1*9034ec65Schristos /* $NetBSD: refclock_chu.c,v 1.10 2020/05/25 20:47:25 christos Exp $ */
2abb0f93cSkardel
3abb0f93cSkardel /*
4abb0f93cSkardel * refclock_chu - clock driver for Canadian CHU time/frequency station
5abb0f93cSkardel */
6abb0f93cSkardel #ifdef HAVE_CONFIG_H
7abb0f93cSkardel #include <config.h>
8abb0f93cSkardel #endif
9abb0f93cSkardel
10b3d6264cSchristos #include "ntp_types.h"
11b3d6264cSchristos
12abb0f93cSkardel #if defined(REFCLOCK) && defined(CLOCK_CHU)
13abb0f93cSkardel
14abb0f93cSkardel #include "ntpd.h"
15abb0f93cSkardel #include "ntp_io.h"
16abb0f93cSkardel #include "ntp_refclock.h"
17abb0f93cSkardel #include "ntp_calendar.h"
18abb0f93cSkardel #include "ntp_stdlib.h"
19abb0f93cSkardel
20abb0f93cSkardel #include <stdio.h>
21abb0f93cSkardel #include <ctype.h>
22abb0f93cSkardel #include <math.h>
23abb0f93cSkardel
24abb0f93cSkardel #ifdef HAVE_AUDIO
25abb0f93cSkardel #include "audio.h"
26abb0f93cSkardel #endif /* HAVE_AUDIO */
27abb0f93cSkardel
28abb0f93cSkardel #define ICOM 1 /* undefine to suppress ICOM code */
29abb0f93cSkardel
30abb0f93cSkardel #ifdef ICOM
31abb0f93cSkardel #include "icom.h"
32abb0f93cSkardel #endif /* ICOM */
33abb0f93cSkardel /*
34abb0f93cSkardel * Audio CHU demodulator/decoder
35abb0f93cSkardel *
36abb0f93cSkardel * This driver synchronizes the computer time using data encoded in
37abb0f93cSkardel * radio transmissions from Canadian time/frequency station CHU in
38abb0f93cSkardel * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
39abb0f93cSkardel * 7850 kHz and 14670 kHz in upper sideband, compatible AM mode. An
40abb0f93cSkardel * ordinary shortwave receiver can be tuned manually to one of these
41abb0f93cSkardel * frequencies or, in the case of ICOM receivers, the receiver can be
42abb0f93cSkardel * tuned automatically as propagation conditions change throughout the
43abb0f93cSkardel * day and season.
44abb0f93cSkardel *
45abb0f93cSkardel * The driver requires an audio codec or sound card with sampling rate 8
46abb0f93cSkardel * kHz and mu-law companding. This is the same standard as used by the
47abb0f93cSkardel * telephone industry and is supported by most hardware and operating
48abb0f93cSkardel * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
49abb0f93cSkardel * implementation, only one audio driver and codec can be supported on a
50abb0f93cSkardel * single machine.
51abb0f93cSkardel *
52abb0f93cSkardel * The driver can be compiled to use a Bell 103 compatible modem or
53abb0f93cSkardel * modem chip to receive the radio signal and demodulate the data.
54abb0f93cSkardel * Alternatively, the driver can be compiled to use the audio codec of
55abb0f93cSkardel * the workstation or another with compatible audio drivers. In the
56abb0f93cSkardel * latter case, the driver implements the modem using DSP routines, so
57abb0f93cSkardel * the radio can be connected directly to either the microphone on line
58abb0f93cSkardel * input port. In either case, the driver decodes the data using a
59abb0f93cSkardel * maximum-likelihood technique which exploits the considerable degree
60abb0f93cSkardel * of redundancy available to maximize accuracy and minimize errors.
61abb0f93cSkardel *
62abb0f93cSkardel * The CHU time broadcast includes an audio signal compatible with the
63abb0f93cSkardel * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). The signal
64abb0f93cSkardel * consists of nine, ten-character bursts transmitted at 300 bps between
65abb0f93cSkardel * seconds 31 and 39 of each minute. Each character consists of eight
66abb0f93cSkardel * data bits plus one start bit and two stop bits to encode two hex
67abb0f93cSkardel * digits. The burst data consist of five characters (ten hex digits)
68abb0f93cSkardel * followed by a repeat of these characters. In format A, the characters
69abb0f93cSkardel * are repeated in the same polarity; in format B, the characters are
70abb0f93cSkardel * repeated in the opposite polarity.
71abb0f93cSkardel *
72abb0f93cSkardel * Format A bursts are sent at seconds 32 through 39 of the minute in
73abb0f93cSkardel * hex digits (nibble swapped)
74abb0f93cSkardel *
75abb0f93cSkardel * 6dddhhmmss6dddhhmmss
76abb0f93cSkardel *
77abb0f93cSkardel * The first ten digits encode a frame marker (6) followed by the day
78abb0f93cSkardel * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
79abb0f93cSkardel * format A bursts are sent during the third decade of seconds the tens
80abb0f93cSkardel * digit of ss is always 3. The driver uses this to determine correct
81abb0f93cSkardel * burst synchronization. These digits are then repeated with the same
82abb0f93cSkardel * polarity.
83abb0f93cSkardel *
84abb0f93cSkardel * Format B bursts are sent at second 31 of the minute in hex digits
85abb0f93cSkardel *
86abb0f93cSkardel * xdyyyyttaaxdyyyyttaa
87abb0f93cSkardel *
88abb0f93cSkardel * The first ten digits encode a code (x described below) followed by
89abb0f93cSkardel * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
90abb0f93cSkardel * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
91abb0f93cSkardel * digits are then repeated with inverted polarity.
92abb0f93cSkardel *
93abb0f93cSkardel * The x is coded
94abb0f93cSkardel *
95abb0f93cSkardel * 1 Sign of DUT (0 = +)
96abb0f93cSkardel * 2 Leap second warning. One second will be added.
97abb0f93cSkardel * 4 Leap second warning. One second will be subtracted.
98abb0f93cSkardel * 8 Even parity bit for this nibble.
99abb0f93cSkardel *
100abb0f93cSkardel * By design, the last stop bit of the last character in the burst
101abb0f93cSkardel * coincides with 0.5 second. Since characters have 11 bits and are
102abb0f93cSkardel * transmitted at 300 bps, the last stop bit of the first character
103abb0f93cSkardel * coincides with 0.5 - 9 * 11/300 = 0.170 second. Depending on the
104abb0f93cSkardel * UART, character interrupts can vary somewhere between the end of bit
105abb0f93cSkardel * 9 and end of bit 11. These eccentricities can be corrected along with
106abb0f93cSkardel * the radio propagation delay using fudge time 1.
107abb0f93cSkardel *
108abb0f93cSkardel * Debugging aids
109abb0f93cSkardel *
110abb0f93cSkardel * The timecode format used for debugging and data recording includes
111abb0f93cSkardel * data helpful in diagnosing problems with the radio signal and serial
112abb0f93cSkardel * connections. With debugging enabled (-d on the ntpd command line),
113abb0f93cSkardel * the driver produces one line for each burst in two formats
114abb0f93cSkardel * corresponding to format A and B.Each line begins with the format code
115abb0f93cSkardel * chuA or chuB followed by the status code and signal level (0-9999).
116abb0f93cSkardel * The remainder of the line is as follows.
117abb0f93cSkardel *
118abb0f93cSkardel * Following is format A:
119abb0f93cSkardel *
120abb0f93cSkardel * n b f s m code
121abb0f93cSkardel *
122abb0f93cSkardel * where n is the number of characters in the burst (0-10), b the burst
123abb0f93cSkardel * distance (0-40), f the field alignment (-1, 0, 1), s the
124abb0f93cSkardel * synchronization distance (0-16), m the burst number (2-9) and code
125abb0f93cSkardel * the burst characters as received. Note that the hex digits in each
126abb0f93cSkardel * character are reversed, so the burst
127abb0f93cSkardel *
128abb0f93cSkardel * 10 38 0 16 9 06851292930685129293
129abb0f93cSkardel *
130abb0f93cSkardel * is interpreted as containing 10 characters with burst distance 38,
131abb0f93cSkardel * field alignment 0, synchronization distance 16 and burst number 9.
132abb0f93cSkardel * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
133abb0f93cSkardel * second 39.
134abb0f93cSkardel *
135abb0f93cSkardel * Following is format B:
136abb0f93cSkardel *
137abb0f93cSkardel * n b s code
138abb0f93cSkardel *
139abb0f93cSkardel * where n is the number of characters in the burst (0-10), b the burst
140abb0f93cSkardel * distance (0-40), s the synchronization distance (0-40) and code the
141abb0f93cSkardel * burst characters as received. Note that the hex digits in each
142abb0f93cSkardel * character are reversed and the last ten digits inverted, so the burst
143abb0f93cSkardel *
144abb0f93cSkardel * 10 40 1091891300ef6e76ec
145abb0f93cSkardel *
146abb0f93cSkardel * is interpreted as containing 10 characters with burst distance 40.
147abb0f93cSkardel * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
148abb0f93cSkardel * - UTC 31 seconds.
149abb0f93cSkardel *
150abb0f93cSkardel * Each line is preceeded by the code chuA or chuB, as appropriate. If
151abb0f93cSkardel * the audio driver is compiled, the current gain (0-255) and relative
152abb0f93cSkardel * signal level (0-9999) follow the code. The receiver volume control
153abb0f93cSkardel * should be set so that the gain is somewhere near the middle of the
154abb0f93cSkardel * range 0-255, which results in a signal level near 1000.
155abb0f93cSkardel *
156abb0f93cSkardel * In addition to the above, the reference timecode is updated and
157abb0f93cSkardel * written to the clockstats file and debug score after the last burst
158abb0f93cSkardel * received in the minute. The format is
159abb0f93cSkardel *
160abb0f93cSkardel * sq yyyy ddd hh:mm:ss l s dd t agc ident m b
161abb0f93cSkardel *
162abb0f93cSkardel * s '?' before first synchronized and ' ' after that
163abb0f93cSkardel * q status code (see below)
164abb0f93cSkardel * yyyy year
165abb0f93cSkardel * ddd day of year
166abb0f93cSkardel * hh:mm:ss time of day
167abb0f93cSkardel * l leap second indicator (space, L or D)
168abb0f93cSkardel * dst Canadian daylight code (opaque)
169abb0f93cSkardel * t number of minutes since last synchronized
170abb0f93cSkardel * agc audio gain (0 - 255)
171abb0f93cSkardel * ident identifier (CHU0 3330 kHz, CHU1 7850 kHz, CHU2 14670 kHz)
172abb0f93cSkardel * m signal metric (0 - 100)
173abb0f93cSkardel * b number of timecodes for the previous minute (0 - 59)
174abb0f93cSkardel *
175abb0f93cSkardel * Fudge factors
176abb0f93cSkardel *
177abb0f93cSkardel * For accuracies better than the low millisceconds, fudge time1 can be
178abb0f93cSkardel * set to the radio propagation delay from CHU to the receiver. This can
179abb0f93cSkardel * be done conviently using the minimuf program.
180abb0f93cSkardel *
181abb0f93cSkardel * Fudge flag4 causes the dubugging output described above to be
182abb0f93cSkardel * recorded in the clockstats file. When the audio driver is compiled,
183abb0f93cSkardel * fudge flag2 selects the audio input port, where 0 is the mike port
184abb0f93cSkardel * (default) and 1 is the line-in port. It does not seem useful to
185abb0f93cSkardel * select the compact disc player port. Fudge flag3 enables audio
186abb0f93cSkardel * monitoring of the input signal. For this purpose, the monitor gain is
187abb0f93cSkardel * set to a default value.
188abb0f93cSkardel *
189abb0f93cSkardel * The audio codec code is normally compiled in the driver if the
190abb0f93cSkardel * architecture supports it (HAVE_AUDIO defined), but is used only if
191abb0f93cSkardel * the link /dev/chu_audio is defined and valid. The serial port code is
192abb0f93cSkardel * always compiled in the driver, but is used only if the autdio codec
193abb0f93cSkardel * is not available and the link /dev/chu%d is defined and valid.
194abb0f93cSkardel *
195abb0f93cSkardel * The ICOM code is normally compiled in the driver if selected (ICOM
196abb0f93cSkardel * defined), but is used only if the link /dev/icom%d is defined and
197abb0f93cSkardel * valid and the mode keyword on the server configuration command
198abb0f93cSkardel * specifies a nonzero mode (ICOM ID select code). The C-IV speed is
199abb0f93cSkardel * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps
200abb0f93cSkardel * if one. The C-IV trace is turned on if the debug level is greater
201abb0f93cSkardel * than one.
202abb0f93cSkardel *
203abb0f93cSkardel * Alarm codes
204abb0f93cSkardel *
205abb0f93cSkardel * CEVNT_BADTIME invalid date or time
206abb0f93cSkardel * CEVNT_PROP propagation failure - no stations heard
207abb0f93cSkardel */
208abb0f93cSkardel /*
209abb0f93cSkardel * Interface definitions
210abb0f93cSkardel */
211abb0f93cSkardel #define SPEED232 B300 /* uart speed (300 baud) */
212abb0f93cSkardel #define PRECISION (-10) /* precision assumed (about 1 ms) */
213abb0f93cSkardel #define REFID "CHU" /* reference ID */
214abb0f93cSkardel #define DEVICE "/dev/chu%d" /* device name and unit */
215abb0f93cSkardel #define SPEED232 B300 /* UART speed (300 baud) */
216abb0f93cSkardel #ifdef ICOM
217abb0f93cSkardel #define TUNE .001 /* offset for narrow filter (MHz) */
218abb0f93cSkardel #define DWELL 5 /* minutes in a dwell */
219abb0f93cSkardel #define NCHAN 3 /* number of channels */
220abb0f93cSkardel #define ISTAGE 3 /* number of integrator stages */
221abb0f93cSkardel #endif /* ICOM */
222abb0f93cSkardel
223abb0f93cSkardel #ifdef HAVE_AUDIO
224abb0f93cSkardel /*
225abb0f93cSkardel * Audio demodulator definitions
226abb0f93cSkardel */
227abb0f93cSkardel #define SECOND 8000 /* nominal sample rate (Hz) */
228abb0f93cSkardel #define BAUD 300 /* modulation rate (bps) */
229abb0f93cSkardel #define OFFSET 128 /* companded sample offset */
230abb0f93cSkardel #define SIZE 256 /* decompanding table size */
231abb0f93cSkardel #define MAXAMP 6000. /* maximum signal level */
232abb0f93cSkardel #define MAXCLP 100 /* max clips above reference per s */
233abb0f93cSkardel #define SPAN 800. /* min envelope span */
234abb0f93cSkardel #define LIMIT 1000. /* soft limiter threshold */
235abb0f93cSkardel #define AGAIN 6. /* baseband gain */
236abb0f93cSkardel #define LAG 10 /* discriminator lag */
237abb0f93cSkardel #define DEVICE_AUDIO "/dev/audio" /* device name */
238abb0f93cSkardel #define DESCRIPTION "CHU Audio/Modem Receiver" /* WRU */
239abb0f93cSkardel #define AUDIO_BUFSIZ 240 /* audio buffer size (30 ms) */
240abb0f93cSkardel #else
241abb0f93cSkardel #define DESCRIPTION "CHU Modem Receiver" /* WRU */
242abb0f93cSkardel #endif /* HAVE_AUDIO */
243abb0f93cSkardel
244abb0f93cSkardel /*
245abb0f93cSkardel * Decoder definitions
246abb0f93cSkardel */
247abb0f93cSkardel #define CHAR (11. / 300.) /* character time (s) */
248abb0f93cSkardel #define BURST 11 /* max characters per burst */
249b3d6264cSchristos #define MINCHARS 9 /* min characters per burst */
250abb0f93cSkardel #define MINDIST 28 /* min burst distance (of 40) */
251abb0f93cSkardel #define MINSYNC 8 /* min sync distance (of 16) */
252abb0f93cSkardel #define MINSTAMP 20 /* min timestamps (of 60) */
253abb0f93cSkardel #define MINMETRIC 50 /* min channel metric (of 160) */
254abb0f93cSkardel
255abb0f93cSkardel /*
256abb0f93cSkardel * The on-time synchronization point for the driver is the last stop bit
257abb0f93cSkardel * of the first character 170 ms. The modem delay is 0.8 ms, while the
258abb0f93cSkardel * receiver delay is approxmately 4.7 ms at 2125 Hz. The fudge value 1.3
259abb0f93cSkardel * ms due to the codec and other causes was determined by calibrating to
260abb0f93cSkardel * a PPS signal from a GPS receiver. The additional propagation delay
261abb0f93cSkardel * specific to each receiver location can be programmed in the fudge
262abb0f93cSkardel * time1.
263abb0f93cSkardel *
264abb0f93cSkardel * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
265abb0f93cSkardel * generally within 0.5 ms short term with 0.3 ms jitter. The long-term
266abb0f93cSkardel * offsets vary up to 0.3 ms due to ionospheric layer height variations.
267abb0f93cSkardel * The processor load due to the driver is 0.4 percent.
268abb0f93cSkardel */
269abb0f93cSkardel #define PDELAY ((170 + .8 + 4.7 + 1.3) / 1000) /* system delay (s) */
270abb0f93cSkardel
271abb0f93cSkardel /*
272abb0f93cSkardel * Status bits (status)
273abb0f93cSkardel */
274abb0f93cSkardel #define RUNT 0x0001 /* runt burst */
275abb0f93cSkardel #define NOISE 0x0002 /* noise burst */
276abb0f93cSkardel #define BFRAME 0x0004 /* invalid format B frame sync */
277abb0f93cSkardel #define BFORMAT 0x0008 /* invalid format B data */
278abb0f93cSkardel #define AFRAME 0x0010 /* invalid format A frame sync */
279abb0f93cSkardel #define AFORMAT 0x0020 /* invalid format A data */
280abb0f93cSkardel #define DECODE 0x0040 /* invalid data decode */
281abb0f93cSkardel #define STAMP 0x0080 /* too few timestamps */
282abb0f93cSkardel #define AVALID 0x0100 /* valid A frame */
283abb0f93cSkardel #define BVALID 0x0200 /* valid B frame */
284abb0f93cSkardel #define INSYNC 0x0400 /* clock synchronized */
285abb0f93cSkardel #define METRIC 0x0800 /* one or more stations heard */
286abb0f93cSkardel
287abb0f93cSkardel /*
288abb0f93cSkardel * Alarm status bits (alarm)
289abb0f93cSkardel *
290abb0f93cSkardel * These alarms are set at the end of a minute in which at least one
291abb0f93cSkardel * burst was received. SYNERR is raised if the AFRAME or BFRAME status
292abb0f93cSkardel * bits are set during the minute, FMTERR is raised if the AFORMAT or
293abb0f93cSkardel * BFORMAT status bits are set, DECERR is raised if the DECODE status
294abb0f93cSkardel * bit is set and TSPERR is raised if the STAMP status bit is set.
295abb0f93cSkardel */
296abb0f93cSkardel #define SYNERR 0x01 /* frame sync error */
297abb0f93cSkardel #define FMTERR 0x02 /* data format error */
298abb0f93cSkardel #define DECERR 0x04 /* data decoding error */
299abb0f93cSkardel #define TSPERR 0x08 /* insufficient data */
300abb0f93cSkardel
301abb0f93cSkardel #ifdef HAVE_AUDIO
302abb0f93cSkardel /*
303abb0f93cSkardel * Maximum-likelihood UART structure. There are eight of these
304abb0f93cSkardel * corresponding to the number of phases.
305abb0f93cSkardel */
306abb0f93cSkardel struct surv {
307abb0f93cSkardel l_fp cstamp; /* last bit timestamp */
308abb0f93cSkardel double shift[12]; /* sample shift register */
309abb0f93cSkardel double span; /* shift register envelope span */
310abb0f93cSkardel double dist; /* sample distance */
311abb0f93cSkardel int uart; /* decoded character */
312abb0f93cSkardel };
313abb0f93cSkardel #endif /* HAVE_AUDIO */
314abb0f93cSkardel
315abb0f93cSkardel #ifdef ICOM
316abb0f93cSkardel /*
317abb0f93cSkardel * CHU station structure. There are three of these corresponding to the
318abb0f93cSkardel * three frequencies.
319abb0f93cSkardel */
320abb0f93cSkardel struct xmtr {
321abb0f93cSkardel double integ[ISTAGE]; /* circular integrator */
322abb0f93cSkardel double metric; /* integrator sum */
323abb0f93cSkardel int iptr; /* integrator pointer */
324abb0f93cSkardel int probe; /* dwells since last probe */
325abb0f93cSkardel };
326abb0f93cSkardel #endif /* ICOM */
327abb0f93cSkardel
328abb0f93cSkardel /*
329abb0f93cSkardel * CHU unit control structure
330abb0f93cSkardel */
331abb0f93cSkardel struct chuunit {
332abb0f93cSkardel u_char decode[20][16]; /* maximum-likelihood decoding matrix */
333abb0f93cSkardel l_fp cstamp[BURST]; /* character timestamps */
334abb0f93cSkardel l_fp tstamp[MAXSTAGE]; /* timestamp samples */
335abb0f93cSkardel l_fp timestamp; /* current buffer timestamp */
336abb0f93cSkardel l_fp laststamp; /* last buffer timestamp */
337abb0f93cSkardel l_fp charstamp; /* character time as a l_fp */
338abb0f93cSkardel int second; /* counts the seconds of the minute */
339abb0f93cSkardel int errflg; /* error flags */
340abb0f93cSkardel int status; /* status bits */
341abb0f93cSkardel char ident[5]; /* station ID and channel */
342abb0f93cSkardel #ifdef ICOM
343abb0f93cSkardel int fd_icom; /* ICOM file descriptor */
344abb0f93cSkardel int chan; /* radio channel */
345abb0f93cSkardel int dwell; /* dwell cycle */
346abb0f93cSkardel struct xmtr xmtr[NCHAN]; /* station metric */
347abb0f93cSkardel #endif /* ICOM */
348abb0f93cSkardel
349abb0f93cSkardel /*
350abb0f93cSkardel * Character burst variables
351abb0f93cSkardel */
352abb0f93cSkardel int cbuf[BURST]; /* character buffer */
353abb0f93cSkardel int ntstamp; /* number of timestamp samples */
354abb0f93cSkardel int ndx; /* buffer start index */
355abb0f93cSkardel int prevsec; /* previous burst second */
356abb0f93cSkardel int burdist; /* burst distance */
357abb0f93cSkardel int syndist; /* sync distance */
358abb0f93cSkardel int burstcnt; /* format A bursts this minute */
359abb0f93cSkardel double maxsignal; /* signal level (modem only) */
360abb0f93cSkardel int gain; /* codec gain (modem only) */
361abb0f93cSkardel
362abb0f93cSkardel /*
363abb0f93cSkardel * Format particulars
364abb0f93cSkardel */
365abb0f93cSkardel int leap; /* leap/dut code */
366abb0f93cSkardel int dut; /* UTC1 correction */
367abb0f93cSkardel int tai; /* TAI - UTC correction */
368abb0f93cSkardel int dst; /* Canadian DST code */
369abb0f93cSkardel
370abb0f93cSkardel #ifdef HAVE_AUDIO
371abb0f93cSkardel /*
372abb0f93cSkardel * Audio codec variables
373abb0f93cSkardel */
374abb0f93cSkardel int fd_audio; /* audio port file descriptor */
375abb0f93cSkardel double comp[SIZE]; /* decompanding table */
376abb0f93cSkardel int port; /* codec port */
377abb0f93cSkardel int mongain; /* codec monitor gain */
378abb0f93cSkardel int clipcnt; /* sample clip count */
379abb0f93cSkardel int seccnt; /* second interval counter */
380abb0f93cSkardel
381abb0f93cSkardel /*
382abb0f93cSkardel * Modem variables
383abb0f93cSkardel */
384abb0f93cSkardel l_fp tick; /* audio sample increment */
385abb0f93cSkardel double bpf[9]; /* IIR bandpass filter */
386abb0f93cSkardel double disc[LAG]; /* discriminator shift register */
387abb0f93cSkardel double lpf[27]; /* FIR lowpass filter */
388abb0f93cSkardel double monitor; /* audio monitor */
389abb0f93cSkardel int discptr; /* discriminator pointer */
390abb0f93cSkardel
391abb0f93cSkardel /*
392abb0f93cSkardel * Maximum-likelihood UART variables
393abb0f93cSkardel */
394abb0f93cSkardel double baud; /* baud interval */
395abb0f93cSkardel struct surv surv[8]; /* UART survivor structures */
396abb0f93cSkardel int decptr; /* decode pointer */
397abb0f93cSkardel int decpha; /* decode phase */
398abb0f93cSkardel int dbrk; /* holdoff counter */
399abb0f93cSkardel #endif /* HAVE_AUDIO */
400abb0f93cSkardel };
401abb0f93cSkardel
402abb0f93cSkardel /*
403abb0f93cSkardel * Function prototypes
404abb0f93cSkardel */
405abb0f93cSkardel static int chu_start (int, struct peer *);
406abb0f93cSkardel static void chu_shutdown (int, struct peer *);
407abb0f93cSkardel static void chu_receive (struct recvbuf *);
408abb0f93cSkardel static void chu_second (int, struct peer *);
409abb0f93cSkardel static void chu_poll (int, struct peer *);
410abb0f93cSkardel
411abb0f93cSkardel /*
412abb0f93cSkardel * More function prototypes
413abb0f93cSkardel */
414abb0f93cSkardel static void chu_decode (struct peer *, int, l_fp);
415abb0f93cSkardel static void chu_burst (struct peer *);
416abb0f93cSkardel static void chu_clear (struct peer *);
417abb0f93cSkardel static void chu_a (struct peer *, int);
418abb0f93cSkardel static void chu_b (struct peer *, int);
419abb0f93cSkardel static int chu_dist (int, int);
420abb0f93cSkardel static double chu_major (struct peer *);
421abb0f93cSkardel #ifdef HAVE_AUDIO
422abb0f93cSkardel static void chu_uart (struct surv *, double);
423abb0f93cSkardel static void chu_rf (struct peer *, double);
424abb0f93cSkardel static void chu_gain (struct peer *);
425abb0f93cSkardel static void chu_audio_receive (struct recvbuf *rbufp);
426abb0f93cSkardel #endif /* HAVE_AUDIO */
427abb0f93cSkardel #ifdef ICOM
428abb0f93cSkardel static int chu_newchan (struct peer *, double);
429abb0f93cSkardel #endif /* ICOM */
430abb0f93cSkardel static void chu_serial_receive (struct recvbuf *rbufp);
431abb0f93cSkardel
432abb0f93cSkardel /*
433abb0f93cSkardel * Global variables
434abb0f93cSkardel */
435abb0f93cSkardel static char hexchar[] = "0123456789abcdef_*=";
436abb0f93cSkardel
437abb0f93cSkardel #ifdef ICOM
438abb0f93cSkardel /*
439abb0f93cSkardel * Note the tuned frequencies are 1 kHz higher than the carrier. CHU
440abb0f93cSkardel * transmits on USB with carrier so we can use AM and the narrow SSB
441abb0f93cSkardel * filter.
442abb0f93cSkardel */
443abb0f93cSkardel static double qsy[NCHAN] = {3.330, 7.850, 14.670}; /* freq (MHz) */
444abb0f93cSkardel #endif /* ICOM */
445abb0f93cSkardel
446abb0f93cSkardel /*
447abb0f93cSkardel * Transfer vector
448abb0f93cSkardel */
449abb0f93cSkardel struct refclock refclock_chu = {
450abb0f93cSkardel chu_start, /* start up driver */
451abb0f93cSkardel chu_shutdown, /* shut down driver */
452abb0f93cSkardel chu_poll, /* transmit poll message */
453abb0f93cSkardel noentry, /* not used (old chu_control) */
454abb0f93cSkardel noentry, /* initialize driver (not used) */
455abb0f93cSkardel noentry, /* not used (old chu_buginfo) */
456abb0f93cSkardel chu_second /* housekeeping timer */
457abb0f93cSkardel };
458abb0f93cSkardel
459abb0f93cSkardel
460abb0f93cSkardel /*
461abb0f93cSkardel * chu_start - open the devices and initialize data for processing
462abb0f93cSkardel */
463abb0f93cSkardel static int
chu_start(int unit,struct peer * peer)464abb0f93cSkardel chu_start(
465abb0f93cSkardel int unit, /* instance number (not used) */
466abb0f93cSkardel struct peer *peer /* peer structure pointer */
467abb0f93cSkardel )
468abb0f93cSkardel {
469abb0f93cSkardel struct chuunit *up;
470abb0f93cSkardel struct refclockproc *pp;
471abb0f93cSkardel char device[20]; /* device name */
472abb0f93cSkardel int fd; /* file descriptor */
473abb0f93cSkardel #ifdef ICOM
474abb0f93cSkardel int temp;
475abb0f93cSkardel #endif /* ICOM */
476abb0f93cSkardel #ifdef HAVE_AUDIO
477abb0f93cSkardel int fd_audio; /* audio port file descriptor */
478abb0f93cSkardel int i; /* index */
479abb0f93cSkardel double step; /* codec adjustment */
480abb0f93cSkardel
481abb0f93cSkardel /*
482abb0f93cSkardel * Open audio device. Don't complain if not there.
483abb0f93cSkardel */
484abb0f93cSkardel fd_audio = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
485b3d6264cSchristos
486abb0f93cSkardel #ifdef DEBUG
487b3d6264cSchristos if (fd_audio >= 0 && debug)
488abb0f93cSkardel audio_show();
489abb0f93cSkardel #endif
490abb0f93cSkardel
491abb0f93cSkardel /*
492abb0f93cSkardel * If audio is unavailable, Open serial port in raw mode.
493abb0f93cSkardel */
494b3d6264cSchristos if (fd_audio >= 0) {
495abb0f93cSkardel fd = fd_audio;
496abb0f93cSkardel } else {
4974305584aSkardel snprintf(device, sizeof(device), DEVICE, unit);
498abb0f93cSkardel fd = refclock_open(device, SPEED232, LDISC_RAW);
499abb0f93cSkardel }
500abb0f93cSkardel #else /* HAVE_AUDIO */
501abb0f93cSkardel
502abb0f93cSkardel /*
503abb0f93cSkardel * Open serial port in raw mode.
504abb0f93cSkardel */
5054305584aSkardel snprintf(device, sizeof(device), DEVICE, unit);
506abb0f93cSkardel fd = refclock_open(device, SPEED232, LDISC_RAW);
507abb0f93cSkardel #endif /* HAVE_AUDIO */
508b3d6264cSchristos
509b3d6264cSchristos if (fd < 0)
510abb0f93cSkardel return (0);
511abb0f93cSkardel
512abb0f93cSkardel /*
513abb0f93cSkardel * Allocate and initialize unit structure
514abb0f93cSkardel */
515b3d6264cSchristos up = emalloc_zero(sizeof(*up));
516abb0f93cSkardel pp = peer->procptr;
517b3d6264cSchristos pp->unitptr = up;
518abb0f93cSkardel pp->io.clock_recv = chu_receive;
519b3d6264cSchristos pp->io.srcclock = peer;
520abb0f93cSkardel pp->io.datalen = 0;
521abb0f93cSkardel pp->io.fd = fd;
522abb0f93cSkardel if (!io_addclock(&pp->io)) {
523abb0f93cSkardel close(fd);
5244305584aSkardel pp->io.fd = -1;
525abb0f93cSkardel free(up);
5264305584aSkardel pp->unitptr = NULL;
527abb0f93cSkardel return (0);
528abb0f93cSkardel }
529abb0f93cSkardel
530abb0f93cSkardel /*
531abb0f93cSkardel * Initialize miscellaneous variables
532abb0f93cSkardel */
533abb0f93cSkardel peer->precision = PRECISION;
534abb0f93cSkardel pp->clockdesc = DESCRIPTION;
535b3d6264cSchristos strlcpy(up->ident, "CHU", sizeof(up->ident));
536abb0f93cSkardel memcpy(&pp->refid, up->ident, 4);
537abb0f93cSkardel DTOLFP(CHAR, &up->charstamp);
538abb0f93cSkardel #ifdef HAVE_AUDIO
539abb0f93cSkardel
540abb0f93cSkardel /*
541abb0f93cSkardel * The companded samples are encoded sign-magnitude. The table
542abb0f93cSkardel * contains all the 256 values in the interest of speed. We do
543abb0f93cSkardel * this even if the audio codec is not available. C'est la lazy.
544abb0f93cSkardel */
545abb0f93cSkardel up->fd_audio = fd_audio;
546abb0f93cSkardel up->gain = 127;
547abb0f93cSkardel up->comp[0] = up->comp[OFFSET] = 0.;
548abb0f93cSkardel up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
549abb0f93cSkardel up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
550abb0f93cSkardel step = 2.;
551abb0f93cSkardel for (i = 3; i < OFFSET; i++) {
552abb0f93cSkardel up->comp[i] = up->comp[i - 1] + step;
553abb0f93cSkardel up->comp[OFFSET + i] = -up->comp[i];
554abb0f93cSkardel if (i % 16 == 0)
555abb0f93cSkardel step *= 2.;
556abb0f93cSkardel }
557abb0f93cSkardel DTOLFP(1. / SECOND, &up->tick);
558abb0f93cSkardel #endif /* HAVE_AUDIO */
559abb0f93cSkardel #ifdef ICOM
560abb0f93cSkardel temp = 0;
561abb0f93cSkardel #ifdef DEBUG
562abb0f93cSkardel if (debug > 1)
563abb0f93cSkardel temp = P_TRACE;
564abb0f93cSkardel #endif
565abb0f93cSkardel if (peer->ttl > 0) {
566abb0f93cSkardel if (peer->ttl & 0x80)
567abb0f93cSkardel up->fd_icom = icom_init("/dev/icom", B1200,
568abb0f93cSkardel temp);
569abb0f93cSkardel else
570abb0f93cSkardel up->fd_icom = icom_init("/dev/icom", B9600,
571abb0f93cSkardel temp);
572abb0f93cSkardel }
573abb0f93cSkardel if (up->fd_icom > 0) {
574abb0f93cSkardel if (chu_newchan(peer, 0) != 0) {
575abb0f93cSkardel msyslog(LOG_NOTICE, "icom: radio not found");
576abb0f93cSkardel close(up->fd_icom);
577abb0f93cSkardel up->fd_icom = 0;
578abb0f93cSkardel } else {
579abb0f93cSkardel msyslog(LOG_NOTICE, "icom: autotune enabled");
580abb0f93cSkardel }
581abb0f93cSkardel }
582abb0f93cSkardel #endif /* ICOM */
583abb0f93cSkardel return (1);
584abb0f93cSkardel }
585abb0f93cSkardel
586abb0f93cSkardel
587abb0f93cSkardel /*
588abb0f93cSkardel * chu_shutdown - shut down the clock
589abb0f93cSkardel */
590abb0f93cSkardel static void
chu_shutdown(int unit,struct peer * peer)591abb0f93cSkardel chu_shutdown(
592abb0f93cSkardel int unit, /* instance number (not used) */
593abb0f93cSkardel struct peer *peer /* peer structure pointer */
594abb0f93cSkardel )
595abb0f93cSkardel {
596abb0f93cSkardel struct chuunit *up;
597abb0f93cSkardel struct refclockproc *pp;
598abb0f93cSkardel
599abb0f93cSkardel pp = peer->procptr;
600b3d6264cSchristos up = pp->unitptr;
601abb0f93cSkardel if (up == NULL)
602abb0f93cSkardel return;
603abb0f93cSkardel
604abb0f93cSkardel io_closeclock(&pp->io);
605abb0f93cSkardel #ifdef ICOM
606abb0f93cSkardel if (up->fd_icom > 0)
607abb0f93cSkardel close(up->fd_icom);
608abb0f93cSkardel #endif /* ICOM */
609abb0f93cSkardel free(up);
610abb0f93cSkardel }
611abb0f93cSkardel
612abb0f93cSkardel
613abb0f93cSkardel /*
614abb0f93cSkardel * chu_receive - receive data from the audio or serial device
615abb0f93cSkardel */
616abb0f93cSkardel static void
chu_receive(struct recvbuf * rbufp)617abb0f93cSkardel chu_receive(
618abb0f93cSkardel struct recvbuf *rbufp /* receive buffer structure pointer */
619abb0f93cSkardel )
620abb0f93cSkardel {
621abb0f93cSkardel #ifdef HAVE_AUDIO
622abb0f93cSkardel struct chuunit *up;
623abb0f93cSkardel struct refclockproc *pp;
624abb0f93cSkardel struct peer *peer;
625abb0f93cSkardel
626b3d6264cSchristos peer = rbufp->recv_peer;
627abb0f93cSkardel pp = peer->procptr;
628b3d6264cSchristos up = pp->unitptr;
629abb0f93cSkardel
630abb0f93cSkardel /*
631abb0f93cSkardel * If the audio codec is warmed up, the buffer contains codec
632abb0f93cSkardel * samples which need to be demodulated and decoded into CHU
633abb0f93cSkardel * characters using the software UART. Otherwise, the buffer
634abb0f93cSkardel * contains CHU characters from the serial port, so the software
635abb0f93cSkardel * UART is bypassed. In this case the CPU will probably run a
636abb0f93cSkardel * few degrees cooler.
637abb0f93cSkardel */
638abb0f93cSkardel if (up->fd_audio > 0)
639abb0f93cSkardel chu_audio_receive(rbufp);
640abb0f93cSkardel else
641abb0f93cSkardel chu_serial_receive(rbufp);
642abb0f93cSkardel #else
643abb0f93cSkardel chu_serial_receive(rbufp);
644abb0f93cSkardel #endif /* HAVE_AUDIO */
645abb0f93cSkardel }
646abb0f93cSkardel
647abb0f93cSkardel
648abb0f93cSkardel #ifdef HAVE_AUDIO
649abb0f93cSkardel /*
650abb0f93cSkardel * chu_audio_receive - receive data from the audio device
651abb0f93cSkardel */
652abb0f93cSkardel static void
chu_audio_receive(struct recvbuf * rbufp)653abb0f93cSkardel chu_audio_receive(
654abb0f93cSkardel struct recvbuf *rbufp /* receive buffer structure pointer */
655abb0f93cSkardel )
656abb0f93cSkardel {
657abb0f93cSkardel struct chuunit *up;
658abb0f93cSkardel struct refclockproc *pp;
659abb0f93cSkardel struct peer *peer;
660abb0f93cSkardel
661abb0f93cSkardel double sample; /* codec sample */
662abb0f93cSkardel u_char *dpt; /* buffer pointer */
663abb0f93cSkardel int bufcnt; /* buffer counter */
664abb0f93cSkardel l_fp ltemp; /* l_fp temp */
665abb0f93cSkardel
666b3d6264cSchristos peer = rbufp->recv_peer;
667abb0f93cSkardel pp = peer->procptr;
668b3d6264cSchristos up = pp->unitptr;
669abb0f93cSkardel
670abb0f93cSkardel /*
671abb0f93cSkardel * Main loop - read until there ain't no more. Note codec
672abb0f93cSkardel * samples are bit-inverted.
673abb0f93cSkardel */
674abb0f93cSkardel DTOLFP((double)rbufp->recv_length / SECOND, <emp);
675abb0f93cSkardel L_SUB(&rbufp->recv_time, <emp);
676abb0f93cSkardel up->timestamp = rbufp->recv_time;
677abb0f93cSkardel dpt = rbufp->recv_buffer;
678abb0f93cSkardel for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
679abb0f93cSkardel sample = up->comp[~*dpt++ & 0xff];
680abb0f93cSkardel
681abb0f93cSkardel /*
682abb0f93cSkardel * Clip noise spikes greater than MAXAMP. If no clips,
683abb0f93cSkardel * increase the gain a tad; if the clips are too high,
684abb0f93cSkardel * decrease a tad.
685abb0f93cSkardel */
686abb0f93cSkardel if (sample > MAXAMP) {
687abb0f93cSkardel sample = MAXAMP;
688abb0f93cSkardel up->clipcnt++;
689abb0f93cSkardel } else if (sample < -MAXAMP) {
690abb0f93cSkardel sample = -MAXAMP;
691abb0f93cSkardel up->clipcnt++;
692abb0f93cSkardel }
693abb0f93cSkardel chu_rf(peer, sample);
694abb0f93cSkardel L_ADD(&up->timestamp, &up->tick);
695abb0f93cSkardel
696abb0f93cSkardel /*
697abb0f93cSkardel * Once each second ride gain.
698abb0f93cSkardel */
699abb0f93cSkardel up->seccnt = (up->seccnt + 1) % SECOND;
700abb0f93cSkardel if (up->seccnt == 0) {
701abb0f93cSkardel chu_gain(peer);
702abb0f93cSkardel }
703abb0f93cSkardel }
704abb0f93cSkardel
705abb0f93cSkardel /*
706abb0f93cSkardel * Set the input port and monitor gain for the next buffer.
707abb0f93cSkardel */
708abb0f93cSkardel if (pp->sloppyclockflag & CLK_FLAG2)
709abb0f93cSkardel up->port = 2;
710abb0f93cSkardel else
711abb0f93cSkardel up->port = 1;
712abb0f93cSkardel if (pp->sloppyclockflag & CLK_FLAG3)
713abb0f93cSkardel up->mongain = MONGAIN;
714abb0f93cSkardel else
715abb0f93cSkardel up->mongain = 0;
716abb0f93cSkardel }
717abb0f93cSkardel
718abb0f93cSkardel
719abb0f93cSkardel /*
720abb0f93cSkardel * chu_rf - filter and demodulate the FSK signal
721abb0f93cSkardel *
722abb0f93cSkardel * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
723abb0f93cSkardel * and space 2025 Hz. It uses a bandpass filter followed by a soft
724abb0f93cSkardel * limiter, FM discriminator and lowpass filter. A maximum-likelihood
725abb0f93cSkardel * decoder samples the baseband signal at eight times the baud rate and
726abb0f93cSkardel * detects the start bit of each character.
727abb0f93cSkardel *
728abb0f93cSkardel * The filters are built for speed, which explains the rather clumsy
729abb0f93cSkardel * code. Hopefully, the compiler will efficiently implement the move-
730abb0f93cSkardel * and-muiltiply-and-add operations.
731abb0f93cSkardel */
732abb0f93cSkardel static void
chu_rf(struct peer * peer,double sample)733abb0f93cSkardel chu_rf(
734abb0f93cSkardel struct peer *peer, /* peer structure pointer */
735abb0f93cSkardel double sample /* analog sample */
736abb0f93cSkardel )
737abb0f93cSkardel {
738abb0f93cSkardel struct refclockproc *pp;
739abb0f93cSkardel struct chuunit *up;
740abb0f93cSkardel struct surv *sp;
741abb0f93cSkardel
742abb0f93cSkardel /*
743abb0f93cSkardel * Local variables
744abb0f93cSkardel */
745abb0f93cSkardel double signal; /* bandpass signal */
746abb0f93cSkardel double limit; /* limiter signal */
747abb0f93cSkardel double disc; /* discriminator signal */
748abb0f93cSkardel double lpf; /* lowpass signal */
749abb0f93cSkardel double dist; /* UART signal distance */
750abb0f93cSkardel int i, j;
751abb0f93cSkardel
752abb0f93cSkardel pp = peer->procptr;
753b3d6264cSchristos up = pp->unitptr;
754abb0f93cSkardel
755abb0f93cSkardel /*
756abb0f93cSkardel * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
757abb0f93cSkardel * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB,
758abb0f93cSkardel * phase delay 0.24 ms.
759abb0f93cSkardel */
760abb0f93cSkardel signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
761abb0f93cSkardel signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
762abb0f93cSkardel signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
763abb0f93cSkardel signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
764abb0f93cSkardel signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
765abb0f93cSkardel signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
766abb0f93cSkardel signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
767abb0f93cSkardel signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
768abb0f93cSkardel up->bpf[0] = sample - signal;
769abb0f93cSkardel signal = up->bpf[0] * 6.176213e-03
770abb0f93cSkardel + up->bpf[1] * 3.156599e-03
771abb0f93cSkardel + up->bpf[2] * 7.567487e-03
772abb0f93cSkardel + up->bpf[3] * 4.344580e-03
773abb0f93cSkardel + up->bpf[4] * 1.190128e-02
774abb0f93cSkardel + up->bpf[5] * 4.344580e-03
775abb0f93cSkardel + up->bpf[6] * 7.567487e-03
776abb0f93cSkardel + up->bpf[7] * 3.156599e-03
777abb0f93cSkardel + up->bpf[8] * 6.176213e-03;
778abb0f93cSkardel
779abb0f93cSkardel up->monitor = signal / 4.; /* note monitor after filter */
780abb0f93cSkardel
781abb0f93cSkardel /*
782abb0f93cSkardel * Soft limiter/discriminator. The 11-sample discriminator lag
783abb0f93cSkardel * interval corresponds to three cycles of 2125 Hz, which
784abb0f93cSkardel * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
785abb0f93cSkardel * Hz. The discriminator output varies +-0.5 interval for input
786abb0f93cSkardel * frequency 2025-2225 Hz. However, we don't get to sample at
787abb0f93cSkardel * this frequency, so the discriminator output is biased. Life
788abb0f93cSkardel * at 8000 Hz sucks.
789abb0f93cSkardel */
790abb0f93cSkardel limit = signal;
791abb0f93cSkardel if (limit > LIMIT)
792abb0f93cSkardel limit = LIMIT;
793abb0f93cSkardel else if (limit < -LIMIT)
794abb0f93cSkardel limit = -LIMIT;
795abb0f93cSkardel disc = up->disc[up->discptr] * -limit;
796abb0f93cSkardel up->disc[up->discptr] = limit;
797abb0f93cSkardel up->discptr = (up->discptr + 1 ) % LAG;
798abb0f93cSkardel if (disc >= 0)
799abb0f93cSkardel disc = SQRT(disc);
800abb0f93cSkardel else
801abb0f93cSkardel disc = -SQRT(-disc);
802abb0f93cSkardel
803abb0f93cSkardel /*
804abb0f93cSkardel * Lowpass filter. Raised cosine FIR, Ts = 1 / 300, beta = 0.1.
805abb0f93cSkardel */
806abb0f93cSkardel lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
807abb0f93cSkardel lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
808abb0f93cSkardel lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
809abb0f93cSkardel lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
810abb0f93cSkardel lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
811abb0f93cSkardel lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
812abb0f93cSkardel lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
813abb0f93cSkardel lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
814abb0f93cSkardel lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
815abb0f93cSkardel lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
816abb0f93cSkardel lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
817abb0f93cSkardel lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
818abb0f93cSkardel lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
819abb0f93cSkardel lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
820abb0f93cSkardel lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
821abb0f93cSkardel lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
822abb0f93cSkardel lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
823abb0f93cSkardel lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
824abb0f93cSkardel lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
825abb0f93cSkardel lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
826abb0f93cSkardel lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
827abb0f93cSkardel lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
828abb0f93cSkardel lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
829abb0f93cSkardel lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
830abb0f93cSkardel lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
831abb0f93cSkardel lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
832abb0f93cSkardel lpf += up->lpf[0] = disc * 2.538771e-02;
833abb0f93cSkardel
834abb0f93cSkardel /*
835abb0f93cSkardel * Maximum-likelihood decoder. The UART updates each of the
836abb0f93cSkardel * eight survivors and determines the span, slice level and
837abb0f93cSkardel * tentative decoded character. Valid 11-bit characters are
838abb0f93cSkardel * framed so that bit 10 and bit 11 (stop bits) are mark and bit
839abb0f93cSkardel * 1 (start bit) is space. When a valid character is found, the
840abb0f93cSkardel * survivor with maximum distance determines the final decoded
841abb0f93cSkardel * character.
842abb0f93cSkardel */
843abb0f93cSkardel up->baud += 1. / SECOND;
844abb0f93cSkardel if (up->baud > 1. / (BAUD * 8.)) {
845abb0f93cSkardel up->baud -= 1. / (BAUD * 8.);
846abb0f93cSkardel up->decptr = (up->decptr + 1) % 8;
847abb0f93cSkardel sp = &up->surv[up->decptr];
848abb0f93cSkardel sp->cstamp = up->timestamp;
849abb0f93cSkardel chu_uart(sp, -lpf * AGAIN);
850abb0f93cSkardel if (up->dbrk > 0) {
851abb0f93cSkardel up->dbrk--;
852abb0f93cSkardel if (up->dbrk > 0)
853abb0f93cSkardel return;
854abb0f93cSkardel
855abb0f93cSkardel up->decpha = up->decptr;
856abb0f93cSkardel }
857abb0f93cSkardel if (up->decptr != up->decpha)
858abb0f93cSkardel return;
859abb0f93cSkardel
860abb0f93cSkardel dist = 0;
861abb0f93cSkardel j = -1;
862abb0f93cSkardel for (i = 0; i < 8; i++) {
863abb0f93cSkardel
864abb0f93cSkardel /*
865abb0f93cSkardel * The timestamp is taken at the last bit, so
866abb0f93cSkardel * for correct decoding we reqire sufficient
867abb0f93cSkardel * span and correct start bit and two stop bits.
868abb0f93cSkardel */
869abb0f93cSkardel if ((up->surv[i].uart & 0x601) != 0x600 ||
870abb0f93cSkardel up->surv[i].span < SPAN)
871abb0f93cSkardel continue;
872abb0f93cSkardel
873abb0f93cSkardel if (up->surv[i].dist > dist) {
874abb0f93cSkardel dist = up->surv[i].dist;
875abb0f93cSkardel j = i;
876abb0f93cSkardel }
877abb0f93cSkardel }
878abb0f93cSkardel if (j < 0)
879abb0f93cSkardel return;
880abb0f93cSkardel
881abb0f93cSkardel /*
882abb0f93cSkardel * Process the character, then blank the decoder until
883abb0f93cSkardel * the end of the next character.This sets the decoding
884abb0f93cSkardel * phase of the entire burst from the phase of the first
885abb0f93cSkardel * character.
886abb0f93cSkardel */
887abb0f93cSkardel up->maxsignal = up->surv[j].span;
888abb0f93cSkardel chu_decode(peer, (up->surv[j].uart >> 1) & 0xff,
889abb0f93cSkardel up->surv[j].cstamp);
890abb0f93cSkardel up->dbrk = 88;
891abb0f93cSkardel }
892abb0f93cSkardel }
893abb0f93cSkardel
894abb0f93cSkardel
895abb0f93cSkardel /*
896abb0f93cSkardel * chu_uart - maximum-likelihood UART
897abb0f93cSkardel *
898abb0f93cSkardel * This routine updates a shift register holding the last 11 envelope
899abb0f93cSkardel * samples. It then computes the slice level and span over these samples
900abb0f93cSkardel * and determines the tentative data bits and distance. The calling
901abb0f93cSkardel * program selects over the last eight survivors the one with maximum
902abb0f93cSkardel * distance to determine the decoded character.
903abb0f93cSkardel */
904abb0f93cSkardel static void
chu_uart(struct surv * sp,double sample)905abb0f93cSkardel chu_uart(
906abb0f93cSkardel struct surv *sp, /* survivor structure pointer */
907abb0f93cSkardel double sample /* baseband signal */
908abb0f93cSkardel )
909abb0f93cSkardel {
910abb0f93cSkardel double es_max, es_min; /* max/min envelope */
911abb0f93cSkardel double slice; /* slice level */
912abb0f93cSkardel double dist; /* distance */
913abb0f93cSkardel double dtemp;
914abb0f93cSkardel int i;
915abb0f93cSkardel
916abb0f93cSkardel /*
917abb0f93cSkardel * Save the sample and shift right. At the same time, measure
918abb0f93cSkardel * the maximum and minimum over all eleven samples.
919abb0f93cSkardel */
920abb0f93cSkardel es_max = -1e6;
921abb0f93cSkardel es_min = 1e6;
922abb0f93cSkardel sp->shift[0] = sample;
923abb0f93cSkardel for (i = 11; i > 0; i--) {
924abb0f93cSkardel sp->shift[i] = sp->shift[i - 1];
925abb0f93cSkardel if (sp->shift[i] > es_max)
926abb0f93cSkardel es_max = sp->shift[i];
927abb0f93cSkardel if (sp->shift[i] < es_min)
928abb0f93cSkardel es_min = sp->shift[i];
929abb0f93cSkardel }
930abb0f93cSkardel
931abb0f93cSkardel /*
932abb0f93cSkardel * Determine the span as the maximum less the minimum and the
933abb0f93cSkardel * slice level as the minimum plus a fraction of the span. Note
934abb0f93cSkardel * the slight bias toward mark to correct for the modem tendency
935abb0f93cSkardel * to make more mark than space errors. Compute the distance on
936abb0f93cSkardel * the assumption the last two bits must be mark, the first
937abb0f93cSkardel * space and the rest either mark or space.
938abb0f93cSkardel */
939abb0f93cSkardel sp->span = es_max - es_min;
940abb0f93cSkardel slice = es_min + .45 * sp->span;
941abb0f93cSkardel dist = 0;
942abb0f93cSkardel sp->uart = 0;
943abb0f93cSkardel for (i = 1; i < 12; i++) {
944abb0f93cSkardel sp->uart <<= 1;
945abb0f93cSkardel dtemp = sp->shift[i];
946abb0f93cSkardel if (dtemp > slice)
947abb0f93cSkardel sp->uart |= 0x1;
948abb0f93cSkardel if (i == 1 || i == 2) {
949abb0f93cSkardel dist += dtemp - es_min;
950abb0f93cSkardel } else if (i == 11) {
951abb0f93cSkardel dist += es_max - dtemp;
952abb0f93cSkardel } else {
953abb0f93cSkardel if (dtemp > slice)
954abb0f93cSkardel dist += dtemp - es_min;
955abb0f93cSkardel else
956abb0f93cSkardel dist += es_max - dtemp;
957abb0f93cSkardel }
958abb0f93cSkardel }
959abb0f93cSkardel sp->dist = dist / (11 * sp->span);
960abb0f93cSkardel }
961abb0f93cSkardel #endif /* HAVE_AUDIO */
962abb0f93cSkardel
963abb0f93cSkardel
964abb0f93cSkardel /*
965abb0f93cSkardel * chu_serial_receive - receive data from the serial device
966abb0f93cSkardel */
967abb0f93cSkardel static void
chu_serial_receive(struct recvbuf * rbufp)968abb0f93cSkardel chu_serial_receive(
969abb0f93cSkardel struct recvbuf *rbufp /* receive buffer structure pointer */
970abb0f93cSkardel )
971abb0f93cSkardel {
972abb0f93cSkardel struct peer *peer;
973abb0f93cSkardel
974abb0f93cSkardel u_char *dpt; /* receive buffer pointer */
975abb0f93cSkardel
976b3d6264cSchristos peer = rbufp->recv_peer;
977abb0f93cSkardel
978abb0f93cSkardel dpt = (u_char *)&rbufp->recv_space;
979abb0f93cSkardel chu_decode(peer, *dpt, rbufp->recv_time);
980abb0f93cSkardel }
981abb0f93cSkardel
982abb0f93cSkardel
983abb0f93cSkardel /*
984abb0f93cSkardel * chu_decode - decode the character data
985abb0f93cSkardel */
986abb0f93cSkardel static void
chu_decode(struct peer * peer,int hexhex,l_fp cstamp)987abb0f93cSkardel chu_decode(
988abb0f93cSkardel struct peer *peer, /* peer structure pointer */
989abb0f93cSkardel int hexhex, /* data character */
990abb0f93cSkardel l_fp cstamp /* data character timestamp */
991abb0f93cSkardel )
992abb0f93cSkardel {
993abb0f93cSkardel struct refclockproc *pp;
994abb0f93cSkardel struct chuunit *up;
995abb0f93cSkardel
996abb0f93cSkardel l_fp tstmp; /* timestamp temp */
997abb0f93cSkardel double dtemp;
998abb0f93cSkardel
999abb0f93cSkardel pp = peer->procptr;
1000b3d6264cSchristos up = pp->unitptr;
1001abb0f93cSkardel
1002abb0f93cSkardel /*
1003abb0f93cSkardel * If the interval since the last character is greater than the
1004abb0f93cSkardel * longest burst, process the last burst and start a new one. If
1005abb0f93cSkardel * the interval is less than this but greater than two
1006abb0f93cSkardel * characters, consider this a noise burst and reject it.
1007abb0f93cSkardel */
1008abb0f93cSkardel tstmp = up->timestamp;
1009abb0f93cSkardel if (L_ISZERO(&up->laststamp))
1010abb0f93cSkardel up->laststamp = up->timestamp;
1011abb0f93cSkardel L_SUB(&tstmp, &up->laststamp);
1012abb0f93cSkardel up->laststamp = up->timestamp;
1013abb0f93cSkardel LFPTOD(&tstmp, dtemp);
1014abb0f93cSkardel if (dtemp > BURST * CHAR) {
1015abb0f93cSkardel chu_burst(peer);
1016abb0f93cSkardel up->ndx = 0;
1017abb0f93cSkardel } else if (dtemp > 2.5 * CHAR) {
1018abb0f93cSkardel up->ndx = 0;
1019abb0f93cSkardel }
1020abb0f93cSkardel
1021abb0f93cSkardel /*
1022abb0f93cSkardel * Append the character to the current burst and append the
1023abb0f93cSkardel * character timestamp to the timestamp list.
1024abb0f93cSkardel */
1025abb0f93cSkardel if (up->ndx < BURST) {
1026abb0f93cSkardel up->cbuf[up->ndx] = hexhex & 0xff;
1027abb0f93cSkardel up->cstamp[up->ndx] = cstamp;
1028abb0f93cSkardel up->ndx++;
1029abb0f93cSkardel
1030abb0f93cSkardel }
1031abb0f93cSkardel }
1032abb0f93cSkardel
1033abb0f93cSkardel
1034abb0f93cSkardel /*
1035abb0f93cSkardel * chu_burst - search for valid burst format
1036abb0f93cSkardel */
1037abb0f93cSkardel static void
chu_burst(struct peer * peer)1038abb0f93cSkardel chu_burst(
1039abb0f93cSkardel struct peer *peer
1040abb0f93cSkardel )
1041abb0f93cSkardel {
1042abb0f93cSkardel struct chuunit *up;
1043abb0f93cSkardel struct refclockproc *pp;
1044abb0f93cSkardel
1045abb0f93cSkardel int i;
1046abb0f93cSkardel
1047abb0f93cSkardel pp = peer->procptr;
1048b3d6264cSchristos up = pp->unitptr;
1049abb0f93cSkardel
1050abb0f93cSkardel /*
1051abb0f93cSkardel * Correlate a block of five characters with the next block of
1052abb0f93cSkardel * five characters. The burst distance is defined as the number
1053abb0f93cSkardel * of bits that match in the two blocks for format A and that
1054abb0f93cSkardel * match the inverse for format B.
1055abb0f93cSkardel */
1056b3d6264cSchristos if (up->ndx < MINCHARS) {
1057abb0f93cSkardel up->status |= RUNT;
1058abb0f93cSkardel return;
1059abb0f93cSkardel }
1060abb0f93cSkardel up->burdist = 0;
1061abb0f93cSkardel for (i = 0; i < 5 && i < up->ndx - 5; i++)
1062abb0f93cSkardel up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
1063abb0f93cSkardel
1064abb0f93cSkardel /*
1065abb0f93cSkardel * If the burst distance is at least MINDIST, this must be a
1066abb0f93cSkardel * format A burst; if the value is not greater than -MINDIST, it
1067abb0f93cSkardel * must be a format B burst. If the B burst is perfect, we
1068abb0f93cSkardel * believe it; otherwise, it is a noise burst and of no use to
1069abb0f93cSkardel * anybody.
1070abb0f93cSkardel */
1071abb0f93cSkardel if (up->burdist >= MINDIST) {
1072abb0f93cSkardel chu_a(peer, up->ndx);
1073abb0f93cSkardel } else if (up->burdist <= -MINDIST) {
1074abb0f93cSkardel chu_b(peer, up->ndx);
1075abb0f93cSkardel } else {
1076abb0f93cSkardel up->status |= NOISE;
1077abb0f93cSkardel return;
1078abb0f93cSkardel }
1079abb0f93cSkardel
1080abb0f93cSkardel /*
1081abb0f93cSkardel * If this is a valid burst, wait a guard time of ten seconds to
1082abb0f93cSkardel * allow for more bursts, then arm the poll update routine to
1083abb0f93cSkardel * process the minute. Don't do this if this is called from the
1084abb0f93cSkardel * timer interrupt routine.
1085abb0f93cSkardel */
1086abb0f93cSkardel if (peer->outdate != current_time)
1087abb0f93cSkardel peer->nextdate = current_time + 10;
1088abb0f93cSkardel }
1089abb0f93cSkardel
1090abb0f93cSkardel
1091abb0f93cSkardel /*
1092abb0f93cSkardel * chu_b - decode format B burst
1093abb0f93cSkardel */
1094abb0f93cSkardel static void
chu_b(struct peer * peer,int nchar)1095abb0f93cSkardel chu_b(
1096abb0f93cSkardel struct peer *peer,
1097abb0f93cSkardel int nchar
1098abb0f93cSkardel )
1099abb0f93cSkardel {
1100abb0f93cSkardel struct refclockproc *pp;
1101abb0f93cSkardel struct chuunit *up;
1102abb0f93cSkardel
1103abb0f93cSkardel u_char code[11]; /* decoded timecode */
1104abb0f93cSkardel char tbuf[80]; /* trace buffer */
11054305584aSkardel char * p;
11064305584aSkardel size_t chars;
11074305584aSkardel size_t cb;
1108abb0f93cSkardel int i;
1109abb0f93cSkardel
1110abb0f93cSkardel pp = peer->procptr;
1111b3d6264cSchristos up = pp->unitptr;
1112abb0f93cSkardel
1113abb0f93cSkardel /*
1114abb0f93cSkardel * In a format B burst, a character is considered valid only if
1115abb0f93cSkardel * the first occurence matches the last occurence. The burst is
1116abb0f93cSkardel * considered valid only if all characters are valid; that is,
1117abb0f93cSkardel * only if the distance is 40. Note that once a valid frame has
1118abb0f93cSkardel * been found errors are ignored.
1119abb0f93cSkardel */
11204305584aSkardel snprintf(tbuf, sizeof(tbuf), "chuB %04x %4.0f %2d %2d ",
11214305584aSkardel up->status, up->maxsignal, nchar, -up->burdist);
11224305584aSkardel cb = sizeof(tbuf);
11234305584aSkardel p = tbuf;
11244305584aSkardel for (i = 0; i < nchar; i++) {
11254305584aSkardel chars = strlen(p);
11264305584aSkardel if (cb < chars + 1) {
11274305584aSkardel msyslog(LOG_ERR, "chu_b() fatal out buffer");
11284305584aSkardel exit(1);
11294305584aSkardel }
11304305584aSkardel cb -= chars;
11314305584aSkardel p += chars;
11324305584aSkardel snprintf(p, cb, "%02x", up->cbuf[i]);
11334305584aSkardel }
1134abb0f93cSkardel if (pp->sloppyclockflag & CLK_FLAG4)
1135abb0f93cSkardel record_clock_stats(&peer->srcadr, tbuf);
1136abb0f93cSkardel #ifdef DEBUG
1137abb0f93cSkardel if (debug)
1138abb0f93cSkardel printf("%s\n", tbuf);
1139abb0f93cSkardel #endif
1140abb0f93cSkardel if (up->burdist > -40) {
1141abb0f93cSkardel up->status |= BFRAME;
1142abb0f93cSkardel return;
1143abb0f93cSkardel }
1144abb0f93cSkardel
1145abb0f93cSkardel /*
1146abb0f93cSkardel * Convert the burst data to internal format. Don't bother with
1147abb0f93cSkardel * the timestamps.
1148abb0f93cSkardel */
1149abb0f93cSkardel for (i = 0; i < 5; i++) {
1150abb0f93cSkardel code[2 * i] = hexchar[up->cbuf[i] & 0xf];
1151abb0f93cSkardel code[2 * i + 1] = hexchar[(up->cbuf[i] >>
1152abb0f93cSkardel 4) & 0xf];
1153abb0f93cSkardel }
1154abb0f93cSkardel if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut,
1155abb0f93cSkardel &pp->year, &up->tai, &up->dst) != 5) {
1156abb0f93cSkardel up->status |= BFORMAT;
1157abb0f93cSkardel return;
1158abb0f93cSkardel }
1159abb0f93cSkardel up->status |= BVALID;
1160abb0f93cSkardel if (up->leap & 0x8)
1161abb0f93cSkardel up->dut = -up->dut;
1162abb0f93cSkardel }
1163abb0f93cSkardel
1164abb0f93cSkardel
1165abb0f93cSkardel /*
1166abb0f93cSkardel * chu_a - decode format A burst
1167abb0f93cSkardel */
1168abb0f93cSkardel static void
chu_a(struct peer * peer,int nchar)1169abb0f93cSkardel chu_a(
1170abb0f93cSkardel struct peer *peer,
1171abb0f93cSkardel int nchar
1172abb0f93cSkardel )
1173abb0f93cSkardel {
1174abb0f93cSkardel struct refclockproc *pp;
1175abb0f93cSkardel struct chuunit *up;
1176abb0f93cSkardel
1177abb0f93cSkardel char tbuf[80]; /* trace buffer */
11784305584aSkardel char * p;
11794305584aSkardel size_t chars;
11804305584aSkardel size_t cb;
1181abb0f93cSkardel l_fp offset; /* timestamp offset */
1182abb0f93cSkardel int val; /* distance */
1183abb0f93cSkardel int temp;
1184abb0f93cSkardel int i, j, k;
1185abb0f93cSkardel
1186abb0f93cSkardel pp = peer->procptr;
1187b3d6264cSchristos up = pp->unitptr;
1188abb0f93cSkardel
1189abb0f93cSkardel /*
1190abb0f93cSkardel * Determine correct burst phase. There are three cases
1191abb0f93cSkardel * corresponding to in-phase, one character early or one
1192abb0f93cSkardel * character late. These cases are distinguished by the position
1193abb0f93cSkardel * of the framing digits 0x6 at positions 0 and 5 and 0x3 at
1194abb0f93cSkardel * positions 4 and 9. The correct phase is when the distance
1195abb0f93cSkardel * relative to the framing digits is maximum. The burst is valid
1196abb0f93cSkardel * only if the maximum distance is at least MINSYNC.
1197abb0f93cSkardel */
1198abb0f93cSkardel up->syndist = k = 0;
119909f14f80Schristos // val = -16;
1200abb0f93cSkardel for (i = -1; i < 2; i++) {
1201abb0f93cSkardel temp = up->cbuf[i + 4] & 0xf;
1202abb0f93cSkardel if (i >= 0)
1203abb0f93cSkardel temp |= (up->cbuf[i] & 0xf) << 4;
1204abb0f93cSkardel val = chu_dist(temp, 0x63);
1205abb0f93cSkardel temp = (up->cbuf[i + 5] & 0xf) << 4;
1206abb0f93cSkardel if (i + 9 < nchar)
1207abb0f93cSkardel temp |= up->cbuf[i + 9] & 0xf;
1208abb0f93cSkardel val += chu_dist(temp, 0x63);
1209abb0f93cSkardel if (val > up->syndist) {
1210abb0f93cSkardel up->syndist = val;
1211abb0f93cSkardel k = i;
1212abb0f93cSkardel }
1213abb0f93cSkardel }
1214abb0f93cSkardel
1215abb0f93cSkardel /*
1216abb0f93cSkardel * Extract the second number; it must be in the range 2 through
1217abb0f93cSkardel * 9 and the two repititions must be the same.
1218abb0f93cSkardel */
1219abb0f93cSkardel temp = (up->cbuf[k + 4] >> 4) & 0xf;
1220abb0f93cSkardel if (temp < 2 || temp > 9 || k + 9 >= nchar || temp !=
1221abb0f93cSkardel ((up->cbuf[k + 9] >> 4) & 0xf))
1222abb0f93cSkardel temp = 0;
12234305584aSkardel snprintf(tbuf, sizeof(tbuf),
12244305584aSkardel "chuA %04x %4.0f %2d %2d %2d %2d %1d ", up->status,
12254305584aSkardel up->maxsignal, nchar, up->burdist, k, up->syndist,
12264305584aSkardel temp);
12274305584aSkardel cb = sizeof(tbuf);
12284305584aSkardel p = tbuf;
12294305584aSkardel for (i = 0; i < nchar; i++) {
12304305584aSkardel chars = strlen(p);
12314305584aSkardel if (cb < chars + 1) {
12324305584aSkardel msyslog(LOG_ERR, "chu_a() fatal out buffer");
12334305584aSkardel exit(1);
12344305584aSkardel }
12354305584aSkardel cb -= chars;
12364305584aSkardel p += chars;
12374305584aSkardel snprintf(p, cb, "%02x", up->cbuf[i]);
12384305584aSkardel }
1239abb0f93cSkardel if (pp->sloppyclockflag & CLK_FLAG4)
1240abb0f93cSkardel record_clock_stats(&peer->srcadr, tbuf);
1241abb0f93cSkardel #ifdef DEBUG
1242abb0f93cSkardel if (debug)
1243abb0f93cSkardel printf("%s\n", tbuf);
1244abb0f93cSkardel #endif
1245abb0f93cSkardel if (up->syndist < MINSYNC) {
1246abb0f93cSkardel up->status |= AFRAME;
1247abb0f93cSkardel return;
1248abb0f93cSkardel }
1249abb0f93cSkardel
1250abb0f93cSkardel /*
1251abb0f93cSkardel * A valid burst requires the first seconds number to match the
1252abb0f93cSkardel * last seconds number. If so, the burst timestamps are
1253abb0f93cSkardel * corrected to the current minute and saved for later
1254abb0f93cSkardel * processing. In addition, the seconds decode is advanced from
1255abb0f93cSkardel * the previous burst to the current one.
1256abb0f93cSkardel */
1257abb0f93cSkardel if (temp == 0) {
1258abb0f93cSkardel up->status |= AFORMAT;
1259abb0f93cSkardel } else {
1260abb0f93cSkardel up->status |= AVALID;
1261abb0f93cSkardel up->second = pp->second = 30 + temp;
1262abb0f93cSkardel offset.l_ui = 30 + temp;
1263b3d6264cSchristos offset.l_uf = 0;
1264abb0f93cSkardel i = 0;
1265abb0f93cSkardel if (k < 0)
1266abb0f93cSkardel offset = up->charstamp;
1267abb0f93cSkardel else if (k > 0)
1268abb0f93cSkardel i = 1;
1269335f7552Schristos for (; i < nchar && (i - 10) < k; i++) {
1270abb0f93cSkardel up->tstamp[up->ntstamp] = up->cstamp[i];
1271abb0f93cSkardel L_SUB(&up->tstamp[up->ntstamp], &offset);
1272abb0f93cSkardel L_ADD(&offset, &up->charstamp);
1273abb0f93cSkardel if (up->ntstamp < MAXSTAGE - 1)
1274abb0f93cSkardel up->ntstamp++;
1275abb0f93cSkardel }
1276abb0f93cSkardel while (temp > up->prevsec) {
1277abb0f93cSkardel for (j = 15; j > 0; j--) {
1278abb0f93cSkardel up->decode[9][j] = up->decode[9][j - 1];
1279abb0f93cSkardel up->decode[19][j] =
1280abb0f93cSkardel up->decode[19][j - 1];
1281abb0f93cSkardel }
1282abb0f93cSkardel up->decode[9][j] = up->decode[19][j] = 0;
1283abb0f93cSkardel up->prevsec++;
1284abb0f93cSkardel }
1285abb0f93cSkardel }
1286abb0f93cSkardel
1287abb0f93cSkardel /*
1288abb0f93cSkardel * Stash the data in the decoding matrix.
1289abb0f93cSkardel */
1290abb0f93cSkardel i = -(2 * k);
1291abb0f93cSkardel for (j = 0; j < nchar; j++) {
1292abb0f93cSkardel if (i < 0 || i > 18) {
1293abb0f93cSkardel i += 2;
1294abb0f93cSkardel continue;
1295abb0f93cSkardel }
1296abb0f93cSkardel up->decode[i][up->cbuf[j] & 0xf]++;
1297abb0f93cSkardel i++;
1298abb0f93cSkardel up->decode[i][(up->cbuf[j] >> 4) & 0xf]++;
1299abb0f93cSkardel i++;
1300abb0f93cSkardel }
1301abb0f93cSkardel up->burstcnt++;
1302abb0f93cSkardel }
1303abb0f93cSkardel
1304abb0f93cSkardel
1305abb0f93cSkardel /*
1306abb0f93cSkardel * chu_poll - called by the transmit procedure
1307abb0f93cSkardel */
1308abb0f93cSkardel static void
chu_poll(int unit,struct peer * peer)1309abb0f93cSkardel chu_poll(
1310abb0f93cSkardel int unit,
1311abb0f93cSkardel struct peer *peer /* peer structure pointer */
1312abb0f93cSkardel )
1313abb0f93cSkardel {
1314abb0f93cSkardel struct refclockproc *pp;
1315abb0f93cSkardel
1316abb0f93cSkardel pp = peer->procptr;
1317abb0f93cSkardel pp->polls++;
1318abb0f93cSkardel }
1319abb0f93cSkardel
1320abb0f93cSkardel
1321abb0f93cSkardel /*
1322abb0f93cSkardel * chu_second - process minute data
1323abb0f93cSkardel */
1324abb0f93cSkardel static void
chu_second(int unit,struct peer * peer)1325abb0f93cSkardel chu_second(
1326abb0f93cSkardel int unit,
1327abb0f93cSkardel struct peer *peer /* peer structure pointer */
1328abb0f93cSkardel )
1329abb0f93cSkardel {
1330abb0f93cSkardel struct refclockproc *pp;
1331abb0f93cSkardel struct chuunit *up;
1332abb0f93cSkardel l_fp offset;
1333abb0f93cSkardel char synchar, qual, leapchar;
1334abb0f93cSkardel int minset, i;
1335abb0f93cSkardel double dtemp;
1336abb0f93cSkardel
1337abb0f93cSkardel pp = peer->procptr;
1338b3d6264cSchristos up = pp->unitptr;
1339abb0f93cSkardel
1340abb0f93cSkardel /*
1341abb0f93cSkardel * This routine is called once per minute to process the
1342abb0f93cSkardel * accumulated burst data. We do a bit of fancy footwork so that
1343abb0f93cSkardel * this doesn't run while burst data are being accumulated.
1344abb0f93cSkardel */
1345abb0f93cSkardel up->second = (up->second + 1) % 60;
1346abb0f93cSkardel if (up->second != 0)
1347abb0f93cSkardel return;
1348abb0f93cSkardel
1349abb0f93cSkardel /*
1350abb0f93cSkardel * Process the last burst, if still in the burst buffer.
1351abb0f93cSkardel * If the minute contains a valid B frame with sufficient A
1352abb0f93cSkardel * frame metric, it is considered valid. However, the timecode
1353abb0f93cSkardel * is sent to clockstats even if invalid.
1354abb0f93cSkardel */
1355abb0f93cSkardel chu_burst(peer);
1356abb0f93cSkardel minset = ((current_time - peer->update) + 30) / 60;
1357abb0f93cSkardel dtemp = chu_major(peer);
1358abb0f93cSkardel qual = 0;
1359abb0f93cSkardel if (up->status & (BFRAME | AFRAME))
1360abb0f93cSkardel qual |= SYNERR;
1361abb0f93cSkardel if (up->status & (BFORMAT | AFORMAT))
1362abb0f93cSkardel qual |= FMTERR;
1363abb0f93cSkardel if (up->status & DECODE)
1364abb0f93cSkardel qual |= DECERR;
1365abb0f93cSkardel if (up->status & STAMP)
1366abb0f93cSkardel qual |= TSPERR;
1367abb0f93cSkardel if (up->status & BVALID && dtemp >= MINMETRIC)
1368abb0f93cSkardel up->status |= INSYNC;
1369abb0f93cSkardel synchar = leapchar = ' ';
1370abb0f93cSkardel if (!(up->status & INSYNC)) {
1371abb0f93cSkardel pp->leap = LEAP_NOTINSYNC;
1372abb0f93cSkardel synchar = '?';
1373abb0f93cSkardel } else if (up->leap & 0x2) {
1374abb0f93cSkardel pp->leap = LEAP_ADDSECOND;
1375abb0f93cSkardel leapchar = 'L';
1376abb0f93cSkardel } else if (up->leap & 0x4) {
1377abb0f93cSkardel pp->leap = LEAP_DELSECOND;
1378abb0f93cSkardel leapchar = 'l';
1379abb0f93cSkardel } else {
1380abb0f93cSkardel pp->leap = LEAP_NOWARNING;
1381abb0f93cSkardel }
13824305584aSkardel snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
1383abb0f93cSkardel "%c%1X %04d %03d %02d:%02d:%02d %c%x %+d %d %d %s %.0f %d",
1384abb0f93cSkardel synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
1385abb0f93cSkardel pp->second, leapchar, up->dst, up->dut, minset, up->gain,
1386abb0f93cSkardel up->ident, dtemp, up->ntstamp);
1387abb0f93cSkardel pp->lencode = strlen(pp->a_lastcode);
1388abb0f93cSkardel
1389abb0f93cSkardel /*
1390abb0f93cSkardel * If in sync and the signal metric is above threshold, the
1391abb0f93cSkardel * timecode is ipso fatso valid and can be selected to
1392abb0f93cSkardel * discipline the clock.
1393abb0f93cSkardel */
1394abb0f93cSkardel if (up->status & INSYNC && !(up->status & (DECODE | STAMP)) &&
1395abb0f93cSkardel dtemp > MINMETRIC) {
1396abb0f93cSkardel if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
1397abb0f93cSkardel up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
1398abb0f93cSkardel up->errflg = CEVNT_BADTIME;
1399abb0f93cSkardel } else {
1400abb0f93cSkardel offset.l_uf = 0;
1401abb0f93cSkardel for (i = 0; i < up->ntstamp; i++)
1402abb0f93cSkardel refclock_process_offset(pp, offset,
1403abb0f93cSkardel up->tstamp[i], PDELAY +
1404abb0f93cSkardel pp->fudgetime1);
1405abb0f93cSkardel pp->lastref = up->timestamp;
1406abb0f93cSkardel refclock_receive(peer);
1407abb0f93cSkardel }
1408abb0f93cSkardel }
1409abb0f93cSkardel if (dtemp > 0)
1410abb0f93cSkardel record_clock_stats(&peer->srcadr, pp->a_lastcode);
1411abb0f93cSkardel #ifdef DEBUG
1412abb0f93cSkardel if (debug)
1413abb0f93cSkardel printf("chu: timecode %d %s\n", pp->lencode,
1414abb0f93cSkardel pp->a_lastcode);
1415abb0f93cSkardel #endif
1416abb0f93cSkardel #ifdef ICOM
1417abb0f93cSkardel chu_newchan(peer, dtemp);
1418abb0f93cSkardel #endif /* ICOM */
1419abb0f93cSkardel chu_clear(peer);
1420abb0f93cSkardel if (up->errflg)
1421abb0f93cSkardel refclock_report(peer, up->errflg);
1422abb0f93cSkardel up->errflg = 0;
1423abb0f93cSkardel }
1424abb0f93cSkardel
1425abb0f93cSkardel
1426abb0f93cSkardel /*
1427abb0f93cSkardel * chu_major - majority decoder
1428abb0f93cSkardel */
1429abb0f93cSkardel static double
chu_major(struct peer * peer)1430abb0f93cSkardel chu_major(
1431abb0f93cSkardel struct peer *peer /* peer structure pointer */
1432abb0f93cSkardel )
1433abb0f93cSkardel {
1434abb0f93cSkardel struct refclockproc *pp;
1435abb0f93cSkardel struct chuunit *up;
1436abb0f93cSkardel
1437abb0f93cSkardel u_char code[11]; /* decoded timecode */
1438abb0f93cSkardel int metric; /* distance metric */
1439abb0f93cSkardel int val1; /* maximum distance */
1440abb0f93cSkardel int synchar; /* stray cat */
1441abb0f93cSkardel int temp;
1442abb0f93cSkardel int i, j, k;
1443abb0f93cSkardel
1444abb0f93cSkardel pp = peer->procptr;
1445b3d6264cSchristos up = pp->unitptr;
1446abb0f93cSkardel
1447abb0f93cSkardel /*
1448abb0f93cSkardel * Majority decoder. Each burst encodes two replications at each
1449abb0f93cSkardel * digit position in the timecode. Each row of the decoding
1450abb0f93cSkardel * matrix encodes the number of occurences of each digit found
1451abb0f93cSkardel * at the corresponding position. The maximum over all
1452abb0f93cSkardel * occurrences at each position is the distance for this
1453abb0f93cSkardel * position and the corresponding digit is the maximum-
1454abb0f93cSkardel * likelihood candidate. If the distance is not more than half
1455abb0f93cSkardel * the total number of occurences, a majority has not been found
1456abb0f93cSkardel * and the data are discarded. The decoding distance is defined
1457abb0f93cSkardel * as the sum of the distances over the first nine digits. The
1458abb0f93cSkardel * tenth digit varies over the seconds, so we don't count it.
1459abb0f93cSkardel */
1460abb0f93cSkardel metric = 0;
1461abb0f93cSkardel for (i = 0; i < 9; i++) {
1462abb0f93cSkardel val1 = 0;
1463abb0f93cSkardel k = 0;
1464abb0f93cSkardel for (j = 0; j < 16; j++) {
1465abb0f93cSkardel temp = up->decode[i][j] + up->decode[i + 10][j];
1466abb0f93cSkardel if (temp > val1) {
1467abb0f93cSkardel val1 = temp;
1468abb0f93cSkardel k = j;
1469abb0f93cSkardel }
1470abb0f93cSkardel }
1471abb0f93cSkardel if (val1 <= up->burstcnt)
1472abb0f93cSkardel up->status |= DECODE;
1473abb0f93cSkardel metric += val1;
1474abb0f93cSkardel code[i] = hexchar[k];
1475abb0f93cSkardel }
1476abb0f93cSkardel
1477abb0f93cSkardel /*
1478abb0f93cSkardel * Compute the timecode timestamp from the days, hours and
1479abb0f93cSkardel * minutes of the timecode. Use clocktime() for the aggregate
1480abb0f93cSkardel * minutes and the minute offset computed from the burst
1481abb0f93cSkardel * seconds. Note that this code relies on the filesystem time
1482abb0f93cSkardel * for the years and does not use the years of the timecode.
1483abb0f93cSkardel */
1484abb0f93cSkardel if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day,
1485abb0f93cSkardel &pp->hour, &pp->minute) != 4)
1486abb0f93cSkardel up->status |= DECODE;
1487abb0f93cSkardel if (up->ntstamp < MINSTAMP)
1488abb0f93cSkardel up->status |= STAMP;
1489abb0f93cSkardel return (metric);
1490abb0f93cSkardel }
1491abb0f93cSkardel
1492abb0f93cSkardel
1493abb0f93cSkardel /*
1494abb0f93cSkardel * chu_clear - clear decoding matrix
1495abb0f93cSkardel */
1496abb0f93cSkardel static void
chu_clear(struct peer * peer)1497abb0f93cSkardel chu_clear(
1498abb0f93cSkardel struct peer *peer /* peer structure pointer */
1499abb0f93cSkardel )
1500abb0f93cSkardel {
1501abb0f93cSkardel struct refclockproc *pp;
1502abb0f93cSkardel struct chuunit *up;
1503abb0f93cSkardel int i, j;
1504abb0f93cSkardel
1505abb0f93cSkardel pp = peer->procptr;
1506b3d6264cSchristos up = pp->unitptr;
1507abb0f93cSkardel
1508abb0f93cSkardel /*
1509abb0f93cSkardel * Clear stuff for the minute.
1510abb0f93cSkardel */
1511abb0f93cSkardel up->ndx = up->prevsec = 0;
1512abb0f93cSkardel up->burstcnt = up->ntstamp = 0;
1513abb0f93cSkardel up->status &= INSYNC | METRIC;
1514abb0f93cSkardel for (i = 0; i < 20; i++) {
1515abb0f93cSkardel for (j = 0; j < 16; j++)
1516abb0f93cSkardel up->decode[i][j] = 0;
1517abb0f93cSkardel }
1518abb0f93cSkardel }
1519abb0f93cSkardel
1520abb0f93cSkardel #ifdef ICOM
1521abb0f93cSkardel /*
1522abb0f93cSkardel * chu_newchan - called once per minute to find the best channel;
1523abb0f93cSkardel * returns zero on success, nonzero if ICOM error.
1524abb0f93cSkardel */
1525abb0f93cSkardel static int
chu_newchan(struct peer * peer,double met)1526abb0f93cSkardel chu_newchan(
1527abb0f93cSkardel struct peer *peer,
1528abb0f93cSkardel double met
1529abb0f93cSkardel )
1530abb0f93cSkardel {
1531abb0f93cSkardel struct chuunit *up;
1532abb0f93cSkardel struct refclockproc *pp;
1533abb0f93cSkardel struct xmtr *sp;
1534abb0f93cSkardel int rval;
1535abb0f93cSkardel double metric;
1536abb0f93cSkardel int i;
1537abb0f93cSkardel
1538abb0f93cSkardel pp = peer->procptr;
1539b3d6264cSchristos up = pp->unitptr;
1540abb0f93cSkardel
1541abb0f93cSkardel /*
1542abb0f93cSkardel * The radio can be tuned to three channels: 0 (3330 kHz), 1
1543abb0f93cSkardel * (7850 kHz) and 2 (14670 kHz). There are five one-minute
1544abb0f93cSkardel * dwells in each cycle. During the first dwell the radio is
1545abb0f93cSkardel * tuned to one of the three channels to measure the channel
1546abb0f93cSkardel * metric. The channel is selected as the one least recently
1547abb0f93cSkardel * measured. During the remaining four dwells the radio is tuned
1548abb0f93cSkardel * to the channel with the highest channel metric.
1549abb0f93cSkardel */
1550abb0f93cSkardel if (up->fd_icom <= 0)
1551abb0f93cSkardel return (0);
1552abb0f93cSkardel
1553abb0f93cSkardel /*
1554abb0f93cSkardel * Update the current channel metric and age of all channels.
1555abb0f93cSkardel * Scan all channels for the highest metric.
1556abb0f93cSkardel */
1557abb0f93cSkardel sp = &up->xmtr[up->chan];
1558abb0f93cSkardel sp->metric -= sp->integ[sp->iptr];
1559abb0f93cSkardel sp->integ[sp->iptr] = met;
1560abb0f93cSkardel sp->metric += sp->integ[sp->iptr];
1561abb0f93cSkardel sp->probe = 0;
1562abb0f93cSkardel sp->iptr = (sp->iptr + 1) % ISTAGE;
1563abb0f93cSkardel metric = 0;
1564abb0f93cSkardel for (i = 0; i < NCHAN; i++) {
1565abb0f93cSkardel up->xmtr[i].probe++;
1566abb0f93cSkardel if (up->xmtr[i].metric > metric) {
1567abb0f93cSkardel up->status |= METRIC;
1568abb0f93cSkardel metric = up->xmtr[i].metric;
1569abb0f93cSkardel up->chan = i;
1570abb0f93cSkardel }
1571abb0f93cSkardel }
1572abb0f93cSkardel
1573abb0f93cSkardel /*
1574abb0f93cSkardel * Start the next dwell. If the first dwell or no stations have
1575abb0f93cSkardel * been heard, continue round-robin scan.
1576abb0f93cSkardel */
1577abb0f93cSkardel up->dwell = (up->dwell + 1) % DWELL;
1578abb0f93cSkardel if (up->dwell == 0 || metric == 0) {
1579abb0f93cSkardel rval = 0;
1580abb0f93cSkardel for (i = 0; i < NCHAN; i++) {
1581abb0f93cSkardel if (up->xmtr[i].probe > rval) {
1582abb0f93cSkardel rval = up->xmtr[i].probe;
1583abb0f93cSkardel up->chan = i;
1584abb0f93cSkardel }
1585abb0f93cSkardel }
1586abb0f93cSkardel }
1587abb0f93cSkardel
1588abb0f93cSkardel /* Retune the radio at each dwell in case somebody nudges the
1589abb0f93cSkardel * tuning knob.
1590abb0f93cSkardel */
1591abb0f93cSkardel rval = icom_freq(up->fd_icom, peer->ttl & 0x7f, qsy[up->chan] +
1592abb0f93cSkardel TUNE);
15934305584aSkardel snprintf(up->ident, sizeof(up->ident), "CHU%d", up->chan);
1594abb0f93cSkardel memcpy(&pp->refid, up->ident, 4);
1595abb0f93cSkardel memcpy(&peer->refid, up->ident, 4);
1596abb0f93cSkardel if (metric == 0 && up->status & METRIC) {
1597abb0f93cSkardel up->status &= ~METRIC;
1598abb0f93cSkardel refclock_report(peer, CEVNT_PROP);
1599abb0f93cSkardel }
1600abb0f93cSkardel return (rval);
1601abb0f93cSkardel }
1602abb0f93cSkardel #endif /* ICOM */
1603abb0f93cSkardel
1604abb0f93cSkardel
1605abb0f93cSkardel /*
1606abb0f93cSkardel * chu_dist - determine the distance of two octet arguments
1607abb0f93cSkardel */
1608abb0f93cSkardel static int
chu_dist(int x,int y)1609abb0f93cSkardel chu_dist(
1610abb0f93cSkardel int x, /* an octet of bits */
1611abb0f93cSkardel int y /* another octet of bits */
1612abb0f93cSkardel )
1613abb0f93cSkardel {
1614abb0f93cSkardel int val; /* bit count */
1615abb0f93cSkardel int temp;
1616abb0f93cSkardel int i;
1617abb0f93cSkardel
1618abb0f93cSkardel /*
1619abb0f93cSkardel * The distance is determined as the weight of the exclusive OR
1620abb0f93cSkardel * of the two arguments. The weight is determined by the number
1621abb0f93cSkardel * of one bits in the result. Each one bit increases the weight,
1622abb0f93cSkardel * while each zero bit decreases it.
1623abb0f93cSkardel */
1624abb0f93cSkardel temp = x ^ y;
1625abb0f93cSkardel val = 0;
1626abb0f93cSkardel for (i = 0; i < 8; i++) {
1627abb0f93cSkardel if ((temp & 0x1) == 0)
1628abb0f93cSkardel val++;
1629abb0f93cSkardel else
1630abb0f93cSkardel val--;
1631abb0f93cSkardel temp >>= 1;
1632abb0f93cSkardel }
1633abb0f93cSkardel return (val);
1634abb0f93cSkardel }
1635abb0f93cSkardel
1636abb0f93cSkardel
1637abb0f93cSkardel #ifdef HAVE_AUDIO
1638abb0f93cSkardel /*
1639abb0f93cSkardel * chu_gain - adjust codec gain
1640abb0f93cSkardel *
1641abb0f93cSkardel * This routine is called at the end of each second. During the second
1642abb0f93cSkardel * the number of signal clips above the MAXAMP threshold (6000). If
1643abb0f93cSkardel * there are no clips, the gain is bumped up; if there are more than
1644abb0f93cSkardel * MAXCLP clips (100), it is bumped down. The decoder is relatively
1645abb0f93cSkardel * insensitive to amplitude, so this crudity works just peachy. The
1646abb0f93cSkardel * routine also jiggles the input port and selectively mutes the
1647abb0f93cSkardel */
1648abb0f93cSkardel static void
chu_gain(struct peer * peer)1649abb0f93cSkardel chu_gain(
1650abb0f93cSkardel struct peer *peer /* peer structure pointer */
1651abb0f93cSkardel )
1652abb0f93cSkardel {
1653abb0f93cSkardel struct refclockproc *pp;
1654abb0f93cSkardel struct chuunit *up;
1655abb0f93cSkardel
1656abb0f93cSkardel pp = peer->procptr;
1657b3d6264cSchristos up = pp->unitptr;
1658abb0f93cSkardel
1659abb0f93cSkardel /*
1660abb0f93cSkardel * Apparently, the codec uses only the high order bits of the
1661abb0f93cSkardel * gain control field. Thus, it may take awhile for changes to
1662abb0f93cSkardel * wiggle the hardware bits.
1663abb0f93cSkardel */
1664abb0f93cSkardel if (up->clipcnt == 0) {
1665abb0f93cSkardel up->gain += 4;
1666abb0f93cSkardel if (up->gain > MAXGAIN)
1667abb0f93cSkardel up->gain = MAXGAIN;
1668abb0f93cSkardel } else if (up->clipcnt > MAXCLP) {
1669abb0f93cSkardel up->gain -= 4;
1670abb0f93cSkardel if (up->gain < 0)
1671abb0f93cSkardel up->gain = 0;
1672abb0f93cSkardel }
1673abb0f93cSkardel audio_gain(up->gain, up->mongain, up->port);
1674abb0f93cSkardel up->clipcnt = 0;
1675abb0f93cSkardel }
1676abb0f93cSkardel #endif /* HAVE_AUDIO */
1677abb0f93cSkardel
1678abb0f93cSkardel
1679abb0f93cSkardel #else
1680b3d6264cSchristos NONEMPTY_TRANSLATION_UNIT
1681abb0f93cSkardel #endif /* REFCLOCK */
1682