maxdelay;     /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81 
82 /* --------------------------------------------------------------------- */
83 
84 //#ifdef DEBUG
85 #if 1
86 
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 	int i, j;
92 
93 	printf("blob = %p\n", blob);
94 	printf("dump of %d bytes\n", dlen);
95 
96 	for (i = 0; i < dlen; i+ = 16) {
97 		printf("%04x ", i);
98 		for (j = 0; j < 16; j++) {
99 			if (i+j < dlen) {
100 				printf("%02x ", blob[i+j]);
101 			} else {
102 				printf("   ");
103 			}
104 		}
105 		for (j = 0; j < 16; j++) {
106 			if (i+j < dlen) {
107 				if (blob[i+j]>32 && blob[i+j]! = 127) {
108 					printf("%c", blob[i+j]);
109 				} else {
110 					printf(".");
111 				}
112 			}
113 		}
114 		printf("\n");
115 	}
116 	printf("\n");
117 	Debugger();
118 }
119 #endif
120 
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 	char   bits[128];
125 	struct mmc_discinfo *di = &ump->discinfo;
126 
127 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 		return;
129 
130 	printf("Device/media info  :\n");
131 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
132 	printf("\tderived class      %d\n", di->mmc_class);
133 	printf("\tsector size        %d\n", di->sector_size);
134 	printf("\tdisc state         %d\n", di->disc_state);
135 	printf("\tlast ses state     %d\n", di->last_session_state);
136 	printf("\tbg format state    %d\n", di->bg_format_state);
137 	printf("\tfrst track         %d\n", di->first_track);
138 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
139 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
140 	printf("\tlink block penalty %d\n", di->link_block_penalty);
141 	snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 	printf("\tdisc flags         %s\n", bits);
143 	printf("\tdisc id            %x\n", di->disc_id);
144 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
145 
146 	printf("\tnum sessions       %d\n", di->num_sessions);
147 	printf("\tnum tracks         %d\n", di->num_tracks);
148 
149 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 	printf("\tcapabilities cur   %s\n", bits);
151 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 	printf("\tcapabilities cap   %s\n", bits);
153 }
154 
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 	char   bits[128];
159 
160 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 		return;
162 
163 	printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 	printf("\tsessionnr           %d\n", trackinfo->sessionnr);
165 	printf("\ttrack mode          %d\n", trackinfo->track_mode);
166 	printf("\tdata mode           %d\n", trackinfo->data_mode);
167 	snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 	printf("\tflags               %s\n", bits);
169 
170 	printf("\ttrack start         %d\n", trackinfo->track_start);
171 	printf("\tnext_writable       %d\n", trackinfo->next_writable);
172 	printf("\tfree_blocks         %d\n", trackinfo->free_blocks);
173 	printf("\tpacket_size         %d\n", trackinfo->packet_size);
174 	printf("\ttrack size          %d\n", trackinfo->track_size);
175 	printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177 
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182 
183 
184 /* --------------------------------------------------------------------- */
185 
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 	struct vnode *devvp = ump->devvp;
191 	uint64_t psize;
192 	unsigned secsize;
193 	struct mmc_discinfo *di;
194 	int error;
195 
196 	DPRINTF(VOLUMES, ("read/update disc info\n"));
197 	di = &ump->discinfo;
198 	memset(di, 0, sizeof(struct mmc_discinfo));
199 
200 	/* check if we're on a MMC capable device, i.e. CD/DVD */
201 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 	if (error == 0) {
203 		udf_dump_discinfo(ump);
204 		return 0;
205 	}
206 
207 	/* disc partition support */
208 	error = getdisksize(devvp, &psize, &secsize);
209 	if (error)
210 		return error;
211 
212 	/* set up a disc info profile for partitions */
213 	di->mmc_profile		= 0x01;	/* disc type */
214 	di->mmc_class		= MMC_CLASS_DISC;
215 	di->disc_state		= MMC_STATE_CLOSED;
216 	di->last_session_state	= MMC_STATE_CLOSED;
217 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
218 	di->link_block_penalty	= 0;
219 
220 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 	di->mmc_cap    = di->mmc_cur;
223 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224 
225 	/* TODO problem with last_possible_lba on resizable VND; request */
226 	di->last_possible_lba = psize;
227 	di->sector_size       = secsize;
228 
229 	di->num_sessions = 1;
230 	di->num_tracks   = 1;
231 
232 	di->first_track  = 1;
233 	di->first_track_last_session = di->last_track_last_session = 1;
234 
235 	udf_dump_discinfo(ump);
236 	return 0;
237 }
238 
239 
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 	struct vnode *devvp = ump->devvp;
244 	struct mmc_discinfo *di = &ump->discinfo;
245 	int error, class;
246 
247 	DPRINTF(VOLUMES, ("read track info\n"));
248 
249 	class = di->mmc_class;
250 	if (class != MMC_CLASS_DISC) {
251 		/* tracknr specified in struct ti */
252 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 		return error;
254 	}
255 
256 	/* disc partition support */
257 	if (ti->tracknr != 1)
258 		return EIO;
259 
260 	/* create fake ti (TODO check for resized vnds) */
261 	ti->sessionnr  = 1;
262 
263 	ti->track_mode = 0;	/* XXX */
264 	ti->data_mode  = 0;	/* XXX */
265 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266 
267 	ti->track_start    = 0;
268 	ti->packet_size    = 1;
269 
270 	/* TODO support for resizable vnd */
271 	ti->track_size    = di->last_possible_lba;
272 	ti->next_writable = di->last_possible_lba;
273 	ti->last_recorded = ti->next_writable;
274 	ti->free_blocks   = 0;
275 
276 	return 0;
277 }
278 
279 
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 	struct mmc_writeparams mmc_writeparams;
284 	int error;
285 
286 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 		return 0;
288 
289 	/*
290 	 * only CD burning normally needs setting up, but other disc types
291 	 * might need other settings to be made. The MMC framework will set up
292 	 * the nessisary recording parameters according to the disc
293 	 * characteristics read in. Modifications can be made in the discinfo
294 	 * structure passed to change the nature of the disc.
295 	 */
296 
297 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
299 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
300 
301 	/*
302 	 * UDF dictates first track to determine track mode for the whole
303 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 	 * To prevent problems with a `reserved' track in front we start with
305 	 * the 2nd track and if that is not valid, go for the 1st.
306 	 */
307 	mmc_writeparams.tracknr = 2;
308 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
309 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
310 
311 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 			FKIOCTL, NOCRED);
313 	if (error) {
314 		mmc_writeparams.tracknr = 1;
315 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 				&mmc_writeparams, FKIOCTL, NOCRED);
317 	}
318 	return error;
319 }
320 
321 
322 int
323 udf_synchronise_caches(struct udf_mount *ump)
324 {
325 	struct mmc_op mmc_op;
326 
327 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
328 
329 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 		return 0;
331 
332 	/* discs are done now */
333 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 		return 0;
335 
336 	memset(&mmc_op, 0, sizeof(struct mmc_op));
337 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338 
339 	/* ignore return code */
340 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341 
342 	return 0;
343 }
344 
345 /* --------------------------------------------------------------------- */
346 
347 /* track/session searching for mounting */
348 int
349 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
350 		  int *first_tracknr, int *last_tracknr)
351 {
352 	struct mmc_trackinfo trackinfo;
353 	uint32_t tracknr, start_track, num_tracks;
354 	int error;
355 
356 	/* if negative, sessionnr is relative to last session */
357 	if (args->sessionnr < 0) {
358 		args->sessionnr += ump->discinfo.num_sessions;
359 	}
360 
361 	/* sanity */
362 	if (args->sessionnr < 0)
363 		args->sessionnr = 0;
364 	if (args->sessionnr > ump->discinfo.num_sessions)
365 		args->sessionnr = ump->discinfo.num_sessions;
366 
367 	/* search the tracks for this session, zero session nr indicates last */
368 	if (args->sessionnr == 0)
369 		args->sessionnr = ump->discinfo.num_sessions;
370 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
371 		args->sessionnr--;
372 
373 	/* sanity again */
374 	if (args->sessionnr < 0)
375 		args->sessionnr = 0;
376 
377 	/* search the first and last track of the specified session */
378 	num_tracks  = ump->discinfo.num_tracks;
379 	start_track = ump->discinfo.first_track;
380 
381 	/* search for first track of this session */
382 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
383 		/* get track info */
384 		trackinfo.tracknr = tracknr;
385 		error = udf_update_trackinfo(ump, &trackinfo);
386 		if (error)
387 			return error;
388 
389 		if (trackinfo.sessionnr == args->sessionnr)
390 			break;
391 	}
392 	*first_tracknr = tracknr;
393 
394 	/* search for last track of this session */
395 	for (;tracknr <= num_tracks; tracknr++) {
396 		/* get track info */
397 		trackinfo.tracknr = tracknr;
398 		error = udf_update_trackinfo(ump, &trackinfo);
399 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
400 			tracknr--;
401 			break;
402 		}
403 	}
404 	if (tracknr > num_tracks)
405 		tracknr--;
406 
407 	*last_tracknr = tracknr;
408 
409 	if (*last_tracknr < *first_tracknr) {
410 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
411 			"drive returned garbage\n");
412 		return EINVAL;
413 	}
414 
415 	assert(*last_tracknr >= *first_tracknr);
416 	return 0;
417 }
418 
419 
420 /*
421  * NOTE: this is the only routine in this file that directly peeks into the
422  * metadata file but since its at a larval state of the mount it can't hurt.
423  *
424  * XXX candidate for udf_allocation.c
425  * XXX clean me up!, change to new node reading code.
426  */
427 
428 static void
429 udf_check_track_metadata_overlap(struct udf_mount *ump,
430 	struct mmc_trackinfo *trackinfo)
431 {
432 	struct part_desc *part;
433 	struct file_entry      *fe;
434 	struct extfile_entry   *efe;
435 	struct short_ad        *s_ad;
436 	struct long_ad         *l_ad;
437 	uint32_t track_start, track_end;
438 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
439 	uint32_t sector_size, len, alloclen, plb_num;
440 	uint8_t *pos;
441 	int addr_type, icblen, icbflags;
442 
443 	/* get our track extents */
444 	track_start = trackinfo->track_start;
445 	track_end   = track_start + trackinfo->track_size;
446 
447 	/* get our base partition extent */
448 	KASSERT(ump->node_part == ump->fids_part);
449 	part = ump->partitions[ump->vtop[ump->node_part]];
450 	phys_part_start = udf_rw32(part->start_loc);
451 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
452 
453 	/* no use if its outside the physical partition */
454 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
455 		return;
456 
457 	/*
458 	 * now follow all extents in the fe/efe to see if they refer to this
459 	 * track
460 	 */
461 
462 	sector_size = ump->discinfo.sector_size;
463 
464 	/* XXX should we claim exclusive access to the metafile ? */
465 	/* TODO: move to new node read code */
466 	fe  = ump->metadata_node->fe;
467 	efe = ump->metadata_node->efe;
468 	if (fe) {
469 		alloclen = udf_rw32(fe->l_ad);
470 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
471 		icbflags = udf_rw16(fe->icbtag.flags);
472 	} else {
473 		assert(efe);
474 		alloclen = udf_rw32(efe->l_ad);
475 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
476 		icbflags = udf_rw16(efe->icbtag.flags);
477 	}
478 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
479 
480 	while (alloclen) {
481 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
482 			icblen = sizeof(struct short_ad);
483 			s_ad   = (struct short_ad *) pos;
484 			len        = udf_rw32(s_ad->len);
485 			plb_num    = udf_rw32(s_ad->lb_num);
486 		} else {
487 			/* should not be present, but why not */
488 			icblen = sizeof(struct long_ad);
489 			l_ad   = (struct long_ad *) pos;
490 			len        = udf_rw32(l_ad->len);
491 			plb_num    = udf_rw32(l_ad->loc.lb_num);
492 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
493 		}
494 		/* process extent */
495 		len     = UDF_EXT_LEN(len);
496 
497 		part_start = phys_part_start + plb_num;
498 		part_end   = part_start + (len / sector_size);
499 
500 		if ((part_start >= track_start) && (part_end <= track_end)) {
501 			/* extent is enclosed within this track */
502 			ump->metadata_track = *trackinfo;
503 			return;
504 		}
505 
506 		pos        += icblen;
507 		alloclen   -= icblen;
508 	}
509 }
510 
511 
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 	struct vnode *devvp = ump->devvp;
516 	struct mmc_trackinfo trackinfo;
517 	struct mmc_op        mmc_op;
518 	struct part_desc *part;
519 	uint32_t tracknr, start_track, num_tracks;
520 	uint32_t track_start, track_end, part_start, part_end;
521 	int node_alloc, error;
522 
523 	/*
524 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 	 * the last session might be open but in the UDF device model at most
526 	 * three tracks can be open: a reserved track for delayed ISO VRS
527 	 * writing, a data track and a metadata track. We search here for the
528 	 * data track and the metadata track. Note that the reserved track is
529 	 * troublesome but can be detected by its small size of < 512 sectors.
530 	 */
531 
532 	/* update discinfo since it might have changed */
533 	error = udf_update_discinfo(ump);
534 	if (error)
535 		return error;
536 
537 	num_tracks  = ump->discinfo.num_tracks;
538 	start_track = ump->discinfo.first_track;
539 
540 	/* fetch info on first and possibly only track */
541 	trackinfo.tracknr = start_track;
542 	error = udf_update_trackinfo(ump, &trackinfo);
543 	if (error)
544 		return error;
545 
546 	/* copy results to our mount point */
547 	ump->data_track     = trackinfo;
548 	ump->metadata_track = trackinfo;
549 
550 	/* if not sequential, we're done */
551 	if (num_tracks == 1)
552 		return 0;
553 
554 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 		/* get track info */
556 		trackinfo.tracknr = tracknr;
557 		error = udf_update_trackinfo(ump, &trackinfo);
558 		if (error)
559 			return error;
560 
561 		/*
562 		 * If this track is marked damaged, ask for repair. This is an
563 		 * optional command, so ignore its error but report warning.
564 		 */
565 		if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 			memset(&mmc_op, 0, sizeof(mmc_op));
567 			mmc_op.operation   = MMC_OP_REPAIRTRACK;
568 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 			mmc_op.tracknr     = tracknr;
570 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 			if (error)
572 				(void)printf("Drive can't explicitly repair "
573 					"damaged track %d, but it might "
574 					"autorepair\n", tracknr);
575 
576 			/* reget track info */
577 			error = udf_update_trackinfo(ump, &trackinfo);
578 			if (error)
579 				return error;
580 		}
581 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 			continue;
583 
584 		track_start = trackinfo.track_start;
585 		track_end   = track_start + trackinfo.track_size;
586 
587 		/* check for overlap on data partition */
588 		part = ump->partitions[ump->data_part];
589 		part_start = udf_rw32(part->start_loc);
590 		part_end   = part_start + udf_rw32(part->part_len);
591 		if ((part_start < track_end) && (part_end > track_start)) {
592 			ump->data_track = trackinfo;
593 			/* TODO check if UDF partition data_part is writable */
594 		}
595 
596 		/* check for overlap on metadata partition */
597 		node_alloc = ump->vtop_alloc[ump->node_part];
598 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
600 			udf_check_track_metadata_overlap(ump, &trackinfo);
601 		} else {
602 			ump->metadata_track = trackinfo;
603 		}
604 	}
605 
606 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 		return EROFS;
608 
609 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 		return EROFS;
611 
612 	return 0;
613 }
614 
615 /* --------------------------------------------------------------------- */
616 
617 /*
618  * Check if the blob starts with a good UDF tag. Tags are protected by a
619  * checksum over the reader except one byte at position 4 that is the checksum
620  * itself.
621  */
622 
623 int
624 udf_check_tag(void *blob)
625 {
626 	struct desc_tag *tag = blob;
627 	uint8_t *pos, sum, cnt;
628 
629 	/* check TAG header checksum */
630 	pos = (uint8_t *) tag;
631 	sum = 0;
632 
633 	for(cnt = 0; cnt < 16; cnt++) {
634 		if (cnt != 4)
635 			sum += *pos;
636 		pos++;
637 	}
638 	if (sum != tag->cksum) {
639 		/* bad tag header checksum; this is not a valid tag */
640 		return EINVAL;
641 	}
642 
643 	return 0;
644 }
645 
646 
647 /*
648  * check tag payload will check descriptor CRC as specified.
649  * If the descriptor is too long, it will return EIO otherwise EINVAL.
650  */
651 
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 	struct desc_tag *tag = blob;
656 	uint16_t crc, crc_len;
657 
658 	crc_len = udf_rw16(tag->desc_crc_len);
659 
660 	/* check payload CRC if applicable */
661 	if (crc_len == 0)
662 		return 0;
663 
664 	if (crc_len > max_length)
665 		return EIO;
666 
667 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 	if (crc != udf_rw16(tag->desc_crc)) {
669 		/* bad payload CRC; this is a broken tag */
670 		return EINVAL;
671 	}
672 
673 	return 0;
674 }
675 
676 
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 	struct desc_tag *tag = blob;
681 	uint8_t *pos, sum, cnt;
682 
683 	/* calculate TAG header checksum */
684 	pos = (uint8_t *) tag;
685 	sum = 0;
686 
687 	for(cnt = 0; cnt < 16; cnt++) {
688 		if (cnt != 4) sum += *pos;
689 		pos++;
690 	}
691 	tag->cksum = sum;	/* 8 bit */
692 }
693 
694 
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 	struct desc_tag *tag  = blob;
700 	uint8_t         *btag = (uint8_t *) tag;
701 	uint16_t crc, crc_len;
702 
703 	crc_len = udf_rw16(tag->desc_crc_len);
704 
705 	/* check payload CRC if applicable */
706 	if (crc_len > 0) {
707 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 		tag->desc_crc = udf_rw16(crc);
709 	}
710 
711 	/* calculate TAG header checksum */
712 	udf_validate_tag_sum(blob);
713 }
714 
715 /* --------------------------------------------------------------------- */
716 
717 /*
718  * XXX note the different semantics from udfclient: for FIDs it still rounds
719  * up to sectors. Use udf_fidsize() for a correct length.
720  */
721 
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 	uint32_t size, tag_id, num_lb, elmsz;
726 
727 	tag_id = udf_rw16(dscr->tag.id);
728 
729 	switch (tag_id) {
730 	case TAGID_LOGVOL :
731 		size  = sizeof(struct logvol_desc) - 1;
732 		size += udf_rw32(dscr->lvd.mt_l);
733 		break;
734 	case TAGID_UNALLOC_SPACE :
735 		elmsz = sizeof(struct extent_ad);
736 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
737 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 		break;
739 	case TAGID_FID :
740 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 		size = (size + 3) & ~3;
742 		break;
743 	case TAGID_LOGVOL_INTEGRITY :
744 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 		size += udf_rw32(dscr->lvid.l_iu);
746 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 		break;
748 	case TAGID_SPACE_BITMAP :
749 		size  = sizeof(struct space_bitmap_desc) - 1;
750 		size += udf_rw32(dscr->sbd.num_bytes);
751 		break;
752 	case TAGID_SPARING_TABLE :
753 		elmsz = sizeof(struct spare_map_entry);
754 		size  = sizeof(struct udf_sparing_table) - elmsz;
755 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 		break;
757 	case TAGID_FENTRY :
758 		size  = sizeof(struct file_entry);
759 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 		break;
761 	case TAGID_EXTFENTRY :
762 		size  = sizeof(struct extfile_entry);
763 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 		break;
765 	case TAGID_FSD :
766 		size  = sizeof(struct fileset_desc);
767 		break;
768 	default :
769 		size = sizeof(union dscrptr);
770 		break;
771 	}
772 
773 	if ((size == 0) || (lb_size == 0))
774 		return 0;
775 
776 	if (lb_size == 1)
777 		return size;
778 
779 	/* round up in sectors */
780 	num_lb = (size + lb_size -1) / lb_size;
781 	return num_lb * lb_size;
782 }
783 
784 
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 	uint32_t size;
789 
790 	if (udf_rw16(fid->tag.id) != TAGID_FID)
791 		panic("got udf_fidsize on non FID\n");
792 
793 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 	size = (size + 3) & ~3;
795 
796 	return size;
797 }
798 
799 /* --------------------------------------------------------------------- */
800 
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 	int ret;
805 
806 	mutex_enter(&udf_node->node_mutex);
807 	/* wait until free */
808 	while (udf_node->i_flags & IN_LOCKED) {
809 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 		/* TODO check if we should return error; abort */
811 		if (ret == EWOULDBLOCK) {
812 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 				"wanted at %s:%d, previously locked at %s:%d\n",
814 				udf_node, fname, lineno,
815 				udf_node->lock_fname, udf_node->lock_lineno));
816 		}
817 	}
818 	/* grab */
819 	udf_node->i_flags |= IN_LOCKED | flag;
820 	/* debug */
821 	udf_node->lock_fname  = fname;
822 	udf_node->lock_lineno = lineno;
823 
824 	mutex_exit(&udf_node->node_mutex);
825 }
826 
827 
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 	mutex_enter(&udf_node->node_mutex);
832 	udf_node->i_flags &= ~(IN_LOCKED | flag);
833 	cv_broadcast(&udf_node->node_lock);
834 	mutex_exit(&udf_node->node_mutex);
835 }
836 
837 
838 /* --------------------------------------------------------------------- */
839 
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 	int error;
844 
845 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 			(union dscrptr **) dst);
847 	if (!error) {
848 		/* blank terminator blocks are not allowed here */
849 		if (*dst == NULL)
850 			return ENOENT;
851 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 			error = ENOENT;
853 			free(*dst, M_UDFVOLD);
854 			*dst = NULL;
855 			DPRINTF(VOLUMES, ("Not an anchor\n"));
856 		}
857 	}
858 
859 	return error;
860 }
861 
862 
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 	struct udf_args *args = &ump->mount_args;
867 	struct mmc_trackinfo first_track;
868 	struct mmc_trackinfo second_track;
869 	struct mmc_trackinfo last_track;
870 	struct anchor_vdp **anchorsp;
871 	uint32_t track_start;
872 	uint32_t track_end;
873 	uint32_t positions[4];
874 	int first_tracknr, last_tracknr;
875 	int error, anch, ok, first_anchor;
876 
877 	/* search the first and last track of the specified session */
878 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 	if (!error) {
880 		first_track.tracknr = first_tracknr;
881 		error = udf_update_trackinfo(ump, &first_track);
882 	}
883 	if (!error) {
884 		last_track.tracknr = last_tracknr;
885 		error = udf_update_trackinfo(ump, &last_track);
886 	}
887 	if ((!error) && (first_tracknr != last_tracknr)) {
888 		second_track.tracknr = first_tracknr+1;
889 		error = udf_update_trackinfo(ump, &second_track);
890 	}
891 	if (error) {
892 		printf("UDF mount: reading disc geometry failed\n");
893 		return 0;
894 	}
895 
896 	track_start = first_track.track_start;
897 
898 	/* `end' is not as straitforward as start. */
899 	track_end =   last_track.track_start
900 		    + last_track.track_size - last_track.free_blocks - 1;
901 
902 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 		/* end of track is not straitforward here */
904 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 			track_end = last_track.last_recorded;
906 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 			track_end = last_track.next_writable
908 				    - ump->discinfo.link_block_penalty;
909 	}
910 
911 	/* its no use reading a blank track */
912 	first_anchor = 0;
913 	if (first_track.flags & MMC_TRACKINFO_BLANK)
914 		first_anchor = 1;
915 
916 	/* get our packet size */
917 	ump->packet_size = first_track.packet_size;
918 	if (first_track.flags & MMC_TRACKINFO_BLANK)
919 		ump->packet_size = second_track.packet_size;
920 
921 	if (ump->packet_size <= 1) {
922 		/* take max, but not bigger than 64 */
923 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 		ump->packet_size = MIN(ump->packet_size, 64);
925 	}
926 	KASSERT(ump->packet_size >= 1);
927 
928 	/* read anchors start+256, start+512, end-256, end */
929 	positions[0] = track_start+256;
930 	positions[1] =   track_end-256;
931 	positions[2] =   track_end;
932 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
933 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934 
935 	ok = 0;
936 	anchorsp = ump->anchors;
937 	for (anch = first_anchor; anch < 4; anch++) {
938 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 		    positions[anch]));
940 		error = udf_read_anchor(ump, positions[anch], anchorsp);
941 		if (!error) {
942 			anchorsp++;
943 			ok++;
944 		}
945 	}
946 
947 	/* VATs are only recorded on sequential media, but initialise */
948 	ump->first_possible_vat_location = track_start + 2;
949 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
950 
951 	return ok;
952 }
953 
954 /* --------------------------------------------------------------------- */
955 
956 int
957 udf_get_c_type(struct udf_node *udf_node)
958 {
959 	int isdir, what;
960 
961 	isdir  = (udf_node->vnode->v_type == VDIR);
962 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
963 
964 	if (udf_node->ump)
965 		if (udf_node == udf_node->ump->metadatabitmap_node)
966 			what = UDF_C_METADATA_SBM;
967 
968 	return what;
969 }
970 
971 
972 int
973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
974 {
975 	int vpart_num;
976 
977 	vpart_num = ump->data_part;
978 	if (udf_c_type == UDF_C_NODE)
979 		vpart_num = ump->node_part;
980 	if (udf_c_type == UDF_C_FIDS)
981 		vpart_num = ump->fids_part;
982 
983 	return vpart_num;
984 }
985 
986 
987 /*
988  * BUGALERT: some rogue implementations use random physical partition
989  * numbers to break other implementations so lookup the number.
990  */
991 
992 static uint16_t
993 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
994 {
995 	struct part_desc *part;
996 	uint16_t phys_part;
997 
998 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
999 		part = ump->partitions[phys_part];
1000 		if (part == NULL)
1001 			break;
1002 		if (udf_rw16(part->part_num) == raw_phys_part)
1003 			break;
1004 	}
1005 	return phys_part;
1006 }
1007 
1008 /* --------------------------------------------------------------------- */
1009 
1010 /* we dont try to be smart; we just record the parts */
1011 #define UDF_UPDATE_DSCR(name, dscr) \
1012 	if (name) \
1013 		free(name, M_UDFVOLD); \
1014 	name = dscr;
1015 
1016 static int
1017 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1018 {
1019 	uint16_t phys_part, raw_phys_part;
1020 
1021 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1022 	    udf_rw16(dscr->tag.id)));
1023 	switch (udf_rw16(dscr->tag.id)) {
1024 	case TAGID_PRI_VOL :		/* primary partition		*/
1025 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1026 		break;
1027 	case TAGID_LOGVOL :		/* logical volume		*/
1028 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1029 		break;
1030 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
1031 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1032 		break;
1033 	case TAGID_IMP_VOL :		/* implementation		*/
1034 		/* XXX do we care about multiple impl. descr ? */
1035 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1036 		break;
1037 	case TAGID_PARTITION :		/* physical partition		*/
1038 		/* not much use if its not allocated */
1039 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1040 			free(dscr, M_UDFVOLD);
1041 			break;
1042 		}
1043 
1044 		/*
1045 		 * BUGALERT: some rogue implementations use random physical
1046 		 * partition numbers to break other implementations so lookup
1047 		 * the number.
1048 		 */
1049 		raw_phys_part = udf_rw16(dscr->pd.part_num);
1050 		phys_part = udf_find_raw_phys(ump, raw_phys_part);
1051 
1052 		if (phys_part == UDF_PARTITIONS) {
1053 			free(dscr, M_UDFVOLD);
1054 			return EINVAL;
1055 		}
1056 
1057 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1058 		break;
1059 	case TAGID_VOL :		/* volume space extender; rare	*/
1060 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1061 		free(dscr, M_UDFVOLD);
1062 		break;
1063 	default :
1064 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1065 		    udf_rw16(dscr->tag.id)));
1066 		free(dscr, M_UDFVOLD);
1067 	}
1068 
1069 	return 0;
1070 }
1071 #undef UDF_UPDATE_DSCR
1072 
1073 /* --------------------------------------------------------------------- */
1074 
1075 static int
1076 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1077 {
1078 	union dscrptr *dscr;
1079 	uint32_t sector_size, dscr_size;
1080 	int error;
1081 
1082 	sector_size = ump->discinfo.sector_size;
1083 
1084 	/* loc is sectornr, len is in bytes */
1085 	error = EIO;
1086 	while (len) {
1087 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1088 		if (error)
1089 			return error;
1090 
1091 		/* blank block is a terminator */
1092 		if (dscr == NULL)
1093 			return 0;
1094 
1095 		/* TERM descriptor is a terminator */
1096 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1097 			free(dscr, M_UDFVOLD);
1098 			return 0;
1099 		}
1100 
1101 		/* process all others */
1102 		dscr_size = udf_tagsize(dscr, sector_size);
1103 		error = udf_process_vds_descriptor(ump, dscr);
1104 		if (error) {
1105 			free(dscr, M_UDFVOLD);
1106 			break;
1107 		}
1108 		assert((dscr_size % sector_size) == 0);
1109 
1110 		len -= dscr_size;
1111 		loc += dscr_size / sector_size;
1112 	}
1113 
1114 	return error;
1115 }
1116 
1117 
1118 int
1119 udf_read_vds_space(struct udf_mount *ump)
1120 {
1121 	/* struct udf_args *args = &ump->mount_args; */
1122 	struct anchor_vdp *anchor, *anchor2;
1123 	size_t size;
1124 	uint32_t main_loc, main_len;
1125 	uint32_t reserve_loc, reserve_len;
1126 	int error;
1127 
1128 	/*
1129 	 * read in VDS space provided by the anchors; if one descriptor read
1130 	 * fails, try the mirror sector.
1131 	 *
1132 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1133 	 * avoids the `compatibility features' of DirectCD that may confuse
1134 	 * stuff completely.
1135 	 */
1136 
1137 	anchor  = ump->anchors[0];
1138 	anchor2 = ump->anchors[1];
1139 	assert(anchor);
1140 
1141 	if (anchor2) {
1142 		size = sizeof(struct extent_ad);
1143 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1144 			anchor = anchor2;
1145 		/* reserve is specified to be a literal copy of main */
1146 	}
1147 
1148 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
1149 	main_len    = udf_rw32(anchor->main_vds_ex.len);
1150 
1151 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1152 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1153 
1154 	error = udf_read_vds_extent(ump, main_loc, main_len);
1155 	if (error) {
1156 		printf("UDF mount: reading in reserve VDS extent\n");
1157 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1158 	}
1159 
1160 	return error;
1161 }
1162 
1163 /* --------------------------------------------------------------------- */
1164 
1165 /*
1166  * Read in the logical volume integrity sequence pointed to by our logical
1167  * volume descriptor. Its a sequence that can be extended using fields in the
1168  * integrity descriptor itself. On sequential media only one is found, on
1169  * rewritable media a sequence of descriptors can be found as a form of
1170  * history keeping and on non sequential write-once media the chain is vital
1171  * to allow more and more descriptors to be written. The last descriptor
1172  * written in an extent needs to claim space for a new extent.
1173  */
1174 
1175 static int
1176 udf_retrieve_lvint(struct udf_mount *ump)
1177 {
1178 	union dscrptr *dscr;
1179 	struct logvol_int_desc *lvint;
1180 	struct udf_lvintq *trace;
1181 	uint32_t lb_size, lbnum, len;
1182 	int dscr_type, error, trace_len;
1183 
1184 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1185 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1186 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1187 
1188 	/* clean trace */
1189 	memset(ump->lvint_trace, 0,
1190 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1191 
1192 	trace_len    = 0;
1193 	trace        = ump->lvint_trace;
1194 	trace->start = lbnum;
1195 	trace->end   = lbnum + len/lb_size;
1196 	trace->pos   = 0;
1197 	trace->wpos  = 0;
1198 
1199 	lvint = NULL;
1200 	dscr  = NULL;
1201 	error = 0;
1202 	while (len) {
1203 		trace->pos  = lbnum - trace->start;
1204 		trace->wpos = trace->pos + 1;
1205 
1206 		/* read in our integrity descriptor */
1207 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1208 		if (!error) {
1209 			if (dscr == NULL) {
1210 				trace->wpos = trace->pos;
1211 				break;		/* empty terminates */
1212 			}
1213 			dscr_type = udf_rw16(dscr->tag.id);
1214 			if (dscr_type == TAGID_TERM) {
1215 				trace->wpos = trace->pos;
1216 				break;		/* clean terminator */
1217 			}
1218 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1219 				/* fatal... corrupt disc */
1220 				error = ENOENT;
1221 				break;
1222 			}
1223 			if (lvint)
1224 				free(lvint, M_UDFVOLD);
1225 			lvint = &dscr->lvid;
1226 			dscr = NULL;
1227 		} /* else hope for the best... maybe the next is ok */
1228 
1229 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1230 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1231 
1232 		/* proceed sequential */
1233 		lbnum += 1;
1234 		len    -= lb_size;
1235 
1236 		/* are we linking to a new piece? */
1237 		if (dscr && lvint->next_extent.len) {
1238 			len    = udf_rw32(lvint->next_extent.len);
1239 			lbnum = udf_rw32(lvint->next_extent.loc);
1240 
1241 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1242 				/* IEK! segment link full... */
1243 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
1244 				error = EINVAL;
1245 			} else {
1246 				trace++;
1247 				trace_len++;
1248 
1249 				trace->start = lbnum;
1250 				trace->end   = lbnum + len/lb_size;
1251 				trace->pos   = 0;
1252 				trace->wpos  = 0;
1253 			}
1254 		}
1255 	}
1256 
1257 	/* clean up the mess, esp. when there is an error */
1258 	if (dscr)
1259 		free(dscr, M_UDFVOLD);
1260 
1261 	if (error && lvint) {
1262 		free(lvint, M_UDFVOLD);
1263 		lvint = NULL;
1264 	}
1265 
1266 	if (!lvint)
1267 		error = ENOENT;
1268 
1269 	ump->logvol_integrity = lvint;
1270 	return error;
1271 }
1272 
1273 
1274 static int
1275 udf_loose_lvint_history(struct udf_mount *ump)
1276 {
1277 	union dscrptr **bufs, *dscr, *last_dscr;
1278 	struct udf_lvintq *trace, *in_trace, *out_trace;
1279 	struct logvol_int_desc *lvint;
1280 	uint32_t in_ext, in_pos, in_len;
1281 	uint32_t out_ext, out_wpos, out_len;
1282 	uint32_t lb_num;
1283 	uint32_t len, start;
1284 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
1285 	int losing;
1286 	int error;
1287 
1288 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1289 
1290 	/* search smallest extent */
1291 	trace = &ump->lvint_trace[0];
1292 	minext = trace->end - trace->start;
1293 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1294 		trace = &ump->lvint_trace[ext];
1295 		extlen = trace->end - trace->start;
1296 		if (extlen == 0)
1297 			break;
1298 		minext = MIN(minext, extlen);
1299 	}
1300 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
1301 	/* no sense wiping all */
1302 	if (losing == minext)
1303 		losing--;
1304 
1305 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1306 
1307 	/* get buffer for pieces */
1308 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1309 
1310 	in_ext    = 0;
1311 	in_pos    = losing;
1312 	in_trace  = &ump->lvint_trace[in_ext];
1313 	in_len    = in_trace->end - in_trace->start;
1314 	out_ext   = 0;
1315 	out_wpos  = 0;
1316 	out_trace = &ump->lvint_trace[out_ext];
1317 	out_len   = out_trace->end - out_trace->start;
1318 
1319 	last_dscr = NULL;
1320 	for(;;) {
1321 		out_trace->pos  = out_wpos;
1322 		out_trace->wpos = out_trace->pos;
1323 		if (in_pos >= in_len) {
1324 			in_ext++;
1325 			in_pos = 0;
1326 			in_trace = &ump->lvint_trace[in_ext];
1327 			in_len   = in_trace->end - in_trace->start;
1328 		}
1329 		if (out_wpos >= out_len) {
1330 			out_ext++;
1331 			out_wpos = 0;
1332 			out_trace = &ump->lvint_trace[out_ext];
1333 			out_len   = out_trace->end - out_trace->start;
1334 		}
1335 		/* copy overlap contents */
1336 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1337 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1338 		if (cpy_len == 0)
1339 			break;
1340 
1341 		/* copy */
1342 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1343 		for (cnt = 0; cnt < cpy_len; cnt++) {
1344 			/* read in our integrity descriptor */
1345 			lb_num = in_trace->start + in_pos + cnt;
1346 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1347 				&dscr);
1348 			if (error) {
1349 				/* copy last one */
1350 				dscr = last_dscr;
1351 			}
1352 			bufs[cnt] = dscr;
1353 			if (!error) {
1354 				if (dscr == NULL) {
1355 					out_trace->pos  = out_wpos + cnt;
1356 					out_trace->wpos = out_trace->pos;
1357 					break;		/* empty terminates */
1358 				}
1359 				dscr_type = udf_rw16(dscr->tag.id);
1360 				if (dscr_type == TAGID_TERM) {
1361 					out_trace->pos  = out_wpos + cnt;
1362 					out_trace->wpos = out_trace->pos;
1363 					break;		/* clean terminator */
1364 				}
1365 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1366 					panic(  "UDF integrity sequence "
1367 						"corrupted while mounted!\n");
1368 				}
1369 				last_dscr = dscr;
1370 			}
1371 		}
1372 
1373 		/* patch up if first entry was on error */
1374 		if (bufs[0] == NULL) {
1375 			for (cnt = 0; cnt < cpy_len; cnt++)
1376 				if (bufs[cnt] != NULL)
1377 					break;
1378 			last_dscr = bufs[cnt];
1379 			for (; cnt > 0; cnt--) {
1380 				bufs[cnt] = last_dscr;
1381 			}
1382 		}
1383 
1384 		/* glue + write out */
1385 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1386 		for (cnt = 0; cnt < cpy_len; cnt++) {
1387 			lb_num = out_trace->start + out_wpos + cnt;
1388 			lvint  = &bufs[cnt]->lvid;
1389 
1390 			/* set continuation */
1391 			len = 0;
1392 			start = 0;
1393 			if (out_wpos + cnt == out_len) {
1394 				/* get continuation */
1395 				trace = &ump->lvint_trace[out_ext+1];
1396 				len   = trace->end - trace->start;
1397 				start = trace->start;
1398 			}
1399 			lvint->next_extent.len = udf_rw32(len);
1400 			lvint->next_extent.loc = udf_rw32(start);
1401 
1402 			lb_num = trace->start + trace->wpos;
1403 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1404 				bufs[cnt], lb_num, lb_num);
1405 			DPRINTFIF(VOLUMES, error,
1406 				("error writing lvint lb_num\n"));
1407 		}
1408 
1409 		/* free non repeating descriptors */
1410 		last_dscr = NULL;
1411 		for (cnt = 0; cnt < cpy_len; cnt++) {
1412 			if (bufs[cnt] != last_dscr)
1413 				free(bufs[cnt], M_UDFVOLD);
1414 			last_dscr = bufs[cnt];
1415 		}
1416 
1417 		/* advance */
1418 		in_pos   += cpy_len;
1419 		out_wpos += cpy_len;
1420 	}
1421 
1422 	free(bufs, M_TEMP);
1423 
1424 	return 0;
1425 }
1426 
1427 
1428 static int
1429 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1430 {
1431 	struct udf_lvintq *trace;
1432 	struct timeval  now_v;
1433 	struct timespec now_s;
1434 	uint32_t sector;
1435 	int logvol_integrity;
1436 	int space, error;
1437 
1438 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1439 
1440 again:
1441 	/* get free space in last chunk */
1442 	trace = ump->lvint_trace;
1443 	while (trace->wpos > (trace->end - trace->start)) {
1444 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1445 				  "wpos = %d\n", trace->start, trace->end,
1446 				  trace->pos, trace->wpos));
1447 		trace++;
1448 	}
1449 
1450 	/* check if there is space to append */
1451 	space = (trace->end - trace->start) - trace->wpos;
1452 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1453 			  "space = %d\n", trace->start, trace->end, trace->pos,
1454 			  trace->wpos, space));
1455 
1456 	/* get state */
1457 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1458 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1459 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1460 			/* TODO extent LVINT space if possible */
1461 			return EROFS;
1462 		}
1463 	}
1464 
1465 	if (space < 1) {
1466 		if (lvflag & UDF_APPENDONLY_LVINT)
1467 			return EROFS;
1468 		/* loose history by re-writing extents */
1469 		error = udf_loose_lvint_history(ump);
1470 		if (error)
1471 			return error;
1472 		goto again;
1473 	}
1474 
1475 	/* update our integrity descriptor to identify us and timestamp it */
1476 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1477 	microtime(&now_v);
1478 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1479 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1480 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1481 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1482 
1483 	/* writeout integrity descriptor */
1484 	sector = trace->start + trace->wpos;
1485 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1486 			(union dscrptr *) ump->logvol_integrity,
1487 			sector, sector);
1488 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1489 	if (error)
1490 		return error;
1491 
1492 	/* advance write position */
1493 	trace->wpos++; space--;
1494 	if (space >= 1) {
1495 		/* append terminator */
1496 		sector = trace->start + trace->wpos;
1497 		error = udf_write_terminator(ump, sector);
1498 
1499 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1500 	}
1501 
1502 	space = (trace->end - trace->start) - trace->wpos;
1503 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1504 		"space = %d\n", trace->start, trace->end, trace->pos,
1505 		trace->wpos, space));
1506 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1507 		"successfull\n"));
1508 
1509 	return error;
1510 }
1511 
1512 /* --------------------------------------------------------------------- */
1513 
1514 static int
1515 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1516 {
1517 	union dscrptr        *dscr;
1518 	/* struct udf_args *args = &ump->mount_args; */
1519 	struct part_desc     *partd;
1520 	struct part_hdr_desc *parthdr;
1521 	struct udf_bitmap    *bitmap;
1522 	uint32_t phys_part;
1523 	uint32_t lb_num, len;
1524 	int error, dscr_type;
1525 
1526 	/* unallocated space map */
1527 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1528 		partd = ump->partitions[phys_part];
1529 		if (partd == NULL)
1530 			continue;
1531 		parthdr = &partd->_impl_use.part_hdr;
1532 
1533 		lb_num  = udf_rw32(partd->start_loc);
1534 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1535 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
1536 		if (len == 0)
1537 			continue;
1538 
1539 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1540 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1541 		if (!error && dscr) {
1542 			/* analyse */
1543 			dscr_type = udf_rw16(dscr->tag.id);
1544 			if (dscr_type == TAGID_SPACE_BITMAP) {
1545 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1546 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1547 
1548 				/* fill in ump->part_unalloc_bits */
1549 				bitmap = &ump->part_unalloc_bits[phys_part];
1550 				bitmap->blob  = (uint8_t *) dscr;
1551 				bitmap->bits  = dscr->sbd.data;
1552 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1553 				bitmap->pages = NULL;	/* TODO */
1554 				bitmap->data_pos     = 0;
1555 				bitmap->metadata_pos = 0;
1556 			} else {
1557 				free(dscr, M_UDFVOLD);
1558 
1559 				printf( "UDF mount: error reading unallocated "
1560 					"space bitmap\n");
1561 				return EROFS;
1562 			}
1563 		} else {
1564 			/* blank not allowed */
1565 			printf("UDF mount: blank unallocated space bitmap\n");
1566 			return EROFS;
1567 		}
1568 	}
1569 
1570 	/* unallocated space table (not supported) */
1571 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1572 		partd = ump->partitions[phys_part];
1573 		if (partd == NULL)
1574 			continue;
1575 		parthdr = &partd->_impl_use.part_hdr;
1576 
1577 		len     = udf_rw32(parthdr->unalloc_space_table.len);
1578 		if (len) {
1579 			printf("UDF mount: space tables not supported\n");
1580 			return EROFS;
1581 		}
1582 	}
1583 
1584 	/* freed space map */
1585 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1586 		partd = ump->partitions[phys_part];
1587 		if (partd == NULL)
1588 			continue;
1589 		parthdr = &partd->_impl_use.part_hdr;
1590 
1591 		/* freed space map */
1592 		lb_num  = udf_rw32(partd->start_loc);
1593 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1594 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
1595 		if (len == 0)
1596 			continue;
1597 
1598 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1599 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1600 		if (!error && dscr) {
1601 			/* analyse */
1602 			dscr_type = udf_rw16(dscr->tag.id);
1603 			if (dscr_type == TAGID_SPACE_BITMAP) {
1604 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1605 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
1606 
1607 				/* fill in ump->part_freed_bits */
1608 				bitmap = &ump->part_unalloc_bits[phys_part];
1609 				bitmap->blob  = (uint8_t *) dscr;
1610 				bitmap->bits  = dscr->sbd.data;
1611 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1612 				bitmap->pages = NULL;	/* TODO */
1613 				bitmap->data_pos     = 0;
1614 				bitmap->metadata_pos = 0;
1615 			} else {
1616 				free(dscr, M_UDFVOLD);
1617 
1618 				printf( "UDF mount: error reading freed  "
1619 					"space bitmap\n");
1620 				return EROFS;
1621 			}
1622 		} else {
1623 			/* blank not allowed */
1624 			printf("UDF mount: blank freed space bitmap\n");
1625 			return EROFS;
1626 		}
1627 	}
1628 
1629 	/* freed space table (not supported) */
1630 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1631 		partd = ump->partitions[phys_part];
1632 		if (partd == NULL)
1633 			continue;
1634 		parthdr = &partd->_impl_use.part_hdr;
1635 
1636 		len     = udf_rw32(parthdr->freed_space_table.len);
1637 		if (len) {
1638 			printf("UDF mount: space tables not supported\n");
1639 			return EROFS;
1640 		}
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 
1647 /* TODO implement async writeout */
1648 int
1649 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1650 {
1651 	union dscrptr        *dscr;
1652 	/* struct udf_args *args = &ump->mount_args; */
1653 	struct part_desc     *partd;
1654 	struct part_hdr_desc *parthdr;
1655 	uint32_t phys_part;
1656 	uint32_t lb_num, len, ptov;
1657 	int error_all, error;
1658 
1659 	error_all = 0;
1660 	/* unallocated space map */
1661 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1662 		partd = ump->partitions[phys_part];
1663 		if (partd == NULL)
1664 			continue;
1665 		parthdr = &partd->_impl_use.part_hdr;
1666 
1667 		ptov   = udf_rw32(partd->start_loc);
1668 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1669 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
1670 		if (len == 0)
1671 			continue;
1672 
1673 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1674 			lb_num + ptov));
1675 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1676 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1677 				(union dscrptr *) dscr,
1678 				ptov + lb_num, lb_num);
1679 		if (error) {
1680 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1681 			error_all = error;
1682 		}
1683 	}
1684 
1685 	/* freed space map */
1686 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1687 		partd = ump->partitions[phys_part];
1688 		if (partd == NULL)
1689 			continue;
1690 		parthdr = &partd->_impl_use.part_hdr;
1691 
1692 		/* freed space map */
1693 		ptov   = udf_rw32(partd->start_loc);
1694 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1695 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
1696 		if (len == 0)
1697 			continue;
1698 
1699 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1700 			lb_num + ptov));
1701 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1702 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1703 				(union dscrptr *) dscr,
1704 				ptov + lb_num, lb_num);
1705 		if (error) {
1706 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1707 			error_all = error;
1708 		}
1709 	}
1710 
1711 	return error_all;
1712 }
1713 
1714 
1715 static int
1716 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1717 {
1718 	struct udf_node	     *bitmap_node;
1719 	union dscrptr        *dscr;
1720 	struct udf_bitmap    *bitmap;
1721 	uint64_t inflen;
1722 	int error, dscr_type;
1723 
1724 	bitmap_node = ump->metadatabitmap_node;
1725 
1726 	/* only read in when metadata bitmap node is read in */
1727 	if (bitmap_node == NULL)
1728 		return 0;
1729 
1730 	if (bitmap_node->fe) {
1731 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1732 	} else {
1733 		KASSERT(bitmap_node->efe);
1734 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1735 	}
1736 
1737 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1738 		"%"PRIu64" bytes\n", inflen));
1739 
1740 	/* allocate space for bitmap */
1741 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1742 	if (!dscr)
1743 		return ENOMEM;
1744 
1745 	/* set vnode type to regular file or we can't read from it! */
1746 	bitmap_node->vnode->v_type = VREG;
1747 
1748 	/* read in complete metadata bitmap file */
1749 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1750 			dscr,
1751 			inflen, 0,
1752 			UIO_SYSSPACE,
1753 			IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1754 			NULL, NULL);
1755 	if (error) {
1756 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1757 		goto errorout;
1758 	}
1759 
1760 	/* analyse */
1761 	dscr_type = udf_rw16(dscr->tag.id);
1762 	if (dscr_type == TAGID_SPACE_BITMAP) {
1763 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1764 		ump->metadata_unalloc_dscr = &dscr->sbd;
1765 
1766 		/* fill in bitmap bits */
1767 		bitmap = &ump->metadata_unalloc_bits;
1768 		bitmap->blob  = (uint8_t *) dscr;
1769 		bitmap->bits  = dscr->sbd.data;
1770 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1771 		bitmap->pages = NULL;	/* TODO */
1772 		bitmap->data_pos     = 0;
1773 		bitmap->metadata_pos = 0;
1774 	} else {
1775 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1776 		goto errorout;
1777 	}
1778 
1779 	return 0;
1780 
1781 errorout:
1782 	free(dscr, M_UDFVOLD);
1783 	printf( "UDF mount: error reading unallocated "
1784 		"space bitmap for metadata partition\n");
1785 	return EROFS;
1786 }
1787 
1788 
1789 int
1790 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1791 {
1792 	struct udf_node	     *bitmap_node;
1793 	union dscrptr        *dscr;
1794 	uint64_t new_inflen;
1795 	int dummy, error;
1796 
1797 	bitmap_node = ump->metadatabitmap_node;
1798 
1799 	/* only write out when metadata bitmap node is known */
1800 	if (bitmap_node == NULL)
1801 		return 0;
1802 
1803 	if (!bitmap_node->fe) {
1804 		KASSERT(bitmap_node->efe);
1805 	}
1806 
1807 	/* reduce length to zero */
1808 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1809 	new_inflen = udf_tagsize(dscr, 1);
1810 
1811 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1812 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1813 
1814 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1815 	if (error)
1816 		printf("Error resizing metadata space bitmap\n");
1817 
1818 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1819 			dscr,
1820 			new_inflen, 0,
1821 			UIO_SYSSPACE,
1822 			IO_ALTSEMANTICS, FSCRED,
1823 			NULL, NULL);
1824 
1825 	bitmap_node->i_flags |= IN_MODIFIED;
1826 	error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1827 	if (error == 0)
1828 		error = VOP_FSYNC(bitmap_node->vnode,
1829 				FSCRED, FSYNC_WAIT, 0, 0);
1830 
1831 	if (error)
1832 		printf( "Error writing out metadata partition unalloced "
1833 			"space bitmap!\n");
1834 
1835 	return error;
1836 }
1837 
1838 
1839 /* --------------------------------------------------------------------- */
1840 
1841 /*
1842  * Checks if ump's vds information is correct and complete
1843  */
1844 
1845 int
1846 udf_process_vds(struct udf_mount *ump) {
1847 	union udf_pmap *mapping;
1848 	/* struct udf_args *args = &ump->mount_args; */
1849 	struct logvol_int_desc *lvint;
1850 	struct udf_logvol_info *lvinfo;
1851 	uint32_t n_pm;
1852 	uint8_t *pmap_pos;
1853 	char *domain_name, *map_name;
1854 	const char *check_name;
1855 	char bits[128];
1856 	int pmap_stype, pmap_size;
1857 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1858 	int n_phys, n_virt, n_spar, n_meta;
1859 	int len;
1860 
1861 	if (ump == NULL)
1862 		return ENOENT;
1863 
1864 	/* we need at least an anchor (trivial, but for safety) */
1865 	if (ump->anchors[0] == NULL)
1866 		return EINVAL;
1867 
1868 	/* we need at least one primary and one logical volume descriptor */
1869 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1870 		return EINVAL;
1871 
1872 	/* we need at least one partition descriptor */
1873 	if (ump->partitions[0] == NULL)
1874 		return EINVAL;
1875 
1876 	/* check logical volume sector size verses device sector size */
1877 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1878 		printf("UDF mount: format violation, lb_size != sector size\n");
1879 		return EINVAL;
1880 	}
1881 
1882 	/* check domain name */
1883 	domain_name = ump->logical_vol->domain_id.id;
1884 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1885 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1886 		return EINVAL;
1887 	}
1888 
1889 	/* retrieve logical volume integrity sequence */
1890 	(void)udf_retrieve_lvint(ump);
1891 
1892 	/*
1893 	 * We need at least one logvol integrity descriptor recorded.  Note
1894 	 * that its OK to have an open logical volume integrity here. The VAT
1895 	 * will close/update the integrity.
1896 	 */
1897 	if (ump->logvol_integrity == NULL)
1898 		return EINVAL;
1899 
1900 	/* process derived structures */
1901 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1902 	lvint  = ump->logvol_integrity;
1903 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1904 	ump->logvol_info = lvinfo;
1905 
1906 	/* TODO check udf versions? */
1907 
1908 	/*
1909 	 * check logvol mappings: effective virt->log partmap translation
1910 	 * check and recording of the mapping results. Saves expensive
1911 	 * strncmp() in tight places.
1912 	 */
1913 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1914 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1915 	pmap_pos =  ump->logical_vol->maps;
1916 
1917 	if (n_pm > UDF_PMAPS) {
1918 		printf("UDF mount: too many mappings\n");
1919 		return EINVAL;
1920 	}
1921 
1922 	/* count types and set partition numbers */
1923 	ump->data_part = ump->node_part = ump->fids_part = 0;
1924 	n_phys = n_virt = n_spar = n_meta = 0;
1925 	for (log_part = 0; log_part < n_pm; log_part++) {
1926 		mapping = (union udf_pmap *) pmap_pos;
1927 		pmap_stype = pmap_pos[0];
1928 		pmap_size  = pmap_pos[1];
1929 		switch (pmap_stype) {
1930 		case 1:	/* physical mapping */
1931 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1932 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
1933 			pmap_type = UDF_VTOP_TYPE_PHYS;
1934 			n_phys++;
1935 			ump->data_part = log_part;
1936 			ump->node_part = log_part;
1937 			ump->fids_part = log_part;
1938 			break;
1939 		case 2: /* virtual/sparable/meta mapping */
1940 			map_name  = mapping->pm2.part_id.id;
1941 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1942 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
1943 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1944 			len = UDF_REGID_ID_SIZE;
1945 
1946 			check_name = "*UDF Virtual Partition";
1947 			if (strncmp(map_name, check_name, len) == 0) {
1948 				pmap_type = UDF_VTOP_TYPE_VIRT;
1949 				n_virt++;
1950 				ump->node_part = log_part;
1951 				break;
1952 			}
1953 			check_name = "*UDF Sparable Partition";
1954 			if (strncmp(map_name, check_name, len) == 0) {
1955 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1956 				n_spar++;
1957 				ump->data_part = log_part;
1958 				ump->node_part = log_part;
1959 				ump->fids_part = log_part;
1960 				break;
1961 			}
1962 			check_name = "*UDF Metadata Partition";
1963 			if (strncmp(map_name, check_name, len) == 0) {
1964 				pmap_type = UDF_VTOP_TYPE_META;
1965 				n_meta++;
1966 				ump->node_part = log_part;
1967 				ump->fids_part = log_part;
1968 				break;
1969 			}
1970 			break;
1971 		default:
1972 			return EINVAL;
1973 		}
1974 
1975 		/*
1976 		 * BUGALERT: some rogue implementations use random physical
1977 		 * partition numbers to break other implementations so lookup
1978 		 * the number.
1979 		 */
1980 		phys_part = udf_find_raw_phys(ump, raw_phys_part);
1981 
1982 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1983 		    raw_phys_part, phys_part, pmap_type));
1984 
1985 		if (phys_part == UDF_PARTITIONS)
1986 			return EINVAL;
1987 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1988 			return EINVAL;
1989 
1990 		ump->vtop   [log_part] = phys_part;
1991 		ump->vtop_tp[log_part] = pmap_type;
1992 
1993 		pmap_pos += pmap_size;
1994 	}
1995 	/* not winning the beauty contest */
1996 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1997 
1998 	/* test some basic UDF assertions/requirements */
1999 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2000 		return EINVAL;
2001 
2002 	if (n_virt) {
2003 		if ((n_phys == 0) || n_spar || n_meta)
2004 			return EINVAL;
2005 	}
2006 	if (n_spar + n_phys == 0)
2007 		return EINVAL;
2008 
2009 	/* select allocation type for each logical partition */
2010 	for (log_part = 0; log_part < n_pm; log_part++) {
2011 		maps_on = ump->vtop[log_part];
2012 		switch (ump->vtop_tp[log_part]) {
2013 		case UDF_VTOP_TYPE_PHYS :
2014 			assert(maps_on == log_part);
2015 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2016 			break;
2017 		case UDF_VTOP_TYPE_VIRT :
2018 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2019 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
2020 			break;
2021 		case UDF_VTOP_TYPE_SPARABLE :
2022 			assert(maps_on == log_part);
2023 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2024 			break;
2025 		case UDF_VTOP_TYPE_META :
2026 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2027 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2028 				/* special case for UDF 2.60 */
2029 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2030 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
2031 			}
2032 			break;
2033 		default:
2034 			panic("bad alloction type in udf's ump->vtop\n");
2035 		}
2036 	}
2037 
2038 	/* determine logical volume open/closure actions */
2039 	if (n_virt) {
2040 		ump->lvopen  = 0;
2041 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2042 			ump->lvopen |= UDF_OPEN_SESSION ;
2043 		ump->lvclose = UDF_WRITE_VAT;
2044 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2045 			ump->lvclose |= UDF_CLOSE_SESSION;
2046 	} else {
2047 		/* `normal' rewritable or non sequential media */
2048 		ump->lvopen  = UDF_WRITE_LVINT;
2049 		ump->lvclose = UDF_WRITE_LVINT;
2050 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2051 			ump->lvopen  |=  UDF_APPENDONLY_LVINT;
2052 		if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2053 			ump->lvopen  &= ~UDF_APPENDONLY_LVINT;
2054 	}
2055 
2056 	/*
2057 	 * Determine sheduler error behaviour. For virtual partitions, update
2058 	 * the trackinfo; for sparable partitions replace a whole block on the
2059 	 * sparable table. Allways requeue.
2060 	 */
2061 	ump->lvreadwrite = 0;
2062 	if (n_virt)
2063 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2064 	if (n_spar)
2065 		ump->lvreadwrite = UDF_REMAP_BLOCK;
2066 
2067 	/*
2068 	 * Select our sheduler
2069 	 */
2070 	ump->strategy = &udf_strat_rmw;
2071 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2072 		ump->strategy = &udf_strat_sequential;
2073 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2074 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2075 			ump->strategy = &udf_strat_direct;
2076 	if (n_spar)
2077 		ump->strategy = &udf_strat_rmw;
2078 
2079 #if 0
2080 	/* read-only access won't benefit from the other shedulers */
2081 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2082 		ump->strategy = &udf_strat_direct;
2083 #endif
2084 
2085 	/* print results */
2086 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
2087 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2088 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
2089 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2090 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
2091 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2092 
2093 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2094 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
2095 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2096 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2097 	snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2098 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2099 
2100 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2101 		(ump->strategy == &udf_strat_direct) ? "Direct" :
2102 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
2103 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2104 
2105 	/* signal its OK for now */
2106 	return 0;
2107 }
2108 
2109 /* --------------------------------------------------------------------- */
2110 
2111 /*
2112  * Update logical volume name in all structures that keep a record of it. We
2113  * use memmove since each of them might be specified as a source.
2114  *
2115  * Note that it doesn't update the VAT structure!
2116  */
2117 
2118 static void
2119 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2120 {
2121 	struct logvol_desc     *lvd = NULL;
2122 	struct fileset_desc    *fsd = NULL;
2123 	struct udf_lv_info     *lvi = NULL;
2124 
2125 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2126 	lvd = ump->logical_vol;
2127 	fsd = ump->fileset_desc;
2128 	if (ump->implementation)
2129 		lvi = &ump->implementation->_impl_use.lv_info;
2130 
2131 	/* logvol's id might be specified as origional so use memmove here */
2132 	memmove(lvd->logvol_id, logvol_id, 128);
2133 	if (fsd)
2134 		memmove(fsd->logvol_id, logvol_id, 128);
2135 	if (lvi)
2136 		memmove(lvi->logvol_id, logvol_id, 128);
2137 }
2138 
2139 /* --------------------------------------------------------------------- */
2140 
2141 void
2142 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2143 	uint32_t sector)
2144 {
2145 	assert(ump->logical_vol);
2146 
2147 	tag->id 		= udf_rw16(tagid);
2148 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
2149 	tag->cksum		= 0;
2150 	tag->reserved		= 0;
2151 	tag->serial_num		= ump->logical_vol->tag.serial_num;
2152 	tag->tag_loc            = udf_rw32(sector);
2153 }
2154 
2155 
2156 uint64_t
2157 udf_advance_uniqueid(struct udf_mount *ump)
2158 {
2159 	uint64_t unique_id;
2160 
2161 	mutex_enter(&ump->logvol_mutex);
2162 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2163 	if (unique_id < 0x10)
2164 		unique_id = 0x10;
2165 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2166 	mutex_exit(&ump->logvol_mutex);
2167 
2168 	return unique_id;
2169 }
2170 
2171 
2172 static void
2173 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2174 {
2175 	struct udf_mount *ump = udf_node->ump;
2176 	uint32_t num_dirs, num_files;
2177 	int udf_file_type;
2178 
2179 	/* get file type */
2180 	if (udf_node->fe) {
2181 		udf_file_type = udf_node->fe->icbtag.file_type;
2182 	} else {
2183 		udf_file_type = udf_node->efe->icbtag.file_type;
2184 	}
2185 
2186 	/* adjust file count */
2187 	mutex_enter(&ump->allocate_mutex);
2188 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2189 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
2190 		ump->logvol_info->num_directories =
2191 			udf_rw32((num_dirs + sign));
2192 	} else {
2193 		num_files = udf_rw32(ump->logvol_info->num_files);
2194 		ump->logvol_info->num_files =
2195 			udf_rw32((num_files + sign));
2196 	}
2197 	mutex_exit(&ump->allocate_mutex);
2198 }
2199 
2200 
2201 void
2202 udf_osta_charset(struct charspec *charspec)
2203 {
2204 	memset(charspec, 0, sizeof(struct charspec));
2205 	charspec->type = 0;
2206 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2207 }
2208 
2209 
2210 /* first call udf_set_regid and then the suffix */
2211 void
2212 udf_set_regid(struct regid *regid, char const *name)
2213 {
2214 	memset(regid, 0, sizeof(struct regid));
2215 	regid->flags    = 0;		/* not dirty and not protected */
2216 	strcpy((char *) regid->id, name);
2217 }
2218 
2219 
2220 void
2221 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2222 {
2223 	uint16_t *ver;
2224 
2225 	ver  = (uint16_t *) regid->id_suffix;
2226 	*ver = ump->logvol_info->min_udf_readver;
2227 }
2228 
2229 
2230 void
2231 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2232 {
2233 	uint16_t *ver;
2234 
2235 	ver  = (uint16_t *) regid->id_suffix;
2236 	*ver = ump->logvol_info->min_udf_readver;
2237 
2238 	regid->id_suffix[2] = 4;	/* unix */
2239 	regid->id_suffix[3] = 8;	/* NetBSD */
2240 }
2241 
2242 
2243 void
2244 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2245 {
2246 	regid->id_suffix[0] = 4;	/* unix */
2247 	regid->id_suffix[1] = 8;	/* NetBSD */
2248 }
2249 
2250 
2251 void
2252 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2253 {
2254 	regid->id_suffix[0] = APP_VERSION_MAIN;
2255 	regid->id_suffix[1] = APP_VERSION_SUB;
2256 }
2257 
2258 static int
2259 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2260 	struct long_ad *parent, uint64_t unique_id)
2261 {
2262 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
2263 	int fidsize = 40;
2264 
2265 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2266 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
2267 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2268 	fid->icb = *parent;
2269 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2270 	fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2271 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2272 
2273 	return fidsize;
2274 }
2275 
2276 /* --------------------------------------------------------------------- */
2277 
2278 /*
2279  * Extended attribute support. UDF knows of 3 places for extended attributes:
2280  *
2281  * (a) inside the file's (e)fe in the length of the extended attribute area
2282  * before the allocation descriptors/filedata
2283  *
2284  * (b) in a file referenced by (e)fe->ext_attr_icb and
2285  *
2286  * (c) in the e(fe)'s associated stream directory that can hold various
2287  * sub-files. In the stream directory a few fixed named subfiles are reserved
2288  * for NT/Unix ACL's and OS/2 attributes.
2289  *
2290  * NOTE: Extended attributes are read randomly but allways written
2291  * *atomicaly*. For ACL's this interface is propably different but not known
2292  * to me yet.
2293  *
2294  * Order of extended attributes in a space :
2295  *   ECMA 167 EAs
2296  *   Non block aligned Implementation Use EAs
2297  *   Block aligned Implementation Use EAs
2298  *   Application Use EAs
2299  */
2300 
2301 static int
2302 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2303 {
2304 	uint16_t   *spos;
2305 
2306 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2307 		/* checksum valid? */
2308 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2309 		spos = (uint16_t *) implext->data;
2310 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2311 			return EINVAL;
2312 	}
2313 	return 0;
2314 }
2315 
2316 static void
2317 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2318 {
2319 	uint16_t   *spos;
2320 
2321 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2322 		/* set checksum */
2323 		spos = (uint16_t *) implext->data;
2324 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2325 	}
2326 }
2327 
2328 
2329 int
2330 udf_extattr_search_intern(struct udf_node *node,
2331 	uint32_t sattr, char const *sattrname,
2332 	uint32_t *offsetp, uint32_t *lengthp)
2333 {
2334 	struct extattrhdr_desc    *eahdr;
2335 	struct extattr_entry      *attrhdr;
2336 	struct impl_extattr_entry *implext;
2337 	uint32_t    offset, a_l, sector_size;
2338 	 int32_t    l_ea;
2339 	uint8_t    *pos;
2340 	int         error;
2341 
2342 	/* get mountpoint */
2343 	sector_size = node->ump->discinfo.sector_size;
2344 
2345 	/* get information from fe/efe */
2346 	if (node->fe) {
2347 		l_ea  = udf_rw32(node->fe->l_ea);
2348 		eahdr = (struct extattrhdr_desc *) node->fe->data;
2349 	} else {
2350 		assert(node->efe);
2351 		l_ea  = udf_rw32(node->efe->l_ea);
2352 		eahdr = (struct extattrhdr_desc *) node->efe->data;
2353 	}
2354 
2355 	/* something recorded here? */
2356 	if (l_ea == 0)
2357 		return ENOENT;
2358 
2359 	/* check extended attribute tag; what to do if it fails? */
2360 	error = udf_check_tag(eahdr);
2361 	if (error)
2362 		return EINVAL;
2363 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2364 		return EINVAL;
2365 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2366 	if (error)
2367 		return EINVAL;
2368 
2369 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2370 
2371 	/* looking for Ecma-167 attributes? */
2372 	offset = sizeof(struct extattrhdr_desc);
2373 
2374 	/* looking for either implemenation use or application use */
2375 	if (sattr == 2048) {				/* [4/48.10.8] */
2376 		offset = udf_rw32(eahdr->impl_attr_loc);
2377 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2378 			return ENOENT;
2379 	}
2380 	if (sattr == 65536) {				/* [4/48.10.9] */
2381 		offset = udf_rw32(eahdr->appl_attr_loc);
2382 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2383 			return ENOENT;
2384 	}
2385 
2386 	/* paranoia check offset and l_ea */
2387 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2388 		return EINVAL;
2389 
2390 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2391 
2392 	/* find our extended attribute  */
2393 	l_ea -= offset;
2394 	pos = (uint8_t *) eahdr + offset;
2395 
2396 	while (l_ea >= sizeof(struct extattr_entry)) {
2397 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2398 		attrhdr = (struct extattr_entry *) pos;
2399 		implext = (struct impl_extattr_entry *) pos;
2400 
2401 		/* get complete attribute length and check for roque values */
2402 		a_l = udf_rw32(attrhdr->a_l);
2403 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2404 				udf_rw32(attrhdr->type),
2405 				attrhdr->subtype, a_l, l_ea));
2406 		if ((a_l == 0) || (a_l > l_ea))
2407 			return EINVAL;
2408 
2409 		if (attrhdr->type != sattr)
2410 			goto next_attribute;
2411 
2412 		/* we might have found it! */
2413 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
2414 			*offsetp = offset;
2415 			*lengthp = a_l;
2416 			return 0;		/* success */
2417 		}
2418 
2419 		/*
2420 		 * Implementation use and application use extended attributes
2421 		 * have a name to identify. They share the same structure only
2422 		 * UDF implementation use extended attributes have a checksum
2423 		 * we need to check
2424 		 */
2425 
2426 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2427 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
2428 			/* we have found our appl/implementation attribute */
2429 			*offsetp = offset;
2430 			*lengthp = a_l;
2431 			return 0;		/* success */
2432 		}
2433 
2434 next_attribute:
2435 		/* next attribute */
2436 		pos    += a_l;
2437 		l_ea   -= a_l;
2438 		offset += a_l;
2439 	}
2440 	/* not found */
2441 	return ENOENT;
2442 }
2443 
2444 
2445 static void
2446 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2447 	struct extattr_entry *extattr)
2448 {
2449 	struct file_entry      *fe;
2450 	struct extfile_entry   *efe;
2451 	struct extattrhdr_desc *extattrhdr;
2452 	struct impl_extattr_entry *implext;
2453 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2454 	uint32_t *l_eap, l_ad;
2455 	uint16_t *spos;
2456 	uint8_t *bpos, *data;
2457 
2458 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2459 		fe    = &dscr->fe;
2460 		data  = fe->data;
2461 		l_eap = &fe->l_ea;
2462 		l_ad  = udf_rw32(fe->l_ad);
2463 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2464 		efe   = &dscr->efe;
2465 		data  = efe->data;
2466 		l_eap = &efe->l_ea;
2467 		l_ad  = udf_rw32(efe->l_ad);
2468 	} else {
2469 		panic("Bad tag passed to udf_extattr_insert_internal");
2470 	}
2471 
2472 	/* can't append already written to file descriptors yet */
2473 	assert(l_ad == 0);
2474 
2475 	/* should have a header! */
2476 	extattrhdr = (struct extattrhdr_desc *) data;
2477 	l_ea = udf_rw32(*l_eap);
2478 	if (l_ea == 0) {
2479 		/* create empty extended attribute header */
2480 		exthdr_len = sizeof(struct extattrhdr_desc);
2481 
2482 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2483 			/* loc */ 0);
2484 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2485 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2486 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
2487 
2488 		/* record extended attribute header length */
2489 		l_ea = exthdr_len;
2490 		*l_eap = udf_rw32(l_ea);
2491 	}
2492 
2493 	/* extract locations */
2494 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2495 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2496 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2497 		impl_attr_loc = l_ea;
2498 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2499 		appl_attr_loc = l_ea;
2500 
2501 	/* Ecma 167 EAs */
2502 	if (udf_rw32(extattr->type) < 2048) {
2503 		assert(impl_attr_loc == l_ea);
2504 		assert(appl_attr_loc == l_ea);
2505 	}
2506 
2507 	/* implementation use extended attributes */
2508 	if (udf_rw32(extattr->type) == 2048) {
2509 		assert(appl_attr_loc == l_ea);
2510 
2511 		/* calculate and write extended attribute header checksum */
2512 		implext = (struct impl_extattr_entry *) extattr;
2513 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
2514 		spos = (uint16_t *) implext->data;
2515 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2516 	}
2517 
2518 	/* application use extended attributes */
2519 	assert(udf_rw32(extattr->type) != 65536);
2520 	assert(appl_attr_loc == l_ea);
2521 
2522 	/* append the attribute at the end of the current space */
2523 	bpos = data + udf_rw32(*l_eap);
2524 	a_l  = udf_rw32(extattr->a_l);
2525 
2526 	/* update impl. attribute locations */
2527 	if (udf_rw32(extattr->type) < 2048) {
2528 		impl_attr_loc = l_ea + a_l;
2529 		appl_attr_loc = l_ea + a_l;
2530 	}
2531 	if (udf_rw32(extattr->type) == 2048) {
2532 		appl_attr_loc = l_ea + a_l;
2533 	}
2534 
2535 	/* copy and advance */
2536 	memcpy(bpos, extattr, a_l);
2537 	l_ea += a_l;
2538 	*l_eap = udf_rw32(l_ea);
2539 
2540 	/* do the `dance` again backwards */
2541 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2542 		if (impl_attr_loc == l_ea)
2543 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2544 		if (appl_attr_loc == l_ea)
2545 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2546 	}
2547 
2548 	/* store offsets */
2549 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2550 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2551 }
2552 
2553 
2554 /* --------------------------------------------------------------------- */
2555 
2556 static int
2557 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2558 {
2559 	struct udf_mount       *ump;
2560 	struct udf_logvol_info *lvinfo;
2561 	struct impl_extattr_entry     *implext;
2562 	struct vatlvext_extattr_entry  lvext;
2563 	const char *extstr = "*UDF VAT LVExtension";
2564 	uint64_t    vat_uniqueid;
2565 	uint32_t    offset, a_l;
2566 	uint8_t    *ea_start, *lvextpos;
2567 	int         error;
2568 
2569 	/* get mountpoint and lvinfo */
2570 	ump    = vat_node->ump;
2571 	lvinfo = ump->logvol_info;
2572 
2573 	/* get information from fe/efe */
2574 	if (vat_node->fe) {
2575 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2576 		ea_start     = vat_node->fe->data;
2577 	} else {
2578 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2579 		ea_start     = vat_node->efe->data;
2580 	}
2581 
2582 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2583 	if (error)
2584 		return error;
2585 
2586 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2587 	error = udf_impl_extattr_check(implext);
2588 	if (error)
2589 		return error;
2590 
2591 	/* paranoia */
2592 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2593 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2594 		return EINVAL;
2595 	}
2596 
2597 	/*
2598 	 * we have found our "VAT LVExtension attribute. BUT due to a
2599 	 * bug in the specification it might not be word aligned so
2600 	 * copy first to avoid panics on some machines (!!)
2601 	 */
2602 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2603 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2604 	memcpy(&lvext, lvextpos, sizeof(lvext));
2605 
2606 	/* check if it was updated the last time */
2607 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2608 		lvinfo->num_files       = lvext.num_files;
2609 		lvinfo->num_directories = lvext.num_directories;
2610 		udf_update_logvolname(ump, lvext.logvol_id);
2611 	} else {
2612 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2613 		/* replace VAT LVExt by free space EA */
2614 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2615 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2616 		udf_calc_impl_extattr_checksum(implext);
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 
2623 static int
2624 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2625 {
2626 	struct udf_mount       *ump;
2627 	struct udf_logvol_info *lvinfo;
2628 	struct impl_extattr_entry     *implext;
2629 	struct vatlvext_extattr_entry  lvext;
2630 	const char *extstr = "*UDF VAT LVExtension";
2631 	uint64_t    vat_uniqueid;
2632 	uint32_t    offset, a_l;
2633 	uint8_t    *ea_start, *lvextpos;
2634 	int         error;
2635 
2636 	/* get mountpoint and lvinfo */
2637 	ump    = vat_node->ump;
2638 	lvinfo = ump->logvol_info;
2639 
2640 	/* get information from fe/efe */
2641 	if (vat_node->fe) {
2642 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2643 		ea_start     = vat_node->fe->data;
2644 	} else {
2645 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2646 		ea_start     = vat_node->efe->data;
2647 	}
2648 
2649 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2650 	if (error)
2651 		return error;
2652 	/* found, it existed */
2653 
2654 	/* paranoia */
2655 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2656 	error = udf_impl_extattr_check(implext);
2657 	if (error) {
2658 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2659 		return error;
2660 	}
2661 	/* it is correct */
2662 
2663 	/*
2664 	 * we have found our "VAT LVExtension attribute. BUT due to a
2665 	 * bug in the specification it might not be word aligned so
2666 	 * copy first to avoid panics on some machines (!!)
2667 	 */
2668 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2669 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2670 
2671 	lvext.unique_id_chk   = vat_uniqueid;
2672 	lvext.num_files       = lvinfo->num_files;
2673 	lvext.num_directories = lvinfo->num_directories;
2674 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2675 
2676 	memcpy(lvextpos, &lvext, sizeof(lvext));
2677 
2678 	return 0;
2679 }
2680 
2681 /* --------------------------------------------------------------------- */
2682 
2683 int
2684 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2685 {
2686 	struct udf_mount *ump = vat_node->ump;
2687 
2688 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2689 		return EINVAL;
2690 
2691 	memcpy(blob, ump->vat_table + offset, size);
2692 	return 0;
2693 }
2694 
2695 int
2696 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2697 {
2698 	struct udf_mount *ump = vat_node->ump;
2699 	uint32_t offset_high;
2700 	uint8_t *new_vat_table;
2701 
2702 	/* extent VAT allocation if needed */
2703 	offset_high = offset + size;
2704 	if (offset_high >= ump->vat_table_alloc_len) {
2705 		/* realloc */
2706 		new_vat_table = realloc(ump->vat_table,
2707 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2708 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
2709 		if (!new_vat_table) {
2710 			printf("udf_vat_write: can't extent VAT, out of mem\n");
2711 			return ENOMEM;
2712 		}
2713 		ump->vat_table = new_vat_table;
2714 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2715 	}
2716 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2717 
2718 	memcpy(ump->vat_table + offset, blob, size);
2719 	return 0;
2720 }
2721 
2722 /* --------------------------------------------------------------------- */
2723 
2724 /* TODO support previous VAT location writeout */
2725 static int
2726 udf_update_vat_descriptor(struct udf_mount *ump)
2727 {
2728 	struct udf_node *vat_node = ump->vat_node;
2729 	struct udf_logvol_info *lvinfo = ump->logvol_info;
2730 	struct icb_tag *icbtag;
2731 	struct udf_oldvat_tail *oldvat_tl;
2732 	struct udf_vat *vat;
2733 	uint64_t unique_id;
2734 	uint32_t lb_size;
2735 	uint8_t *raw_vat;
2736 	int filetype, error;
2737 
2738 	KASSERT(vat_node);
2739 	KASSERT(lvinfo);
2740 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2741 
2742 	/* get our new unique_id */
2743 	unique_id = udf_advance_uniqueid(ump);
2744 
2745 	/* get information from fe/efe */
2746 	if (vat_node->fe) {
2747 		icbtag    = &vat_node->fe->icbtag;
2748 		vat_node->fe->unique_id = udf_rw64(unique_id);
2749 	} else {
2750 		icbtag = &vat_node->efe->icbtag;
2751 		vat_node->efe->unique_id = udf_rw64(unique_id);
2752 	}
2753 
2754 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2755 	filetype = icbtag->file_type;
2756 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2757 
2758 	/* allocate piece to process head or tail of VAT file */
2759 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2760 
2761 	if (filetype == 0) {
2762 		/*
2763 		 * Update "*UDF VAT LVExtension" extended attribute from the
2764 		 * lvint if present.
2765 		 */
2766 		udf_update_vat_extattr_from_lvid(vat_node);
2767 
2768 		/* setup identifying regid */
2769 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2770 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2771 
2772 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2773 		udf_add_udf_regid(ump, &oldvat_tl->id);
2774 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2775 
2776 		/* write out new tail of virtual allocation table file */
2777 		error = udf_vat_write(vat_node, raw_vat,
2778 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2779 	} else {
2780 		/* compose the VAT2 header */
2781 		vat = (struct udf_vat *) raw_vat;
2782 		memset(vat, 0, sizeof(struct udf_vat));
2783 
2784 		vat->header_len       = udf_rw16(152);	/* as per spec */
2785 		vat->impl_use_len     = udf_rw16(0);
2786 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2787 		vat->prev_vat         = udf_rw32(0xffffffff);
2788 		vat->num_files        = lvinfo->num_files;
2789 		vat->num_directories  = lvinfo->num_directories;
2790 		vat->min_udf_readver  = lvinfo->min_udf_readver;
2791 		vat->min_udf_writever = lvinfo->min_udf_writever;
2792 		vat->max_udf_writever = lvinfo->max_udf_writever;
2793 
2794 		error = udf_vat_write(vat_node, raw_vat,
2795 			sizeof(struct udf_vat), 0);
2796 	}
2797 	free(raw_vat, M_TEMP);
2798 
2799 	return error;	/* success! */
2800 }
2801 
2802 
2803 int
2804 udf_writeout_vat(struct udf_mount *ump)
2805 {
2806 	struct udf_node *vat_node = ump->vat_node;
2807 	int error;
2808 
2809 	KASSERT(vat_node);
2810 
2811 	DPRINTF(CALL, ("udf_writeout_vat\n"));
2812 
2813 //	mutex_enter(&ump->allocate_mutex);
2814 	udf_update_vat_descriptor(ump);
2815 
2816 	/* write out the VAT contents ; TODO intelligent writing */
2817 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2818 		ump->vat_table, ump->vat_table_len, 0,
2819 		UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2820 	if (error) {
2821 		printf("udf_writeout_vat: failed to write out VAT contents\n");
2822 		goto out;
2823 	}
2824 
2825 //	mutex_exit(&ump->allocate_mutex);
2826 
2827 	error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2828 	if (error)
2829 		goto out;
2830 	error = VOP_FSYNC(ump->vat_node->vnode,
2831 			FSCRED, FSYNC_WAIT, 0, 0);
2832 	if (error)
2833 		printf("udf_writeout_vat: error writing VAT node!\n");
2834 out:
2835 
2836 	return error;
2837 }
2838 
2839 /* --------------------------------------------------------------------- */
2840 
2841 /*
2842  * Read in relevant pieces of VAT file and check if its indeed a VAT file
2843  * descriptor. If OK, read in complete VAT file.
2844  */
2845 
2846 static int
2847 udf_check_for_vat(struct udf_node *vat_node)
2848 {
2849 	struct udf_mount *ump;
2850 	struct icb_tag   *icbtag;
2851 	struct timestamp *mtime;
2852 	struct udf_vat   *vat;
2853 	struct udf_oldvat_tail *oldvat_tl;
2854 	struct udf_logvol_info *lvinfo;
2855 	uint64_t  unique_id;
2856 	uint32_t  vat_length;
2857 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
2858 	uint32_t  sector_size;
2859 	uint32_t *raw_vat;
2860 	uint8_t  *vat_table;
2861 	char     *regid_name;
2862 	int filetype;
2863 	int error;
2864 
2865 	/* vat_length is really 64 bits though impossible */
2866 
2867 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
2868 	if (!vat_node)
2869 		return ENOENT;
2870 
2871 	/* get mount info */
2872 	ump = vat_node->ump;
2873 	sector_size = udf_rw32(ump->logical_vol->lb_size);
2874 
2875 	/* check assertions */
2876 	assert(vat_node->fe || vat_node->efe);
2877 	assert(ump->logvol_integrity);
2878 
2879 	/* set vnode type to regular file or we can't read from it! */
2880 	vat_node->vnode->v_type = VREG;
2881 
2882 	/* get information from fe/efe */
2883 	if (vat_node->fe) {
2884 		vat_length = udf_rw64(vat_node->fe->inf_len);
2885 		icbtag    = &vat_node->fe->icbtag;
2886 		mtime     = &vat_node->fe->mtime;
2887 		unique_id = udf_rw64(vat_node->fe->unique_id);
2888 	} else {
2889 		vat_length = udf_rw64(vat_node->efe->inf_len);
2890 		icbtag = &vat_node->efe->icbtag;
2891 		mtime  = &vat_node->efe->mtime;
2892 		unique_id = udf_rw64(vat_node->efe->unique_id);
2893 	}
2894 
2895 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2896 	filetype = icbtag->file_type;
2897 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2898 		return ENOENT;
2899 
2900 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2901 
2902 	vat_table_alloc_len =
2903 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2904 			* UDF_VAT_CHUNKSIZE;
2905 
2906 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2907 		M_CANFAIL | M_WAITOK);
2908 	if (vat_table == NULL) {
2909 		printf("allocation of %d bytes failed for VAT\n",
2910 			vat_table_alloc_len);
2911 		return ENOMEM;
2912 	}
2913 
2914 	/* allocate piece to read in head or tail of VAT file */
2915 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2916 
2917 	/*
2918 	 * check contents of the file if its the old 1.50 VAT table format.
2919 	 * Its notoriously broken and allthough some implementations support an
2920 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
2921 	 * to be useable since a lot of implementations don't maintain it.
2922 	 */
2923 	lvinfo = ump->logvol_info;
2924 
2925 	if (filetype == 0) {
2926 		/* definition */
2927 		vat_offset  = 0;
2928 		vat_entries = (vat_length-36)/4;
2929 
2930 		/* read in tail of virtual allocation table file */
2931 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2932 				(uint8_t *) raw_vat,
2933 				sizeof(struct udf_oldvat_tail),
2934 				vat_entries * 4,
2935 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2936 				NULL, NULL);
2937 		if (error)
2938 			goto out;
2939 
2940 		/* check 1.50 VAT */
2941 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2942 		regid_name = (char *) oldvat_tl->id.id;
2943 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2944 		if (error) {
2945 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2946 			error = ENOENT;
2947 			goto out;
2948 		}
2949 
2950 		/*
2951 		 * update LVID from "*UDF VAT LVExtension" extended attribute
2952 		 * if present.
2953 		 */
2954 		udf_update_lvid_from_vat_extattr(vat_node);
2955 	} else {
2956 		/* read in head of virtual allocation table file */
2957 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2958 				(uint8_t *) raw_vat,
2959 				sizeof(struct udf_vat), 0,
2960 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2961 				NULL, NULL);
2962 		if (error)
2963 			goto out;
2964 
2965 		/* definition */
2966 		vat = (struct udf_vat *) raw_vat;
2967 		vat_offset  = vat->header_len;
2968 		vat_entries = (vat_length - vat_offset)/4;
2969 
2970 		assert(lvinfo);
2971 		lvinfo->num_files        = vat->num_files;
2972 		lvinfo->num_directories  = vat->num_directories;
2973 		lvinfo->min_udf_readver  = vat->min_udf_readver;
2974 		lvinfo->min_udf_writever = vat->min_udf_writever;
2975 		lvinfo->max_udf_writever = vat->max_udf_writever;
2976 
2977 		udf_update_logvolname(ump, vat->logvol_id);
2978 	}
2979 
2980 	/* read in complete VAT file */
2981 	error = vn_rdwr(UIO_READ, vat_node->vnode,
2982 			vat_table,
2983 			vat_length, 0,
2984 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2985 			NULL, NULL);
2986 	if (error)
2987 		printf("read in of complete VAT file failed (error %d)\n",
2988 			error);
2989 	if (error)
2990 		goto out;
2991 
2992 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2993 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2994 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2995 	ump->logvol_integrity->time           = *mtime;
2996 
2997 	ump->vat_table_len = vat_length;
2998 	ump->vat_table_alloc_len = vat_table_alloc_len;
2999 	ump->vat_table   = vat_table;
3000 	ump->vat_offset  = vat_offset;
3001 	ump->vat_entries = vat_entries;
3002 	ump->vat_last_free_lb = 0;		/* start at beginning */
3003 
3004 out:
3005 	if (error) {
3006 		if (vat_table)
3007 			free(vat_table, M_UDFVOLD);
3008 	}
3009 	free(raw_vat, M_TEMP);
3010 
3011 	return error;
3012 }
3013 
3014 /* --------------------------------------------------------------------- */
3015 
3016 static int
3017 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3018 {
3019 	struct udf_node *vat_node;
3020 	struct long_ad	 icb_loc;
3021 	uint32_t early_vat_loc, vat_loc;
3022 	int error;
3023 
3024 	/* mapping info not needed */
3025 	mapping = mapping;
3026 
3027 	vat_loc = ump->last_possible_vat_location;
3028 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
3029 
3030 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
3031 		vat_loc, early_vat_loc));
3032 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3033 
3034 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3035 		vat_loc, early_vat_loc));
3036 
3037 	/* start looking from the end of the range */
3038 	do {
3039 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3040 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3041 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
3042 
3043 		error = udf_get_node(ump, &icb_loc, &vat_node);
3044 		if (!error) {
3045 			error = udf_check_for_vat(vat_node);
3046 			DPRINTFIF(VOLUMES, !error,
3047 				("VAT accepted at %d\n", vat_loc));
3048 			if (!error)
3049 				break;
3050 		}
3051 		if (vat_node) {
3052 			vput(vat_node->vnode);
3053 			vat_node = NULL;
3054 		}
3055 		vat_loc--;	/* walk backwards */
3056 	} while (vat_loc >= early_vat_loc);
3057 
3058 	/* keep our VAT node around */
3059 	if (vat_node) {
3060 		UDF_SET_SYSTEMFILE(vat_node->vnode);
3061 		ump->vat_node = vat_node;
3062 	}
3063 
3064 	return error;
3065 }
3066 
3067 /* --------------------------------------------------------------------- */
3068 
3069 static int
3070 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3071 {
3072 	union dscrptr *dscr;
3073 	struct part_map_spare *pms = &mapping->pms;
3074 	uint32_t lb_num;
3075 	int spar, error;
3076 
3077 	/*
3078 	 * The partition mapping passed on to us specifies the information we
3079 	 * need to locate and initialise the sparable partition mapping
3080 	 * information we need.
3081 	 */
3082 
3083 	DPRINTF(VOLUMES, ("Read sparable table\n"));
3084 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
3085 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
3086 
3087 	for (spar = 0; spar < pms->n_st; spar++) {
3088 		lb_num = pms->st_loc[spar];
3089 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3090 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3091 		if (!error && dscr) {
3092 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3093 				if (ump->sparing_table)
3094 					free(ump->sparing_table, M_UDFVOLD);
3095 				ump->sparing_table = &dscr->spt;
3096 				dscr = NULL;
3097 				DPRINTF(VOLUMES,
3098 				    ("Sparing table accepted (%d entries)\n",
3099 				     udf_rw16(ump->sparing_table->rt_l)));
3100 				break;	/* we're done */
3101 			}
3102 		}
3103 		if (dscr)
3104 			free(dscr, M_UDFVOLD);
3105 	}
3106 
3107 	if (ump->sparing_table)
3108 		return 0;
3109 
3110 	return ENOENT;
3111 }
3112 
3113 /* --------------------------------------------------------------------- */
3114 
3115 static int
3116 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3117 {
3118 	struct part_map_meta *pmm = &mapping->pmm;
3119 	struct long_ad	 icb_loc;
3120 	struct vnode *vp;
3121 	uint16_t raw_phys_part, phys_part;
3122 	int error;
3123 
3124 	/*
3125 	 * BUGALERT: some rogue implementations use random physical
3126 	 * partition numbers to break other implementations so lookup
3127 	 * the number.
3128 	 */
3129 
3130 	/* extract our allocation parameters set up on format */
3131 	ump->metadata_alloc_unit_size     = udf_rw32(mapping->pmm.alloc_unit_size);
3132 	ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3133 	ump->metadata_flags = mapping->pmm.flags;
3134 
3135 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3136 	raw_phys_part = udf_rw16(pmm->part_num);
3137 	phys_part = udf_find_raw_phys(ump, raw_phys_part);
3138 
3139 	icb_loc.loc.part_num = udf_rw16(phys_part);
3140 
3141 	DPRINTF(VOLUMES, ("Metadata file\n"));
3142 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
3143 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3144 	if (ump->metadata_node) {
3145 		vp = ump->metadata_node->vnode;
3146 		UDF_SET_SYSTEMFILE(vp);
3147 	}
3148 
3149 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
3150 	if (icb_loc.loc.lb_num != -1) {
3151 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
3152 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3153 		if (ump->metadatamirror_node) {
3154 			vp = ump->metadatamirror_node->vnode;
3155 			UDF_SET_SYSTEMFILE(vp);
3156 		}
3157 	}
3158 
3159 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
3160 	if (icb_loc.loc.lb_num != -1) {
3161 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3162 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3163 		if (ump->metadatabitmap_node) {
3164 			vp = ump->metadatabitmap_node->vnode;
3165 			UDF_SET_SYSTEMFILE(vp);
3166 		}
3167 	}
3168 
3169 	/* if we're mounting read-only we relax the requirements */
3170 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3171 		error = EFAULT;
3172 		if (ump->metadata_node)
3173 			error = 0;
3174 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3175 			printf( "udf mount: Metadata file not readable, "
3176 				"substituting Metadata copy file\n");
3177 			ump->metadata_node = ump->metadatamirror_node;
3178 			ump->metadatamirror_node = NULL;
3179 			error = 0;
3180 		}
3181 	} else {
3182 		/* mounting read/write */
3183 		/* XXX DISABLED! metadata writing is not working yet XXX */
3184 		if (error)
3185 			error = EROFS;
3186 	}
3187 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3188 				   "metadata files\n"));
3189 	return error;
3190 }
3191 
3192 /* --------------------------------------------------------------------- */
3193 
3194 int
3195 udf_read_vds_tables(struct udf_mount *ump)
3196 {
3197 	union udf_pmap *mapping;
3198 	/* struct udf_args *args = &ump->mount_args; */
3199 	uint32_t n_pm;
3200 	uint32_t log_part;
3201 	uint8_t *pmap_pos;
3202 	int pmap_size;
3203 	int error;
3204 
3205 	/* Iterate (again) over the part mappings for locations   */
3206 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
3207 	pmap_pos =  ump->logical_vol->maps;
3208 
3209 	for (log_part = 0; log_part < n_pm; log_part++) {
3210 		mapping = (union udf_pmap *) pmap_pos;
3211 		switch (ump->vtop_tp[log_part]) {
3212 		case UDF_VTOP_TYPE_PHYS :
3213 			/* nothing */
3214 			break;
3215 		case UDF_VTOP_TYPE_VIRT :
3216 			/* search and load VAT */
3217 			error = udf_search_vat(ump, mapping);
3218 			if (error)
3219 				return ENOENT;
3220 			break;
3221 		case UDF_VTOP_TYPE_SPARABLE :
3222 			/* load one of the sparable tables */
3223 			error = udf_read_sparables(ump, mapping);
3224 			if (error)
3225 				return ENOENT;
3226 			break;
3227 		case UDF_VTOP_TYPE_META :
3228 			/* load the associated file descriptors */
3229 			error = udf_read_metadata_nodes(ump, mapping);
3230 			if (error)
3231 				return ENOENT;
3232 			break;
3233 		default:
3234 			break;
3235 		}
3236 		pmap_size  = pmap_pos[1];
3237 		pmap_pos  += pmap_size;
3238 	}
3239 
3240 	/* read in and check unallocated and free space info if writing */
3241 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3242 		error = udf_read_physical_partition_spacetables(ump);
3243 		if (error)
3244 			return error;
3245 
3246 		/* also read in metadata partition spacebitmap if defined */
3247 		error = udf_read_metadata_partition_spacetable(ump);
3248 			return error;
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 /* --------------------------------------------------------------------- */
3255 
3256 int
3257 udf_read_rootdirs(struct udf_mount *ump)
3258 {
3259 	union dscrptr *dscr;
3260 	/* struct udf_args *args = &ump->mount_args; */
3261 	struct udf_node *rootdir_node, *streamdir_node;
3262 	struct long_ad  fsd_loc, *dir_loc;
3263 	uint32_t lb_num, dummy;
3264 	uint32_t fsd_len;
3265 	int dscr_type;
3266 	int error;
3267 
3268 	/* TODO implement FSD reading in separate function like integrity? */
3269 	/* get fileset descriptor sequence */
3270 	fsd_loc = ump->logical_vol->lv_fsd_loc;
3271 	fsd_len = udf_rw32(fsd_loc.len);
3272 
3273 	dscr  = NULL;
3274 	error = 0;
3275 	while (fsd_len || error) {
3276 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3277 		/* translate fsd_loc to lb_num */
3278 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3279 		if (error)
3280 			break;
3281 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3282 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3283 		/* end markers */
3284 		if (error || (dscr == NULL))
3285 			break;
3286 
3287 		/* analyse */
3288 		dscr_type = udf_rw16(dscr->tag.id);
3289 		if (dscr_type == TAGID_TERM)
3290 			break;
3291 		if (dscr_type != TAGID_FSD) {
3292 			free(dscr, M_UDFVOLD);
3293 			return ENOENT;
3294 		}
3295 
3296 		/*
3297 		 * TODO check for multiple fileset descriptors; its only
3298 		 * picking the last now. Also check for FSD
3299 		 * correctness/interpretability
3300 		 */
3301 
3302 		/* update */
3303 		if (ump->fileset_desc) {
3304 			free(ump->fileset_desc, M_UDFVOLD);
3305 		}
3306 		ump->fileset_desc = &dscr->fsd;
3307 		dscr = NULL;
3308 
3309 		/* continue to the next fsd */
3310 		fsd_len -= ump->discinfo.sector_size;
3311 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3312 
3313 		/* follow up to fsd->next_ex (long_ad) if its not null */
3314 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3315 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3316 			fsd_loc = ump->fileset_desc->next_ex;
3317 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3318 		}
3319 	}
3320 	if (dscr)
3321 		free(dscr, M_UDFVOLD);
3322 
3323 	/* there has to be one */
3324 	if (ump->fileset_desc == NULL)
3325 		return ENOENT;
3326 
3327 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
3328 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3329 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3330 
3331 	/*
3332 	 * Now the FSD is known, read in the rootdirectory and if one exists,
3333 	 * the system stream dir. Some files in the system streamdir are not
3334 	 * wanted in this implementation since they are not maintained. If
3335 	 * writing is enabled we'll delete these files if they exist.
3336 	 */
3337 
3338 	rootdir_node = streamdir_node = NULL;
3339 	dir_loc = NULL;
3340 
3341 	/* try to read in the rootdir */
3342 	dir_loc = &ump->fileset_desc->rootdir_icb;
3343 	error = udf_get_node(ump, dir_loc, &rootdir_node);
3344 	if (error)
3345 		return ENOENT;
3346 
3347 	/* aparently it read in fine */
3348 
3349 	/*
3350 	 * Try the system stream directory; not very likely in the ones we
3351 	 * test, but for completeness.
3352 	 */
3353 	dir_loc = &ump->fileset_desc->streamdir_icb;
3354 	if (udf_rw32(dir_loc->len)) {
3355 		printf("udf_read_rootdirs: streamdir defined ");
3356 		error = udf_get_node(ump, dir_loc, &streamdir_node);
3357 		if (error) {
3358 			printf("but error in streamdir reading\n");
3359 		} else {
3360 			printf("but ignored\n");
3361 			/*
3362 			 * TODO process streamdir `baddies' i.e. files we dont
3363 			 * want if R/W
3364 			 */
3365 		}
3366 	}
3367 
3368 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3369 
3370 	/* release the vnodes again; they'll be auto-recycled later */
3371 	if (streamdir_node) {
3372 		vput(streamdir_node->vnode);
3373 	}
3374 	if (rootdir_node) {
3375 		vput(rootdir_node->vnode);
3376 	}
3377 
3378 	return 0;
3379 }
3380 
3381 /* --------------------------------------------------------------------- */
3382 
3383 /* To make absolutely sure we are NOT returning zero, add one :) */
3384 
3385 long
3386 udf_get_node_id(const struct long_ad *icbptr)
3387 {
3388 	/* ought to be enough since each mountpoint has its own chain */
3389 	return udf_rw32(icbptr->loc.lb_num) + 1;
3390 }
3391 
3392 
3393 int
3394 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3395 {
3396 	if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3397 		return -1;
3398 	if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3399 		return 1;
3400 
3401 	if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3402 		return -1;
3403 	if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3404 		return 1;
3405 
3406 	return 0;
3407 }
3408 
3409 
3410 static int
3411 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3412 {
3413 	const struct udf_node *a_node = a;
3414 	const struct udf_node *b_node = b;
3415 
3416 	return udf_compare_icb(&a_node->loc, &b_node->loc);
3417 }
3418 
3419 
3420 static int
3421 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3422 {
3423 	const struct udf_node *a_node = a;
3424 	const struct long_ad * const icb = key;
3425 
3426 	return udf_compare_icb(&a_node->loc, icb);
3427 }
3428 
3429 
3430 static const rb_tree_ops_t udf_node_rbtree_ops = {
3431 	.rbto_compare_nodes = udf_compare_rbnodes,
3432 	.rbto_compare_key = udf_compare_rbnode_icb,
3433 	.rbto_node_offset = offsetof(struct udf_node, rbnode),
3434 	.rbto_context = NULL
3435 };
3436 
3437 
3438 void
3439 udf_init_nodes_tree(struct udf_mount *ump)
3440 {
3441 
3442 	rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3443 }
3444 
3445 
3446 static struct udf_node *
3447 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3448 {
3449 	struct udf_node *udf_node;
3450 	struct vnode *vp;
3451 
3452 loop:
3453 	mutex_enter(&ump->ihash_lock);
3454 
3455 	udf_node = rb_tree_find_node(&ump->udf_node_tree, icbptr);
3456 	if (udf_node) {
3457 		vp = udf_node->vnode;
3458 		assert(vp);
3459 		mutex_enter(vp->v_interlock);
3460 		mutex_exit(&ump->ihash_lock);
3461 		if (vget(vp, LK_EXCLUSIVE))
3462 			goto loop;
3463 		return udf_node;
3464 	}
3465 	mutex_exit(&ump->ihash_lock);
3466 
3467 	return NULL;
3468 }
3469 
3470 
3471 static void
3472 udf_register_node(struct udf_node *udf_node)
3473 {
3474 	struct udf_mount *ump = udf_node->ump;
3475 
3476 	/* add node to the rb tree */
3477 	mutex_enter(&ump->ihash_lock);
3478 	rb_tree_insert_node(&ump->udf_node_tree, udf_node);
3479 	mutex_exit(&ump->ihash_lock);
3480 }
3481 
3482 
3483 static void
3484 udf_deregister_node(struct udf_node *udf_node)
3485 {
3486 	struct udf_mount *ump = udf_node->ump;
3487 
3488 	/* remove node from the rb tree */
3489 	mutex_enter(&ump->ihash_lock);
3490 	rb_tree_remove_node(&ump->udf_node_tree, udf_node);
3491 	mutex_exit(&ump->ihash_lock);
3492 }
3493 
3494 /* --------------------------------------------------------------------- */
3495 
3496 static int
3497 udf_validate_session_start(struct udf_mount *ump)
3498 {
3499 	struct mmc_trackinfo trackinfo;
3500 	struct vrs_desc *vrs;
3501 	uint32_t tracknr, sessionnr, sector, sector_size;
3502 	uint32_t iso9660_vrs, write_track_start;
3503 	uint8_t *buffer, *blank, *pos;
3504 	int blks, max_sectors, vrs_len;
3505 	int error;
3506 
3507 	/* disc appendable? */
3508 	if (ump->discinfo.disc_state == MMC_STATE_FULL)
3509 		return EROFS;
3510 
3511 	/* already written here? if so, there should be an ISO VDS */
3512 	if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3513 		return 0;
3514 
3515 	/*
3516 	 * Check if the first track of the session is blank and if so, copy or
3517 	 * create a dummy ISO descriptor so the disc is valid again.
3518 	 */
3519 
3520 	tracknr = ump->discinfo.first_track_last_session;
3521 	memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3522 	trackinfo.tracknr = tracknr;
3523 	error = udf_update_trackinfo(ump, &trackinfo);
3524 	if (error)
3525 		return error;
3526 
3527 	udf_dump_trackinfo(&trackinfo);
3528 	KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3529 	KASSERT(trackinfo.sessionnr > 1);
3530 
3531 	KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3532 	write_track_start = trackinfo.next_writable;
3533 
3534 	/* we have to copy the ISO VRS from a former session */
3535 	DPRINTF(VOLUMES, ("validate_session_start: "
3536 			"blank or reserved track, copying VRS\n"));
3537 
3538 	/* sessionnr should be the session we're mounting */
3539 	sessionnr = ump->mount_args.sessionnr;
3540 
3541 	/* start at the first track */
3542 	tracknr   = ump->discinfo.first_track;
3543 	while (tracknr <= ump->discinfo.num_tracks) {
3544 		trackinfo.tracknr = tracknr;
3545 		error = udf_update_trackinfo(ump, &trackinfo);
3546 		if (error) {
3547 			DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3548 			return error;
3549 		}
3550 		if (trackinfo.sessionnr == sessionnr)
3551 			break;
3552 		tracknr++;
3553 	}
3554 	if (trackinfo.sessionnr != sessionnr) {
3555 		DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3556 		return ENOENT;
3557 	}
3558 
3559 	DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3560 	udf_dump_trackinfo(&trackinfo);
3561 
3562         /*
3563          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3564          * minimum ISO `sector size' 2048
3565          */
3566 	sector_size = ump->discinfo.sector_size;
3567 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3568 		 + trackinfo.track_start;
3569 
3570 	buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3571 	max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3572 	blks = MAX(1, 2048 / sector_size);
3573 
3574 	error = 0;
3575 	for (sector = 0; sector < max_sectors; sector += blks) {
3576 		pos = buffer + sector * sector_size;
3577 		error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3578 			iso9660_vrs + sector, blks);
3579 		if (error)
3580 			break;
3581 		/* check this ISO descriptor */
3582 		vrs = (struct vrs_desc *) pos;
3583 		DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3584 		if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3585 			continue;
3586 		if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3587 			continue;
3588 		if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3589 			continue;
3590 		if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3591 			continue;
3592 		if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3593 			continue;
3594 		if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3595 			break;
3596 		/* now what? for now, end of sequence */
3597 		break;
3598 	}
3599 	vrs_len = sector + blks;
3600 	if (error) {
3601 		DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3602 		DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3603 
3604 		memset(buffer, 0, UDF_ISO_VRS_SIZE);
3605 
3606 		vrs = (struct vrs_desc *) (buffer);
3607 		vrs->struct_type = 0;
3608 		vrs->version     = 1;
3609 		memcpy(vrs->identifier,VRS_BEA01, 5);
3610 
3611 		vrs = (struct vrs_desc *) (buffer + 2048);
3612 		vrs->struct_type = 0;
3613 		vrs->version     = 1;
3614 		if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3615 			memcpy(vrs->identifier,VRS_NSR02, 5);
3616 		} else {
3617 			memcpy(vrs->identifier,VRS_NSR03, 5);
3618 		}
3619 
3620 		vrs = (struct vrs_desc *) (buffer + 4096);
3621 		vrs->struct_type = 0;
3622 		vrs->version     = 1;
3623 		memcpy(vrs->identifier, VRS_TEA01, 5);
3624 
3625 		vrs_len = 3*blks;
3626 	}
3627 
3628 	DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3629 
3630         /*
3631          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3632          * minimum ISO `sector size' 2048
3633          */
3634 	sector_size = ump->discinfo.sector_size;
3635 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3636 		 + write_track_start;
3637 
3638 	/* write out 32 kb */
3639 	blank = malloc(sector_size, M_TEMP, M_WAITOK);
3640 	memset(blank, 0, sector_size);
3641 	error = 0;
3642 	for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3643 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3644 			blank, sector, 1);
3645 		if (error)
3646 			break;
3647 	}
3648 	if (!error) {
3649 		/* write out our ISO VRS */
3650 		KASSERT(sector == iso9660_vrs);
3651 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3652 				sector, vrs_len);
3653 		sector += vrs_len;
3654 	}
3655 	if (!error) {
3656 		/* fill upto the first anchor at S+256 */
3657 		for (; sector < write_track_start+256; sector++) {
3658 			error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3659 				blank, sector, 1);
3660 			if (error)
3661 				break;
3662 		}
3663 	}
3664 	if (!error) {
3665 		/* write out anchor; write at ABSOLUTE place! */
3666 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3667 			(union dscrptr *) ump->anchors[0], sector, sector);
3668 		if (error)
3669 			printf("writeout of anchor failed!\n");
3670 	}
3671 
3672 	free(blank, M_TEMP);
3673 	free(buffer, M_TEMP);
3674 
3675 	if (error)
3676 		printf("udf_open_session: error writing iso vrs! : "
3677 				"leaving disc in compromised state!\n");
3678 
3679 	/* synchronise device caches */
3680 	(void) udf_synchronise_caches(ump);
3681 
3682 	return error;
3683 }
3684 
3685 
3686 int
3687 udf_open_logvol(struct udf_mount *ump)
3688 {
3689 	int logvol_integrity;
3690 	int error;
3691 
3692 	/* already/still open? */
3693 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3694 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
3695 		return 0;
3696 
3697 	/* can we open it ? */
3698 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3699 		return EROFS;
3700 
3701 	/* setup write parameters */
3702 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3703 	if ((error = udf_setup_writeparams(ump)) != 0)
3704 		return error;
3705 
3706 	/* determine data and metadata tracks (most likely same) */
3707 	error = udf_search_writing_tracks(ump);
3708 	if (error) {
3709 		/* most likely lack of space */
3710 		printf("udf_open_logvol: error searching writing tracks\n");
3711 		return EROFS;
3712 	}
3713 
3714 	/* writeout/update lvint on disc or only in memory */
3715 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
3716 	if (ump->lvopen & UDF_OPEN_SESSION) {
3717 		/* TODO optional track reservation opening */
3718 		error = udf_validate_session_start(ump);
3719 		if (error)
3720 			return error;
3721 
3722 		/* determine data and metadata tracks again */
3723 		error = udf_search_writing_tracks(ump);
3724 	}
3725 
3726 	/* mark it open */
3727 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3728 
3729 	/* do we need to write it out? */
3730 	if (ump->lvopen & UDF_WRITE_LVINT) {
3731 		error = udf_writeout_lvint(ump, ump->lvopen);
3732 		/* if we couldn't write it mark it closed again */
3733 		if (error) {
3734 			ump->logvol_integrity->integrity_type =
3735 						udf_rw32(UDF_INTEGRITY_CLOSED);
3736 			return error;
3737 		}
3738 	}
3739 
3740 	return 0;
3741 }
3742 
3743 
3744 int
3745 udf_close_logvol(struct udf_mount *ump, int mntflags)
3746 {
3747 	struct vnode *devvp = ump->devvp;
3748 	struct mmc_op mmc_op;
3749 	int logvol_integrity;
3750 	int error = 0, error1 = 0, error2 = 0;
3751 	int tracknr;
3752 	int nvats, n, nok;
3753 
3754 	/* already/still closed? */
3755 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3756 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3757 		return 0;
3758 
3759 	/* writeout/update lvint or write out VAT */
3760 	DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3761 #ifdef DIAGNOSTIC
3762 	if (ump->lvclose & UDF_CLOSE_SESSION)
3763 		KASSERT(ump->lvclose & UDF_WRITE_VAT);
3764 #endif
3765 
3766 	if (ump->lvclose & UDF_WRITE_VAT) {
3767 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3768 
3769 		/* write out the VAT data and all its descriptors */
3770 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
3771 		udf_writeout_vat(ump);
3772 		(void) vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
3773 
3774 		(void) VOP_FSYNC(ump->vat_node->vnode,
3775 				FSCRED, FSYNC_WAIT, 0, 0);
3776 
3777 		if (ump->lvclose & UDF_CLOSE_SESSION) {
3778 			DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3779 				"as requested\n"));
3780 		}
3781 
3782 		/* at least two DVD packets and 3 CD-R packets */
3783 		nvats = 32;
3784 
3785 #if notyet
3786 		/*
3787 		 * TODO calculate the available space and if the disc is
3788 		 * allmost full, write out till end-256-1 with banks, write
3789 		 * AVDP and fill up with VATs, then close session and close
3790 		 * disc.
3791 		 */
3792 		if (ump->lvclose & UDF_FINALISE_DISC) {
3793 			error = udf_write_phys_dscr_sync(ump, NULL,
3794 					UDF_C_FLOAT_DSCR,
3795 					(union dscrptr *) ump->anchors[0],
3796 					0, 0);
3797 			if (error)
3798 				printf("writeout of anchor failed!\n");
3799 
3800 			/* pad space with VAT ICBs */
3801 			nvats = 256;
3802 		}
3803 #endif
3804 
3805 		/* write out a number of VAT nodes */
3806 		nok = 0;
3807 		for (n = 0; n < nvats; n++) {
3808 			/* will now only write last FE/EFE */
3809 			ump->vat_node->i_flags |= IN_MODIFIED;
3810 			error = VOP_FSYNC(ump->vat_node->vnode,
3811 					FSCRED, FSYNC_WAIT, 0, 0);
3812 			if (!error)
3813 				nok++;
3814 		}
3815 		if (nok < 14) {
3816 			/* arbitrary; but at least one or two CD frames */
3817 			printf("writeout of at least 14 VATs failed\n");
3818 			return error;
3819 		}
3820 	}
3821 
3822 	/* NOTE the disc is in a (minimal) valid state now; no erroring out */
3823 
3824 	/* finish closing of session */
3825 	if (ump->lvclose & UDF_CLOSE_SESSION) {
3826 		error = udf_validate_session_start(ump);
3827 		if (error)
3828 			return error;
3829 
3830 		(void) udf_synchronise_caches(ump);
3831 
3832 		/* close all associated tracks */
3833 		tracknr = ump->discinfo.first_track_last_session;
3834 		error = 0;
3835 		while (tracknr <= ump->discinfo.last_track_last_session) {
3836 			DPRINTF(VOLUMES, ("\tclosing possible open "
3837 				"track %d\n", tracknr));
3838 			memset(&mmc_op, 0, sizeof(mmc_op));
3839 			mmc_op.operation   = MMC_OP_CLOSETRACK;
3840 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3841 			mmc_op.tracknr     = tracknr;
3842 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3843 					FKIOCTL, NOCRED);
3844 			if (error)
3845 				printf("udf_close_logvol: closing of "
3846 					"track %d failed\n", tracknr);
3847 			tracknr ++;
3848 		}
3849 		if (!error) {
3850 			DPRINTF(VOLUMES, ("closing session\n"));
3851 			memset(&mmc_op, 0, sizeof(mmc_op));
3852 			mmc_op.operation   = MMC_OP_CLOSESESSION;
3853 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3854 			mmc_op.sessionnr   = ump->discinfo.num_sessions;
3855 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3856 					FKIOCTL, NOCRED);
3857 			if (error)
3858 				printf("udf_close_logvol: closing of session"
3859 						"failed\n");
3860 		}
3861 		if (!error)
3862 			ump->lvopen |= UDF_OPEN_SESSION;
3863 		if (error) {
3864 			printf("udf_close_logvol: leaving disc as it is\n");
3865 			ump->lvclose &= ~UDF_FINALISE_DISC;
3866 		}
3867 	}
3868 
3869 	if (ump->lvclose & UDF_FINALISE_DISC) {
3870 		memset(&mmc_op, 0, sizeof(mmc_op));
3871 		mmc_op.operation   = MMC_OP_FINALISEDISC;
3872 		mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3873 		mmc_op.sessionnr   = ump->discinfo.num_sessions;
3874 		error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3875 				FKIOCTL, NOCRED);
3876 		if (error)
3877 			printf("udf_close_logvol: finalising disc"
3878 					"failed\n");
3879 	}
3880 
3881 	/* write out partition bitmaps if requested */
3882 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3883 		/* sync writeout metadata spacetable if existing */
3884 		error1 = udf_write_metadata_partition_spacetable(ump, true);
3885 		if (error1)
3886 			printf( "udf_close_logvol: writeout of metadata space "
3887 				"bitmap failed\n");
3888 
3889 		/* sync writeout partition spacetables */
3890 		error2 = udf_write_physical_partition_spacetables(ump, true);
3891 		if (error2)
3892 			printf( "udf_close_logvol: writeout of space tables "
3893 				"failed\n");
3894 
3895 		if (error1 || error2)
3896 			return (error1 | error2);
3897 
3898 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3899 	}
3900 
3901 	/* write out metadata partition nodes if requested */
3902 	if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3903 		/* sync writeout metadata descriptor node */
3904 		error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3905 		if (error1)
3906 			printf( "udf_close_logvol: writeout of metadata partition "
3907 				"node failed\n");
3908 
3909 		/* duplicate metadata partition descriptor if needed */
3910 		udf_synchronise_metadatamirror_node(ump);
3911 
3912 		/* sync writeout metadatamirror descriptor node */
3913 		error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3914 		if (error2)
3915 			printf( "udf_close_logvol: writeout of metadata partition "
3916 				"mirror node failed\n");
3917 
3918 		if (error1 || error2)
3919 			return (error1 | error2);
3920 
3921 		ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3922 	}
3923 
3924 	/* mark it closed */
3925 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3926 
3927 	/* do we need to write out the logical volume integrity? */
3928 	if (ump->lvclose & UDF_WRITE_LVINT)
3929 		error = udf_writeout_lvint(ump, ump->lvopen);
3930 	if (error) {
3931 		/* HELP now what? mark it open again for now */
3932 		ump->logvol_integrity->integrity_type =
3933 			udf_rw32(UDF_INTEGRITY_OPEN);
3934 		return error;
3935 	}
3936 
3937 	(void) udf_synchronise_caches(ump);
3938 
3939 	return 0;
3940 }
3941 
3942 /* --------------------------------------------------------------------- */
3943 
3944 /*
3945  * Genfs interfacing
3946  *
3947  * static const struct genfs_ops udf_genfsops = {
3948  * 	.gop_size = genfs_size,
3949  * 		size of transfers
3950  * 	.gop_alloc = udf_gop_alloc,
3951  * 		allocate len bytes at offset
3952  * 	.gop_write = genfs_gop_write,
3953  * 		putpages interface code
3954  * 	.gop_markupdate = udf_gop_markupdate,
3955  * 		set update/modify flags etc.
3956  * }
3957  */
3958 
3959 /*
3960  * Genfs interface. These four functions are the only ones defined though not
3961  * documented... great....
3962  */
3963 
3964 /*
3965  * Called for allocating an extent of the file either by VOP_WRITE() or by
3966  * genfs filling up gaps.
3967  */
3968 static int
3969 udf_gop_alloc(struct vnode *vp, off_t off,
3970     off_t len, int flags, kauth_cred_t cred)
3971 {
3972 	struct udf_node *udf_node = VTOI(vp);
3973 	struct udf_mount *ump = udf_node->ump;
3974 	uint64_t lb_start, lb_end;
3975 	uint32_t lb_size, num_lb;
3976 	int udf_c_type, vpart_num, can_fail;
3977 	int error;
3978 
3979 	DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3980 		off, len, flags? "SYNC":"NONE"));
3981 
3982 	/*
3983 	 * request the pages of our vnode and see how many pages will need to
3984 	 * be allocated and reserve that space
3985 	 */
3986 	lb_size  = udf_rw32(udf_node->ump->logical_vol->lb_size);
3987 	lb_start = off / lb_size;
3988 	lb_end   = (off + len + lb_size -1) / lb_size;
3989 	num_lb   = lb_end - lb_start;
3990 
3991 	udf_c_type = udf_get_c_type(udf_node);
3992 	vpart_num  = udf_get_record_vpart(ump, udf_c_type);
3993 
3994 	/* all requests can fail */
3995 	can_fail   = true;
3996 
3997 	/* fid's (directories) can't fail */
3998 	if (udf_c_type == UDF_C_FIDS)
3999 		can_fail   = false;
4000 
4001 	/* system files can't fail */
4002 	if (vp->v_vflag & VV_SYSTEM)
4003 		can_fail = false;
4004 
4005 	error = udf_reserve_space(ump, udf_node, udf_c_type,
4006 		vpart_num, num_lb, can_fail);
4007 
4008 	DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
4009 		lb_start, lb_end, num_lb));
4010 
4011 	return error;
4012 }
4013 
4014 
4015 /*
4016  * callback from genfs to update our flags
4017  */
4018 static void
4019 udf_gop_markupdate(struct vnode *vp, int flags)
4020 {
4021 	struct udf_node *udf_node = VTOI(vp);
4022 	u_long mask = 0;
4023 
4024 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4025 		mask = IN_ACCESS;
4026 	}
4027 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4028 		if (vp->v_type == VREG) {
4029 			mask |= IN_CHANGE | IN_UPDATE;
4030 		} else {
4031 			mask |= IN_MODIFY;
4032 		}
4033 	}
4034 	if (mask) {
4035 		udf_node->i_flags |= mask;
4036 	}
4037 }
4038 
4039 
4040 static const struct genfs_ops udf_genfsops = {
4041 	.gop_size = genfs_size,
4042 	.gop_alloc = udf_gop_alloc,
4043 	.gop_write = genfs_gop_write_rwmap,
4044 	.gop_markupdate = udf_gop_markupdate,
4045 };
4046 
4047 
4048 /* --------------------------------------------------------------------- */
4049 
4050 int
4051 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4052 {
4053 	union dscrptr *dscr;
4054 	int error;
4055 
4056 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4057 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4058 
4059 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4060 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4061 	(void) udf_validate_tag_and_crc_sums(dscr);
4062 
4063 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4064 			dscr, sector, sector);
4065 
4066 	free(dscr, M_TEMP);
4067 
4068 	return error;
4069 }
4070 
4071 
4072 /* --------------------------------------------------------------------- */
4073 
4074 /* UDF<->unix converters */
4075 
4076 /* --------------------------------------------------------------------- */
4077 
4078 static mode_t
4079 udf_perm_to_unix_mode(uint32_t perm)
4080 {
4081 	mode_t mode;
4082 
4083 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
4084 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
4085 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4086 
4087 	return mode;
4088 }
4089 
4090 /* --------------------------------------------------------------------- */
4091 
4092 static uint32_t
4093 unix_mode_to_udf_perm(mode_t mode)
4094 {
4095 	uint32_t perm;
4096 
4097 	perm  = ((mode & S_IRWXO)     );
4098 	perm |= ((mode & S_IRWXG) << 2);
4099 	perm |= ((mode & S_IRWXU) << 4);
4100 	perm |= ((mode & S_IWOTH) << 3);
4101 	perm |= ((mode & S_IWGRP) << 5);
4102 	perm |= ((mode & S_IWUSR) << 7);
4103 
4104 	return perm;
4105 }
4106 
4107 /* --------------------------------------------------------------------- */
4108 
4109 static uint32_t
4110 udf_icb_to_unix_filetype(uint32_t icbftype)
4111 {
4112 	switch (icbftype) {
4113 	case UDF_ICB_FILETYPE_DIRECTORY :
4114 	case UDF_ICB_FILETYPE_STREAMDIR :
4115 		return S_IFDIR;
4116 	case UDF_ICB_FILETYPE_FIFO :
4117 		return S_IFIFO;
4118 	case UDF_ICB_FILETYPE_CHARDEVICE :
4119 		return S_IFCHR;
4120 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
4121 		return S_IFBLK;
4122 	case UDF_ICB_FILETYPE_RANDOMACCESS :
4123 	case UDF_ICB_FILETYPE_REALTIME :
4124 		return S_IFREG;
4125 	case UDF_ICB_FILETYPE_SYMLINK :
4126 		return S_IFLNK;
4127 	case UDF_ICB_FILETYPE_SOCKET :
4128 		return S_IFSOCK;
4129 	}
4130 	/* no idea what this is */
4131 	return 0;
4132 }
4133 
4134 /* --------------------------------------------------------------------- */
4135 
4136 void
4137 udf_to_unix_name(char *result, int result_len, char *id, int len,
4138 	struct charspec *chsp)
4139 {
4140 	uint16_t   *raw_name, *unix_name;
4141 	uint16_t   *inchp, ch;
4142 	uint8_t	   *outchp;
4143 	const char *osta_id = "OSTA Compressed Unicode";
4144 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
4145 
4146 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4147 	unix_name = raw_name + 1024;			/* split space in half */
4148 	assert(sizeof(char) == sizeof(uint8_t));
4149 	outchp = (uint8_t *) result;
4150 
4151 	is_osta_typ0  = (chsp->type == 0);
4152 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4153 	if (is_osta_typ0) {
4154 		/* TODO clean up */
4155 		*raw_name = *unix_name = 0;
4156 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4157 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4158 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4159 		/* output UTF8 */
4160 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4161 			ch = *inchp;
4162 			nout = wput_utf8(outchp, result_len, ch);
4163 			outchp += nout; result_len -= nout;
4164 			if (!ch) break;
4165 		}
4166 		*outchp++ = 0;
4167 	} else {
4168 		/* assume 8bit char length byte latin-1 */
4169 		assert(*id == 8);
4170 		assert(strlen((char *) (id+1)) <= NAME_MAX);
4171 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4172 	}
4173 	free(raw_name, M_UDFTEMP);
4174 }
4175 
4176 /* --------------------------------------------------------------------- */
4177 
4178 void
4179 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4180 	struct charspec *chsp)
4181 {
4182 	uint16_t   *raw_name;
4183 	uint16_t   *outchp;
4184 	const char *inchp;
4185 	const char *osta_id = "OSTA Compressed Unicode";
4186 	int         udf_chars, is_osta_typ0, bits;
4187 	size_t      cnt;
4188 
4189 	/* allocate temporary unicode-16 buffer */
4190 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4191 
4192 	/* convert utf8 to unicode-16 */
4193 	*raw_name = 0;
4194 	inchp  = name;
4195 	outchp = raw_name;
4196 	bits = 8;
4197 	for (cnt = name_len, udf_chars = 0; cnt;) {
4198 		*outchp = wget_utf8(&inchp, &cnt);
4199 		if (*outchp > 0xff)
4200 			bits=16;
4201 		outchp++;
4202 		udf_chars++;
4203 	}
4204 	/* null terminate just in case */
4205 	*outchp++ = 0;
4206 
4207 	is_osta_typ0  = (chsp->type == 0);
4208 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4209 	if (is_osta_typ0) {
4210 		udf_chars = udf_CompressUnicode(udf_chars, bits,
4211 				(unicode_t *) raw_name,
4212 				(byte *) result);
4213 	} else {
4214 		printf("unix to udf name: no CHSP0 ?\n");
4215 		/* XXX assume 8bit char length byte latin-1 */
4216 		*result++ = 8; udf_chars = 1;
4217 		strncpy(result, name + 1, name_len);
4218 		udf_chars += name_len;
4219 	}
4220 	*result_len = udf_chars;
4221 	free(raw_name, M_UDFTEMP);
4222 }
4223 
4224 /* --------------------------------------------------------------------- */
4225 
4226 void
4227 udf_timestamp_to_timespec(struct udf_mount *ump,
4228 			  struct timestamp *timestamp,
4229 			  struct timespec  *timespec)
4230 {
4231 	struct clock_ymdhms ymdhms;
4232 	uint32_t usecs, secs, nsecs;
4233 	uint16_t tz;
4234 
4235 	/* fill in ymdhms structure from timestamp */
4236 	memset(&ymdhms, 0, sizeof(ymdhms));
4237 	ymdhms.dt_year = udf_rw16(timestamp->year);
4238 	ymdhms.dt_mon  = timestamp->month;
4239 	ymdhms.dt_day  = timestamp->day;
4240 	ymdhms.dt_wday = 0; /* ? */
4241 	ymdhms.dt_hour = timestamp->hour;
4242 	ymdhms.dt_min  = timestamp->minute;
4243 	ymdhms.dt_sec  = timestamp->second;
4244 
4245 	secs = clock_ymdhms_to_secs(&ymdhms);
4246 	usecs = timestamp->usec +
4247 		100*timestamp->hund_usec + 10000*timestamp->centisec;
4248 	nsecs = usecs * 1000;
4249 
4250 	/*
4251 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
4252 	 * compliment, so we gotta do some extra magic to handle it right.
4253 	 */
4254 	tz  = udf_rw16(timestamp->type_tz);
4255 	tz &= 0x0fff;			/* only lower 12 bits are significant */
4256 	if (tz & 0x0800)		/* sign extention */
4257 		tz |= 0xf000;
4258 
4259 	/* TODO check timezone conversion */
4260 	/* check if we are specified a timezone to convert */
4261 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
4262 		if ((int16_t) tz != -2047)
4263 			secs -= (int16_t) tz * 60;
4264 	} else {
4265 		secs -= ump->mount_args.gmtoff;
4266 	}
4267 
4268 	timespec->tv_sec  = secs;
4269 	timespec->tv_nsec = nsecs;
4270 }
4271 
4272 
4273 void
4274 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4275 {
4276 	struct clock_ymdhms ymdhms;
4277 	uint32_t husec, usec, csec;
4278 
4279 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4280 
4281 	usec   = timespec->tv_nsec / 1000;
4282 	husec  =  usec / 100;
4283 	usec  -= husec * 100;				/* only 0-99 in usec  */
4284 	csec   = husec / 100;				/* only 0-99 in csec  */
4285 	husec -=  csec * 100;				/* only 0-99 in husec */
4286 
4287 	/* set method 1 for CUT/GMT */
4288 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
4289 	timestamp->year		= udf_rw16(ymdhms.dt_year);
4290 	timestamp->month	= ymdhms.dt_mon;
4291 	timestamp->day		= ymdhms.dt_day;
4292 	timestamp->hour		= ymdhms.dt_hour;
4293 	timestamp->minute	= ymdhms.dt_min;
4294 	timestamp->second	= ymdhms.dt_sec;
4295 	timestamp->centisec	= csec;
4296 	timestamp->hund_usec	= husec;
4297 	timestamp->usec		= usec;
4298 }
4299 
4300 /* --------------------------------------------------------------------- */
4301 
4302 /*
4303  * Attribute and filetypes converters with get/set pairs
4304  */
4305 
4306 uint32_t
4307 udf_getaccessmode(struct udf_node *udf_node)
4308 {
4309 	struct file_entry     *fe = udf_node->fe;
4310 	struct extfile_entry *efe = udf_node->efe;
4311 	uint32_t udf_perm, icbftype;
4312 	uint32_t mode, ftype;
4313 	uint16_t icbflags;
4314 
4315 	UDF_LOCK_NODE(udf_node, 0);
4316 	if (fe) {
4317 		udf_perm = udf_rw32(fe->perm);
4318 		icbftype = fe->icbtag.file_type;
4319 		icbflags = udf_rw16(fe->icbtag.flags);
4320 	} else {
4321 		assert(udf_node->efe);
4322 		udf_perm = udf_rw32(efe->perm);
4323 		icbftype = efe->icbtag.file_type;
4324 		icbflags = udf_rw16(efe->icbtag.flags);
4325 	}
4326 
4327 	mode  = udf_perm_to_unix_mode(udf_perm);
4328 	ftype = udf_icb_to_unix_filetype(icbftype);
4329 
4330 	/* set suid, sgid, sticky from flags in fe/efe */
4331 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4332 		mode |= S_ISUID;
4333 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4334 		mode |= S_ISGID;
4335 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4336 		mode |= S_ISVTX;
4337 
4338 	UDF_UNLOCK_NODE(udf_node, 0);
4339 
4340 	return mode | ftype;
4341 }
4342 
4343 
4344 void
4345 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4346 {
4347 	struct file_entry    *fe  = udf_node->fe;
4348 	struct extfile_entry *efe = udf_node->efe;
4349 	uint32_t udf_perm;
4350 	uint16_t icbflags;
4351 
4352 	UDF_LOCK_NODE(udf_node, 0);
4353 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4354 	if (fe) {
4355 		icbflags = udf_rw16(fe->icbtag.flags);
4356 	} else {
4357 		icbflags = udf_rw16(efe->icbtag.flags);
4358 	}
4359 
4360 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4361 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4362 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4363 	if (mode & S_ISUID)
4364 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4365 	if (mode & S_ISGID)
4366 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4367 	if (mode & S_ISVTX)
4368 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4369 
4370 	if (fe) {
4371 		fe->perm  = udf_rw32(udf_perm);
4372 		fe->icbtag.flags  = udf_rw16(icbflags);
4373 	} else {
4374 		efe->perm = udf_rw32(udf_perm);
4375 		efe->icbtag.flags = udf_rw16(icbflags);
4376 	}
4377 
4378 	UDF_UNLOCK_NODE(udf_node, 0);
4379 }
4380 
4381 
4382 void
4383 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4384 {
4385 	struct udf_mount     *ump = udf_node->ump;
4386 	struct file_entry    *fe  = udf_node->fe;
4387 	struct extfile_entry *efe = udf_node->efe;
4388 	uid_t uid;
4389 	gid_t gid;
4390 
4391 	UDF_LOCK_NODE(udf_node, 0);
4392 	if (fe) {
4393 		uid = (uid_t)udf_rw32(fe->uid);
4394 		gid = (gid_t)udf_rw32(fe->gid);
4395 	} else {
4396 		assert(udf_node->efe);
4397 		uid = (uid_t)udf_rw32(efe->uid);
4398 		gid = (gid_t)udf_rw32(efe->gid);
4399 	}
4400 
4401 	/* do the uid/gid translation game */
4402 	if (uid == (uid_t) -1)
4403 		uid = ump->mount_args.anon_uid;
4404 	if (gid == (gid_t) -1)
4405 		gid = ump->mount_args.anon_gid;
4406 
4407 	*uidp = uid;
4408 	*gidp = gid;
4409 
4410 	UDF_UNLOCK_NODE(udf_node, 0);
4411 }
4412 
4413 
4414 void
4415 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4416 {
4417 	struct udf_mount     *ump = udf_node->ump;
4418 	struct file_entry    *fe  = udf_node->fe;
4419 	struct extfile_entry *efe = udf_node->efe;
4420 	uid_t nobody_uid;
4421 	gid_t nobody_gid;
4422 
4423 	UDF_LOCK_NODE(udf_node, 0);
4424 
4425 	/* do the uid/gid translation game */
4426 	nobody_uid = ump->mount_args.nobody_uid;
4427 	nobody_gid = ump->mount_args.nobody_gid;
4428 	if (uid == nobody_uid)
4429 		uid = (uid_t) -1;
4430 	if (gid == nobody_gid)
4431 		gid = (gid_t) -1;
4432 
4433 	if (fe) {
4434 		fe->uid  = udf_rw32((uint32_t) uid);
4435 		fe->gid  = udf_rw32((uint32_t) gid);
4436 	} else {
4437 		efe->uid = udf_rw32((uint32_t) uid);
4438 		efe->gid = udf_rw32((uint32_t) gid);
4439 	}
4440 
4441 	UDF_UNLOCK_NODE(udf_node, 0);
4442 }
4443 
4444 
4445 /* --------------------------------------------------------------------- */
4446 
4447 
4448 int
4449 udf_dirhash_fill(struct udf_node *dir_node)
4450 {
4451 	struct vnode *dvp = dir_node->vnode;
4452 	struct dirhash *dirh;
4453 	struct file_entry    *fe  = dir_node->fe;
4454 	struct extfile_entry *efe = dir_node->efe;
4455 	struct fileid_desc *fid;
4456 	struct dirent *dirent;
4457 	uint64_t file_size, pre_diroffset, diroffset;
4458 	uint32_t lb_size;
4459 	int error;
4460 
4461 	/* make sure we have a dirhash to work on */
4462 	dirh = dir_node->dir_hash;
4463 	KASSERT(dirh);
4464 	KASSERT(dirh->refcnt > 0);
4465 
4466 	if (dirh->flags & DIRH_BROKEN)
4467 		return EIO;
4468 	if (dirh->flags & DIRH_COMPLETE)
4469 		return 0;
4470 
4471 	/* make sure we have a clean dirhash to add to */
4472 	dirhash_purge_entries(dirh);
4473 
4474 	/* get directory filesize */
4475 	if (fe) {
4476 		file_size = udf_rw64(fe->inf_len);
4477 	} else {
4478 		assert(efe);
4479 		file_size = udf_rw64(efe->inf_len);
4480 	}
4481 
4482 	/* allocate temporary space for fid */
4483 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4484 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4485 
4486 	/* allocate temporary space for dirent */
4487 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4488 
4489 	error = 0;
4490 	diroffset = 0;
4491 	while (diroffset < file_size) {
4492 		/* transfer a new fid/dirent */
4493 		pre_diroffset = diroffset;
4494 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4495 		if (error) {
4496 			/* TODO what to do? continue but not add? */
4497 			dirh->flags |= DIRH_BROKEN;
4498 			dirhash_purge_entries(dirh);
4499 			break;
4500 		}
4501 
4502 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4503 			/* register deleted extent for reuse */
4504 			dirhash_enter_freed(dirh, pre_diroffset,
4505 				udf_fidsize(fid));
4506 		} else {
4507 			/* append to the dirhash */
4508 			dirhash_enter(dirh, dirent, pre_diroffset,
4509 				udf_fidsize(fid), 0);
4510 		}
4511 	}
4512 	dirh->flags |= DIRH_COMPLETE;
4513 
4514 	free(fid, M_UDFTEMP);
4515 	free(dirent, M_UDFTEMP);
4516 
4517 	return error;
4518 }
4519 
4520 
4521 /* --------------------------------------------------------------------- */
4522 
4523 /*
4524  * Directory read and manipulation functions.
4525  *
4526  */
4527 
4528 int
4529 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4530        struct long_ad *icb_loc, int *found)
4531 {
4532 	struct udf_node  *dir_node = VTOI(vp);
4533 	struct dirhash       *dirh;
4534 	struct dirhash_entry *dirh_ep;
4535 	struct fileid_desc *fid;
4536 	struct dirent *dirent;
4537 	uint64_t diroffset;
4538 	uint32_t lb_size;
4539 	int hit, error;
4540 
4541 	/* set default return */
4542 	*found = 0;
4543 
4544 	/* get our dirhash and make sure its read in */
4545 	dirhash_get(&dir_node->dir_hash);
4546 	error = udf_dirhash_fill(dir_node);
4547 	if (error) {
4548 		dirhash_put(dir_node->dir_hash);
4549 		return error;
4550 	}
4551 	dirh = dir_node->dir_hash;
4552 
4553 	/* allocate temporary space for fid */
4554 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4555 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4556 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4557 
4558 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4559 		namelen, namelen, name));
4560 
4561 	/* search our dirhash hits */
4562 	memset(icb_loc, 0, sizeof(*icb_loc));
4563 	dirh_ep = NULL;
4564 	for (;;) {
4565 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4566 		/* if no hit, abort the search */
4567 		if (!hit)
4568 			break;
4569 
4570 		/* check this hit */
4571 		diroffset = dirh_ep->offset;
4572 
4573 		/* transfer a new fid/dirent */
4574 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4575 		if (error)
4576 			break;
4577 
4578 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4579 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4580 
4581 		/* see if its our entry */
4582 #ifdef DIAGNOSTIC
4583 		if (dirent->d_namlen != namelen) {
4584 			printf("WARNING: dirhash_lookup() returned wrong "
4585 				"d_namelen: %d and ought to be %d\n",
4586 				dirent->d_namlen, namelen);
4587 			printf("\tlooked for `%s' and got `%s'\n",
4588 				name, dirent->d_name);
4589 		}
4590 #endif
4591 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4592 			*found = 1;
4593 			*icb_loc = fid->icb;
4594 			break;
4595 		}
4596 	}
4597 	free(fid, M_UDFTEMP);
4598 	free(dirent, M_UDFTEMP);
4599 
4600 	dirhash_put(dir_node->dir_hash);
4601 
4602 	return error;
4603 }
4604 
4605 /* --------------------------------------------------------------------- */
4606 
4607 static int
4608 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4609 	struct long_ad *node_icb, struct long_ad *parent_icb,
4610 	uint64_t parent_unique_id)
4611 {
4612 	struct timespec now;
4613 	struct icb_tag *icb;
4614 	struct filetimes_extattr_entry *ft_extattr;
4615 	uint64_t unique_id;
4616 	uint32_t fidsize, lb_num;
4617 	uint8_t *bpos;
4618 	int crclen, attrlen;
4619 
4620 	lb_num = udf_rw32(node_icb->loc.lb_num);
4621 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4622 	icb = &fe->icbtag;
4623 
4624 	/*
4625 	 * Always use strategy type 4 unless on WORM wich we don't support
4626 	 * (yet). Fill in defaults and set for internal allocation of data.
4627 	 */
4628 	icb->strat_type      = udf_rw16(4);
4629 	icb->max_num_entries = udf_rw16(1);
4630 	icb->file_type       = file_type;	/* 8 bit */
4631 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4632 
4633 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4634 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
4635 
4636 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4637 
4638 	vfs_timestamp(&now);
4639 	udf_timespec_to_timestamp(&now, &fe->atime);
4640 	udf_timespec_to_timestamp(&now, &fe->attrtime);
4641 	udf_timespec_to_timestamp(&now, &fe->mtime);
4642 
4643 	udf_set_regid(&fe->imp_id, IMPL_NAME);
4644 	udf_add_impl_regid(ump, &fe->imp_id);
4645 
4646 	unique_id = udf_advance_uniqueid(ump);
4647 	fe->unique_id = udf_rw64(unique_id);
4648 	fe->l_ea = udf_rw32(0);
4649 
4650 	/* create extended attribute to record our creation time */
4651 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4652 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4653 	memset(ft_extattr, 0, attrlen);
4654 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4655 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
4656 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4657 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4658 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4659 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4660 
4661 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4662 		(struct extattr_entry *) ft_extattr);
4663 	free(ft_extattr, M_UDFTEMP);
4664 
4665 	/* if its a directory, create '..' */
4666 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4667 	fidsize = 0;
4668 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4669 		fidsize = udf_create_parentfid(ump,
4670 			(struct fileid_desc *) bpos, parent_icb,
4671 			parent_unique_id);
4672 	}
4673 
4674 	/* record fidlength information */
4675 	fe->inf_len = udf_rw64(fidsize);
4676 	fe->l_ad    = udf_rw32(fidsize);
4677 	fe->logblks_rec = udf_rw64(0);		/* intern */
4678 
4679 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4680 	crclen += udf_rw32(fe->l_ea) + fidsize;
4681 	fe->tag.desc_crc_len = udf_rw16(crclen);
4682 
4683 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4684 
4685 	return fidsize;
4686 }
4687 
4688 /* --------------------------------------------------------------------- */
4689 
4690 static int
4691 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4692 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4693 	uint64_t parent_unique_id)
4694 {
4695 	struct timespec now;
4696 	struct icb_tag *icb;
4697 	uint64_t unique_id;
4698 	uint32_t fidsize, lb_num;
4699 	uint8_t *bpos;
4700 	int crclen;
4701 
4702 	lb_num = udf_rw32(node_icb->loc.lb_num);
4703 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4704 	icb = &efe->icbtag;
4705 
4706 	/*
4707 	 * Always use strategy type 4 unless on WORM wich we don't support
4708 	 * (yet). Fill in defaults and set for internal allocation of data.
4709 	 */
4710 	icb->strat_type      = udf_rw16(4);
4711 	icb->max_num_entries = udf_rw16(1);
4712 	icb->file_type       = file_type;	/* 8 bit */
4713 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4714 
4715 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4716 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
4717 
4718 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4719 
4720 	vfs_timestamp(&now);
4721 	udf_timespec_to_timestamp(&now, &efe->ctime);
4722 	udf_timespec_to_timestamp(&now, &efe->atime);
4723 	udf_timespec_to_timestamp(&now, &efe->attrtime);
4724 	udf_timespec_to_timestamp(&now, &efe->mtime);
4725 
4726 	udf_set_regid(&efe->imp_id, IMPL_NAME);
4727 	udf_add_impl_regid(ump, &efe->imp_id);
4728 
4729 	unique_id = udf_advance_uniqueid(ump);
4730 	efe->unique_id = udf_rw64(unique_id);
4731 	efe->l_ea = udf_rw32(0);
4732 
4733 	/* if its a directory, create '..' */
4734 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4735 	fidsize = 0;
4736 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4737 		fidsize = udf_create_parentfid(ump,
4738 			(struct fileid_desc *) bpos, parent_icb,
4739 			parent_unique_id);
4740 	}
4741 
4742 	/* record fidlength information */
4743 	efe->obj_size = udf_rw64(fidsize);
4744 	efe->inf_len  = udf_rw64(fidsize);
4745 	efe->l_ad     = udf_rw32(fidsize);
4746 	efe->logblks_rec = udf_rw64(0);		/* intern */
4747 
4748 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4749 	crclen += udf_rw32(efe->l_ea) + fidsize;
4750 	efe->tag.desc_crc_len = udf_rw16(crclen);
4751 
4752 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4753 
4754 	return fidsize;
4755 }
4756 
4757 /* --------------------------------------------------------------------- */
4758 
4759 int
4760 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4761 	struct udf_node *udf_node, struct componentname *cnp)
4762 {
4763 	struct vnode *dvp = dir_node->vnode;
4764 	struct dirhash       *dirh;
4765 	struct dirhash_entry *dirh_ep;
4766 	struct file_entry    *fe  = dir_node->fe;
4767 	struct fileid_desc *fid;
4768 	struct dirent *dirent;
4769 	uint64_t diroffset;
4770 	uint32_t lb_size, fidsize;
4771 	int found, error;
4772 	char const *name  = cnp->cn_nameptr;
4773 	int namelen = cnp->cn_namelen;
4774 	int hit, refcnt;
4775 
4776 	/* get our dirhash and make sure its read in */
4777 	dirhash_get(&dir_node->dir_hash);
4778 	error = udf_dirhash_fill(dir_node);
4779 	if (error) {
4780 		dirhash_put(dir_node->dir_hash);
4781 		return error;
4782 	}
4783 	dirh = dir_node->dir_hash;
4784 
4785 	/* get directory filesize */
4786 	if (!fe) {
4787 		assert(dir_node->efe);
4788 	}
4789 
4790 	/* allocate temporary space for fid */
4791 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4792 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4793 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4794 
4795 	/* search our dirhash hits */
4796 	found = 0;
4797 	dirh_ep = NULL;
4798 	for (;;) {
4799 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4800 		/* if no hit, abort the search */
4801 		if (!hit)
4802 			break;
4803 
4804 		/* check this hit */
4805 		diroffset = dirh_ep->offset;
4806 
4807 		/* transfer a new fid/dirent */
4808 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4809 		if (error)
4810 			break;
4811 
4812 		/* see if its our entry */
4813 		KASSERT(dirent->d_namlen == namelen);
4814 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4815 			found = 1;
4816 			break;
4817 		}
4818 	}
4819 
4820 	if (!found)
4821 		error = ENOENT;
4822 	if (error)
4823 		goto error_out;
4824 
4825 	/* mark deleted */
4826 	fid->file_char |= UDF_FILE_CHAR_DEL;
4827 #ifdef UDF_COMPLETE_DELETE
4828 	memset(&fid->icb, 0, sizeof(fid->icb));
4829 #endif
4830 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4831 
4832 	/* get size of fid and compensate for the read_fid_stream advance */
4833 	fidsize = udf_fidsize(fid);
4834 	diroffset -= fidsize;
4835 
4836 	/* write out */
4837 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4838 			fid, fidsize, diroffset,
4839 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4840 			FSCRED, NULL, NULL);
4841 	if (error)
4842 		goto error_out;
4843 
4844 	/* get reference count of attached node */
4845 	if (udf_node->fe) {
4846 		refcnt = udf_rw16(udf_node->fe->link_cnt);
4847 	} else {
4848 		KASSERT(udf_node->efe);
4849 		refcnt = udf_rw16(udf_node->efe->link_cnt);
4850 	}
4851 #ifdef UDF_COMPLETE_DELETE
4852 	/* substract reference counter in attached node */
4853 	refcnt -= 1;
4854 	if (udf_node->fe) {
4855 		udf_node->fe->link_cnt = udf_rw16(refcnt);
4856 	} else {
4857 		udf_node->efe->link_cnt = udf_rw16(refcnt);
4858 	}
4859 
4860 	/* prevent writeout when refcnt == 0 */
4861 	if (refcnt == 0)
4862 		udf_node->i_flags |= IN_DELETED;
4863 
4864 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
4865 		int drefcnt;
4866 
4867 		/* substract reference counter in directory node */
4868 		/* note subtract 2 (?) for its was also backreferenced */
4869 		if (dir_node->fe) {
4870 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
4871 			drefcnt -= 1;
4872 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
4873 		} else {
4874 			KASSERT(dir_node->efe);
4875 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
4876 			drefcnt -= 1;
4877 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
4878 		}
4879 	}
4880 
4881 	udf_node->i_flags |= IN_MODIFIED;
4882 	dir_node->i_flags |= IN_MODIFIED;
4883 #endif
4884 	/* if it is/was a hardlink adjust the file count */
4885 	if (refcnt > 0)
4886 		udf_adjust_filecount(udf_node, -1);
4887 
4888 	/* remove from the dirhash */
4889 	dirhash_remove(dirh, dirent, diroffset,
4890 		udf_fidsize(fid));
4891 
4892 error_out:
4893 	free(fid, M_UDFTEMP);
4894 	free(dirent, M_UDFTEMP);
4895 
4896 	dirhash_put(dir_node->dir_hash);
4897 
4898 	return error;
4899 }
4900 
4901 /* --------------------------------------------------------------------- */
4902 
4903 int
4904 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4905 	struct udf_node *new_parent_node)
4906 {
4907 	struct vnode *dvp = dir_node->vnode;
4908 	struct dirhash       *dirh;
4909 	struct dirhash_entry *dirh_ep;
4910 	struct file_entry    *fe;
4911 	struct extfile_entry *efe;
4912 	struct fileid_desc *fid;
4913 	struct dirent *dirent;
4914 	uint64_t diroffset;
4915 	uint64_t new_parent_unique_id;
4916 	uint32_t lb_size, fidsize;
4917 	int found, error;
4918 	char const *name  = "..";
4919 	int namelen = 2;
4920 	int hit;
4921 
4922 	/* get our dirhash and make sure its read in */
4923 	dirhash_get(&dir_node->dir_hash);
4924 	error = udf_dirhash_fill(dir_node);
4925 	if (error) {
4926 		dirhash_put(dir_node->dir_hash);
4927 		return error;
4928 	}
4929 	dirh = dir_node->dir_hash;
4930 
4931 	/* get new parent's unique ID */
4932 	fe  = new_parent_node->fe;
4933 	efe = new_parent_node->efe;
4934 	if (fe) {
4935 		new_parent_unique_id = udf_rw64(fe->unique_id);
4936 	} else {
4937 		assert(efe);
4938 		new_parent_unique_id = udf_rw64(efe->unique_id);
4939 	}
4940 
4941 	/* get directory filesize */
4942 	fe  = dir_node->fe;
4943 	efe = dir_node->efe;
4944 	if (!fe) {
4945 		assert(efe);
4946 	}
4947 
4948 	/* allocate temporary space for fid */
4949 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4950 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4951 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4952 
4953 	/*
4954 	 * NOTE the standard does not dictate the FID entry '..' should be
4955 	 * first, though in practice it will most likely be.
4956 	 */
4957 
4958 	/* search our dirhash hits */
4959 	found = 0;
4960 	dirh_ep = NULL;
4961 	for (;;) {
4962 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4963 		/* if no hit, abort the search */
4964 		if (!hit)
4965 			break;
4966 
4967 		/* check this hit */
4968 		diroffset = dirh_ep->offset;
4969 
4970 		/* transfer a new fid/dirent */
4971 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4972 		if (error)
4973 			break;
4974 
4975 		/* see if its our entry */
4976 		KASSERT(dirent->d_namlen == namelen);
4977 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4978 			found = 1;
4979 			break;
4980 		}
4981 	}
4982 
4983 	if (!found)
4984 		error = ENOENT;
4985 	if (error)
4986 		goto error_out;
4987 
4988 	/* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
4989 	fid->icb = new_parent_node->write_loc;
4990 	fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
4991 
4992 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4993 
4994 	/* get size of fid and compensate for the read_fid_stream advance */
4995 	fidsize = udf_fidsize(fid);
4996 	diroffset -= fidsize;
4997 
4998 	/* write out */
4999 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5000 			fid, fidsize, diroffset,
5001 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5002 			FSCRED, NULL, NULL);
5003 
5004 	/* nothing to be done in the dirhash */
5005 
5006 error_out:
5007 	free(fid, M_UDFTEMP);
5008 	free(dirent, M_UDFTEMP);
5009 
5010 	dirhash_put(dir_node->dir_hash);
5011 
5012 	return error;
5013 }
5014 
5015 /* --------------------------------------------------------------------- */
5016 
5017 /*
5018  * We are not allowed to split the fid tag itself over an logical block so
5019  * check the space remaining in the logical block.
5020  *
5021  * We try to select the smallest candidate for recycling or when none is
5022  * found, append a new one at the end of the directory.
5023  */
5024 
5025 int
5026 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5027 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5028 {
5029 	struct vnode *dvp = dir_node->vnode;
5030 	struct dirhash       *dirh;
5031 	struct dirhash_entry *dirh_ep;
5032 	struct fileid_desc   *fid;
5033 	struct icb_tag       *icbtag;
5034 	struct charspec osta_charspec;
5035 	struct dirent   dirent;
5036 	uint64_t unique_id, dir_size;
5037 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5038 	uint32_t chosen_size, chosen_size_diff;
5039 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5040 	int file_char, refcnt, icbflags, addr_type, hit, error;
5041 
5042 	/* get our dirhash and make sure its read in */
5043 	dirhash_get(&dir_node->dir_hash);
5044 	error = udf_dirhash_fill(dir_node);
5045 	if (error) {
5046 		dirhash_put(dir_node->dir_hash);
5047 		return error;
5048 	}
5049 	dirh = dir_node->dir_hash;
5050 
5051 	/* get info */
5052 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5053 	udf_osta_charset(&osta_charspec);
5054 
5055 	if (dir_node->fe) {
5056 		dir_size = udf_rw64(dir_node->fe->inf_len);
5057 		icbtag   = &dir_node->fe->icbtag;
5058 	} else {
5059 		dir_size = udf_rw64(dir_node->efe->inf_len);
5060 		icbtag   = &dir_node->efe->icbtag;
5061 	}
5062 
5063 	icbflags   = udf_rw16(icbtag->flags);
5064 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5065 
5066 	if (udf_node->fe) {
5067 		unique_id = udf_rw64(udf_node->fe->unique_id);
5068 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
5069 	} else {
5070 		unique_id = udf_rw64(udf_node->efe->unique_id);
5071 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
5072 	}
5073 
5074 	if (refcnt > 0) {
5075 		unique_id = udf_advance_uniqueid(ump);
5076 		udf_adjust_filecount(udf_node, 1);
5077 	}
5078 
5079 	/* determine file characteristics */
5080 	file_char = 0;	/* visible non deleted file and not stream metadata */
5081 	if (vap->va_type == VDIR)
5082 		file_char = UDF_FILE_CHAR_DIR;
5083 
5084 	/* malloc scrap buffer */
5085 	fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5086 
5087 	/* calculate _minimum_ fid size */
5088 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
5089 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5090 	fidsize = UDF_FID_SIZE + fid->l_fi;
5091 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
5092 
5093 	/* find position that will fit the FID */
5094 	chosen_fid_pos   = dir_size;
5095 	chosen_size      = 0;
5096 	chosen_size_diff = UINT_MAX;
5097 
5098 	/* shut up gcc */
5099 	dirent.d_namlen = 0;
5100 
5101 	/* search our dirhash hits */
5102 	error = 0;
5103 	dirh_ep = NULL;
5104 	for (;;) {
5105 		hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5106 		/* if no hit, abort the search */
5107 		if (!hit)
5108 			break;
5109 
5110 		/* check this hit for size */
5111 		this_fidsize = dirh_ep->entry_size;
5112 
5113 		/* check this hit */
5114 		fid_pos     = dirh_ep->offset;
5115 		end_fid_pos = fid_pos + this_fidsize;
5116 		size_diff   = this_fidsize - fidsize;
5117 		lb_rest = lb_size - (end_fid_pos % lb_size);
5118 
5119 #ifndef UDF_COMPLETE_DELETE
5120 		/* transfer a new fid/dirent */
5121 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5122 		if (error)
5123 			goto error_out;
5124 
5125 		/* only reuse entries that are wiped */
5126 		/* check if the len + loc are marked zero */
5127 		if (udf_rw32(fid->icb.len) != 0)
5128 			continue;
5129 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
5130 			continue;
5131 		if (udf_rw16(fid->icb.loc.part_num) != 0)
5132 			continue;
5133 #endif	/* UDF_COMPLETE_DELETE */
5134 
5135 		/* select if not splitting the tag and its smaller */
5136 		if ((size_diff >= 0)  &&
5137 			(size_diff < chosen_size_diff) &&
5138 			(lb_rest >= sizeof(struct desc_tag)))
5139 		{
5140 			/* UDF 2.3.4.2+3 specifies rules for iu size */
5141 			if ((size_diff == 0) || (size_diff >= 32)) {
5142 				chosen_fid_pos   = fid_pos;
5143 				chosen_size      = this_fidsize;
5144 				chosen_size_diff = size_diff;
5145 			}
5146 		}
5147 	}
5148 
5149 
5150 	/* extend directory if no other candidate found */
5151 	if (chosen_size == 0) {
5152 		chosen_fid_pos   = dir_size;
5153 		chosen_size      = fidsize;
5154 		chosen_size_diff = 0;
5155 
5156 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5157 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
5158 			/* pre-grow directory to see if we're to switch */
5159 			udf_grow_node(dir_node, dir_size + chosen_size);
5160 
5161 			icbflags   = udf_rw16(icbtag->flags);
5162 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5163 		}
5164 
5165 		/* make sure the next fid desc_tag won't be splitted */
5166 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
5167 			end_fid_pos = chosen_fid_pos + chosen_size;
5168 			lb_rest = lb_size - (end_fid_pos % lb_size);
5169 
5170 			/* pad with implementation use regid if needed */
5171 			if (lb_rest < sizeof(struct desc_tag))
5172 				chosen_size += 32;
5173 		}
5174 	}
5175 	chosen_size_diff = chosen_size - fidsize;
5176 
5177 	/* populate the FID */
5178 	memset(fid, 0, lb_size);
5179 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5180 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
5181 	fid->file_char           = file_char;
5182 	fid->icb                 = udf_node->loc;
5183 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5184 	fid->l_iu                = udf_rw16(0);
5185 
5186 	if (chosen_size > fidsize) {
5187 		/* insert implementation-use regid to space it correctly */
5188 		fid->l_iu = udf_rw16(chosen_size_diff);
5189 
5190 		/* set implementation use */
5191 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5192 		udf_add_impl_regid(ump, (struct regid *) fid->data);
5193 	}
5194 
5195 	/* fill in name */
5196 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5197 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5198 
5199 	fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5200 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5201 
5202 	/* writeout FID/update parent directory */
5203 	error = vn_rdwr(UIO_WRITE, dvp,
5204 			fid, chosen_size, chosen_fid_pos,
5205 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5206 			FSCRED, NULL, NULL);
5207 
5208 	if (error)
5209 		goto error_out;
5210 
5211 	/* add reference counter in attached node */
5212 	if (udf_node->fe) {
5213 		refcnt = udf_rw16(udf_node->fe->link_cnt);
5214 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5215 	} else {
5216 		KASSERT(udf_node->efe);
5217 		refcnt = udf_rw16(udf_node->efe->link_cnt);
5218 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5219 	}
5220 
5221 	/* mark not deleted if it was... just in case, but do warn */
5222 	if (udf_node->i_flags & IN_DELETED) {
5223 		printf("udf: warning, marking a file undeleted\n");
5224 		udf_node->i_flags &= ~IN_DELETED;
5225 	}
5226 
5227 	if (file_char & UDF_FILE_CHAR_DIR) {
5228 		/* add reference counter in directory node for '..' */
5229 		if (dir_node->fe) {
5230 			refcnt = udf_rw16(dir_node->fe->link_cnt);
5231 			refcnt++;
5232 			dir_node->fe->link_cnt = udf_rw16(refcnt);
5233 		} else {
5234 			KASSERT(dir_node->efe);
5235 			refcnt = udf_rw16(dir_node->efe->link_cnt);
5236 			refcnt++;
5237 			dir_node->efe->link_cnt = udf_rw16(refcnt);
5238 		}
5239 	}
5240 
5241 	/* append to the dirhash */
5242 	/* NOTE do not use dirent anymore or it won't match later! */
5243 	udf_to_unix_name(dirent.d_name, NAME_MAX,
5244 		(char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5245 	dirent.d_namlen = strlen(dirent.d_name);
5246 	dirhash_enter(dirh, &dirent, chosen_fid_pos,
5247 		udf_fidsize(fid), 1);
5248 
5249 	/* note updates */
5250 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5251 	/* VN_KNOTE(udf_node,  ...) */
5252 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5253 
5254 error_out:
5255 	free(fid, M_TEMP);
5256 
5257 	dirhash_put(dir_node->dir_hash);
5258 
5259 	return error;
5260 }
5261 
5262 /* --------------------------------------------------------------------- */
5263 
5264 /*
5265  * Each node can have an attached streamdir node though not recursively. These
5266  * are otherwise known as named substreams/named extended attributes that have
5267  * no size limitations.
5268  *
5269  * `Normal' extended attributes are indicated with a number and are recorded
5270  * in either the fe/efe descriptor itself for small descriptors or recorded in
5271  * the attached extended attribute file. Since these spaces can get
5272  * fragmented, care ought to be taken.
5273  *
5274  * Since the size of the space reserved for allocation descriptors is limited,
5275  * there is a mechanim provided for extending this space; this is done by a
5276  * special extent to allow schrinking of the allocations without breaking the
5277  * linkage to the allocation extent descriptor.
5278  */
5279 
5280 int
5281 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5282 	     struct udf_node **udf_noderes)
5283 {
5284 	union dscrptr   *dscr;
5285 	struct udf_node *udf_node;
5286 	struct vnode    *nvp;
5287 	struct long_ad   icb_loc, last_fe_icb_loc;
5288 	uint64_t file_size;
5289 	uint32_t lb_size, sector, dummy;
5290 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5291 	int slot, eof, error;
5292 
5293 	DPRINTF(NODE, ("udf_get_node called\n"));
5294 	*udf_noderes = udf_node = NULL;
5295 
5296 	/* lock to disallow simultanious creation of same udf_node */
5297 	mutex_enter(&ump->get_node_lock);
5298 
5299 	DPRINTF(NODE, ("\tlookup in hash table\n"));
5300 	/* lookup in hash table */
5301 	assert(ump);
5302 	assert(node_icb_loc);
5303 	udf_node = udf_node_lookup(ump, node_icb_loc);
5304 	if (udf_node) {
5305 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
5306 		/* vnode is returned locked */
5307 		*udf_noderes = udf_node;
5308 		mutex_exit(&ump->get_node_lock);
5309 		return 0;
5310 	}
5311 
5312 	/* garbage check: translate udf_node_icb_loc to sectornr */
5313 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
5314 	if (error) {
5315 		DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5316 		/* no use, this will fail anyway */
5317 		mutex_exit(&ump->get_node_lock);
5318 		return EINVAL;
5319 	}
5320 
5321 	/* build udf_node (do initialise!) */
5322 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5323 	memset(udf_node, 0, sizeof(struct udf_node));
5324 
5325 	DPRINTF(NODE, ("\tget new vnode\n"));
5326 	/* give it a vnode */
5327 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, NULL, &nvp);
5328 	if (error) {
5329 		pool_put(&udf_node_pool, udf_node);
5330 		mutex_exit(&ump->get_node_lock);
5331 		return error;
5332 	}
5333 
5334 	/* always return locked vnode */
5335 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5336 		/* recycle vnode and unlock; simultanious will fail too */
5337 		ungetnewvnode(nvp);
5338 		mutex_exit(&ump->get_node_lock);
5339 		return error;
5340 	}
5341 
5342 	/* initialise crosslinks, note location of fe/efe for hashing */
5343 	udf_node->ump    =  ump;
5344 	udf_node->vnode  =  nvp;
5345 	nvp->v_data      =  udf_node;
5346 	udf_node->loc    = *node_icb_loc;
5347 	udf_node->lockf  =  0;
5348 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5349 	cv_init(&udf_node->node_lock, "udf_nlk");
5350 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
5351 	udf_node->outstanding_bufs = 0;
5352 	udf_node->outstanding_nodedscr = 0;
5353 	udf_node->uncommitted_lbs = 0;
5354 
5355 	/* check if we're fetching the root */
5356 	if (ump->fileset_desc)
5357 		if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5358 		    sizeof(struct long_ad)) == 0)
5359 			nvp->v_vflag |= VV_ROOT;
5360 
5361 	/* insert into the hash lookup */
5362 	udf_register_node(udf_node);
5363 
5364 	/* safe to unlock, the entry is in the hash table, vnode is locked */
5365 	mutex_exit(&ump->get_node_lock);
5366 
5367 	icb_loc = *node_icb_loc;
5368 	needs_indirect = 0;
5369 	strat4096 = 0;
5370 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5371 	file_size = 0;
5372 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5373 
5374 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
5375 	do {
5376 		/* try to read in fe/efe */
5377 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5378 
5379 		/* blank sector marks end of sequence, check this */
5380 		if ((dscr == NULL) &&  (!strat4096))
5381 			error = ENOENT;
5382 
5383 		/* break if read error or blank sector */
5384 		if (error || (dscr == NULL))
5385 			break;
5386 
5387 		/* process descriptor based on the descriptor type */
5388 		dscr_type = udf_rw16(dscr->tag.id);
5389 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5390 
5391 		/* if dealing with an indirect entry, follow the link */
5392 		if (dscr_type == TAGID_INDIRECTENTRY) {
5393 			needs_indirect = 0;
5394 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5395 			icb_loc = dscr->inde.indirect_icb;
5396 			continue;
5397 		}
5398 
5399 		/* only file entries and extended file entries allowed here */
5400 		if ((dscr_type != TAGID_FENTRY) &&
5401 		    (dscr_type != TAGID_EXTFENTRY)) {
5402 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5403 			error = ENOENT;
5404 			break;
5405 		}
5406 
5407 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5408 
5409 		/* choose this one */
5410 		last_fe_icb_loc = icb_loc;
5411 
5412 		/* record and process/update (ext)fentry */
5413 		if (dscr_type == TAGID_FENTRY) {
5414 			if (udf_node->fe)
5415 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5416 					udf_node->fe);
5417 			udf_node->fe  = &dscr->fe;
5418 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5419 			udf_file_type = udf_node->fe->icbtag.file_type;
5420 			file_size = udf_rw64(udf_node->fe->inf_len);
5421 		} else {
5422 			if (udf_node->efe)
5423 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5424 					udf_node->efe);
5425 			udf_node->efe = &dscr->efe;
5426 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5427 			udf_file_type = udf_node->efe->icbtag.file_type;
5428 			file_size = udf_rw64(udf_node->efe->inf_len);
5429 		}
5430 
5431 		/* check recording strategy (structure) */
5432 
5433 		/*
5434 		 * Strategy 4096 is a daisy linked chain terminating with an
5435 		 * unrecorded sector or a TERM descriptor. The next
5436 		 * descriptor is to be found in the sector that follows the
5437 		 * current sector.
5438 		 */
5439 		if (strat == 4096) {
5440 			strat4096 = 1;
5441 			needs_indirect = 1;
5442 
5443 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5444 		}
5445 
5446 		/*
5447 		 * Strategy 4 is the normal strategy and terminates, but if
5448 		 * we're in strategy 4096, we can't have strategy 4 mixed in
5449 		 */
5450 
5451 		if (strat == 4) {
5452 			if (strat4096) {
5453 				error = EINVAL;
5454 				break;
5455 			}
5456 			break;		/* done */
5457 		}
5458 	} while (!error);
5459 
5460 	/* first round of cleanup code */
5461 	if (error) {
5462 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5463 		/* recycle udf_node */
5464 		udf_dispose_node(udf_node);
5465 
5466 		VOP_UNLOCK(nvp);
5467 		nvp->v_data = NULL;
5468 		ungetnewvnode(nvp);
5469 
5470 		return EINVAL;		/* error code ok? */
5471 	}
5472 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5473 
5474 	/* assert no references to dscr anymore beyong this point */
5475 	assert((udf_node->fe) || (udf_node->efe));
5476 	dscr = NULL;
5477 
5478 	/*
5479 	 * Remember where to record an updated version of the descriptor. If
5480 	 * there is a sequence of indirect entries, icb_loc will have been
5481 	 * updated. Its the write disipline to allocate new space and to make
5482 	 * sure the chain is maintained.
5483 	 *
5484 	 * `needs_indirect' flags if the next location is to be filled with
5485 	 * with an indirect entry.
5486 	 */
5487 	udf_node->write_loc = icb_loc;
5488 	udf_node->needs_indirect = needs_indirect;
5489 
5490 	/*
5491 	 * Go trough all allocations extents of this descriptor and when
5492 	 * encountering a redirect read in the allocation extension. These are
5493 	 * daisy-chained.
5494 	 */
5495 	UDF_LOCK_NODE(udf_node, 0);
5496 	udf_node->num_extensions = 0;
5497 
5498 	error   = 0;
5499 	slot    = 0;
5500 	for (;;) {
5501 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5502 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5503 			"lb_num = %d, part = %d\n", slot, eof,
5504 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5505 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5506 			udf_rw32(icb_loc.loc.lb_num),
5507 			udf_rw16(icb_loc.loc.part_num)));
5508 		if (eof)
5509 			break;
5510 		slot++;
5511 
5512 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5513 			continue;
5514 
5515 		DPRINTF(NODE, ("\tgot redirect extent\n"));
5516 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5517 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5518 					"too many allocation extensions on "
5519 					"udf_node\n"));
5520 			error = EINVAL;
5521 			break;
5522 		}
5523 
5524 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5525 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5526 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5527 					"extension size in udf_node\n"));
5528 			error = EINVAL;
5529 			break;
5530 		}
5531 
5532 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5533 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5534 		/* load in allocation extent */
5535 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5536 		if (error || (dscr == NULL))
5537 			break;
5538 
5539 		/* process read-in descriptor */
5540 		dscr_type = udf_rw16(dscr->tag.id);
5541 
5542 		if (dscr_type != TAGID_ALLOCEXTENT) {
5543 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5544 			error = ENOENT;
5545 			break;
5546 		}
5547 
5548 		DPRINTF(NODE, ("\trecording redirect extent\n"));
5549 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5550 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5551 
5552 		udf_node->num_extensions++;
5553 
5554 	} /* while */
5555 	UDF_UNLOCK_NODE(udf_node, 0);
5556 
5557 	/* second round of cleanup code */
5558 	if (error) {
5559 		/* recycle udf_node */
5560 		udf_dispose_node(udf_node);
5561 
5562 		VOP_UNLOCK(nvp);
5563 		nvp->v_data = NULL;
5564 		ungetnewvnode(nvp);
5565 
5566 		return EINVAL;		/* error code ok? */
5567 	}
5568 
5569 	DPRINTF(NODE, ("\tnode read in fine\n"));
5570 
5571 	/*
5572 	 * Translate UDF filetypes into vnode types.
5573 	 *
5574 	 * Systemfiles like the meta main and mirror files are not treated as
5575 	 * normal files, so we type them as having no type. UDF dictates that
5576 	 * they are not allowed to be visible.
5577 	 */
5578 
5579 	switch (udf_file_type) {
5580 	case UDF_ICB_FILETYPE_DIRECTORY :
5581 	case UDF_ICB_FILETYPE_STREAMDIR :
5582 		nvp->v_type = VDIR;
5583 		break;
5584 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
5585 		nvp->v_type = VBLK;
5586 		break;
5587 	case UDF_ICB_FILETYPE_CHARDEVICE :
5588 		nvp->v_type = VCHR;
5589 		break;
5590 	case UDF_ICB_FILETYPE_SOCKET :
5591 		nvp->v_type = VSOCK;
5592 		break;
5593 	case UDF_ICB_FILETYPE_FIFO :
5594 		nvp->v_type = VFIFO;
5595 		break;
5596 	case UDF_ICB_FILETYPE_SYMLINK :
5597 		nvp->v_type = VLNK;
5598 		break;
5599 	case UDF_ICB_FILETYPE_VAT :
5600 	case UDF_ICB_FILETYPE_META_MAIN :
5601 	case UDF_ICB_FILETYPE_META_MIRROR :
5602 		nvp->v_type = VNON;
5603 		break;
5604 	case UDF_ICB_FILETYPE_RANDOMACCESS :
5605 	case UDF_ICB_FILETYPE_REALTIME :
5606 		nvp->v_type = VREG;
5607 		break;
5608 	default:
5609 		/* YIKES, something else */
5610 		nvp->v_type = VNON;
5611 	}
5612 
5613 	/* TODO specfs, fifofs etc etc. vnops setting */
5614 
5615 	/* don't forget to set vnode's v_size */
5616 	uvm_vnp_setsize(nvp, file_size);
5617 
5618 	/* TODO ext attr and streamdir udf_nodes */
5619 
5620 	*udf_noderes = udf_node;
5621 
5622 	return 0;
5623 }
5624 
5625 /* --------------------------------------------------------------------- */
5626 
5627 int
5628 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5629 {
5630 	union dscrptr *dscr;
5631 	struct long_ad *loc;
5632 	int extnr, error;
5633 
5634 	DPRINTF(NODE, ("udf_writeout_node called\n"));
5635 
5636 	KASSERT(udf_node->outstanding_bufs == 0);
5637 	KASSERT(udf_node->outstanding_nodedscr == 0);
5638 
5639 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5640 
5641 	if (udf_node->i_flags & IN_DELETED) {
5642 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5643 		udf_cleanup_reservation(udf_node);
5644 		return 0;
5645 	}
5646 
5647 	/* lock node; unlocked in callback */
5648 	UDF_LOCK_NODE(udf_node, 0);
5649 
5650 	/* remove pending reservations, we're written out */
5651 	udf_cleanup_reservation(udf_node);
5652 
5653 	/* at least one descriptor writeout */
5654 	udf_node->outstanding_nodedscr = 1;
5655 
5656 	/* we're going to write out the descriptor so clear the flags */
5657 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5658 
5659 	/* if we were rebuild, write out the allocation extents */
5660 	if (udf_node->i_flags & IN_NODE_REBUILD) {
5661 		/* mark outstanding node descriptors and issue them */
5662 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
5663 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5664 			loc = &udf_node->ext_loc[extnr];
5665 			dscr = (union dscrptr *) udf_node->ext[extnr];
5666 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5667 			if (error)
5668 				return error;
5669 		}
5670 		/* mark allocation extents written out */
5671 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
5672 	}
5673 
5674 	if (udf_node->fe) {
5675 		KASSERT(udf_node->efe == NULL);
5676 		dscr = (union dscrptr *) udf_node->fe;
5677 	} else {
5678 		KASSERT(udf_node->efe);
5679 		KASSERT(udf_node->fe == NULL);
5680 		dscr = (union dscrptr *) udf_node->efe;
5681 	}
5682 	KASSERT(dscr);
5683 
5684 	loc = &udf_node->write_loc;
5685 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5686 
5687 	return error;
5688 }
5689 
5690 /* --------------------------------------------------------------------- */
5691 
5692 int
5693 udf_dispose_node(struct udf_node *udf_node)
5694 {
5695 	struct vnode *vp;
5696 	int extnr;
5697 
5698 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5699 	if (!udf_node) {
5700 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5701 		return 0;
5702 	}
5703 
5704 	vp  = udf_node->vnode;
5705 #ifdef DIAGNOSTIC
5706 	if (vp->v_numoutput)
5707 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
5708 				"v_numoutput = %d", udf_node, vp->v_numoutput);
5709 #endif
5710 
5711 	udf_cleanup_reservation(udf_node);
5712 
5713 	/* TODO extended attributes and streamdir */
5714 
5715 	/* remove dirhash if present */
5716 	dirhash_purge(&udf_node->dir_hash);
5717 
5718 	/* remove from our hash lookup table */
5719 	udf_deregister_node(udf_node);
5720 
5721 	/* destroy our lock */
5722 	mutex_destroy(&udf_node->node_mutex);
5723 	cv_destroy(&udf_node->node_lock);
5724 
5725 	/* dissociate our udf_node from the vnode */
5726 	genfs_node_destroy(udf_node->vnode);
5727 	vp->v_data = NULL;
5728 
5729 	/* free associated memory and the node itself */
5730 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5731 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5732 			udf_node->ext[extnr]);
5733 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
5734 	}
5735 
5736 	if (udf_node->fe)
5737 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5738 			udf_node->fe);
5739 	if (udf_node->efe)
5740 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5741 			udf_node->efe);
5742 
5743 	udf_node->fe  = (void *) 0xdeadaaaa;
5744 	udf_node->efe = (void *) 0xdeadbbbb;
5745 	udf_node->ump = (void *) 0xdeadbeef;
5746 	pool_put(&udf_node_pool, udf_node);
5747 
5748 	return 0;
5749 }
5750 
5751 
5752 
5753 /*
5754  * create a new node using the specified vnodeops, vap and cnp but with the
5755  * udf_file_type. This allows special files to be created. Use with care.
5756  */
5757 
5758 static int
5759 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5760 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5761 {
5762 	union dscrptr *dscr;
5763 	struct udf_node *dir_node = VTOI(dvp);
5764 	struct udf_node *udf_node;
5765 	struct udf_mount *ump = dir_node->ump;
5766 	struct vnode *nvp;
5767 	struct long_ad node_icb_loc;
5768 	uint64_t parent_unique_id;
5769 	uint64_t lmapping;
5770 	uint32_t lb_size, lb_num;
5771 	uint16_t vpart_num;
5772 	uid_t uid;
5773 	gid_t gid, parent_gid;
5774 	int fid_size, error;
5775 
5776 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5777 	*vpp = NULL;
5778 
5779 	/* allocate vnode */
5780 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, NULL, &nvp);
5781 	if (error)
5782 		return error;
5783 
5784 	/* lock node */
5785 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5786 	if (error)
5787 		goto error_out_unget;
5788 
5789 	/* reserve space for one logical block */
5790 	vpart_num = ump->node_part;
5791 	error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5792 		vpart_num, 1, /* can_fail */ true);
5793 	if (error)
5794 		goto error_out_unlock;
5795 
5796 	/* allocate node */
5797 	error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5798 			vpart_num, 1, &lmapping);
5799 	if (error)
5800 		goto error_out_unreserve;
5801 	lb_num = lmapping;
5802 
5803 	/* initialise pointer to location */
5804 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
5805 	node_icb_loc.len = udf_rw32(lb_size);
5806 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
5807 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5808 
5809 	/* build udf_node (do initialise!) */
5810 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5811 	memset(udf_node, 0, sizeof(struct udf_node));
5812 
5813 	/* initialise crosslinks, note location of fe/efe for hashing */
5814 	/* bugalert: synchronise with udf_get_node() */
5815 	udf_node->ump       = ump;
5816 	udf_node->vnode     = nvp;
5817 	nvp->v_data         = udf_node;
5818 	udf_node->loc       = node_icb_loc;
5819 	udf_node->write_loc = node_icb_loc;
5820 	udf_node->lockf     = 0;
5821 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5822 	cv_init(&udf_node->node_lock, "udf_nlk");
5823 	udf_node->outstanding_bufs = 0;
5824 	udf_node->outstanding_nodedscr = 0;
5825 	udf_node->uncommitted_lbs = 0;
5826 
5827 	/* initialise genfs */
5828 	genfs_node_init(nvp, &udf_genfsops);
5829 
5830 	/* insert into the hash lookup */
5831 	udf_register_node(udf_node);
5832 
5833 	/* get parent's unique ID for refering '..' if its a directory */
5834 	if (dir_node->fe) {
5835 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5836 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
5837 	} else {
5838 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5839 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
5840 	}
5841 
5842 	/* get descriptor */
5843 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5844 
5845 	/* choose a fe or an efe for it */
5846 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5847 		udf_node->fe = &dscr->fe;
5848 		fid_size = udf_create_new_fe(ump, udf_node->fe,
5849 			udf_file_type, &udf_node->loc,
5850 			&dir_node->loc, parent_unique_id);
5851 		/* TODO add extended attribute for creation time */
5852 	} else {
5853 		udf_node->efe = &dscr->efe;
5854 		fid_size = udf_create_new_efe(ump, udf_node->efe,
5855 			udf_file_type, &udf_node->loc,
5856 			&dir_node->loc, parent_unique_id);
5857 	}
5858 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5859 
5860 	/* update vnode's size and type */
5861 	nvp->v_type = vap->va_type;
5862 	uvm_vnp_setsize(nvp, fid_size);
5863 
5864 	/* set access mode */
5865 	udf_setaccessmode(udf_node, vap->va_mode);
5866 
5867 	/* set ownership */
5868 	uid = kauth_cred_geteuid(cnp->cn_cred);
5869 	gid = parent_gid;
5870 	udf_setownership(udf_node, uid, gid);
5871 
5872 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5873 	if (error) {
5874 		/* free disc allocation for node */
5875 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5876 
5877 		/* recycle udf_node */
5878 		udf_dispose_node(udf_node);
5879 		vput(nvp);
5880 
5881 		*vpp = NULL;
5882 		return error;
5883 	}
5884 
5885 	/* adjust file count */
5886 	udf_adjust_filecount(udf_node, 1);
5887 
5888 	/* return result */
5889 	*vpp = nvp;
5890 
5891 	return 0;
5892 
5893 error_out_unreserve:
5894 	udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5895 
5896 error_out_unlock:
5897 	VOP_UNLOCK(nvp);
5898 
5899 error_out_unget:
5900 	nvp->v_data = NULL;
5901 	ungetnewvnode(nvp);
5902 
5903 	return error;
5904 }
5905 
5906 
5907 int
5908 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5909 	struct componentname *cnp)
5910 {
5911 	int (**vnodeops)(void *);
5912 	int udf_file_type;
5913 
5914 	DPRINTF(NODE, ("udf_create_node called\n"));
5915 
5916 	/* what type are we creating ? */
5917 	vnodeops = udf_vnodeop_p;
5918 	/* start with a default */
5919 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5920 
5921 	*vpp = NULL;
5922 
5923 	switch (vap->va_type) {
5924 	case VREG :
5925 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5926 		break;
5927 	case VDIR :
5928 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5929 		break;
5930 	case VLNK :
5931 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5932 		break;
5933 	case VBLK :
5934 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5935 		/* specfs */
5936 		return ENOTSUP;
5937 		break;
5938 	case VCHR :
5939 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5940 		/* specfs */
5941 		return ENOTSUP;
5942 		break;
5943 	case VFIFO :
5944 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
5945 		/* specfs */
5946 		return ENOTSUP;
5947 		break;
5948 	case VSOCK :
5949 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5950 		/* specfs */
5951 		return ENOTSUP;
5952 		break;
5953 	case VNON :
5954 	case VBAD :
5955 	default :
5956 		/* nothing; can we even create these? */
5957 		return EINVAL;
5958 	}
5959 
5960 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5961 }
5962 
5963 /* --------------------------------------------------------------------- */
5964 
5965 static void
5966 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5967 {
5968 	struct udf_mount *ump = udf_node->ump;
5969 	uint32_t lb_size, lb_num, len, num_lb;
5970 	uint16_t vpart_num;
5971 
5972 	/* is there really one? */
5973 	if (mem == NULL)
5974 		return;
5975 
5976 	/* got a descriptor here */
5977 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
5978 	lb_num    = udf_rw32(loc->loc.lb_num);
5979 	vpart_num = udf_rw16(loc->loc.part_num);
5980 
5981 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5982 	num_lb = (len + lb_size -1) / lb_size;
5983 
5984 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5985 }
5986 
5987 void
5988 udf_delete_node(struct udf_node *udf_node)
5989 {
5990 	void *dscr;
5991 	struct long_ad *loc;
5992 	int extnr, lvint, dummy;
5993 
5994 	/* paranoia check on integrity; should be open!; we could panic */
5995 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5996 	if (lvint == UDF_INTEGRITY_CLOSED)
5997 		printf("\tIntegrity was CLOSED!\n");
5998 
5999 	/* whatever the node type, change its size to zero */
6000 	(void) udf_resize_node(udf_node, 0, &dummy);
6001 
6002 	/* force it to be `clean'; no use writing it out */
6003 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
6004 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
6005 
6006 	/* adjust file count */
6007 	udf_adjust_filecount(udf_node, -1);
6008 
6009 	/*
6010 	 * Free its allocated descriptors; memory will be released when
6011 	 * vop_reclaim() is called.
6012 	 */
6013 	loc = &udf_node->loc;
6014 
6015 	dscr = udf_node->fe;
6016 	udf_free_descriptor_space(udf_node, loc, dscr);
6017 	dscr = udf_node->efe;
6018 	udf_free_descriptor_space(udf_node, loc, dscr);
6019 
6020 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6021 		dscr =  udf_node->ext[extnr];
6022 		loc  = &udf_node->ext_loc[extnr];
6023 		udf_free_descriptor_space(udf_node, loc, dscr);
6024 	}
6025 }
6026 
6027 /* --------------------------------------------------------------------- */
6028 
6029 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6030 int
6031 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6032 {
6033 	struct file_entry    *fe  = udf_node->fe;
6034 	struct extfile_entry *efe = udf_node->efe;
6035 	uint64_t file_size;
6036 	int error;
6037 
6038 	if (fe) {
6039 		file_size  = udf_rw64(fe->inf_len);
6040 	} else {
6041 		assert(udf_node->efe);
6042 		file_size  = udf_rw64(efe->inf_len);
6043 	}
6044 
6045 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6046 			file_size, new_size));
6047 
6048 	/* if not changing, we're done */
6049 	if (file_size == new_size)
6050 		return 0;
6051 
6052 	*extended = (new_size > file_size);
6053 	if (*extended) {
6054 		error = udf_grow_node(udf_node, new_size);
6055 	} else {
6056 		error = udf_shrink_node(udf_node, new_size);
6057 	}
6058 
6059 	return error;
6060 }
6061 
6062 
6063 /* --------------------------------------------------------------------- */
6064 
6065 void
6066 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6067 	struct timespec *mod, struct timespec *birth)
6068 {
6069 	struct timespec now;
6070 	struct file_entry    *fe;
6071 	struct extfile_entry *efe;
6072 	struct filetimes_extattr_entry *ft_extattr;
6073 	struct timestamp *atime, *mtime, *attrtime, *ctime;
6074 	struct timestamp  fe_ctime;
6075 	struct timespec   cur_birth;
6076 	uint32_t offset, a_l;
6077 	uint8_t *filedata;
6078 	int error;
6079 
6080 	/* protect against rogue values */
6081 	if (!udf_node)
6082 		return;
6083 
6084 	fe  = udf_node->fe;
6085 	efe = udf_node->efe;
6086 
6087 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6088 		return;
6089 
6090 	/* get descriptor information */
6091 	if (fe) {
6092 		atime    = &fe->atime;
6093 		mtime    = &fe->mtime;
6094 		attrtime = &fe->attrtime;
6095 		filedata = fe->data;
6096 
6097 		/* initial save dummy setting */
6098 		ctime    = &fe_ctime;
6099 
6100 		/* check our extended attribute if present */
6101 		error = udf_extattr_search_intern(udf_node,
6102 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6103 		if (!error) {
6104 			ft_extattr = (struct filetimes_extattr_entry *)
6105 				(filedata + offset);
6106 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6107 				ctime = &ft_extattr->times[0];
6108 		}
6109 		/* TODO create the extended attribute if not found ? */
6110 	} else {
6111 		assert(udf_node->efe);
6112 		atime    = &efe->atime;
6113 		mtime    = &efe->mtime;
6114 		attrtime = &efe->attrtime;
6115 		ctime    = &efe->ctime;
6116 	}
6117 
6118 	vfs_timestamp(&now);
6119 
6120 	/* set access time */
6121 	if (udf_node->i_flags & IN_ACCESS) {
6122 		if (acc == NULL)
6123 			acc = &now;
6124 		udf_timespec_to_timestamp(acc, atime);
6125 	}
6126 
6127 	/* set modification time */
6128 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6129 		if (mod == NULL)
6130 			mod = &now;
6131 		udf_timespec_to_timestamp(mod, mtime);
6132 
6133 		/* ensure birthtime is older than set modification! */
6134 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6135 		if ((cur_birth.tv_sec > mod->tv_sec) ||
6136 			  ((cur_birth.tv_sec == mod->tv_sec) &&
6137 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
6138 			udf_timespec_to_timestamp(mod, ctime);
6139 		}
6140 	}
6141 
6142 	/* update birthtime if specified */
6143 	/* XXX we assume here that given birthtime is older than mod */
6144 	if (birth && (birth->tv_sec != VNOVAL)) {
6145 		udf_timespec_to_timestamp(birth, ctime);
6146 	}
6147 
6148 	/* set change time */
6149 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6150 		udf_timespec_to_timestamp(&now, attrtime);
6151 
6152 	/* notify updates to the node itself */
6153 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6154 		udf_node->i_flags |= IN_ACCESSED;
6155 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6156 		udf_node->i_flags |= IN_MODIFIED;
6157 
6158 	/* clear modification flags */
6159 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6160 }
6161 
6162 /* --------------------------------------------------------------------- */
6163 
6164 int
6165 udf_update(struct vnode *vp, struct timespec *acc,
6166 	struct timespec *mod, struct timespec *birth, int updflags)
6167 {
6168 	union dscrptr *dscrptr;
6169 	struct udf_node  *udf_node = VTOI(vp);
6170 	struct udf_mount *ump = udf_node->ump;
6171 	struct regid     *impl_id;
6172 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6173 	int waitfor, flags;
6174 
6175 #ifdef DEBUG
6176 	char bits[128];
6177 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6178 		updflags));
6179 	snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6180 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
6181 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6182 #endif
6183 
6184 	/* set our times */
6185 	udf_itimes(udf_node, acc, mod, birth);
6186 
6187 	/* set our implementation id */
6188 	if (udf_node->fe) {
6189 		dscrptr = (union dscrptr *) udf_node->fe;
6190 		impl_id = &udf_node->fe->imp_id;
6191 	} else {
6192 		dscrptr = (union dscrptr *) udf_node->efe;
6193 		impl_id = &udf_node->efe->imp_id;
6194 	}
6195 
6196 	/* set our ID */
6197 	udf_set_regid(impl_id, IMPL_NAME);
6198 	udf_add_impl_regid(ump, impl_id);
6199 
6200 	/* update our crc! on RMW we are not allowed to change a thing */
6201 	udf_validate_tag_and_crc_sums(dscrptr);
6202 
6203 	/* if called when mounted readonly, never write back */
6204 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
6205 		return 0;
6206 
6207 	/* check if the node is dirty 'enough'*/
6208 	if (updflags & UPDATE_CLOSE) {
6209 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6210 	} else {
6211 		flags = udf_node->i_flags & IN_MODIFIED;
6212 	}
6213 	if (flags == 0)
6214 		return 0;
6215 
6216 	/* determine if we need to write sync or async */
6217 	waitfor = 0;
6218 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6219 		/* sync mounted */
6220 		waitfor = updflags & UPDATE_WAIT;
6221 		if (updflags & UPDATE_DIROP)
6222 			waitfor |= UPDATE_WAIT;
6223 	}
6224 	if (waitfor)
6225 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6226 
6227 	return 0;
6228 }
6229 
6230 
6231 /* --------------------------------------------------------------------- */
6232 
6233 
6234 /*
6235  * Read one fid and process it into a dirent and advance to the next (*fid)
6236  * has to be allocated a logical block in size, (*dirent) struct dirent length
6237  */
6238 
6239 int
6240 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6241 		struct fileid_desc *fid, struct dirent *dirent)
6242 {
6243 	struct udf_node  *dir_node = VTOI(vp);
6244 	struct udf_mount *ump = dir_node->ump;
6245 	struct file_entry    *fe  = dir_node->fe;
6246 	struct extfile_entry *efe = dir_node->efe;
6247 	uint32_t      fid_size, lb_size;
6248 	uint64_t      file_size;
6249 	char         *fid_name;
6250 	int           enough, error;
6251 
6252 	assert(fid);
6253 	assert(dirent);
6254 	assert(dir_node);
6255 	assert(offset);
6256 	assert(*offset != 1);
6257 
6258 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6259 	/* check if we're past the end of the directory */
6260 	if (fe) {
6261 		file_size = udf_rw64(fe->inf_len);
6262 	} else {
6263 		assert(dir_node->efe);
6264 		file_size = udf_rw64(efe->inf_len);
6265 	}
6266 	if (*offset >= file_size)
6267 		return EINVAL;
6268 
6269 	/* get maximum length of FID descriptor */
6270 	lb_size = udf_rw32(ump->logical_vol->lb_size);
6271 
6272 	/* initialise return values */
6273 	fid_size = 0;
6274 	memset(dirent, 0, sizeof(struct dirent));
6275 	memset(fid, 0, lb_size);
6276 
6277 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
6278 	if (!enough) {
6279 		/* short dir ... */
6280 		return EIO;
6281 	}
6282 
6283 	error = vn_rdwr(UIO_READ, vp,
6284 			fid, MIN(file_size - (*offset), lb_size), *offset,
6285 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6286 			NULL, NULL);
6287 	if (error)
6288 		return error;
6289 
6290 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6291 	/*
6292 	 * Check if we got a whole descriptor.
6293 	 * TODO Try to `resync' directory stream when something is very wrong.
6294 	 */
6295 
6296 	/* check if our FID header is OK */
6297 	error = udf_check_tag(fid);
6298 	if (error) {
6299 		goto brokendir;
6300 	}
6301 	DPRINTF(FIDS, ("\ttag check ok\n"));
6302 
6303 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
6304 		error = EIO;
6305 		goto brokendir;
6306 	}
6307 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6308 
6309 	/* check for length */
6310 	fid_size = udf_fidsize(fid);
6311 	enough = (file_size - (*offset) >= fid_size);
6312 	if (!enough) {
6313 		error = EIO;
6314 		goto brokendir;
6315 	}
6316 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6317 
6318 	/* check FID contents */
6319 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6320 brokendir:
6321 	if (error) {
6322 		/* note that is sometimes a bit quick to report */
6323 		printf("UDF: BROKEN DIRECTORY ENTRY\n");
6324 		/* RESYNC? */
6325 		/* TODO: use udf_resync_fid_stream */
6326 		return EIO;
6327 	}
6328 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
6329 
6330 	/* we got a whole and valid descriptor! */
6331 	DPRINTF(FIDS, ("\tinterpret FID\n"));
6332 
6333 	/* create resulting dirent structure */
6334 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6335 	udf_to_unix_name(dirent->d_name, NAME_MAX,
6336 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6337 
6338 	/* '..' has no name, so provide one */
6339 	if (fid->file_char & UDF_FILE_CHAR_PAR)
6340 		strcpy(dirent->d_name, "..");
6341 
6342 	dirent->d_fileno = udf_get_node_id(&fid->icb);	/* inode hash XXX */
6343 	dirent->d_namlen = strlen(dirent->d_name);
6344 	dirent->d_reclen = _DIRENT_SIZE(dirent);
6345 
6346 	/*
6347 	 * Note that its not worth trying to go for the filetypes now... its
6348 	 * too expensive too
6349 	 */
6350 	dirent->d_type = DT_UNKNOWN;
6351 
6352 	/* initial guess for filetype we can make */
6353 	if (fid->file_char & UDF_FILE_CHAR_DIR)
6354 		dirent->d_type = DT_DIR;
6355 
6356 	/* advance */
6357 	*offset += fid_size;
6358 
6359 	return error;
6360 }
6361 
6362 
6363 /* --------------------------------------------------------------------- */
6364 
6365 static void
6366 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6367 	int pass, int *ndirty)
6368 {
6369 	struct udf_node *udf_node, *n_udf_node;
6370 	struct vnode *vp;
6371 	int vdirty, error;
6372 	int on_type, on_flags, on_vnode;
6373 
6374 derailed:
6375 	KASSERT(mutex_owned(&mntvnode_lock));
6376 
6377 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
6378 	udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6379 	for (;udf_node; udf_node = n_udf_node) {
6380 		DPRINTF(SYNC, ("."));
6381 
6382 		udf_node->i_flags &= ~IN_SYNCED;
6383 		vp = udf_node->vnode;
6384 
6385 		mutex_enter(vp->v_interlock);
6386 		n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6387 		    udf_node, RB_DIR_RIGHT);
6388 
6389 		if (n_udf_node)
6390 			n_udf_node->i_flags |= IN_SYNCED;
6391 
6392 		/* system nodes are not synced this way */
6393 		if (vp->v_vflag & VV_SYSTEM) {
6394 			mutex_exit(vp->v_interlock);
6395 			continue;
6396 		}
6397 
6398 		/* check if its dirty enough to even try */
6399 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
6400 		on_flags = ((udf_node->i_flags &
6401 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6402 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6403 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6404 		if (on_type || (on_flags || on_vnode)) { /* XXX */
6405 			/* not dirty (enough?) */
6406 			mutex_exit(vp->v_interlock);
6407 			continue;
6408 		}
6409 
6410 		mutex_exit(&mntvnode_lock);
6411 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
6412 		if (error) {
6413 			mutex_enter(&mntvnode_lock);
6414 			if (error == ENOENT)
6415 				goto derailed;
6416 			*ndirty += 1;
6417 			continue;
6418 		}
6419 
6420 		switch (pass) {
6421 		case 1:
6422 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6423 			break;
6424 		case 2:
6425 			vdirty = vp->v_numoutput;
6426 			if (vp->v_tag == VT_UDF)
6427 				vdirty += udf_node->outstanding_bufs +
6428 					udf_node->outstanding_nodedscr;
6429 			if (vdirty == 0)
6430 				VOP_FSYNC(vp, cred, 0,0,0);
6431 			*ndirty += vdirty;
6432 			break;
6433 		case 3:
6434 			vdirty = vp->v_numoutput;
6435 			if (vp->v_tag == VT_UDF)
6436 				vdirty += udf_node->outstanding_bufs +
6437 					udf_node->outstanding_nodedscr;
6438 			*ndirty += vdirty;
6439 			break;
6440 		}
6441 
6442 		vput(vp);
6443 		mutex_enter(&mntvnode_lock);
6444 	}
6445 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6446 }
6447 
6448 
6449 void
6450 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6451 {
6452 	int dummy, ndirty;
6453 
6454 	mutex_enter(&mntvnode_lock);
6455 recount:
6456 	dummy = 0;
6457 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6458 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6459 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6460 
6461 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6462 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6463 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6464 
6465 	if (waitfor == MNT_WAIT) {
6466 		ndirty = ump->devvp->v_numoutput;
6467 		DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6468 			ndirty));
6469 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6470 		DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6471 			ndirty));
6472 
6473 		if (ndirty) {
6474 			/* 1/4 second wait */
6475 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6476 				hz/4);
6477 			goto recount;
6478 		}
6479 	}
6480 
6481 	mutex_exit(&mntvnode_lock);
6482 }
6483 
6484 /* --------------------------------------------------------------------- */
6485 
6486 /*
6487  * Read and write file extent in/from the buffer.
6488  *
6489  * The splitup of the extent into seperate request-buffers is to minimise
6490  * copying around as much as possible.
6491  *
6492  * block based file reading and writing
6493  */
6494 
6495 static int
6496 udf_read_internal(struct udf_node *node, uint8_t *blob)
6497 {
6498 	struct udf_mount *ump;
6499 	struct file_entry     *fe = node->fe;
6500 	struct extfile_entry *efe = node->efe;
6501 	uint64_t inflen;
6502 	uint32_t sector_size;
6503 	uint8_t  *pos;
6504 	int icbflags, addr_type;
6505 
6506 	/* get extent and do some paranoia checks */
6507 	ump = node->ump;
6508 	sector_size = ump->discinfo.sector_size;
6509 
6510 	if (fe) {
6511 		inflen   = udf_rw64(fe->inf_len);
6512 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6513 		icbflags = udf_rw16(fe->icbtag.flags);
6514 	} else {
6515 		assert(node->efe);
6516 		inflen   = udf_rw64(efe->inf_len);
6517 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6518 		icbflags = udf_rw16(efe->icbtag.flags);
6519 	}
6520 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6521 
6522 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6523 	assert(inflen < sector_size);
6524 
6525 	/* copy out info */
6526 	memset(blob, 0, sector_size);
6527 	memcpy(blob, pos, inflen);
6528 
6529 	return 0;
6530 }
6531 
6532 
6533 static int
6534 udf_write_internal(struct udf_node *node, uint8_t *blob)
6535 {
6536 	struct udf_mount *ump;
6537 	struct file_entry     *fe = node->fe;
6538 	struct extfile_entry *efe = node->efe;
6539 	uint64_t inflen;
6540 	uint32_t sector_size;
6541 	uint8_t  *pos;
6542 	int icbflags, addr_type;
6543 
6544 	/* get extent and do some paranoia checks */
6545 	ump = node->ump;
6546 	sector_size = ump->discinfo.sector_size;
6547 
6548 	if (fe) {
6549 		inflen   = udf_rw64(fe->inf_len);
6550 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6551 		icbflags = udf_rw16(fe->icbtag.flags);
6552 	} else {
6553 		assert(node->efe);
6554 		inflen   = udf_rw64(efe->inf_len);
6555 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6556 		icbflags = udf_rw16(efe->icbtag.flags);
6557 	}
6558 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6559 
6560 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6561 	assert(inflen < sector_size);
6562 
6563 	/* copy in blob */
6564 	/* memset(pos, 0, inflen); */
6565 	memcpy(pos, blob, inflen);
6566 
6567 	return 0;
6568 }
6569 
6570 
6571 void
6572 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6573 {
6574 	struct buf *nestbuf;
6575 	struct udf_mount *ump = udf_node->ump;
6576 	uint64_t   *mapping;
6577 	uint64_t    run_start;
6578 	uint32_t    sector_size;
6579 	uint32_t    buf_offset, sector, rbuflen, rblk;
6580 	uint32_t    from, lblkno;
6581 	uint32_t    sectors;
6582 	uint8_t    *buf_pos;
6583 	int error, run_length, what;
6584 
6585 	sector_size = udf_node->ump->discinfo.sector_size;
6586 
6587 	from    = buf->b_blkno;
6588 	sectors = buf->b_bcount / sector_size;
6589 
6590 	what = udf_get_c_type(udf_node);
6591 
6592 	/* assure we have enough translation slots */
6593 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6594 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6595 
6596 	if (sectors > UDF_MAX_MAPPINGS) {
6597 		printf("udf_read_filebuf: implementation limit on bufsize\n");
6598 		buf->b_error  = EIO;
6599 		biodone(buf);
6600 		return;
6601 	}
6602 
6603 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6604 
6605 	error = 0;
6606 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6607 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6608 	if (error) {
6609 		buf->b_error  = error;
6610 		biodone(buf);
6611 		goto out;
6612 	}
6613 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
6614 
6615 	/* pre-check if its an internal */
6616 	if (*mapping == UDF_TRANS_INTERN) {
6617 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6618 		if (error)
6619 			buf->b_error  = error;
6620 		biodone(buf);
6621 		goto out;
6622 	}
6623 	DPRINTF(READ, ("\tnot intern\n"));
6624 
6625 #ifdef DEBUG
6626 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6627 		printf("Returned translation table:\n");
6628 		for (sector = 0; sector < sectors; sector++) {
6629 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6630 		}
6631 	}
6632 #endif
6633 
6634 	/* request read-in of data from disc sheduler */
6635 	buf->b_resid = buf->b_bcount;
6636 	for (sector = 0; sector < sectors; sector++) {
6637 		buf_offset = sector * sector_size;
6638 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
6639 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6640 
6641 		/* check if its zero or unmapped to stop reading */
6642 		switch (mapping[sector]) {
6643 		case UDF_TRANS_UNMAPPED:
6644 		case UDF_TRANS_ZERO:
6645 			/* copy zero sector TODO runlength like below */
6646 			memset(buf_pos, 0, sector_size);
6647 			DPRINTF(READ, ("\treturning zero sector\n"));
6648 			nestiobuf_done(buf, sector_size, 0);
6649 			break;
6650 		default :
6651 			DPRINTF(READ, ("\tread sector "
6652 			    "%"PRIu64"\n", mapping[sector]));
6653 
6654 			lblkno = from + sector;
6655 			run_start  = mapping[sector];
6656 			run_length = 1;
6657 			while (sector < sectors-1) {
6658 				if (mapping[sector+1] != mapping[sector]+1)
6659 					break;
6660 				run_length++;
6661 				sector++;
6662 			}
6663 
6664 			/*
6665 			 * nest an iobuf and mark it for async reading. Since
6666 			 * we're using nested buffers, they can't be cached by
6667 			 * design.
6668 			 */
6669 			rbuflen = run_length * sector_size;
6670 			rblk    = run_start  * (sector_size/DEV_BSIZE);
6671 
6672 			nestbuf = getiobuf(NULL, true);
6673 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6674 			/* nestbuf is B_ASYNC */
6675 
6676 			/* identify this nestbuf */
6677 			nestbuf->b_lblkno   = lblkno;
6678 			assert(nestbuf->b_vp == udf_node->vnode);
6679 
6680 			/* CD shedules on raw blkno */
6681 			nestbuf->b_blkno      = rblk;
6682 			nestbuf->b_proc       = NULL;
6683 			nestbuf->b_rawblkno   = rblk;
6684 			nestbuf->b_udf_c_type = what;
6685 
6686 			udf_discstrat_queuebuf(ump, nestbuf);
6687 		}
6688 	}
6689 out:
6690 	/* if we're synchronously reading, wait for the completion */
6691 	if ((buf->b_flags & B_ASYNC) == 0)
6692 		biowait(buf);
6693 
6694 	DPRINTF(READ, ("\tend of read_filebuf\n"));
6695 	free(mapping, M_TEMP);
6696 	return;
6697 }
6698 
6699 
6700 void
6701 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6702 {
6703 	struct buf *nestbuf;
6704 	struct udf_mount *ump = udf_node->ump;
6705 	uint64_t   *mapping;
6706 	uint64_t    run_start;
6707 	uint32_t    lb_size;
6708 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
6709 	uint32_t    from, lblkno;
6710 	uint32_t    num_lb;
6711 	int error, run_length, what, s;
6712 
6713 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6714 
6715 	from   = buf->b_blkno;
6716 	num_lb = buf->b_bcount / lb_size;
6717 
6718 	what = udf_get_c_type(udf_node);
6719 
6720 	/* assure we have enough translation slots */
6721 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6722 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6723 
6724 	if (num_lb > UDF_MAX_MAPPINGS) {
6725 		printf("udf_write_filebuf: implementation limit on bufsize\n");
6726 		buf->b_error  = EIO;
6727 		biodone(buf);
6728 		return;
6729 	}
6730 
6731 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6732 
6733 	error = 0;
6734 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6735 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6736 	if (error) {
6737 		buf->b_error  = error;
6738 		biodone(buf);
6739 		goto out;
6740 	}
6741 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6742 
6743 	/* if its internally mapped, we can write it in the descriptor itself */
6744 	if (*mapping == UDF_TRANS_INTERN) {
6745 		/* TODO paranoia check if we ARE going to have enough space */
6746 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6747 		if (error)
6748 			buf->b_error  = error;
6749 		biodone(buf);
6750 		goto out;
6751 	}
6752 	DPRINTF(WRITE, ("\tnot intern\n"));
6753 
6754 	/* request write out of data to disc sheduler */
6755 	buf->b_resid = buf->b_bcount;
6756 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
6757 		buf_offset = lb_num * lb_size;
6758 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6759 
6760 		/*
6761 		 * Mappings are not that important here. Just before we write
6762 		 * the lb_num we late-allocate them when needed and update the
6763 		 * mapping in the udf_node.
6764 		 */
6765 
6766 		/* XXX why not ignore the mapping altogether ? */
6767 		DPRINTF(WRITE, ("\twrite lb_num "
6768 		    "%"PRIu64, mapping[lb_num]));
6769 
6770 		lblkno = from + lb_num;
6771 		run_start  = mapping[lb_num];
6772 		run_length = 1;
6773 		while (lb_num < num_lb-1) {
6774 			if (mapping[lb_num+1] != mapping[lb_num]+1)
6775 				if (mapping[lb_num+1] != mapping[lb_num])
6776 					break;
6777 			run_length++;
6778 			lb_num++;
6779 		}
6780 		DPRINTF(WRITE, ("+ %d\n", run_length));
6781 
6782 		/* nest an iobuf on the master buffer for the extent */
6783 		rbuflen = run_length * lb_size;
6784 		rblk = run_start * (lb_size/DEV_BSIZE);
6785 
6786 		nestbuf = getiobuf(NULL, true);
6787 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6788 		/* nestbuf is B_ASYNC */
6789 
6790 		/* identify this nestbuf */
6791 		nestbuf->b_lblkno   = lblkno;
6792 		KASSERT(nestbuf->b_vp == udf_node->vnode);
6793 
6794 		/* CD shedules on raw blkno */
6795 		nestbuf->b_blkno      = rblk;
6796 		nestbuf->b_proc       = NULL;
6797 		nestbuf->b_rawblkno   = rblk;
6798 		nestbuf->b_udf_c_type = what;
6799 
6800 		/* increment our outstanding bufs counter */
6801 		s = splbio();
6802 			udf_node->outstanding_bufs++;
6803 		splx(s);
6804 
6805 		udf_discstrat_queuebuf(ump, nestbuf);
6806 	}
6807 out:
6808 	/* if we're synchronously writing, wait for the completion */
6809 	if ((buf->b_flags & B_ASYNC) == 0)
6810 		biowait(buf);
6811 
6812 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6813 	free(mapping, M_TEMP);
6814 	return;
6815 }
6816 
6817 /* --------------------------------------------------------------------- */
6818