xref: /minix/usr.sbin/makefs/ffs/ffs_alloc.c (revision 9f988b79)
1 /*	$NetBSD: ffs_alloc.c,v 1.27 2013/06/23 22:03:34 dholland Exp $	*/
2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3 
4 /*
5  * Copyright (c) 2002 Networks Associates Technology, Inc.
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Marshall
9  * Kirk McKusick and Network Associates Laboratories, the Security
10  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
11  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
12  * research program
13  *
14  * Copyright (c) 1982, 1986, 1989, 1993
15  *	The Regents of the University of California.  All rights reserved.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
42  */
43 
44 #if HAVE_NBTOOL_CONFIG_H
45 #include "nbtool_config.h"
46 #endif
47 
48 #include <sys/cdefs.h>
49 #if defined(__RCSID) && !defined(__lint)
50 __RCSID("$NetBSD: ffs_alloc.c,v 1.27 2013/06/23 22:03:34 dholland Exp $");
51 #endif	/* !__lint */
52 
53 #include <sys/param.h>
54 #include <sys/time.h>
55 
56 #include <errno.h>
57 
58 #include "makefs.h"
59 
60 #include <ufs/ufs/dinode.h>
61 #include <ufs/ufs/ufs_bswap.h>
62 #include <ufs/ffs/fs.h>
63 
64 #include "ffs/buf.h"
65 #include "ffs/ufs_inode.h"
66 #include "ffs/ffs_extern.h"
67 
68 
69 static int scanc(u_int, const u_char *, const u_char *, int);
70 
71 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
72 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
73 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
74 		     daddr_t (*)(struct inode *, int, daddr_t, int));
75 static int32_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
76 
77 /* in ffs_tables.c */
78 extern const int inside[], around[];
79 extern const u_char * const fragtbl[];
80 
81 /*
82  * Allocate a block in the file system.
83  *
84  * The size of the requested block is given, which must be some
85  * multiple of fs_fsize and <= fs_bsize.
86  * A preference may be optionally specified. If a preference is given
87  * the following hierarchy is used to allocate a block:
88  *   1) allocate the requested block.
89  *   2) allocate a rotationally optimal block in the same cylinder.
90  *   3) allocate a block in the same cylinder group.
91  *   4) quadradically rehash into other cylinder groups, until an
92  *      available block is located.
93  * If no block preference is given the following hierarchy is used
94  * to allocate a block:
95  *   1) allocate a block in the cylinder group that contains the
96  *      inode for the file.
97  *   2) quadradically rehash into other cylinder groups, until an
98  *      available block is located.
99  */
100 int
101 ffs_alloc(struct inode *ip, daddr_t lbn __unused, daddr_t bpref, int size,
102     daddr_t *bnp)
103 {
104 	struct fs *fs = ip->i_fs;
105 	daddr_t bno;
106 	int cg;
107 
108 	*bnp = 0;
109 	if (size > fs->fs_bsize || ffs_fragoff(fs, size) != 0) {
110 		errx(1, "ffs_alloc: bad size: bsize %d size %d",
111 		    fs->fs_bsize, size);
112 	}
113 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
114 		goto nospace;
115 	if (bpref >= fs->fs_size)
116 		bpref = 0;
117 	if (bpref == 0)
118 		cg = ino_to_cg(fs, ip->i_number);
119 	else
120 		cg = dtog(fs, bpref);
121 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
122 	if (bno > 0) {
123 		DIP_ADD(ip, blocks, size / DEV_BSIZE);
124 		*bnp = bno;
125 		return (0);
126 	}
127 nospace:
128 	return (ENOSPC);
129 }
130 
131 /*
132  * Select the desired position for the next block in a file.  The file is
133  * logically divided into sections. The first section is composed of the
134  * direct blocks. Each additional section contains fs_maxbpg blocks.
135  *
136  * If no blocks have been allocated in the first section, the policy is to
137  * request a block in the same cylinder group as the inode that describes
138  * the file. If no blocks have been allocated in any other section, the
139  * policy is to place the section in a cylinder group with a greater than
140  * average number of free blocks.  An appropriate cylinder group is found
141  * by using a rotor that sweeps the cylinder groups. When a new group of
142  * blocks is needed, the sweep begins in the cylinder group following the
143  * cylinder group from which the previous allocation was made. The sweep
144  * continues until a cylinder group with greater than the average number
145  * of free blocks is found. If the allocation is for the first block in an
146  * indirect block, the information on the previous allocation is unavailable;
147  * here a best guess is made based upon the logical block number being
148  * allocated.
149  *
150  * If a section is already partially allocated, the policy is to
151  * contiguously allocate fs_maxcontig blocks.  The end of one of these
152  * contiguous blocks and the beginning of the next is physically separated
153  * so that the disk head will be in transit between them for at least
154  * fs_rotdelay milliseconds.  This is to allow time for the processor to
155  * schedule another I/O transfer.
156  */
157 /* XXX ondisk32 */
158 daddr_t
159 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
160 {
161 	struct fs *fs;
162 	int cg;
163 	int avgbfree, startcg;
164 
165 	fs = ip->i_fs;
166 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
167 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
168 			cg = ino_to_cg(fs, ip->i_number);
169 			return (fs->fs_fpg * cg + fs->fs_frag);
170 		}
171 		/*
172 		 * Find a cylinder with greater than average number of
173 		 * unused data blocks.
174 		 */
175 		if (indx == 0 || bap[indx - 1] == 0)
176 			startcg =
177 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
178 		else
179 			startcg = dtog(fs,
180 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
181 		startcg %= fs->fs_ncg;
182 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
183 		for (cg = startcg; cg < fs->fs_ncg; cg++)
184 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
185 				return (fs->fs_fpg * cg + fs->fs_frag);
186 		for (cg = 0; cg <= startcg; cg++)
187 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
188 				return (fs->fs_fpg * cg + fs->fs_frag);
189 		return (0);
190 	}
191 	/*
192 	 * We just always try to lay things out contiguously.
193 	 */
194 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
195 }
196 
197 daddr_t
198 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
199 {
200 	struct fs *fs;
201 	int cg;
202 	int avgbfree, startcg;
203 
204 	fs = ip->i_fs;
205 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
206 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
207 			cg = ino_to_cg(fs, ip->i_number);
208 			return (fs->fs_fpg * cg + fs->fs_frag);
209 		}
210 		/*
211 		 * Find a cylinder with greater than average number of
212 		 * unused data blocks.
213 		 */
214 		if (indx == 0 || bap[indx - 1] == 0)
215 			startcg =
216 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
217 		else
218 			startcg = dtog(fs,
219 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
220 		startcg %= fs->fs_ncg;
221 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
222 		for (cg = startcg; cg < fs->fs_ncg; cg++)
223 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
224 				return (fs->fs_fpg * cg + fs->fs_frag);
225 			}
226 		for (cg = 0; cg < startcg; cg++)
227 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
228 				return (fs->fs_fpg * cg + fs->fs_frag);
229 			}
230 		return (0);
231 	}
232 	/*
233 	 * We just always try to lay things out contiguously.
234 	 */
235 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
236 }
237 
238 /*
239  * Implement the cylinder overflow algorithm.
240  *
241  * The policy implemented by this algorithm is:
242  *   1) allocate the block in its requested cylinder group.
243  *   2) quadradically rehash on the cylinder group number.
244  *   3) brute force search for a free block.
245  *
246  * `size':	size for data blocks, mode for inodes
247  */
248 /*VARARGS5*/
249 static daddr_t
250 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size,
251     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
252 {
253 	struct fs *fs;
254 	daddr_t result;
255 	int i, icg = cg;
256 
257 	fs = ip->i_fs;
258 	/*
259 	 * 1: preferred cylinder group
260 	 */
261 	result = (*allocator)(ip, cg, pref, size);
262 	if (result)
263 		return (result);
264 	/*
265 	 * 2: quadratic rehash
266 	 */
267 	for (i = 1; i < fs->fs_ncg; i *= 2) {
268 		cg += i;
269 		if (cg >= fs->fs_ncg)
270 			cg -= fs->fs_ncg;
271 		result = (*allocator)(ip, cg, 0, size);
272 		if (result)
273 			return (result);
274 	}
275 	/*
276 	 * 3: brute force search
277 	 * Note that we start at i == 2, since 0 was checked initially,
278 	 * and 1 is always checked in the quadratic rehash.
279 	 */
280 	cg = (icg + 2) % fs->fs_ncg;
281 	for (i = 2; i < fs->fs_ncg; i++) {
282 		result = (*allocator)(ip, cg, 0, size);
283 		if (result)
284 			return (result);
285 		cg++;
286 		if (cg == fs->fs_ncg)
287 			cg = 0;
288 	}
289 	return (0);
290 }
291 
292 /*
293  * Determine whether a block can be allocated.
294  *
295  * Check to see if a block of the appropriate size is available,
296  * and if it is, allocate it.
297  */
298 static daddr_t
299 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
300 {
301 	struct cg *cgp;
302 	struct buf *bp;
303 	daddr_t bno, blkno;
304 	int error, frags, allocsiz, i;
305 	struct fs *fs = ip->i_fs;
306 	const int needswap = UFS_FSNEEDSWAP(fs);
307 
308 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
309 		return (0);
310 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
311 	    (int)fs->fs_cgsize, NULL, 0, &bp);
312 	if (error) {
313 		return (0);
314 	}
315 	cgp = (struct cg *)bp->b_data;
316 	if (!cg_chkmagic(cgp, needswap) ||
317 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
318 		brelse(bp, 0);
319 		return (0);
320 	}
321 	if (size == fs->fs_bsize) {
322 		bno = ffs_alloccgblk(ip, bp, bpref);
323 		bwrite(bp);
324 		return (bno);
325 	}
326 	/*
327 	 * check to see if any fragments are already available
328 	 * allocsiz is the size which will be allocated, hacking
329 	 * it down to a smaller size if necessary
330 	 */
331 	frags = ffs_numfrags(fs, size);
332 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
333 		if (cgp->cg_frsum[allocsiz] != 0)
334 			break;
335 	if (allocsiz == fs->fs_frag) {
336 		/*
337 		 * no fragments were available, so a block will be
338 		 * allocated, and hacked up
339 		 */
340 		if (cgp->cg_cs.cs_nbfree == 0) {
341 			brelse(bp, 0);
342 			return (0);
343 		}
344 		bno = ffs_alloccgblk(ip, bp, bpref);
345 		bpref = dtogd(fs, bno);
346 		for (i = frags; i < fs->fs_frag; i++)
347 			setbit(cg_blksfree(cgp, needswap), bpref + i);
348 		i = fs->fs_frag - frags;
349 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
350 		fs->fs_cstotal.cs_nffree += i;
351 		fs->fs_cs(fs, cg).cs_nffree += i;
352 		fs->fs_fmod = 1;
353 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
354 		bdwrite(bp);
355 		return (bno);
356 	}
357 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
358 	for (i = 0; i < frags; i++)
359 		clrbit(cg_blksfree(cgp, needswap), bno + i);
360 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
361 	fs->fs_cstotal.cs_nffree -= frags;
362 	fs->fs_cs(fs, cg).cs_nffree -= frags;
363 	fs->fs_fmod = 1;
364 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
365 	if (frags != allocsiz)
366 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
367 	blkno = cg * fs->fs_fpg + bno;
368 	bdwrite(bp);
369 	return blkno;
370 }
371 
372 /*
373  * Allocate a block in a cylinder group.
374  *
375  * This algorithm implements the following policy:
376  *   1) allocate the requested block.
377  *   2) allocate a rotationally optimal block in the same cylinder.
378  *   3) allocate the next available block on the block rotor for the
379  *      specified cylinder group.
380  * Note that this routine only allocates fs_bsize blocks; these
381  * blocks may be fragmented by the routine that allocates them.
382  */
383 static daddr_t
384 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
385 {
386 	struct cg *cgp;
387 	daddr_t blkno;
388 	int32_t bno;
389 	struct fs *fs = ip->i_fs;
390 	const int needswap = UFS_FSNEEDSWAP(fs);
391 	u_int8_t *blksfree;
392 
393 	cgp = (struct cg *)bp->b_data;
394 	blksfree = cg_blksfree(cgp, needswap);
395 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
396 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
397 	} else {
398 		bpref = ffs_blknum(fs, bpref);
399 		bno = dtogd(fs, bpref);
400 		/*
401 		 * if the requested block is available, use it
402 		 */
403 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
404 			goto gotit;
405 	}
406 	/*
407 	 * Take the next available one in this cylinder group.
408 	 */
409 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
410 	if (bno < 0)
411 		return (0);
412 	cgp->cg_rotor = ufs_rw32(bno, needswap);
413 gotit:
414 	blkno = ffs_fragstoblks(fs, bno);
415 	ffs_clrblock(fs, blksfree, (long)blkno);
416 	ffs_clusteracct(fs, cgp, blkno, -1);
417 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
418 	fs->fs_cstotal.cs_nbfree--;
419 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
420 	fs->fs_fmod = 1;
421 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
422 	return (blkno);
423 }
424 
425 /*
426  * Free a block or fragment.
427  *
428  * The specified block or fragment is placed back in the
429  * free map. If a fragment is deallocated, a possible
430  * block reassembly is checked.
431  */
432 void
433 ffs_blkfree(struct inode *ip, daddr_t bno, long size)
434 {
435 	struct cg *cgp;
436 	struct buf *bp;
437 	int32_t fragno, cgbno;
438 	int i, error, cg, blk, frags, bbase;
439 	struct fs *fs = ip->i_fs;
440 	const int needswap = UFS_FSNEEDSWAP(fs);
441 
442 	if (size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
443 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
444 		errx(1, "blkfree: bad size: bno %lld bsize %d size %ld",
445 		    (long long)bno, fs->fs_bsize, size);
446 	}
447 	cg = dtog(fs, bno);
448 	if (bno >= fs->fs_size) {
449 		warnx("bad block %lld, ino %llu", (long long)bno,
450 		    (unsigned long long)ip->i_number);
451 		return;
452 	}
453 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
454 	    (int)fs->fs_cgsize, NULL, 0, &bp);
455 	if (error) {
456 		brelse(bp, 0);
457 		return;
458 	}
459 	cgp = (struct cg *)bp->b_data;
460 	if (!cg_chkmagic(cgp, needswap)) {
461 		brelse(bp, 0);
462 		return;
463 	}
464 	cgbno = dtogd(fs, bno);
465 	if (size == fs->fs_bsize) {
466 		fragno = ffs_fragstoblks(fs, cgbno);
467 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), fragno)) {
468 			errx(1, "blkfree: freeing free block %lld",
469 			    (long long)bno);
470 		}
471 		ffs_setblock(fs, cg_blksfree(cgp, needswap), fragno);
472 		ffs_clusteracct(fs, cgp, fragno, 1);
473 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
474 		fs->fs_cstotal.cs_nbfree++;
475 		fs->fs_cs(fs, cg).cs_nbfree++;
476 	} else {
477 		bbase = cgbno - ffs_fragnum(fs, cgbno);
478 		/*
479 		 * decrement the counts associated with the old frags
480 		 */
481 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
482 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
483 		/*
484 		 * deallocate the fragment
485 		 */
486 		frags = ffs_numfrags(fs, size);
487 		for (i = 0; i < frags; i++) {
488 			if (isset(cg_blksfree(cgp, needswap), cgbno + i)) {
489 				errx(1, "blkfree: freeing free frag: block %lld",
490 				    (long long)(cgbno + i));
491 			}
492 			setbit(cg_blksfree(cgp, needswap), cgbno + i);
493 		}
494 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
495 		fs->fs_cstotal.cs_nffree += i;
496 		fs->fs_cs(fs, cg).cs_nffree += i;
497 		/*
498 		 * add back in counts associated with the new frags
499 		 */
500 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
501 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
502 		/*
503 		 * if a complete block has been reassembled, account for it
504 		 */
505 		fragno = ffs_fragstoblks(fs, bbase);
506 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), fragno)) {
507 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
508 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
509 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
510 			ffs_clusteracct(fs, cgp, fragno, 1);
511 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
512 			fs->fs_cstotal.cs_nbfree++;
513 			fs->fs_cs(fs, cg).cs_nbfree++;
514 		}
515 	}
516 	fs->fs_fmod = 1;
517 	bdwrite(bp);
518 }
519 
520 
521 static int
522 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
523 {
524 	const u_char *end = &cp[size];
525 
526 	while (cp < end && (table[*cp] & mask) == 0)
527 		cp++;
528 	return (end - cp);
529 }
530 
531 /*
532  * Find a block of the specified size in the specified cylinder group.
533  *
534  * It is a panic if a request is made to find a block if none are
535  * available.
536  */
537 static int32_t
538 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
539 {
540 	int32_t bno;
541 	int start, len, loc, i;
542 	int blk, field, subfield, pos;
543 	int ostart, olen;
544 	const int needswap = UFS_FSNEEDSWAP(fs);
545 
546 	/*
547 	 * find the fragment by searching through the free block
548 	 * map for an appropriate bit pattern
549 	 */
550 	if (bpref)
551 		start = dtogd(fs, bpref) / NBBY;
552 	else
553 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
554 	len = howmany(fs->fs_fpg, NBBY) - start;
555 	ostart = start;
556 	olen = len;
557 	loc = scanc((u_int)len,
558 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
559 		(const u_char *)fragtbl[fs->fs_frag],
560 		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
561 	if (loc == 0) {
562 		len = start + 1;
563 		start = 0;
564 		loc = scanc((u_int)len,
565 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
566 			(const u_char *)fragtbl[fs->fs_frag],
567 			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
568 		if (loc == 0) {
569 			errx(1,
570     "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
571 				ostart, olen,
572 				ufs_rw32(cgp->cg_freeoff, needswap),
573 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
574 			/* NOTREACHED */
575 		}
576 	}
577 	bno = (start + len - loc) * NBBY;
578 	cgp->cg_frotor = ufs_rw32(bno, needswap);
579 	/*
580 	 * found the byte in the map
581 	 * sift through the bits to find the selected frag
582 	 */
583 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
584 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
585 		blk <<= 1;
586 		field = around[allocsiz];
587 		subfield = inside[allocsiz];
588 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
589 			if ((blk & field) == subfield)
590 				return (bno + pos);
591 			field <<= 1;
592 			subfield <<= 1;
593 		}
594 	}
595 	errx(1, "ffs_alloccg: block not in map: bno %lld", (long long)bno);
596 	return (-1);
597 }
598