1 /* $NetBSD: ath.c,v 1.130 2020/01/29 14:09:58 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.130 2020/01/29 14:09:58 thorpej Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #ifdef _KERNEL_OPT 55 #include "opt_inet.h" 56 #endif 57 58 #include <sys/param.h> 59 #include <sys/reboot.h> 60 #include <sys/systm.h> 61 #include <sys/types.h> 62 #include <sys/sysctl.h> 63 #include <sys/mbuf.h> 64 #include <sys/malloc.h> 65 #include <sys/kernel.h> 66 #include <sys/socket.h> 67 #include <sys/sockio.h> 68 #include <sys/errno.h> 69 #include <sys/callout.h> 70 #include <sys/bus.h> 71 #include <sys/endian.h> 72 #include <sys/kauth.h> 73 74 #include <net/if.h> 75 #include <net/if_dl.h> 76 #include <net/if_media.h> 77 #include <net/if_types.h> 78 #include <net/if_arp.h> 79 #include <net/if_ether.h> 80 #include <net/if_llc.h> 81 82 #include <net80211/ieee80211_netbsd.h> 83 #include <net80211/ieee80211_var.h> 84 85 #include <net/bpf.h> 86 87 #ifdef INET 88 #include <netinet/in.h> 89 #endif 90 91 #include <sys/device.h> 92 #include <dev/ic/ath_netbsd.h> 93 94 #define AR_DEBUG 95 #include <dev/ic/athvar.h> 96 #include "ah_desc.h" 97 #include "ah_devid.h" /* XXX for softled */ 98 #include "opt_ah.h" 99 100 #ifdef ATH_TX99_DIAG 101 #include <dev/ath/ath_tx99/ath_tx99.h> 102 #endif 103 104 /* unaligned little endian access */ 105 #define LE_READ_2(p) \ 106 ((u_int16_t) \ 107 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 108 #define LE_READ_4(p) \ 109 ((u_int32_t) \ 110 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 111 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 112 113 enum { 114 ATH_LED_TX, 115 ATH_LED_RX, 116 ATH_LED_POLL, 117 }; 118 119 #ifdef AH_NEED_DESC_SWAP 120 #define HTOAH32(x) htole32(x) 121 #else 122 #define HTOAH32(x) (x) 123 #endif 124 125 static int ath_ifinit(struct ifnet *); 126 static int ath_init(struct ath_softc *); 127 static void ath_stop_locked(struct ifnet *, int); 128 static void ath_stop(struct ifnet *, int); 129 static void ath_start(struct ifnet *); 130 static int ath_media_change(struct ifnet *); 131 static void ath_watchdog(struct ifnet *); 132 static int ath_ioctl(struct ifnet *, u_long, void *); 133 static void ath_fatal_proc(void *, int); 134 static void ath_rxorn_proc(void *, int); 135 static void ath_bmiss_proc(void *, int); 136 static void ath_radar_proc(void *, int); 137 static int ath_key_alloc(struct ieee80211com *, 138 const struct ieee80211_key *, 139 ieee80211_keyix *, ieee80211_keyix *); 140 static int ath_key_delete(struct ieee80211com *, 141 const struct ieee80211_key *); 142 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 143 const u_int8_t mac[IEEE80211_ADDR_LEN]); 144 static void ath_key_update_begin(struct ieee80211com *); 145 static void ath_key_update_end(struct ieee80211com *); 146 static void ath_mode_init(struct ath_softc *); 147 static void ath_setslottime(struct ath_softc *); 148 static void ath_updateslot(struct ifnet *); 149 static int ath_beaconq_setup(struct ath_hal *); 150 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 151 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 152 static void ath_beacon_proc(void *, int); 153 static void ath_bstuck_proc(void *, int); 154 static void ath_beacon_free(struct ath_softc *); 155 static void ath_beacon_config(struct ath_softc *); 156 static void ath_descdma_cleanup(struct ath_softc *sc, 157 struct ath_descdma *, ath_bufhead *); 158 static int ath_desc_alloc(struct ath_softc *); 159 static void ath_desc_free(struct ath_softc *); 160 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 161 static void ath_node_free(struct ieee80211_node *); 162 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 163 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 164 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 165 struct ieee80211_node *ni, 166 int subtype, int rssi, u_int32_t rstamp); 167 static void ath_setdefantenna(struct ath_softc *, u_int); 168 static void ath_rx_proc(void *, int); 169 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 170 static int ath_tx_setup(struct ath_softc *, int, int); 171 static int ath_wme_update(struct ieee80211com *); 172 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 173 static void ath_tx_cleanup(struct ath_softc *); 174 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 175 struct ath_buf *, struct mbuf *); 176 static void ath_tx_proc_q0(void *, int); 177 static void ath_tx_proc_q0123(void *, int); 178 static void ath_tx_proc(void *, int); 179 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 180 static void ath_draintxq(struct ath_softc *); 181 static void ath_stoprecv(struct ath_softc *); 182 static int ath_startrecv(struct ath_softc *); 183 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 184 static void ath_next_scan(void *); 185 static void ath_calibrate(void *); 186 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 187 static void ath_setup_stationkey(struct ieee80211_node *); 188 static void ath_newassoc(struct ieee80211_node *, int); 189 static int ath_getchannels(struct ath_softc *, u_int cc, 190 HAL_BOOL outdoor, HAL_BOOL xchanmode); 191 static void ath_led_event(struct ath_softc *, int); 192 static void ath_update_txpow(struct ath_softc *); 193 static void ath_freetx(struct mbuf *); 194 static void ath_restore_diversity(struct ath_softc *); 195 196 static int ath_rate_setup(struct ath_softc *, u_int mode); 197 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 198 199 static void ath_bpfattach(struct ath_softc *); 200 static void ath_announce(struct ath_softc *); 201 202 #ifdef __NetBSD__ 203 #define ATH_TASK_FUNC(__func) \ 204 static void __CONCAT(__func, _si)(void *arg) \ 205 { \ 206 __func(arg, 1); \ 207 } 208 ATH_TASK_FUNC(ath_rx_proc); 209 ATH_TASK_FUNC(ath_rxorn_proc); 210 ATH_TASK_FUNC(ath_fatal_proc); 211 ATH_TASK_FUNC(ath_bmiss_proc); 212 ATH_TASK_FUNC(ath_bstuck_proc); 213 ATH_TASK_FUNC(ath_radar_proc); 214 ATH_TASK_FUNC(ath_tx_proc_q0); 215 ATH_TASK_FUNC(ath_tx_proc_q0123); 216 ATH_TASK_FUNC(ath_tx_proc); 217 #endif 218 219 int ath_dwelltime = 200; /* 5 channels/second */ 220 int ath_calinterval = 30; /* calibrate every 30 secs */ 221 int ath_outdoor = AH_TRUE; /* outdoor operation */ 222 int ath_xchanmode = AH_TRUE; /* enable extended channels */ 223 int ath_countrycode = CTRY_DEFAULT; /* country code */ 224 int ath_regdomain = 0; /* regulatory domain */ 225 int ath_debug = 0; 226 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 227 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 228 229 #ifdef AR_DEBUG 230 enum { 231 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 232 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 233 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 234 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 235 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 236 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 237 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 238 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 239 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 240 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 241 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 242 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 243 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 244 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 245 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 246 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 247 ATH_DEBUG_NODE = 0x00080000, /* node management */ 248 ATH_DEBUG_LED = 0x00100000, /* led management */ 249 ATH_DEBUG_FF = 0x00200000, /* fast frames */ 250 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */ 251 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 252 ATH_DEBUG_ANY = 0xffffffff 253 }; 254 #define IFF_DUMPPKTS(sc, m) \ 255 ((sc->sc_debug & (m)) || \ 256 (sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2)) \ 257 == (IFF_DEBUG | IFF_LINK2)) 258 #define DPRINTF(sc, m, fmt, ...) do { \ 259 if (sc->sc_debug & (m)) \ 260 printf(fmt, __VA_ARGS__); \ 261 } while (0) 262 #define KEYPRINTF(sc, ix, hk, mac) do { \ 263 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 264 ath_keyprint(__func__, ix, hk, mac); \ 265 } while (0) 266 static void ath_printrxbuf(struct ath_buf *bf, int); 267 static void ath_printtxbuf(struct ath_buf *bf, int); 268 #else 269 #define IFF_DUMPPKTS(sc, m) \ 270 ((sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2)) \ 271 == (IFF_DEBUG | IFF_LINK2)) 272 #define DPRINTF(m, fmt, ...) 273 #define KEYPRINTF(sc, k, ix, mac) 274 #endif 275 276 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 277 278 int 279 ath_attach(u_int16_t devid, struct ath_softc *sc) 280 { 281 struct ifnet *ifp = &sc->sc_if; 282 struct ieee80211com *ic = &sc->sc_ic; 283 struct ath_hal *ah = NULL; 284 HAL_STATUS status; 285 int error = 0, i; 286 287 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 288 289 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual); 290 291 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 292 293 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 294 if (ah == NULL) { 295 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 296 status); 297 error = ENXIO; 298 goto bad; 299 } 300 if (ah->ah_abi != HAL_ABI_VERSION) { 301 if_printf(ifp, "HAL ABI mismatch detected " 302 "(HAL:0x%x != driver:0x%x)\n", 303 ah->ah_abi, HAL_ABI_VERSION); 304 error = ENXIO; 305 goto bad; 306 } 307 sc->sc_ah = ah; 308 309 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev), 310 "pmf-powerdown", false)) 311 goto bad; 312 313 /* 314 * Check if the MAC has multi-rate retry support. 315 * We do this by trying to setup a fake extended 316 * descriptor. MAC's that don't have support will 317 * return false w/o doing anything. MAC's that do 318 * support it will return true w/o doing anything. 319 */ 320 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 321 322 /* 323 * Check if the device has hardware counters for PHY 324 * errors. If so we need to enable the MIB interrupt 325 * so we can act on stat triggers. 326 */ 327 if (ath_hal_hwphycounters(ah)) 328 sc->sc_needmib = 1; 329 330 /* 331 * Get the hardware key cache size. 332 */ 333 sc->sc_keymax = ath_hal_keycachesize(ah); 334 if (sc->sc_keymax > ATH_KEYMAX) { 335 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 336 ATH_KEYMAX, sc->sc_keymax); 337 sc->sc_keymax = ATH_KEYMAX; 338 } 339 /* 340 * Reset the key cache since some parts do not 341 * reset the contents on initial power up. 342 */ 343 for (i = 0; i < sc->sc_keymax; i++) 344 ath_hal_keyreset(ah, i); 345 /* 346 * Mark key cache slots associated with global keys 347 * as in use. If we knew TKIP was not to be used we 348 * could leave the +32, +64, and +32+64 slots free. 349 * XXX only for splitmic. 350 */ 351 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 352 setbit(sc->sc_keymap, i); 353 setbit(sc->sc_keymap, i+32); 354 setbit(sc->sc_keymap, i+64); 355 setbit(sc->sc_keymap, i+32+64); 356 } 357 358 /* 359 * Collect the channel list using the default country 360 * code and including outdoor channels. The 802.11 layer 361 * is resposible for filtering this list based on settings 362 * like the phy mode. 363 */ 364 error = ath_getchannels(sc, ath_countrycode, 365 ath_outdoor, ath_xchanmode); 366 if (error != 0) 367 goto bad; 368 369 /* 370 * Setup rate tables for all potential media types. 371 */ 372 ath_rate_setup(sc, IEEE80211_MODE_11A); 373 ath_rate_setup(sc, IEEE80211_MODE_11B); 374 ath_rate_setup(sc, IEEE80211_MODE_11G); 375 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 376 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 377 /* NB: setup here so ath_rate_update is happy */ 378 ath_setcurmode(sc, IEEE80211_MODE_11A); 379 380 /* 381 * Allocate tx+rx descriptors and populate the lists. 382 */ 383 error = ath_desc_alloc(sc); 384 if (error != 0) { 385 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 386 goto bad; 387 } 388 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 389 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE); 390 #if 0 391 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE); 392 #endif 393 394 ATH_TXBUF_LOCK_INIT(sc); 395 396 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 397 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 398 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 399 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 400 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 401 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc); 402 403 /* 404 * Allocate hardware transmit queues: one queue for 405 * beacon frames and one data queue for each QoS 406 * priority. Note that the hal handles reseting 407 * these queues at the needed time. 408 * 409 * XXX PS-Poll 410 */ 411 sc->sc_bhalq = ath_beaconq_setup(ah); 412 if (sc->sc_bhalq == (u_int) -1) { 413 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 414 error = EIO; 415 goto bad2; 416 } 417 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 418 if (sc->sc_cabq == NULL) { 419 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 420 error = EIO; 421 goto bad2; 422 } 423 /* NB: insure BK queue is the lowest priority h/w queue */ 424 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 425 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 426 ieee80211_wme_acnames[WME_AC_BK]); 427 error = EIO; 428 goto bad2; 429 } 430 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 431 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 432 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 433 /* 434 * Not enough hardware tx queues to properly do WME; 435 * just punt and assign them all to the same h/w queue. 436 * We could do a better job of this if, for example, 437 * we allocate queues when we switch from station to 438 * AP mode. 439 */ 440 if (sc->sc_ac2q[WME_AC_VI] != NULL) 441 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 442 if (sc->sc_ac2q[WME_AC_BE] != NULL) 443 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 444 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 445 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 446 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 447 } 448 449 /* 450 * Special case certain configurations. Note the 451 * CAB queue is handled by these specially so don't 452 * include them when checking the txq setup mask. 453 */ 454 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 455 case 0x01: 456 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 457 break; 458 case 0x0f: 459 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 460 break; 461 default: 462 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 463 break; 464 } 465 466 /* 467 * Setup rate control. Some rate control modules 468 * call back to change the anntena state so expose 469 * the necessary entry points. 470 * XXX maybe belongs in struct ath_ratectrl? 471 */ 472 sc->sc_setdefantenna = ath_setdefantenna; 473 sc->sc_rc = ath_rate_attach(sc); 474 if (sc->sc_rc == NULL) { 475 error = EIO; 476 goto bad2; 477 } 478 479 sc->sc_blinking = 0; 480 sc->sc_ledstate = 1; 481 sc->sc_ledon = 0; /* low true */ 482 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 483 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE); 484 /* 485 * Auto-enable soft led processing for IBM cards and for 486 * 5211 minipci cards. Users can also manually enable/disable 487 * support with a sysctl. 488 */ 489 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 490 if (sc->sc_softled) { 491 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 492 HAL_GPIO_MUX_MAC_NETWORK_LED); 493 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 494 } 495 496 ifp->if_softc = sc; 497 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 498 ifp->if_start = ath_start; 499 ifp->if_stop = ath_stop; 500 ifp->if_watchdog = ath_watchdog; 501 ifp->if_ioctl = ath_ioctl; 502 ifp->if_init = ath_ifinit; 503 IFQ_SET_READY(&ifp->if_snd); 504 505 ic->ic_ifp = ifp; 506 ic->ic_reset = ath_reset; 507 ic->ic_newassoc = ath_newassoc; 508 ic->ic_updateslot = ath_updateslot; 509 ic->ic_wme.wme_update = ath_wme_update; 510 /* XXX not right but it's not used anywhere important */ 511 ic->ic_phytype = IEEE80211_T_OFDM; 512 ic->ic_opmode = IEEE80211_M_STA; 513 ic->ic_caps = 514 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 515 | IEEE80211_C_HOSTAP /* hostap mode */ 516 | IEEE80211_C_MONITOR /* monitor mode */ 517 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 518 | IEEE80211_C_SHSLOT /* short slot time supported */ 519 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 520 | IEEE80211_C_TXFRAG /* handle tx frags */ 521 ; 522 /* 523 * Query the hal to figure out h/w crypto support. 524 */ 525 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 526 ic->ic_caps |= IEEE80211_C_WEP; 527 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 528 ic->ic_caps |= IEEE80211_C_AES; 529 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 530 ic->ic_caps |= IEEE80211_C_AES_CCM; 531 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 532 ic->ic_caps |= IEEE80211_C_CKIP; 533 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 534 ic->ic_caps |= IEEE80211_C_TKIP; 535 /* 536 * Check if h/w does the MIC and/or whether the 537 * separate key cache entries are required to 538 * handle both tx+rx MIC keys. 539 */ 540 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 541 ic->ic_caps |= IEEE80211_C_TKIPMIC; 542 543 /* 544 * If the h/w supports storing tx+rx MIC keys 545 * in one cache slot automatically enable use. 546 */ 547 if (ath_hal_hastkipsplit(ah) || 548 !ath_hal_settkipsplit(ah, AH_FALSE)) 549 sc->sc_splitmic = 1; 550 551 /* 552 * If the h/w can do TKIP MIC together with WME then 553 * we use it; otherwise we force the MIC to be done 554 * in software by the net80211 layer. 555 */ 556 if (ath_hal_haswmetkipmic(ah)) 557 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC; 558 } 559 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 560 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 561 /* 562 * Mark key cache slots associated with global keys 563 * as in use. If we knew TKIP was not to be used we 564 * could leave the +32, +64, and +32+64 slots free. 565 */ 566 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 567 setbit(sc->sc_keymap, i); 568 setbit(sc->sc_keymap, i+64); 569 if (sc->sc_splitmic) { 570 setbit(sc->sc_keymap, i+32); 571 setbit(sc->sc_keymap, i+32+64); 572 } 573 } 574 /* 575 * TPC support can be done either with a global cap or 576 * per-packet support. The latter is not available on 577 * all parts. We're a bit pedantic here as all parts 578 * support a global cap. 579 */ 580 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 581 ic->ic_caps |= IEEE80211_C_TXPMGT; 582 583 /* 584 * Mark WME capability only if we have sufficient 585 * hardware queues to do proper priority scheduling. 586 */ 587 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 588 ic->ic_caps |= IEEE80211_C_WME; 589 /* 590 * Check for misc other capabilities. 591 */ 592 if (ath_hal_hasbursting(ah)) 593 ic->ic_caps |= IEEE80211_C_BURST; 594 595 /* 596 * Indicate we need the 802.11 header padded to a 597 * 32-bit boundary for 4-address and QoS frames. 598 */ 599 ic->ic_flags |= IEEE80211_F_DATAPAD; 600 601 /* 602 * Query the hal about antenna support. 603 */ 604 sc->sc_defant = ath_hal_getdefantenna(ah); 605 606 /* 607 * Not all chips have the VEOL support we want to 608 * use with IBSS beacons; check here for it. 609 */ 610 sc->sc_hasveol = ath_hal_hasveol(ah); 611 612 /* get mac address from hardware */ 613 ath_hal_getmac(ah, ic->ic_myaddr); 614 615 if_attach(ifp); 616 /* call MI attach routine. */ 617 ieee80211_ifattach(ic); 618 /* override default methods */ 619 ic->ic_node_alloc = ath_node_alloc; 620 sc->sc_node_free = ic->ic_node_free; 621 ic->ic_node_free = ath_node_free; 622 ic->ic_node_getrssi = ath_node_getrssi; 623 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 624 ic->ic_recv_mgmt = ath_recv_mgmt; 625 sc->sc_newstate = ic->ic_newstate; 626 ic->ic_newstate = ath_newstate; 627 ic->ic_crypto.cs_max_keyix = sc->sc_keymax; 628 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 629 ic->ic_crypto.cs_key_delete = ath_key_delete; 630 ic->ic_crypto.cs_key_set = ath_key_set; 631 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 632 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 633 /* complete initialization */ 634 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 635 636 ath_bpfattach(sc); 637 638 sc->sc_flags |= ATH_ATTACHED; 639 640 /* 641 * Setup dynamic sysctl's now that country code and 642 * regdomain are available from the hal. 643 */ 644 ath_sysctlattach(sc); 645 646 ieee80211_announce(ic); 647 ath_announce(sc); 648 return 0; 649 bad2: 650 ath_tx_cleanup(sc); 651 ath_desc_free(sc); 652 bad: 653 if (ah) 654 ath_hal_detach(ah); 655 /* XXX don't get under the abstraction like this */ 656 sc->sc_dev->dv_flags &= ~DVF_ACTIVE; 657 return error; 658 } 659 660 int 661 ath_detach(struct ath_softc *sc) 662 { 663 struct ifnet *ifp = &sc->sc_if; 664 int s; 665 666 if ((sc->sc_flags & ATH_ATTACHED) == 0) 667 return (0); 668 669 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 670 __func__, ifp->if_flags); 671 672 s = splnet(); 673 ath_stop(ifp, 1); 674 bpf_detach(ifp); 675 /* 676 * NB: the order of these is important: 677 * o call the 802.11 layer before detaching the hal to 678 * insure callbacks into the driver to delete global 679 * key cache entries can be handled 680 * o reclaim the tx queue data structures after calling 681 * the 802.11 layer as we'll get called back to reclaim 682 * node state and potentially want to use them 683 * o to cleanup the tx queues the hal is called, so detach 684 * it last 685 * Other than that, it's straightforward... 686 */ 687 ieee80211_ifdetach(&sc->sc_ic); 688 #ifdef ATH_TX99_DIAG 689 if (sc->sc_tx99 != NULL) 690 sc->sc_tx99->detach(sc->sc_tx99); 691 #endif 692 ath_rate_detach(sc->sc_rc); 693 ath_desc_free(sc); 694 ath_tx_cleanup(sc); 695 sysctl_teardown(&sc->sc_sysctllog); 696 ath_hal_detach(sc->sc_ah); 697 if_detach(ifp); 698 splx(s); 699 700 return 0; 701 } 702 703 void 704 ath_suspend(struct ath_softc *sc) 705 { 706 #if notyet 707 /* 708 * Set the chip in full sleep mode. Note that we are 709 * careful to do this only when bringing the interface 710 * completely to a stop. When the chip is in this state 711 * it must be carefully woken up or references to 712 * registers in the PCI clock domain may freeze the bus 713 * (and system). This varies by chip and is mostly an 714 * issue with newer parts that go to sleep more quickly. 715 */ 716 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 717 #endif 718 } 719 720 bool 721 ath_resume(struct ath_softc *sc) 722 { 723 struct ath_hal *ah = sc->sc_ah; 724 struct ieee80211com *ic = &sc->sc_ic; 725 HAL_STATUS status; 726 int i; 727 728 #if notyet 729 ath_hal_setpower(ah, HAL_PM_AWAKE); 730 #else 731 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status); 732 #endif 733 734 /* 735 * Reset the key cache since some parts do not 736 * reset the contents on initial power up. 737 */ 738 for (i = 0; i < sc->sc_keymax; i++) 739 ath_hal_keyreset(ah, i); 740 741 ath_hal_resettxqueue(ah, sc->sc_bhalq); 742 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 743 if (ATH_TXQ_SETUP(sc, i)) 744 ath_hal_resettxqueue(ah, i); 745 746 if (sc->sc_softled) { 747 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin, 748 HAL_GPIO_MUX_MAC_NETWORK_LED); 749 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 750 } 751 return true; 752 } 753 754 /* 755 * Interrupt handler. Most of the actual processing is deferred. 756 */ 757 int 758 ath_intr(void *arg) 759 { 760 struct ath_softc *sc = arg; 761 struct ifnet *ifp = &sc->sc_if; 762 struct ath_hal *ah = sc->sc_ah; 763 HAL_INT status = 0; 764 765 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) { 766 /* 767 * The hardware is not ready/present, don't touch anything. 768 * Note this can happen early on if the IRQ is shared. 769 */ 770 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 771 return 0; 772 } 773 774 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 775 return 0; 776 777 if ((ifp->if_flags & (IFF_RUNNING |IFF_UP)) != (IFF_RUNNING |IFF_UP)) { 778 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 779 __func__, ifp->if_flags); 780 ath_hal_getisr(ah, &status); /* clear ISR */ 781 ath_hal_intrset(ah, 0); /* disable further intr's */ 782 return 1; /* XXX */ 783 } 784 /* 785 * Figure out the reason(s) for the interrupt. Note 786 * that the hal returns a pseudo-ISR that may include 787 * bits we haven't explicitly enabled so we mask the 788 * value to insure we only process bits we requested. 789 */ 790 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 791 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 792 status &= sc->sc_imask; /* discard unasked for bits */ 793 if (status & HAL_INT_FATAL) { 794 /* 795 * Fatal errors are unrecoverable. Typically 796 * these are caused by DMA errors. Unfortunately 797 * the exact reason is not (presently) returned 798 * by the hal. 799 */ 800 sc->sc_stats.ast_hardware++; 801 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 802 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 803 } else if (status & HAL_INT_RXORN) { 804 sc->sc_stats.ast_rxorn++; 805 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 806 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 807 } else { 808 if (status & HAL_INT_SWBA) { 809 /* 810 * Software beacon alert--time to send a beacon. 811 * Handle beacon transmission directly; deferring 812 * this is too slow to meet timing constraints 813 * under load. 814 */ 815 ath_beacon_proc(sc, 0); 816 } 817 if (status & HAL_INT_RXEOL) { 818 /* 819 * NB: the hardware should re-read the link when 820 * RXE bit is written, but it doesn't work at 821 * least on older hardware revs. 822 */ 823 sc->sc_stats.ast_rxeol++; 824 sc->sc_rxlink = NULL; 825 } 826 if (status & HAL_INT_TXURN) { 827 sc->sc_stats.ast_txurn++; 828 /* bump tx trigger level */ 829 ath_hal_updatetxtriglevel(ah, AH_TRUE); 830 } 831 if (status & HAL_INT_RX) 832 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 833 if (status & HAL_INT_TX) 834 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 835 if (status & HAL_INT_BMISS) { 836 sc->sc_stats.ast_bmiss++; 837 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 838 } 839 if (status & HAL_INT_MIB) { 840 sc->sc_stats.ast_mib++; 841 /* 842 * Disable interrupts until we service the MIB 843 * interrupt; otherwise it will continue to fire. 844 */ 845 ath_hal_intrset(ah, 0); 846 /* 847 * Let the hal handle the event. We assume it will 848 * clear whatever condition caused the interrupt. 849 */ 850 ath_hal_mibevent(ah, &sc->sc_halstats); 851 ath_hal_intrset(ah, sc->sc_imask); 852 } 853 } 854 return 1; 855 } 856 857 /* Swap transmit descriptor. 858 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null" 859 * function. 860 */ 861 static inline void 862 ath_desc_swap(struct ath_desc *ds) 863 { 864 #ifdef AH_NEED_DESC_SWAP 865 ds->ds_link = htole32(ds->ds_link); 866 ds->ds_data = htole32(ds->ds_data); 867 ds->ds_ctl0 = htole32(ds->ds_ctl0); 868 ds->ds_ctl1 = htole32(ds->ds_ctl1); 869 ds->ds_hw[0] = htole32(ds->ds_hw[0]); 870 ds->ds_hw[1] = htole32(ds->ds_hw[1]); 871 #endif 872 } 873 874 static void 875 ath_fatal_proc(void *arg, int pending) 876 { 877 struct ath_softc *sc = arg; 878 struct ifnet *ifp = &sc->sc_if; 879 #ifdef __NetBSD__ 880 int s; 881 #endif 882 883 if_printf(ifp, "hardware error; resetting\n"); 884 #ifdef __NetBSD__ 885 s = splnet(); 886 #endif 887 ath_reset(ifp); 888 #ifdef __NetBSD__ 889 splx(s); 890 #endif 891 } 892 893 static void 894 ath_rxorn_proc(void *arg, int pending) 895 { 896 struct ath_softc *sc = arg; 897 struct ifnet *ifp = &sc->sc_if; 898 #ifdef __NetBSD__ 899 int s; 900 #endif 901 902 if_printf(ifp, "rx FIFO overrun; resetting\n"); 903 #ifdef __NetBSD__ 904 s = splnet(); 905 #endif 906 ath_reset(ifp); 907 #ifdef __NetBSD__ 908 splx(s); 909 #endif 910 } 911 912 static void 913 ath_bmiss_proc(void *arg, int pending) 914 { 915 struct ath_softc *sc = arg; 916 struct ieee80211com *ic = &sc->sc_ic; 917 NET_LOCK_GIANT_FUNC_INIT(); 918 919 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 920 KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA, 921 "unexpect operating mode %u", ic->ic_opmode); 922 if (ic->ic_state == IEEE80211_S_RUN) { 923 u_int64_t lastrx = sc->sc_lastrx; 924 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 925 926 DPRINTF(sc, ATH_DEBUG_BEACON, 927 "%s: tsf %" PRIu64 " lastrx %" PRId64 928 " (%" PRIu64 ") bmiss %u\n", 929 __func__, tsf, tsf - lastrx, lastrx, 930 ic->ic_bmisstimeout*1024); 931 /* 932 * Workaround phantom bmiss interrupts by sanity-checking 933 * the time of our last rx'd frame. If it is within the 934 * beacon miss interval then ignore the interrupt. If it's 935 * truly a bmiss we'll get another interrupt soon and that'll 936 * be dispatched up for processing. 937 */ 938 if (tsf - lastrx > ic->ic_bmisstimeout*1024) { 939 NET_LOCK_GIANT(); 940 ieee80211_beacon_miss(ic); 941 NET_UNLOCK_GIANT(); 942 } else 943 sc->sc_stats.ast_bmiss_phantom++; 944 } 945 } 946 947 static void 948 ath_radar_proc(void *arg, int pending) 949 { 950 #if 0 951 struct ath_softc *sc = arg; 952 struct ifnet *ifp = &sc->sc_if; 953 struct ath_hal *ah = sc->sc_ah; 954 HAL_CHANNEL hchan; 955 956 if (ath_hal_procdfs(ah, &hchan)) { 957 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n", 958 hchan.channel, hchan.channelFlags, hchan.privFlags); 959 /* 960 * Initiate channel change. 961 */ 962 /* XXX not yet */ 963 } 964 #endif 965 } 966 967 static u_int 968 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 969 { 970 #define N(a) (sizeof(a) / sizeof(a[0])) 971 static const u_int modeflags[] = { 972 0, /* IEEE80211_MODE_AUTO */ 973 CHANNEL_A, /* IEEE80211_MODE_11A */ 974 CHANNEL_B, /* IEEE80211_MODE_11B */ 975 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 976 0, /* IEEE80211_MODE_FH */ 977 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */ 978 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 979 }; 980 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 981 982 KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode); 983 KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode); 984 return modeflags[mode]; 985 #undef N 986 } 987 988 static int 989 ath_ifinit(struct ifnet *ifp) 990 { 991 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc; 992 993 return ath_init(sc); 994 } 995 996 static void 997 ath_settkipmic(struct ath_softc *sc) 998 { 999 struct ieee80211com *ic = &sc->sc_ic; 1000 struct ath_hal *ah = sc->sc_ah; 1001 1002 if ((ic->ic_caps & IEEE80211_C_TKIP) && 1003 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) { 1004 if (ic->ic_flags & IEEE80211_F_WME) { 1005 (void)ath_hal_settkipmic(ah, AH_FALSE); 1006 ic->ic_caps &= ~IEEE80211_C_TKIPMIC; 1007 } else { 1008 (void)ath_hal_settkipmic(ah, AH_TRUE); 1009 ic->ic_caps |= IEEE80211_C_TKIPMIC; 1010 } 1011 } 1012 } 1013 1014 static int 1015 ath_init(struct ath_softc *sc) 1016 { 1017 struct ifnet *ifp = &sc->sc_if; 1018 struct ieee80211com *ic = &sc->sc_ic; 1019 struct ath_hal *ah = sc->sc_ah; 1020 HAL_STATUS status; 1021 int error = 0, s; 1022 1023 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1024 __func__, ifp->if_flags); 1025 1026 if (device_is_active(sc->sc_dev)) { 1027 s = splnet(); 1028 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || 1029 !device_is_active(sc->sc_dev)) 1030 return 0; 1031 else 1032 s = splnet(); 1033 1034 /* 1035 * Stop anything previously setup. This is safe 1036 * whether this is the first time through or not. 1037 */ 1038 ath_stop_locked(ifp, 0); 1039 1040 /* 1041 * The basic interface to setting the hardware in a good 1042 * state is ``reset''. On return the hardware is known to 1043 * be powered up and with interrupts disabled. This must 1044 * be followed by initialization of the appropriate bits 1045 * and then setup of the interrupt mask. 1046 */ 1047 ath_settkipmic(sc); 1048 sc->sc_curchan.channel = ic->ic_curchan->ic_freq; 1049 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan); 1050 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 1051 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1052 status); 1053 error = EIO; 1054 goto done; 1055 } 1056 1057 /* 1058 * This is needed only to setup initial state 1059 * but it's best done after a reset. 1060 */ 1061 ath_update_txpow(sc); 1062 /* 1063 * Likewise this is set during reset so update 1064 * state cached in the driver. 1065 */ 1066 ath_restore_diversity(sc); 1067 sc->sc_calinterval = 1; 1068 sc->sc_caltries = 0; 1069 1070 /* 1071 * Setup the hardware after reset: the key cache 1072 * is filled as needed and the receive engine is 1073 * set going. Frame transmit is handled entirely 1074 * in the frame output path; there's nothing to do 1075 * here except setup the interrupt mask. 1076 */ 1077 if ((error = ath_startrecv(sc)) != 0) { 1078 if_printf(ifp, "unable to start recv logic\n"); 1079 goto done; 1080 } 1081 1082 /* 1083 * Enable interrupts. 1084 */ 1085 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1086 | HAL_INT_RXEOL | HAL_INT_RXORN 1087 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1088 /* 1089 * Enable MIB interrupts when there are hardware phy counters. 1090 * Note we only do this (at the moment) for station mode. 1091 */ 1092 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1093 sc->sc_imask |= HAL_INT_MIB; 1094 ath_hal_intrset(ah, sc->sc_imask); 1095 1096 ifp->if_flags |= IFF_RUNNING; 1097 ic->ic_state = IEEE80211_S_INIT; 1098 1099 /* 1100 * The hardware should be ready to go now so it's safe 1101 * to kick the 802.11 state machine as it's likely to 1102 * immediately call back to us to send mgmt frames. 1103 */ 1104 ath_chan_change(sc, ic->ic_curchan); 1105 #ifdef ATH_TX99_DIAG 1106 if (sc->sc_tx99 != NULL) 1107 sc->sc_tx99->start(sc->sc_tx99); 1108 else 1109 #endif 1110 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1111 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 1112 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1113 } else 1114 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1115 done: 1116 splx(s); 1117 return error; 1118 } 1119 1120 static void 1121 ath_stop_locked(struct ifnet *ifp, int disable) 1122 { 1123 struct ath_softc *sc = ifp->if_softc; 1124 struct ieee80211com *ic = &sc->sc_ic; 1125 struct ath_hal *ah = sc->sc_ah; 1126 1127 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n", 1128 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags); 1129 1130 /* KASSERT() IPL_NET */ 1131 if (ifp->if_flags & IFF_RUNNING) { 1132 /* 1133 * Shutdown the hardware and driver: 1134 * reset 802.11 state machine 1135 * turn off timers 1136 * disable interrupts 1137 * turn off the radio 1138 * clear transmit machinery 1139 * clear receive machinery 1140 * drain and release tx queues 1141 * reclaim beacon resources 1142 * power down hardware 1143 * 1144 * Note that some of this work is not possible if the 1145 * hardware is gone (invalid). 1146 */ 1147 #ifdef ATH_TX99_DIAG 1148 if (sc->sc_tx99 != NULL) 1149 sc->sc_tx99->stop(sc->sc_tx99); 1150 #endif 1151 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1152 ifp->if_flags &= ~IFF_RUNNING; 1153 ifp->if_timer = 0; 1154 if (device_is_enabled(sc->sc_dev)) { 1155 if (sc->sc_softled) { 1156 callout_stop(&sc->sc_ledtimer); 1157 ath_hal_gpioset(ah, sc->sc_ledpin, 1158 !sc->sc_ledon); 1159 sc->sc_blinking = 0; 1160 } 1161 ath_hal_intrset(ah, 0); 1162 } 1163 ath_draintxq(sc); 1164 if (device_is_enabled(sc->sc_dev)) { 1165 ath_stoprecv(sc); 1166 ath_hal_phydisable(ah); 1167 } else 1168 sc->sc_rxlink = NULL; 1169 IF_PURGE(&ifp->if_snd); 1170 ath_beacon_free(sc); 1171 } 1172 if (disable) 1173 pmf_device_suspend(sc->sc_dev, &sc->sc_qual); 1174 } 1175 1176 static void 1177 ath_stop(struct ifnet *ifp, int disable) 1178 { 1179 int s; 1180 1181 s = splnet(); 1182 ath_stop_locked(ifp, disable); 1183 splx(s); 1184 } 1185 1186 static void 1187 ath_restore_diversity(struct ath_softc *sc) 1188 { 1189 struct ifnet *ifp = &sc->sc_if; 1190 struct ath_hal *ah = sc->sc_ah; 1191 1192 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) || 1193 sc->sc_diversity != ath_hal_getdiversity(ah)) { 1194 if_printf(ifp, "could not restore diversity setting %d\n", 1195 sc->sc_diversity); 1196 sc->sc_diversity = ath_hal_getdiversity(ah); 1197 } 1198 } 1199 1200 /* 1201 * Reset the hardware w/o losing operational state. This is 1202 * basically a more efficient way of doing ath_stop, ath_init, 1203 * followed by state transitions to the current 802.11 1204 * operational state. Used to recover from various errors and 1205 * to reset or reload hardware state. 1206 */ 1207 int 1208 ath_reset(struct ifnet *ifp) 1209 { 1210 struct ath_softc *sc = ifp->if_softc; 1211 struct ieee80211com *ic = &sc->sc_ic; 1212 struct ath_hal *ah = sc->sc_ah; 1213 struct ieee80211_channel *c; 1214 HAL_STATUS status; 1215 1216 /* 1217 * Convert to a HAL channel description with the flags 1218 * constrained to reflect the current operating mode. 1219 */ 1220 c = ic->ic_curchan; 1221 sc->sc_curchan.channel = c->ic_freq; 1222 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1223 1224 ath_hal_intrset(ah, 0); /* disable interrupts */ 1225 ath_draintxq(sc); /* stop xmit side */ 1226 ath_stoprecv(sc); /* stop recv side */ 1227 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1228 /* NB: indicate channel change so we do a full reset */ 1229 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1230 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1231 __func__, status); 1232 ath_update_txpow(sc); /* update tx power state */ 1233 ath_restore_diversity(sc); 1234 sc->sc_calinterval = 1; 1235 sc->sc_caltries = 0; 1236 if (ath_startrecv(sc) != 0) /* restart recv */ 1237 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1238 /* 1239 * We may be doing a reset in response to an ioctl 1240 * that changes the channel so update any state that 1241 * might change as a result. 1242 */ 1243 ath_chan_change(sc, c); 1244 if (ic->ic_state == IEEE80211_S_RUN) 1245 ath_beacon_config(sc); /* restart beacons */ 1246 ath_hal_intrset(ah, sc->sc_imask); 1247 1248 ath_start(ifp); /* restart xmit */ 1249 return 0; 1250 } 1251 1252 /* 1253 * Cleanup driver resources when we run out of buffers 1254 * while processing fragments; return the tx buffers 1255 * allocated and drop node references. 1256 */ 1257 static void 1258 ath_txfrag_cleanup(struct ath_softc *sc, 1259 ath_bufhead *frags, struct ieee80211_node *ni) 1260 { 1261 struct ath_buf *bf; 1262 1263 ATH_TXBUF_LOCK_ASSERT(sc); 1264 1265 while ((bf = STAILQ_FIRST(frags)) != NULL) { 1266 STAILQ_REMOVE_HEAD(frags, bf_list); 1267 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1268 sc->sc_if.if_flags &= ~IFF_OACTIVE; 1269 ieee80211_node_decref(ni); 1270 } 1271 } 1272 1273 /* 1274 * Setup xmit of a fragmented frame. Allocate a buffer 1275 * for each frag and bump the node reference count to 1276 * reflect the held reference to be setup by ath_tx_start. 1277 */ 1278 static int 1279 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 1280 struct mbuf *m0, struct ieee80211_node *ni) 1281 { 1282 struct mbuf *m; 1283 struct ath_buf *bf; 1284 1285 ATH_TXBUF_LOCK(sc); 1286 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1287 bf = STAILQ_FIRST(&sc->sc_txbuf); 1288 if (bf == NULL) { /* out of buffers, cleanup */ 1289 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1290 __func__); 1291 sc->sc_if.if_flags |= IFF_OACTIVE; 1292 ath_txfrag_cleanup(sc, frags, ni); 1293 break; 1294 } 1295 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1296 ieee80211_node_incref(ni); 1297 STAILQ_INSERT_TAIL(frags, bf, bf_list); 1298 } 1299 ATH_TXBUF_UNLOCK(sc); 1300 1301 return !STAILQ_EMPTY(frags); 1302 } 1303 1304 static void 1305 ath_start(struct ifnet *ifp) 1306 { 1307 struct ath_softc *sc = ifp->if_softc; 1308 struct ath_hal *ah = sc->sc_ah; 1309 struct ieee80211com *ic = &sc->sc_ic; 1310 struct ieee80211_node *ni; 1311 struct ath_buf *bf; 1312 struct mbuf *m, *next; 1313 struct ieee80211_frame *wh; 1314 struct ether_header *eh; 1315 ath_bufhead frags; 1316 1317 if ((ifp->if_flags & IFF_RUNNING) == 0 || 1318 !device_is_active(sc->sc_dev)) 1319 return; 1320 1321 if (sc->sc_flags & ATH_KEY_UPDATING) 1322 return; 1323 1324 for (;;) { 1325 /* 1326 * Grab a TX buffer and associated resources. 1327 */ 1328 ATH_TXBUF_LOCK(sc); 1329 bf = STAILQ_FIRST(&sc->sc_txbuf); 1330 if (bf != NULL) 1331 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1332 ATH_TXBUF_UNLOCK(sc); 1333 if (bf == NULL) { 1334 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1335 __func__); 1336 sc->sc_stats.ast_tx_qstop++; 1337 ifp->if_flags |= IFF_OACTIVE; 1338 break; 1339 } 1340 /* 1341 * Poll the management queue for frames; they 1342 * have priority over normal data frames. 1343 */ 1344 IF_DEQUEUE(&ic->ic_mgtq, m); 1345 if (m == NULL) { 1346 /* 1347 * No data frames go out unless we're associated. 1348 */ 1349 if (ic->ic_state != IEEE80211_S_RUN) { 1350 DPRINTF(sc, ATH_DEBUG_XMIT, 1351 "%s: discard data packet, state %s\n", 1352 __func__, 1353 ieee80211_state_name[ic->ic_state]); 1354 sc->sc_stats.ast_tx_discard++; 1355 ATH_TXBUF_LOCK(sc); 1356 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1357 ATH_TXBUF_UNLOCK(sc); 1358 break; 1359 } 1360 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1361 if (m == NULL) { 1362 ATH_TXBUF_LOCK(sc); 1363 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1364 ATH_TXBUF_UNLOCK(sc); 1365 break; 1366 } 1367 STAILQ_INIT(&frags); 1368 /* 1369 * Find the node for the destination so we can do 1370 * things like power save and fast frames aggregation. 1371 */ 1372 if (m->m_len < sizeof(struct ether_header) && 1373 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1374 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1375 ni = NULL; 1376 goto bad; 1377 } 1378 eh = mtod(m, struct ether_header *); 1379 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1380 if (ni == NULL) { 1381 /* NB: ieee80211_find_txnode does stat+msg */ 1382 m_freem(m); 1383 goto bad; 1384 } 1385 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1386 (m->m_flags & M_PWR_SAV) == 0) { 1387 /* 1388 * Station in power save mode; pass the frame 1389 * to the 802.11 layer and continue. We'll get 1390 * the frame back when the time is right. 1391 */ 1392 ieee80211_pwrsave(ic, ni, m); 1393 goto reclaim; 1394 } 1395 /* calculate priority so we can find the tx queue */ 1396 if (ieee80211_classify(ic, m, ni)) { 1397 DPRINTF(sc, ATH_DEBUG_XMIT, 1398 "%s: discard, classification failure\n", 1399 __func__); 1400 m_freem(m); 1401 goto bad; 1402 } 1403 if_statinc(ifp, if_opackets); 1404 1405 bpf_mtap(ifp, m, BPF_D_OUT); 1406 /* 1407 * Encapsulate the packet in prep for transmission. 1408 */ 1409 m = ieee80211_encap(ic, m, ni); 1410 if (m == NULL) { 1411 DPRINTF(sc, ATH_DEBUG_XMIT, 1412 "%s: encapsulation failure\n", 1413 __func__); 1414 sc->sc_stats.ast_tx_encap++; 1415 goto bad; 1416 } 1417 /* 1418 * Check for fragmentation. If this has frame 1419 * has been broken up verify we have enough 1420 * buffers to send all the fragments so all 1421 * go out or none... 1422 */ 1423 if ((m->m_flags & M_FRAG) && 1424 !ath_txfrag_setup(sc, &frags, m, ni)) { 1425 DPRINTF(sc, ATH_DEBUG_ANY, 1426 "%s: out of txfrag buffers\n", __func__); 1427 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1428 ath_freetx(m); 1429 goto bad; 1430 } 1431 } else { 1432 /* 1433 * Hack! The referenced node pointer is in the 1434 * rcvif field of the packet header. This is 1435 * placed there by ieee80211_mgmt_output because 1436 * we need to hold the reference with the frame 1437 * and there's no other way (other than packet 1438 * tags which we consider too expensive to use) 1439 * to pass it along. 1440 */ 1441 ni = M_GETCTX(m, struct ieee80211_node *); 1442 M_CLEARCTX(m); 1443 1444 wh = mtod(m, struct ieee80211_frame *); 1445 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1446 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1447 /* fill time stamp */ 1448 u_int64_t tsf; 1449 u_int32_t *tstamp; 1450 1451 tsf = ath_hal_gettsf64(ah); 1452 /* XXX: adjust 100us delay to xmit */ 1453 tsf += 100; 1454 tstamp = (u_int32_t *)&wh[1]; 1455 tstamp[0] = htole32(tsf & 0xffffffff); 1456 tstamp[1] = htole32(tsf >> 32); 1457 } 1458 sc->sc_stats.ast_tx_mgmt++; 1459 } 1460 1461 nextfrag: 1462 next = m->m_nextpkt; 1463 if (ath_tx_start(sc, ni, bf, m)) { 1464 bad: 1465 if_statinc(ifp, if_oerrors); 1466 reclaim: 1467 ATH_TXBUF_LOCK(sc); 1468 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1469 ath_txfrag_cleanup(sc, &frags, ni); 1470 ATH_TXBUF_UNLOCK(sc); 1471 if (ni != NULL) 1472 ieee80211_free_node(ni); 1473 continue; 1474 } 1475 if (next != NULL) { 1476 m = next; 1477 bf = STAILQ_FIRST(&frags); 1478 KASSERTMSG(bf != NULL, "no buf for txfrag"); 1479 STAILQ_REMOVE_HEAD(&frags, bf_list); 1480 goto nextfrag; 1481 } 1482 1483 ifp->if_timer = 1; 1484 } 1485 } 1486 1487 static int 1488 ath_media_change(struct ifnet *ifp) 1489 { 1490 #define IS_UP(ifp) \ 1491 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 1492 int error; 1493 1494 error = ieee80211_media_change(ifp); 1495 if (error == ENETRESET) { 1496 if (IS_UP(ifp)) 1497 ath_init(ifp->if_softc); /* XXX lose error */ 1498 error = 0; 1499 } 1500 return error; 1501 #undef IS_UP 1502 } 1503 1504 #ifdef AR_DEBUG 1505 static void 1506 ath_keyprint(const char *tag, u_int ix, 1507 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1508 { 1509 static const char *ciphers[] = { 1510 "WEP", 1511 "AES-OCB", 1512 "AES-CCM", 1513 "CKIP", 1514 "TKIP", 1515 "CLR", 1516 }; 1517 int i, n; 1518 1519 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1520 for (i = 0, n = hk->kv_len; i < n; i++) 1521 printf("%02x", hk->kv_val[i]); 1522 printf(" mac %s", ether_sprintf(mac)); 1523 if (hk->kv_type == HAL_CIPHER_TKIP) { 1524 printf(" mic "); 1525 for (i = 0; i < sizeof(hk->kv_mic); i++) 1526 printf("%02x", hk->kv_mic[i]); 1527 } 1528 printf("\n"); 1529 } 1530 #endif 1531 1532 /* 1533 * Set a TKIP key into the hardware. This handles the 1534 * potential distribution of key state to multiple key 1535 * cache slots for TKIP. 1536 */ 1537 static int 1538 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1539 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1540 { 1541 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1542 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1543 struct ath_hal *ah = sc->sc_ah; 1544 1545 KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1546 "got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher); 1547 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1548 if (sc->sc_splitmic) { 1549 /* 1550 * TX key goes at first index, RX key at the rx index. 1551 * The hal handles the MIC keys at index+64. 1552 */ 1553 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1554 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1555 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, 1556 zerobssid)) 1557 return 0; 1558 1559 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1560 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1561 /* XXX delete tx key on failure? */ 1562 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32), 1563 hk, mac); 1564 } else { 1565 /* 1566 * Room for both TX+RX MIC keys in one key cache 1567 * slot, just set key at the first index; the HAL 1568 * will handle the reset. 1569 */ 1570 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1571 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1572 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1573 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1574 } 1575 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 1576 if (sc->sc_splitmic) { 1577 /* 1578 * NB: must pass MIC key in expected location when 1579 * the keycache only holds one MIC key per entry. 1580 */ 1581 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); 1582 } else 1583 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1584 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1585 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1586 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 1587 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1588 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1589 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1590 } 1591 return 0; 1592 #undef IEEE80211_KEY_XR 1593 } 1594 1595 /* 1596 * Set a net80211 key into the hardware. This handles the 1597 * potential distribution of key state to multiple key 1598 * cache slots for TKIP with hardware MIC support. 1599 */ 1600 static int 1601 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1602 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1603 struct ieee80211_node *bss) 1604 { 1605 #define N(a) (sizeof(a)/sizeof(a[0])) 1606 static const u_int8_t ciphermap[] = { 1607 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1608 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1609 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1610 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1611 (u_int8_t) -1, /* 4 is not allocated */ 1612 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1613 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1614 }; 1615 struct ath_hal *ah = sc->sc_ah; 1616 const struct ieee80211_cipher *cip = k->wk_cipher; 1617 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1618 const u_int8_t *mac; 1619 HAL_KEYVAL hk; 1620 1621 memset(&hk, 0, sizeof(hk)); 1622 /* 1623 * Software crypto uses a "clear key" so non-crypto 1624 * state kept in the key cache are maintained and 1625 * so that rx frames have an entry to match. 1626 */ 1627 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1628 KASSERTMSG(cip->ic_cipher < N(ciphermap), 1629 "invalid cipher type %u", cip->ic_cipher); 1630 hk.kv_type = ciphermap[cip->ic_cipher]; 1631 hk.kv_len = k->wk_keylen; 1632 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1633 } else 1634 hk.kv_type = HAL_CIPHER_CLR; 1635 1636 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1637 /* 1638 * Group keys on hardware that supports multicast frame 1639 * key search use a mac that is the sender's address with 1640 * the high bit set instead of the app-specified address. 1641 */ 1642 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1643 gmac[0] |= 0x80; 1644 mac = gmac; 1645 } else 1646 mac = mac0; 1647 1648 if ((hk.kv_type == HAL_CIPHER_TKIP && 1649 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) { 1650 return ath_keyset_tkip(sc, k, &hk, mac); 1651 } else { 1652 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1653 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac); 1654 } 1655 #undef N 1656 } 1657 1658 /* 1659 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1660 * each key, one for decrypt/encrypt and the other for the MIC. 1661 */ 1662 static u_int16_t 1663 key_alloc_2pair(struct ath_softc *sc, 1664 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1665 { 1666 #define N(a) (sizeof(a)/sizeof(a[0])) 1667 u_int i, keyix; 1668 1669 KASSERTMSG(sc->sc_splitmic, "key cache !split"); 1670 /* XXX could optimize */ 1671 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1672 u_int8_t b = sc->sc_keymap[i]; 1673 if (b != 0xff) { 1674 /* 1675 * One or more slots in this byte are free. 1676 */ 1677 keyix = i*NBBY; 1678 while (b & 1) { 1679 again: 1680 keyix++; 1681 b >>= 1; 1682 } 1683 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1684 if (isset(sc->sc_keymap, keyix+32) || 1685 isset(sc->sc_keymap, keyix+64) || 1686 isset(sc->sc_keymap, keyix+32+64)) { 1687 /* full pair unavailable */ 1688 /* XXX statistic */ 1689 if (keyix == (i+1)*NBBY) { 1690 /* no slots were appropriate, advance */ 1691 continue; 1692 } 1693 goto again; 1694 } 1695 setbit(sc->sc_keymap, keyix); 1696 setbit(sc->sc_keymap, keyix+64); 1697 setbit(sc->sc_keymap, keyix+32); 1698 setbit(sc->sc_keymap, keyix+32+64); 1699 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1700 "%s: key pair %u,%u %u,%u\n", 1701 __func__, keyix, keyix+64, 1702 keyix+32, keyix+32+64); 1703 *txkeyix = keyix; 1704 *rxkeyix = keyix+32; 1705 return keyix; 1706 } 1707 } 1708 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1709 return IEEE80211_KEYIX_NONE; 1710 #undef N 1711 } 1712 1713 /* 1714 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1715 * each key, one for decrypt/encrypt and the other for the MIC. 1716 */ 1717 static int 1718 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix, 1719 ieee80211_keyix *rxkeyix) 1720 { 1721 #define N(a) (sizeof(a)/sizeof(a[0])) 1722 u_int i, keyix; 1723 1724 KASSERTMSG(!sc->sc_splitmic, "key cache split"); 1725 /* XXX could optimize */ 1726 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1727 uint8_t b = sc->sc_keymap[i]; 1728 if (b != 0xff) { 1729 /* 1730 * One or more slots in this byte are free. 1731 */ 1732 keyix = i*NBBY; 1733 while (b & 1) { 1734 again: 1735 keyix++; 1736 b >>= 1; 1737 } 1738 if (isset(sc->sc_keymap, keyix+64)) { 1739 /* full pair unavailable */ 1740 /* XXX statistic */ 1741 if (keyix == (i+1)*NBBY) { 1742 /* no slots were appropriate, advance */ 1743 continue; 1744 } 1745 goto again; 1746 } 1747 setbit(sc->sc_keymap, keyix); 1748 setbit(sc->sc_keymap, keyix+64); 1749 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1750 "%s: key pair %u,%u\n", 1751 __func__, keyix, keyix+64); 1752 *txkeyix = *rxkeyix = keyix; 1753 return 1; 1754 } 1755 } 1756 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1757 return 0; 1758 #undef N 1759 } 1760 1761 /* 1762 * Allocate a single key cache slot. 1763 */ 1764 static int 1765 key_alloc_single(struct ath_softc *sc, 1766 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1767 { 1768 #define N(a) (sizeof(a)/sizeof(a[0])) 1769 u_int i, keyix; 1770 1771 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1772 for (i = 0; i < N(sc->sc_keymap); i++) { 1773 u_int8_t b = sc->sc_keymap[i]; 1774 if (b != 0xff) { 1775 /* 1776 * One or more slots are free. 1777 */ 1778 keyix = i*NBBY; 1779 while (b & 1) 1780 keyix++, b >>= 1; 1781 setbit(sc->sc_keymap, keyix); 1782 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1783 __func__, keyix); 1784 *txkeyix = *rxkeyix = keyix; 1785 return 1; 1786 } 1787 } 1788 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1789 return 0; 1790 #undef N 1791 } 1792 1793 /* 1794 * Allocate one or more key cache slots for a uniacst key. The 1795 * key itself is needed only to identify the cipher. For hardware 1796 * TKIP with split cipher+MIC keys we allocate two key cache slot 1797 * pairs so that we can setup separate TX and RX MIC keys. Note 1798 * that the MIC key for a TKIP key at slot i is assumed by the 1799 * hardware to be at slot i+64. This limits TKIP keys to the first 1800 * 64 entries. 1801 */ 1802 static int 1803 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k, 1804 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 1805 { 1806 struct ath_softc *sc = ic->ic_ifp->if_softc; 1807 1808 /* 1809 * Group key allocation must be handled specially for 1810 * parts that do not support multicast key cache search 1811 * functionality. For those parts the key id must match 1812 * the h/w key index so lookups find the right key. On 1813 * parts w/ the key search facility we install the sender's 1814 * mac address (with the high bit set) and let the hardware 1815 * find the key w/o using the key id. This is preferred as 1816 * it permits us to support multiple users for adhoc and/or 1817 * multi-station operation. 1818 */ 1819 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1820 if (!(&ic->ic_nw_keys[0] <= k && 1821 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1822 /* should not happen */ 1823 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1824 "%s: bogus group key\n", __func__); 1825 return 0; 1826 } 1827 /* 1828 * XXX we pre-allocate the global keys so 1829 * have no way to check if they've already been allocated. 1830 */ 1831 *keyix = *rxkeyix = k - ic->ic_nw_keys; 1832 return 1; 1833 } 1834 1835 /* 1836 * We allocate two pair for TKIP when using the h/w to do 1837 * the MIC. For everything else, including software crypto, 1838 * we allocate a single entry. Note that s/w crypto requires 1839 * a pass-through slot on the 5211 and 5212. The 5210 does 1840 * not support pass-through cache entries and we map all 1841 * those requests to slot 0. 1842 */ 1843 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1844 return key_alloc_single(sc, keyix, rxkeyix); 1845 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1846 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1847 if (sc->sc_splitmic) 1848 return key_alloc_2pair(sc, keyix, rxkeyix); 1849 else 1850 return key_alloc_pair(sc, keyix, rxkeyix); 1851 } else { 1852 return key_alloc_single(sc, keyix, rxkeyix); 1853 } 1854 } 1855 1856 /* 1857 * Delete an entry in the key cache allocated by ath_key_alloc. 1858 */ 1859 static int 1860 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1861 { 1862 struct ath_softc *sc = ic->ic_ifp->if_softc; 1863 struct ath_hal *ah = sc->sc_ah; 1864 const struct ieee80211_cipher *cip = k->wk_cipher; 1865 u_int keyix = k->wk_keyix; 1866 1867 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1868 1869 if (!device_has_power(sc->sc_dev)) { 1870 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n", 1871 k->wk_keyix); 1872 } 1873 1874 ath_hal_keyreset(ah, keyix); 1875 /* 1876 * Handle split tx/rx keying required for TKIP with h/w MIC. 1877 */ 1878 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1879 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1880 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1881 if (keyix >= IEEE80211_WEP_NKID) { 1882 /* 1883 * Don't touch keymap entries for global keys so 1884 * they are never considered for dynamic allocation. 1885 */ 1886 clrbit(sc->sc_keymap, keyix); 1887 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1888 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1889 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1890 if (sc->sc_splitmic) { 1891 /* +32 for RX key, +32+64 for RX key MIC */ 1892 clrbit(sc->sc_keymap, keyix+32); 1893 clrbit(sc->sc_keymap, keyix+32+64); 1894 } 1895 } 1896 } 1897 return 1; 1898 } 1899 1900 /* 1901 * Set the key cache contents for the specified key. Key cache 1902 * slot(s) must already have been allocated by ath_key_alloc. 1903 */ 1904 static int 1905 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1906 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1907 { 1908 struct ath_softc *sc = ic->ic_ifp->if_softc; 1909 1910 if (!device_has_power(sc->sc_dev)) { 1911 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n", 1912 k->wk_keyix); 1913 } 1914 return ath_keyset(sc, k, mac, ic->ic_bss); 1915 } 1916 1917 /* 1918 * Block/unblock tx+rx processing while a key change is done. 1919 * We assume the caller serializes key management operations 1920 * so we only need to worry about synchronization with other 1921 * uses that originate in the driver. 1922 */ 1923 static void 1924 ath_key_update_begin(struct ieee80211com *ic) 1925 { 1926 struct ifnet *ifp = ic->ic_ifp; 1927 struct ath_softc *sc = ifp->if_softc; 1928 1929 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1930 #if 0 1931 tasklet_disable(&sc->sc_rxtq); 1932 #endif 1933 sc->sc_flags |= ATH_KEY_UPDATING; 1934 } 1935 1936 static void 1937 ath_key_update_end(struct ieee80211com *ic) 1938 { 1939 struct ifnet *ifp = ic->ic_ifp; 1940 struct ath_softc *sc = ifp->if_softc; 1941 1942 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1943 sc->sc_flags &= ~ATH_KEY_UPDATING; 1944 #if 0 1945 tasklet_enable(&sc->sc_rxtq); 1946 #endif 1947 } 1948 1949 /* 1950 * Calculate the receive filter according to the 1951 * operating mode and state: 1952 * 1953 * o always accept unicast, broadcast, and multicast traffic 1954 * o maintain current state of phy error reception (the hal 1955 * may enable phy error frames for noise immunity work) 1956 * o probe request frames are accepted only when operating in 1957 * hostap, adhoc, or monitor modes 1958 * o enable promiscuous mode according to the interface state 1959 * o accept beacons: 1960 * - when operating in adhoc mode so the 802.11 layer creates 1961 * node table entries for peers, 1962 * - when operating in station mode for collecting rssi data when 1963 * the station is otherwise quiet, or 1964 * - when scanning 1965 */ 1966 static u_int32_t 1967 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1968 { 1969 struct ieee80211com *ic = &sc->sc_ic; 1970 struct ath_hal *ah = sc->sc_ah; 1971 struct ifnet *ifp = &sc->sc_if; 1972 u_int32_t rfilt; 1973 1974 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1975 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1976 if (ic->ic_opmode != IEEE80211_M_STA) 1977 rfilt |= HAL_RX_FILTER_PROBEREQ; 1978 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1979 (ifp->if_flags & IFF_PROMISC)) 1980 rfilt |= HAL_RX_FILTER_PROM; 1981 if (ifp->if_flags & IFF_PROMISC) 1982 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ; 1983 if (ic->ic_opmode == IEEE80211_M_STA || 1984 ic->ic_opmode == IEEE80211_M_IBSS || 1985 state == IEEE80211_S_SCAN) 1986 rfilt |= HAL_RX_FILTER_BEACON; 1987 return rfilt; 1988 } 1989 1990 static void 1991 ath_mode_init(struct ath_softc *sc) 1992 { 1993 struct ethercom *ec = &sc->sc_ec; 1994 struct ifnet *ifp = &sc->sc_if; 1995 struct ieee80211com *ic = &sc->sc_ic; 1996 struct ath_hal *ah = sc->sc_ah; 1997 struct ether_multi *enm; 1998 struct ether_multistep estep; 1999 u_int32_t rfilt, mfilt[2], val; 2000 int i; 2001 uint8_t pos; 2002 2003 /* configure rx filter */ 2004 rfilt = ath_calcrxfilter(sc, ic->ic_state); 2005 ath_hal_setrxfilter(ah, rfilt); 2006 2007 /* configure operational mode */ 2008 ath_hal_setopmode(ah); 2009 2010 /* Write keys to hardware; it may have been powered down. */ 2011 ath_key_update_begin(ic); 2012 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2013 ath_key_set(ic, 2014 &ic->ic_crypto.cs_nw_keys[i], 2015 ic->ic_myaddr); 2016 } 2017 ath_key_update_end(ic); 2018 2019 /* 2020 * Handle any link-level address change. Note that we only 2021 * need to force ic_myaddr; any other addresses are handled 2022 * as a byproduct of the ifnet code marking the interface 2023 * down then up. 2024 * 2025 * XXX should get from lladdr instead of arpcom but that's more work 2026 */ 2027 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl)); 2028 ath_hal_setmac(ah, ic->ic_myaddr); 2029 2030 /* calculate and install multicast filter */ 2031 ifp->if_flags &= ~IFF_ALLMULTI; 2032 mfilt[0] = mfilt[1] = 0; 2033 ETHER_LOCK(ec); 2034 ETHER_FIRST_MULTI(estep, ec, enm); 2035 while (enm != NULL) { 2036 void *dl; 2037 /* XXX Punt on ranges. */ 2038 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 2039 mfilt[0] = mfilt[1] = 0xffffffff; 2040 ifp->if_flags |= IFF_ALLMULTI; 2041 break; 2042 } 2043 dl = enm->enm_addrlo; 2044 val = LE_READ_4((char *)dl + 0); 2045 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2046 val = LE_READ_4((char *)dl + 3); 2047 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2048 pos &= 0x3f; 2049 mfilt[pos / 32] |= (1 << (pos % 32)); 2050 2051 ETHER_NEXT_MULTI(estep, enm); 2052 } 2053 ETHER_UNLOCK(ec); 2054 2055 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 2056 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 2057 __func__, rfilt, mfilt[0], mfilt[1]); 2058 } 2059 2060 /* 2061 * Set the slot time based on the current setting. 2062 */ 2063 static void 2064 ath_setslottime(struct ath_softc *sc) 2065 { 2066 struct ieee80211com *ic = &sc->sc_ic; 2067 struct ath_hal *ah = sc->sc_ah; 2068 2069 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2070 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 2071 else 2072 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 2073 sc->sc_updateslot = OK; 2074 } 2075 2076 /* 2077 * Callback from the 802.11 layer to update the 2078 * slot time based on the current setting. 2079 */ 2080 static void 2081 ath_updateslot(struct ifnet *ifp) 2082 { 2083 struct ath_softc *sc = ifp->if_softc; 2084 struct ieee80211com *ic = &sc->sc_ic; 2085 2086 /* 2087 * When not coordinating the BSS, change the hardware 2088 * immediately. For other operation we defer the change 2089 * until beacon updates have propagated to the stations. 2090 */ 2091 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2092 sc->sc_updateslot = UPDATE; 2093 else 2094 ath_setslottime(sc); 2095 } 2096 2097 /* 2098 * Setup a h/w transmit queue for beacons. 2099 */ 2100 static int 2101 ath_beaconq_setup(struct ath_hal *ah) 2102 { 2103 HAL_TXQ_INFO qi; 2104 2105 memset(&qi, 0, sizeof(qi)); 2106 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2107 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2108 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2109 /* NB: for dynamic turbo, don't enable any other interrupts */ 2110 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2111 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2112 } 2113 2114 /* 2115 * Setup the transmit queue parameters for the beacon queue. 2116 */ 2117 static int 2118 ath_beaconq_config(struct ath_softc *sc) 2119 { 2120 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2121 struct ieee80211com *ic = &sc->sc_ic; 2122 struct ath_hal *ah = sc->sc_ah; 2123 HAL_TXQ_INFO qi; 2124 2125 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2126 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2127 /* 2128 * Always burst out beacon and CAB traffic. 2129 */ 2130 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2131 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2132 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2133 } else { 2134 struct wmeParams *wmep = 2135 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2136 /* 2137 * Adhoc mode; important thing is to use 2x cwmin. 2138 */ 2139 qi.tqi_aifs = wmep->wmep_aifsn; 2140 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2141 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2142 } 2143 2144 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2145 device_printf(sc->sc_dev, "unable to update parameters for " 2146 "beacon hardware queue!\n"); 2147 return 0; 2148 } else { 2149 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2150 return 1; 2151 } 2152 #undef ATH_EXPONENT_TO_VALUE 2153 } 2154 2155 /* 2156 * Allocate and setup an initial beacon frame. 2157 */ 2158 static int 2159 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2160 { 2161 struct ieee80211com *ic = ni->ni_ic; 2162 struct ath_buf *bf; 2163 struct mbuf *m; 2164 int error; 2165 2166 bf = STAILQ_FIRST(&sc->sc_bbuf); 2167 if (bf == NULL) { 2168 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 2169 sc->sc_stats.ast_be_nombuf++; /* XXX */ 2170 return ENOMEM; /* XXX */ 2171 } 2172 /* 2173 * NB: the beacon data buffer must be 32-bit aligned; 2174 * we assume the mbuf routines will return us something 2175 * with this alignment (perhaps should assert). 2176 */ 2177 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 2178 if (m == NULL) { 2179 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 2180 __func__); 2181 sc->sc_stats.ast_be_nombuf++; 2182 return ENOMEM; 2183 } 2184 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2185 BUS_DMA_NOWAIT); 2186 if (error == 0) { 2187 bf->bf_m = m; 2188 bf->bf_node = ieee80211_ref_node(ni); 2189 } else { 2190 m_freem(m); 2191 } 2192 return error; 2193 } 2194 2195 /* 2196 * Setup the beacon frame for transmit. 2197 */ 2198 static void 2199 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2200 { 2201 #define USE_SHPREAMBLE(_ic) \ 2202 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2203 == IEEE80211_F_SHPREAMBLE) 2204 struct ieee80211_node *ni = bf->bf_node; 2205 struct ieee80211com *ic = ni->ni_ic; 2206 struct mbuf *m = bf->bf_m; 2207 struct ath_hal *ah = sc->sc_ah; 2208 struct ath_desc *ds; 2209 int flags, antenna; 2210 const HAL_RATE_TABLE *rt; 2211 u_int8_t rix, rate; 2212 2213 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 2214 __func__, m, m->m_len); 2215 2216 /* setup descriptors */ 2217 ds = bf->bf_desc; 2218 2219 flags = HAL_TXDESC_NOACK; 2220 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2221 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */ 2222 flags |= HAL_TXDESC_VEOL; 2223 /* 2224 * Let hardware handle antenna switching unless 2225 * the user has selected a transmit antenna 2226 * (sc_txantenna is not 0). 2227 */ 2228 antenna = sc->sc_txantenna; 2229 } else { 2230 ds->ds_link = 0; 2231 /* 2232 * Switch antenna every 4 beacons, unless the user 2233 * has selected a transmit antenna (sc_txantenna 2234 * is not 0). 2235 * 2236 * XXX assumes two antenna 2237 */ 2238 if (sc->sc_txantenna == 0) 2239 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2240 else 2241 antenna = sc->sc_txantenna; 2242 } 2243 2244 KASSERTMSG(bf->bf_nseg == 1, 2245 "multi-segment beacon frame; nseg %u", bf->bf_nseg); 2246 ds->ds_data = bf->bf_segs[0].ds_addr; 2247 /* 2248 * Calculate rate code. 2249 * XXX everything at min xmit rate 2250 */ 2251 rix = sc->sc_minrateix; 2252 rt = sc->sc_currates; 2253 rate = rt->info[rix].rateCode; 2254 if (USE_SHPREAMBLE(ic)) 2255 rate |= rt->info[rix].shortPreamble; 2256 ath_hal_setuptxdesc(ah, ds 2257 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2258 , sizeof(struct ieee80211_frame)/* header length */ 2259 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2260 , ni->ni_txpower /* txpower XXX */ 2261 , rate, 1 /* series 0 rate/tries */ 2262 , HAL_TXKEYIX_INVALID /* no encryption */ 2263 , antenna /* antenna mode */ 2264 , flags /* no ack, veol for beacons */ 2265 , 0 /* rts/cts rate */ 2266 , 0 /* rts/cts duration */ 2267 ); 2268 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2269 ath_hal_filltxdesc(ah, ds 2270 , roundup(m->m_len, 4) /* buffer length */ 2271 , AH_TRUE /* first segment */ 2272 , AH_TRUE /* last segment */ 2273 , ds /* first descriptor */ 2274 ); 2275 2276 /* NB: The desc swap function becomes void, if descriptor swapping 2277 * is not enabled 2278 */ 2279 ath_desc_swap(ds); 2280 2281 #undef USE_SHPREAMBLE 2282 } 2283 2284 /* 2285 * Transmit a beacon frame at SWBA. Dynamic updates to the 2286 * frame contents are done as needed and the slot time is 2287 * also adjusted based on current state. 2288 */ 2289 static void 2290 ath_beacon_proc(void *arg, int pending) 2291 { 2292 struct ath_softc *sc = arg; 2293 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 2294 struct ieee80211_node *ni = bf->bf_node; 2295 struct ieee80211com *ic = ni->ni_ic; 2296 struct ath_hal *ah = sc->sc_ah; 2297 struct mbuf *m; 2298 int ncabq, error, otherant; 2299 2300 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2301 __func__, pending); 2302 2303 if (ic->ic_opmode == IEEE80211_M_STA || 2304 ic->ic_opmode == IEEE80211_M_MONITOR || 2305 bf == NULL || bf->bf_m == NULL) { 2306 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 2307 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 2308 return; 2309 } 2310 /* 2311 * Check if the previous beacon has gone out. If 2312 * not don't try to post another, skip this period 2313 * and wait for the next. Missed beacons indicate 2314 * a problem and should not occur. If we miss too 2315 * many consecutive beacons reset the device. 2316 */ 2317 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2318 sc->sc_bmisscount++; 2319 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2320 "%s: missed %u consecutive beacons\n", 2321 __func__, sc->sc_bmisscount); 2322 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2323 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask); 2324 return; 2325 } 2326 if (sc->sc_bmisscount != 0) { 2327 DPRINTF(sc, ATH_DEBUG_BEACON, 2328 "%s: resume beacon xmit after %u misses\n", 2329 __func__, sc->sc_bmisscount); 2330 sc->sc_bmisscount = 0; 2331 } 2332 2333 /* 2334 * Update dynamic beacon contents. If this returns 2335 * non-zero then we need to remap the memory because 2336 * the beacon frame changed size (probably because 2337 * of the TIM bitmap). 2338 */ 2339 m = bf->bf_m; 2340 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 2341 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 2342 /* XXX too conservative? */ 2343 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2344 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2345 BUS_DMA_NOWAIT); 2346 if (error != 0) { 2347 if_printf(&sc->sc_if, 2348 "%s: bus_dmamap_load_mbuf failed, error %u\n", 2349 __func__, error); 2350 return; 2351 } 2352 } 2353 2354 /* 2355 * Handle slot time change when a non-ERP station joins/leaves 2356 * an 11g network. The 802.11 layer notifies us via callback, 2357 * we mark updateslot, then wait one beacon before effecting 2358 * the change. This gives associated stations at least one 2359 * beacon interval to note the state change. 2360 */ 2361 /* XXX locking */ 2362 if (sc->sc_updateslot == UPDATE) 2363 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2364 else if (sc->sc_updateslot == COMMIT) 2365 ath_setslottime(sc); /* commit change to h/w */ 2366 2367 /* 2368 * Check recent per-antenna transmit statistics and flip 2369 * the default antenna if noticeably more frames went out 2370 * on the non-default antenna. 2371 * XXX assumes 2 anntenae 2372 */ 2373 otherant = sc->sc_defant & 1 ? 2 : 1; 2374 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2375 ath_setdefantenna(sc, otherant); 2376 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2377 2378 /* 2379 * Construct tx descriptor. 2380 */ 2381 ath_beacon_setup(sc, bf); 2382 2383 /* 2384 * Stop any current dma and put the new frame on the queue. 2385 * This should never fail since we check above that no frames 2386 * are still pending on the queue. 2387 */ 2388 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2389 DPRINTF(sc, ATH_DEBUG_ANY, 2390 "%s: beacon queue %u did not stop?\n", 2391 __func__, sc->sc_bhalq); 2392 } 2393 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2394 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 2395 2396 /* 2397 * Enable the CAB queue before the beacon queue to 2398 * insure cab frames are triggered by this beacon. 2399 */ 2400 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */ 2401 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 2402 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2403 ath_hal_txstart(ah, sc->sc_bhalq); 2404 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2405 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__, 2406 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc); 2407 2408 sc->sc_stats.ast_be_xmit++; 2409 } 2410 2411 /* 2412 * Reset the hardware after detecting beacons have stopped. 2413 */ 2414 static void 2415 ath_bstuck_proc(void *arg, int pending) 2416 { 2417 struct ath_softc *sc = arg; 2418 struct ifnet *ifp = &sc->sc_if; 2419 #ifdef __NetBSD__ 2420 int s; 2421 #endif 2422 2423 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2424 sc->sc_bmisscount); 2425 #ifdef __NetBSD__ 2426 s = splnet(); 2427 #endif 2428 ath_reset(ifp); 2429 #ifdef __NetBSD__ 2430 splx(s); 2431 #endif 2432 } 2433 2434 /* 2435 * Reclaim beacon resources. 2436 */ 2437 static void 2438 ath_beacon_free(struct ath_softc *sc) 2439 { 2440 struct ath_buf *bf; 2441 2442 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2443 if (bf->bf_m != NULL) { 2444 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2445 m_freem(bf->bf_m); 2446 bf->bf_m = NULL; 2447 } 2448 if (bf->bf_node != NULL) { 2449 ieee80211_free_node(bf->bf_node); 2450 bf->bf_node = NULL; 2451 } 2452 } 2453 } 2454 2455 /* 2456 * Configure the beacon and sleep timers. 2457 * 2458 * When operating as an AP this resets the TSF and sets 2459 * up the hardware to notify us when we need to issue beacons. 2460 * 2461 * When operating in station mode this sets up the beacon 2462 * timers according to the timestamp of the last received 2463 * beacon and the current TSF, configures PCF and DTIM 2464 * handling, programs the sleep registers so the hardware 2465 * will wakeup in time to receive beacons, and configures 2466 * the beacon miss handling so we'll receive a BMISS 2467 * interrupt when we stop seeing beacons from the AP 2468 * we've associated with. 2469 */ 2470 static void 2471 ath_beacon_config(struct ath_softc *sc) 2472 { 2473 #define TSF_TO_TU(_h,_l) \ 2474 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 2475 #define FUDGE 2 2476 struct ath_hal *ah = sc->sc_ah; 2477 struct ieee80211com *ic = &sc->sc_ic; 2478 struct ieee80211_node *ni = ic->ic_bss; 2479 u_int32_t nexttbtt, intval, tsftu; 2480 u_int64_t tsf; 2481 2482 /* extract tstamp from last beacon and convert to TU */ 2483 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2484 LE_READ_4(ni->ni_tstamp.data)); 2485 /* NB: the beacon interval is kept internally in TU's */ 2486 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2487 if (nexttbtt == 0) /* e.g. for ap mode */ 2488 nexttbtt = intval; 2489 else if (intval) /* NB: can be 0 for monitor mode */ 2490 nexttbtt = roundup(nexttbtt, intval); 2491 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2492 __func__, nexttbtt, intval, ni->ni_intval); 2493 if (ic->ic_opmode == IEEE80211_M_STA) { 2494 HAL_BEACON_STATE bs; 2495 int dtimperiod, dtimcount; 2496 int cfpperiod, cfpcount; 2497 2498 /* 2499 * Setup dtim and cfp parameters according to 2500 * last beacon we received (which may be none). 2501 */ 2502 dtimperiod = ni->ni_dtim_period; 2503 if (dtimperiod <= 0) /* NB: 0 if not known */ 2504 dtimperiod = 1; 2505 dtimcount = ni->ni_dtim_count; 2506 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2507 dtimcount = 0; /* XXX? */ 2508 cfpperiod = 1; /* NB: no PCF support yet */ 2509 cfpcount = 0; 2510 /* 2511 * Pull nexttbtt forward to reflect the current 2512 * TSF and calculate dtim+cfp state for the result. 2513 */ 2514 tsf = ath_hal_gettsf64(ah); 2515 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2516 do { 2517 nexttbtt += intval; 2518 if (--dtimcount < 0) { 2519 dtimcount = dtimperiod - 1; 2520 if (--cfpcount < 0) 2521 cfpcount = cfpperiod - 1; 2522 } 2523 } while (nexttbtt < tsftu); 2524 memset(&bs, 0, sizeof(bs)); 2525 bs.bs_intval = intval; 2526 bs.bs_nexttbtt = nexttbtt; 2527 bs.bs_dtimperiod = dtimperiod*intval; 2528 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2529 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2530 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2531 bs.bs_cfpmaxduration = 0; 2532 #if 0 2533 /* 2534 * The 802.11 layer records the offset to the DTIM 2535 * bitmap while receiving beacons; use it here to 2536 * enable h/w detection of our AID being marked in 2537 * the bitmap vector (to indicate frames for us are 2538 * pending at the AP). 2539 * XXX do DTIM handling in s/w to WAR old h/w bugs 2540 * XXX enable based on h/w rev for newer chips 2541 */ 2542 bs.bs_timoffset = ni->ni_timoff; 2543 #endif 2544 /* 2545 * Calculate the number of consecutive beacons to miss 2546 * before taking a BMISS interrupt. The configuration 2547 * is specified in ms, so we need to convert that to 2548 * TU's and then calculate based on the beacon interval. 2549 * Note that we clamp the result to at most 10 beacons. 2550 */ 2551 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2552 if (bs.bs_bmissthreshold > 10) 2553 bs.bs_bmissthreshold = 10; 2554 else if (bs.bs_bmissthreshold <= 0) 2555 bs.bs_bmissthreshold = 1; 2556 2557 /* 2558 * Calculate sleep duration. The configuration is 2559 * given in ms. We insure a multiple of the beacon 2560 * period is used. Also, if the sleep duration is 2561 * greater than the DTIM period then it makes senses 2562 * to make it a multiple of that. 2563 * 2564 * XXX fixed at 100ms 2565 */ 2566 bs.bs_sleepduration = 2567 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2568 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2569 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2570 2571 DPRINTF(sc, ATH_DEBUG_BEACON, 2572 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2573 , __func__ 2574 , tsf, tsftu 2575 , bs.bs_intval 2576 , bs.bs_nexttbtt 2577 , bs.bs_dtimperiod 2578 , bs.bs_nextdtim 2579 , bs.bs_bmissthreshold 2580 , bs.bs_sleepduration 2581 , bs.bs_cfpperiod 2582 , bs.bs_cfpmaxduration 2583 , bs.bs_cfpnext 2584 , bs.bs_timoffset 2585 ); 2586 ath_hal_intrset(ah, 0); 2587 ath_hal_beacontimers(ah, &bs); 2588 sc->sc_imask |= HAL_INT_BMISS; 2589 ath_hal_intrset(ah, sc->sc_imask); 2590 } else { 2591 ath_hal_intrset(ah, 0); 2592 if (nexttbtt == intval) 2593 intval |= HAL_BEACON_RESET_TSF; 2594 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2595 /* 2596 * In IBSS mode enable the beacon timers but only 2597 * enable SWBA interrupts if we need to manually 2598 * prepare beacon frames. Otherwise we use a 2599 * self-linked tx descriptor and let the hardware 2600 * deal with things. 2601 */ 2602 intval |= HAL_BEACON_ENA; 2603 if (!sc->sc_hasveol) 2604 sc->sc_imask |= HAL_INT_SWBA; 2605 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 2606 /* 2607 * Pull nexttbtt forward to reflect 2608 * the current TSF. 2609 */ 2610 tsf = ath_hal_gettsf64(ah); 2611 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2612 do { 2613 nexttbtt += intval; 2614 } while (nexttbtt < tsftu); 2615 } 2616 ath_beaconq_config(sc); 2617 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2618 /* 2619 * In AP mode we enable the beacon timers and 2620 * SWBA interrupts to prepare beacon frames. 2621 */ 2622 intval |= HAL_BEACON_ENA; 2623 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2624 ath_beaconq_config(sc); 2625 } 2626 ath_hal_beaconinit(ah, nexttbtt, intval); 2627 sc->sc_bmisscount = 0; 2628 ath_hal_intrset(ah, sc->sc_imask); 2629 /* 2630 * When using a self-linked beacon descriptor in 2631 * ibss mode load it once here. 2632 */ 2633 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2634 ath_beacon_proc(sc, 0); 2635 } 2636 sc->sc_syncbeacon = 0; 2637 #undef UNDEF 2638 #undef TSF_TO_TU 2639 } 2640 2641 static int 2642 ath_descdma_setup(struct ath_softc *sc, 2643 struct ath_descdma *dd, ath_bufhead *head, 2644 const char *name, int nbuf, int ndesc) 2645 { 2646 #define DS2PHYS(_dd, _ds) \ 2647 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc)) 2648 struct ifnet *ifp = &sc->sc_if; 2649 struct ath_desc *ds; 2650 struct ath_buf *bf; 2651 int i, bsize, error; 2652 2653 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2654 __func__, name, nbuf, ndesc); 2655 2656 dd->dd_name = name; 2657 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2658 2659 /* 2660 * Setup DMA descriptor area. 2661 */ 2662 dd->dd_dmat = sc->sc_dmat; 2663 2664 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE, 2665 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0); 2666 2667 if (error != 0) { 2668 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2669 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2670 goto fail0; 2671 } 2672 2673 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg, 2674 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT); 2675 if (error != 0) { 2676 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n", 2677 nbuf * ndesc, dd->dd_name, error); 2678 goto fail1; 2679 } 2680 2681 /* allocate descriptors */ 2682 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1, 2683 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2684 if (error != 0) { 2685 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2686 "error %u\n", dd->dd_name, error); 2687 goto fail2; 2688 } 2689 2690 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, 2691 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT); 2692 if (error != 0) { 2693 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2694 dd->dd_name, error); 2695 goto fail3; 2696 } 2697 2698 ds = dd->dd_desc; 2699 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr; 2700 DPRINTF(sc, ATH_DEBUG_RESET, 2701 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n", 2702 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2703 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2704 2705 /* allocate rx buffers */ 2706 bsize = sizeof(struct ath_buf) * nbuf; 2707 bf = malloc(bsize, M_ATHDEV, M_WAITOK | M_ZERO); 2708 dd->dd_bufptr = bf; 2709 2710 STAILQ_INIT(head); 2711 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2712 bf->bf_desc = ds; 2713 bf->bf_daddr = DS2PHYS(dd, ds); 2714 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc, 2715 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap); 2716 if (error != 0) { 2717 if_printf(ifp, "unable to create dmamap for %s " 2718 "buffer %u, error %u\n", dd->dd_name, i, error); 2719 ath_descdma_cleanup(sc, dd, head); 2720 return error; 2721 } 2722 STAILQ_INSERT_TAIL(head, bf, bf_list); 2723 } 2724 return 0; 2725 fail3: 2726 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2727 fail2: 2728 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2729 fail1: 2730 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2731 fail0: 2732 memset(dd, 0, sizeof(*dd)); 2733 return error; 2734 #undef DS2PHYS 2735 } 2736 2737 static void 2738 ath_descdma_cleanup(struct ath_softc *sc, 2739 struct ath_descdma *dd, ath_bufhead *head) 2740 { 2741 struct ath_buf *bf; 2742 struct ieee80211_node *ni; 2743 2744 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2745 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2746 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2747 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2748 2749 STAILQ_FOREACH(bf, head, bf_list) { 2750 if (bf->bf_m) { 2751 m_freem(bf->bf_m); 2752 bf->bf_m = NULL; 2753 } 2754 if (bf->bf_dmamap != NULL) { 2755 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2756 bf->bf_dmamap = NULL; 2757 } 2758 ni = bf->bf_node; 2759 bf->bf_node = NULL; 2760 if (ni != NULL) { 2761 /* 2762 * Reclaim node reference. 2763 */ 2764 ieee80211_free_node(ni); 2765 } 2766 } 2767 2768 STAILQ_INIT(head); 2769 free(dd->dd_bufptr, M_ATHDEV); 2770 memset(dd, 0, sizeof(*dd)); 2771 } 2772 2773 static int 2774 ath_desc_alloc(struct ath_softc *sc) 2775 { 2776 int error; 2777 2778 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2779 "rx", ath_rxbuf, 1); 2780 if (error != 0) 2781 return error; 2782 2783 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2784 "tx", ath_txbuf, ATH_TXDESC); 2785 if (error != 0) { 2786 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2787 return error; 2788 } 2789 2790 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2791 "beacon", 1, 1); 2792 if (error != 0) { 2793 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2794 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2795 return error; 2796 } 2797 return 0; 2798 } 2799 2800 static void 2801 ath_desc_free(struct ath_softc *sc) 2802 { 2803 2804 if (sc->sc_bdma.dd_desc_len != 0) 2805 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2806 if (sc->sc_txdma.dd_desc_len != 0) 2807 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2808 if (sc->sc_rxdma.dd_desc_len != 0) 2809 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2810 } 2811 2812 static struct ieee80211_node * 2813 ath_node_alloc(struct ieee80211_node_table *nt) 2814 { 2815 struct ieee80211com *ic = nt->nt_ic; 2816 struct ath_softc *sc = ic->ic_ifp->if_softc; 2817 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2818 struct ath_node *an; 2819 2820 an = malloc(space, M_80211_NODE, M_NOWAIT | M_ZERO); 2821 if (an == NULL) { 2822 /* XXX stat+msg */ 2823 return NULL; 2824 } 2825 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2826 ath_rate_node_init(sc, an); 2827 2828 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2829 return &an->an_node; 2830 } 2831 2832 static void 2833 ath_node_free(struct ieee80211_node *ni) 2834 { 2835 struct ieee80211com *ic = ni->ni_ic; 2836 struct ath_softc *sc = ic->ic_ifp->if_softc; 2837 2838 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2839 2840 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2841 sc->sc_node_free(ni); 2842 } 2843 2844 static u_int8_t 2845 ath_node_getrssi(const struct ieee80211_node *ni) 2846 { 2847 #define HAL_EP_RND(x, mul) \ 2848 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2849 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2850 int32_t rssi; 2851 2852 /* 2853 * When only one frame is received there will be no state in 2854 * avgrssi so fallback on the value recorded by the 802.11 layer. 2855 */ 2856 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2857 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2858 else 2859 rssi = ni->ni_rssi; 2860 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2861 #undef HAL_EP_RND 2862 } 2863 2864 static int 2865 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2866 { 2867 struct ath_hal *ah = sc->sc_ah; 2868 int error; 2869 struct mbuf *m; 2870 struct ath_desc *ds; 2871 2872 m = bf->bf_m; 2873 if (m == NULL) { 2874 /* 2875 * NB: by assigning a page to the rx dma buffer we 2876 * implicitly satisfy the Atheros requirement that 2877 * this buffer be cache-line-aligned and sized to be 2878 * multiple of the cache line size. Not doing this 2879 * causes weird stuff to happen (for the 5210 at least). 2880 */ 2881 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2882 if (m == NULL) { 2883 DPRINTF(sc, ATH_DEBUG_ANY, 2884 "%s: no mbuf/cluster\n", __func__); 2885 sc->sc_stats.ast_rx_nombuf++; 2886 return ENOMEM; 2887 } 2888 bf->bf_m = m; 2889 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2890 2891 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2892 bf->bf_dmamap, m, 2893 BUS_DMA_NOWAIT); 2894 if (error != 0) { 2895 DPRINTF(sc, ATH_DEBUG_ANY, 2896 "%s: bus_dmamap_load_mbuf failed; error %d\n", 2897 __func__, error); 2898 sc->sc_stats.ast_rx_busdma++; 2899 return error; 2900 } 2901 KASSERTMSG(bf->bf_nseg == 1, 2902 "multi-segment packet; nseg %u", bf->bf_nseg); 2903 } 2904 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2905 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2906 2907 /* 2908 * Setup descriptors. For receive we always terminate 2909 * the descriptor list with a self-linked entry so we'll 2910 * not get overrun under high load (as can happen with a 2911 * 5212 when ANI processing enables PHY error frames). 2912 * 2913 * To insure the last descriptor is self-linked we create 2914 * each descriptor as self-linked and add it to the end. As 2915 * each additional descriptor is added the previous self-linked 2916 * entry is ``fixed'' naturally. This should be safe even 2917 * if DMA is happening. When processing RX interrupts we 2918 * never remove/process the last, self-linked, entry on the 2919 * descriptor list. This insures the hardware always has 2920 * someplace to write a new frame. 2921 */ 2922 ds = bf->bf_desc; 2923 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */ 2924 ds->ds_data = bf->bf_segs[0].ds_addr; 2925 /* ds->ds_vdata = mtod(m, void *); for radar */ 2926 ath_hal_setuprxdesc(ah, ds 2927 , m->m_len /* buffer size */ 2928 , 0 2929 ); 2930 2931 if (sc->sc_rxlink != NULL) 2932 *sc->sc_rxlink = bf->bf_daddr; 2933 sc->sc_rxlink = &ds->ds_link; 2934 return 0; 2935 } 2936 2937 /* 2938 * Extend 15-bit time stamp from rx descriptor to 2939 * a full 64-bit TSF using the specified TSF. 2940 */ 2941 static inline u_int64_t 2942 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 2943 { 2944 if ((tsf & 0x7fff) < rstamp) 2945 tsf -= 0x8000; 2946 return ((tsf &~ 0x7fff) | rstamp); 2947 } 2948 2949 /* 2950 * Intercept management frames to collect beacon rssi data 2951 * and to do ibss merges. 2952 */ 2953 static void 2954 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2955 struct ieee80211_node *ni, 2956 int subtype, int rssi, u_int32_t rstamp) 2957 { 2958 struct ath_softc *sc = ic->ic_ifp->if_softc; 2959 2960 /* 2961 * Call up first so subsequent work can use information 2962 * potentially stored in the node (e.g. for ibss merge). 2963 */ 2964 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2965 switch (subtype) { 2966 case IEEE80211_FC0_SUBTYPE_BEACON: 2967 /* update rssi statistics for use by the hal */ 2968 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 2969 if (sc->sc_syncbeacon && 2970 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) { 2971 /* 2972 * Resync beacon timers using the tsf of the beacon 2973 * frame we just received. 2974 */ 2975 ath_beacon_config(sc); 2976 } 2977 /* fall thru... */ 2978 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2979 if (ic->ic_opmode == IEEE80211_M_IBSS && 2980 ic->ic_state == IEEE80211_S_RUN) { 2981 u_int64_t tsf = ath_extend_tsf(rstamp, 2982 ath_hal_gettsf64(sc->sc_ah)); 2983 2984 /* 2985 * Handle ibss merge as needed; check the tsf on the 2986 * frame before attempting the merge. The 802.11 spec 2987 * says the station should change its bssid to match 2988 * the oldest station with the same ssid, where oldest 2989 * is determined by the tsf. Note that hardware 2990 * reconfiguration happens through callback to 2991 * ath_newstate as the state machine will go from 2992 * RUN -> RUN when this happens. 2993 */ 2994 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2995 DPRINTF(sc, ATH_DEBUG_STATE, 2996 "ibss merge, rstamp %u tsf %ju " 2997 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2998 (uintmax_t)ni->ni_tstamp.tsf); 2999 (void) ieee80211_ibss_merge(ni); 3000 } 3001 } 3002 break; 3003 } 3004 } 3005 3006 /* 3007 * Set the default antenna. 3008 */ 3009 static void 3010 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3011 { 3012 struct ath_hal *ah = sc->sc_ah; 3013 3014 /* XXX block beacon interrupts */ 3015 ath_hal_setdefantenna(ah, antenna); 3016 if (sc->sc_defant != antenna) 3017 sc->sc_stats.ast_ant_defswitch++; 3018 sc->sc_defant = antenna; 3019 sc->sc_rxotherant = 0; 3020 } 3021 3022 static void 3023 ath_handle_micerror(struct ieee80211com *ic, 3024 struct ieee80211_frame *wh, int keyix) 3025 { 3026 struct ieee80211_node *ni; 3027 3028 /* XXX recheck MIC to deal w/ chips that lie */ 3029 /* XXX discard MIC errors on !data frames */ 3030 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix); 3031 if (ni != NULL) { 3032 ieee80211_notify_michael_failure(ic, wh, keyix); 3033 ieee80211_free_node(ni); 3034 } 3035 } 3036 3037 static void 3038 ath_rx_proc(void *arg, int npending) 3039 { 3040 #define PA2DESC(_sc, _pa) \ 3041 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 3042 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3043 struct ath_softc *sc = arg; 3044 struct ath_buf *bf; 3045 struct ieee80211com *ic = &sc->sc_ic; 3046 struct ifnet *ifp = &sc->sc_if; 3047 struct ath_hal *ah = sc->sc_ah; 3048 struct ath_desc *ds; 3049 struct mbuf *m; 3050 struct ieee80211_node *ni; 3051 struct ath_node *an; 3052 int len, ngood, type; 3053 u_int phyerr; 3054 HAL_STATUS status; 3055 int16_t nf; 3056 u_int64_t tsf; 3057 uint8_t rxerr_tap, rxerr_mon; 3058 NET_LOCK_GIANT_FUNC_INIT(); 3059 3060 NET_LOCK_GIANT(); /* XXX */ 3061 3062 rxerr_tap = 3063 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0; 3064 3065 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR) 3066 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3067 else if (ifp->if_flags & IFF_PROMISC) 3068 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3069 3070 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3071 ngood = 0; 3072 nf = ath_hal_getchannoise(ah, &sc->sc_curchan); 3073 tsf = ath_hal_gettsf64(ah); 3074 do { 3075 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3076 if (bf == NULL) { /* NB: shouldn't happen */ 3077 if_printf(ifp, "%s: no buffer!\n", __func__); 3078 break; 3079 } 3080 ds = bf->bf_desc; 3081 if (ds->ds_link == bf->bf_daddr) { 3082 /* NB: never process the self-linked entry at the end */ 3083 break; 3084 } 3085 m = bf->bf_m; 3086 if (m == NULL) { /* NB: shouldn't happen */ 3087 if_printf(ifp, "%s: no mbuf!\n", __func__); 3088 break; 3089 } 3090 /* XXX sync descriptor memory */ 3091 /* 3092 * Must provide the virtual address of the current 3093 * descriptor, the physical address, and the virtual 3094 * address of the next descriptor in the h/w chain. 3095 * This allows the HAL to look ahead to see if the 3096 * hardware is done with a descriptor by checking the 3097 * done bit in the following descriptor and the address 3098 * of the current descriptor the DMA engine is working 3099 * on. All this is necessary because of our use of 3100 * a self-linked list to avoid rx overruns. 3101 */ 3102 status = ath_hal_rxprocdesc(ah, ds, 3103 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 3104 &ds->ds_rxstat); 3105 #ifdef AR_DEBUG 3106 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 3107 ath_printrxbuf(bf, status == HAL_OK); 3108 #endif 3109 if (status == HAL_EINPROGRESS) 3110 break; 3111 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 3112 if (ds->ds_rxstat.rs_more) { 3113 /* 3114 * Frame spans multiple descriptors; this 3115 * cannot happen yet as we don't support 3116 * jumbograms. If not in monitor mode, 3117 * discard the frame. 3118 */ 3119 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3120 sc->sc_stats.ast_rx_toobig++; 3121 goto rx_next; 3122 } 3123 /* fall thru for monitor mode handling... */ 3124 } else if (ds->ds_rxstat.rs_status != 0) { 3125 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 3126 sc->sc_stats.ast_rx_crcerr++; 3127 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 3128 sc->sc_stats.ast_rx_fifoerr++; 3129 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 3130 sc->sc_stats.ast_rx_phyerr++; 3131 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 3132 sc->sc_stats.ast_rx_phy[phyerr]++; 3133 goto rx_next; 3134 } 3135 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 3136 /* 3137 * Decrypt error. If the error occurred 3138 * because there was no hardware key, then 3139 * let the frame through so the upper layers 3140 * can process it. This is necessary for 5210 3141 * parts which have no way to setup a ``clear'' 3142 * key cache entry. 3143 * 3144 * XXX do key cache faulting 3145 */ 3146 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 3147 goto rx_accept; 3148 sc->sc_stats.ast_rx_badcrypt++; 3149 } 3150 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 3151 sc->sc_stats.ast_rx_badmic++; 3152 /* 3153 * Do minimal work required to hand off 3154 * the 802.11 header for notifcation. 3155 */ 3156 /* XXX frag's and qos frames */ 3157 len = ds->ds_rxstat.rs_datalen; 3158 if (len >= sizeof (struct ieee80211_frame)) { 3159 bus_dmamap_sync(sc->sc_dmat, 3160 bf->bf_dmamap, 3161 0, bf->bf_dmamap->dm_mapsize, 3162 BUS_DMASYNC_POSTREAD); 3163 ath_handle_micerror(ic, 3164 mtod(m, struct ieee80211_frame *), 3165 sc->sc_splitmic ? 3166 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix); 3167 } 3168 } 3169 if_statinc(ifp, if_ierrors); 3170 /* 3171 * Reject error frames, we normally don't want 3172 * to see them in monitor mode (in monitor mode 3173 * allow through packets that have crypto problems). 3174 */ 3175 3176 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon)) 3177 goto rx_next; 3178 } 3179 rx_accept: 3180 /* 3181 * Sync and unmap the frame. At this point we're 3182 * committed to passing the mbuf somewhere so clear 3183 * bf_m; this means a new sk_buff must be allocated 3184 * when the rx descriptor is setup again to receive 3185 * another frame. 3186 */ 3187 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3188 0, bf->bf_dmamap->dm_mapsize, 3189 BUS_DMASYNC_POSTREAD); 3190 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3191 bf->bf_m = NULL; 3192 3193 m_set_rcvif(m, ifp); 3194 len = ds->ds_rxstat.rs_datalen; 3195 m->m_pkthdr.len = m->m_len = len; 3196 3197 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 3198 3199 if (sc->sc_drvbpf) { 3200 u_int8_t rix; 3201 3202 /* 3203 * Discard anything shorter than an ack or cts. 3204 */ 3205 if (len < IEEE80211_ACK_LEN) { 3206 DPRINTF(sc, ATH_DEBUG_RECV, 3207 "%s: runt packet %d\n", 3208 __func__, len); 3209 sc->sc_stats.ast_rx_tooshort++; 3210 m_freem(m); 3211 goto rx_next; 3212 } 3213 rix = ds->ds_rxstat.rs_rate; 3214 sc->sc_rx_th.wr_tsf = htole64( 3215 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf)); 3216 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3217 if (ds->ds_rxstat.rs_status & 3218 (HAL_RXERR_CRC|HAL_RXERR_PHY)) { 3219 sc->sc_rx_th.wr_flags |= 3220 IEEE80211_RADIOTAP_F_BADFCS; 3221 } 3222 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3223 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf; 3224 sc->sc_rx_th.wr_antnoise = nf; 3225 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 3226 3227 bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, 3228 sc->sc_rx_th_len, m, BPF_D_IN); 3229 } 3230 3231 if (ds->ds_rxstat.rs_status & rxerr_tap) { 3232 m_freem(m); 3233 goto rx_next; 3234 } 3235 /* 3236 * From this point on we assume the frame is at least 3237 * as large as ieee80211_frame_min; verify that. 3238 */ 3239 if (len < IEEE80211_MIN_LEN) { 3240 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 3241 __func__, len); 3242 sc->sc_stats.ast_rx_tooshort++; 3243 m_freem(m); 3244 goto rx_next; 3245 } 3246 3247 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 3248 ieee80211_dump_pkt(mtod(m, void *), len, 3249 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 3250 ds->ds_rxstat.rs_rssi); 3251 } 3252 3253 m_adj(m, -IEEE80211_CRC_LEN); 3254 3255 /* 3256 * Locate the node for sender, track state, and then 3257 * pass the (referenced) node up to the 802.11 layer 3258 * for its use. 3259 */ 3260 ni = ieee80211_find_rxnode_withkey(ic, 3261 mtod(m, const struct ieee80211_frame_min *), 3262 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ? 3263 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix); 3264 /* 3265 * Track rx rssi and do any rx antenna management. 3266 */ 3267 an = ATH_NODE(ni); 3268 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 3269 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi); 3270 /* 3271 * Send frame up for processing. 3272 */ 3273 type = ieee80211_input(ic, m, ni, 3274 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 3275 ieee80211_free_node(ni); 3276 if (sc->sc_diversity) { 3277 /* 3278 * When using fast diversity, change the default rx 3279 * antenna if diversity chooses the other antenna 3 3280 * times in a row. 3281 */ 3282 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 3283 if (++sc->sc_rxotherant >= 3) 3284 ath_setdefantenna(sc, 3285 ds->ds_rxstat.rs_antenna); 3286 } else 3287 sc->sc_rxotherant = 0; 3288 } 3289 if (sc->sc_softled) { 3290 /* 3291 * Blink for any data frame. Otherwise do a 3292 * heartbeat-style blink when idle. The latter 3293 * is mainly for station mode where we depend on 3294 * periodic beacon frames to trigger the poll event. 3295 */ 3296 if (type == IEEE80211_FC0_TYPE_DATA) { 3297 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 3298 ath_led_event(sc, ATH_LED_RX); 3299 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3300 ath_led_event(sc, ATH_LED_POLL); 3301 } 3302 /* 3303 * Arrange to update the last rx timestamp only for 3304 * frames from our ap when operating in station mode. 3305 * This assumes the rx key is always setup when associated. 3306 */ 3307 if (ic->ic_opmode == IEEE80211_M_STA && 3308 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID) 3309 ngood++; 3310 rx_next: 3311 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3312 } while (ath_rxbuf_init(sc, bf) == 0); 3313 3314 /* rx signal state monitoring */ 3315 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan); 3316 #if 0 3317 if (ath_hal_radar_event(ah)) 3318 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask); 3319 #endif 3320 if (ngood) 3321 sc->sc_lastrx = tsf; 3322 3323 #ifdef __NetBSD__ 3324 /* XXX Why isn't this necessary in FreeBSD? */ 3325 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 3326 ath_start(ifp); 3327 #endif /* __NetBSD__ */ 3328 3329 NET_UNLOCK_GIANT(); /* XXX */ 3330 #undef PA2DESC 3331 } 3332 3333 /* 3334 * Setup a h/w transmit queue. 3335 */ 3336 static struct ath_txq * 3337 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3338 { 3339 #define N(a) (sizeof(a)/sizeof(a[0])) 3340 struct ath_hal *ah = sc->sc_ah; 3341 HAL_TXQ_INFO qi; 3342 int qnum; 3343 3344 memset(&qi, 0, sizeof(qi)); 3345 qi.tqi_subtype = subtype; 3346 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3347 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3348 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3349 /* 3350 * Enable interrupts only for EOL and DESC conditions. 3351 * We mark tx descriptors to receive a DESC interrupt 3352 * when a tx queue gets deep; otherwise waiting for the 3353 * EOL to reap descriptors. Note that this is done to 3354 * reduce interrupt load and this only defers reaping 3355 * descriptors, never transmitting frames. Aside from 3356 * reducing interrupts this also permits more concurrency. 3357 * The only potential downside is if the tx queue backs 3358 * up in which case the top half of the kernel may backup 3359 * due to a lack of tx descriptors. 3360 */ 3361 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3362 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3363 if (qnum == -1) { 3364 /* 3365 * NB: don't print a message, this happens 3366 * normally on parts with too few tx queues 3367 */ 3368 return NULL; 3369 } 3370 if (qnum >= N(sc->sc_txq)) { 3371 device_printf(sc->sc_dev, 3372 "hal qnum %u out of range, max %zu!\n", 3373 qnum, N(sc->sc_txq)); 3374 ath_hal_releasetxqueue(ah, qnum); 3375 return NULL; 3376 } 3377 if (!ATH_TXQ_SETUP(sc, qnum)) { 3378 struct ath_txq *txq = &sc->sc_txq[qnum]; 3379 3380 txq->axq_qnum = qnum; 3381 txq->axq_depth = 0; 3382 txq->axq_intrcnt = 0; 3383 txq->axq_link = NULL; 3384 STAILQ_INIT(&txq->axq_q); 3385 ATH_TXQ_LOCK_INIT(sc, txq); 3386 sc->sc_txqsetup |= 1<<qnum; 3387 } 3388 return &sc->sc_txq[qnum]; 3389 #undef N 3390 } 3391 3392 /* 3393 * Setup a hardware data transmit queue for the specified 3394 * access control. The hal may not support all requested 3395 * queues in which case it will return a reference to a 3396 * previously setup queue. We record the mapping from ac's 3397 * to h/w queues for use by ath_tx_start and also track 3398 * the set of h/w queues being used to optimize work in the 3399 * transmit interrupt handler and related routines. 3400 */ 3401 static int 3402 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3403 { 3404 #define N(a) (sizeof(a)/sizeof(a[0])) 3405 struct ath_txq *txq; 3406 3407 if (ac >= N(sc->sc_ac2q)) { 3408 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3409 ac, N(sc->sc_ac2q)); 3410 return 0; 3411 } 3412 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3413 if (txq != NULL) { 3414 sc->sc_ac2q[ac] = txq; 3415 return 1; 3416 } else 3417 return 0; 3418 #undef N 3419 } 3420 3421 /* 3422 * Update WME parameters for a transmit queue. 3423 */ 3424 static int 3425 ath_txq_update(struct ath_softc *sc, int ac) 3426 { 3427 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3428 #define ATH_TXOP_TO_US(v) (v<<5) 3429 struct ieee80211com *ic = &sc->sc_ic; 3430 struct ath_txq *txq = sc->sc_ac2q[ac]; 3431 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3432 struct ath_hal *ah = sc->sc_ah; 3433 HAL_TXQ_INFO qi; 3434 3435 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3436 qi.tqi_aifs = wmep->wmep_aifsn; 3437 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3438 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3439 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3440 3441 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3442 device_printf(sc->sc_dev, "unable to update hardware queue " 3443 "parameters for %s traffic!\n", 3444 ieee80211_wme_acnames[ac]); 3445 return 0; 3446 } else { 3447 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3448 return 1; 3449 } 3450 #undef ATH_TXOP_TO_US 3451 #undef ATH_EXPONENT_TO_VALUE 3452 } 3453 3454 /* 3455 * Callback from the 802.11 layer to update WME parameters. 3456 */ 3457 static int 3458 ath_wme_update(struct ieee80211com *ic) 3459 { 3460 struct ath_softc *sc = ic->ic_ifp->if_softc; 3461 3462 return !ath_txq_update(sc, WME_AC_BE) || 3463 !ath_txq_update(sc, WME_AC_BK) || 3464 !ath_txq_update(sc, WME_AC_VI) || 3465 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3466 } 3467 3468 /* 3469 * Reclaim resources for a setup queue. 3470 */ 3471 static void 3472 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3473 { 3474 3475 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3476 ATH_TXQ_LOCK_DESTROY(txq); 3477 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3478 } 3479 3480 /* 3481 * Reclaim all tx queue resources. 3482 */ 3483 static void 3484 ath_tx_cleanup(struct ath_softc *sc) 3485 { 3486 int i; 3487 3488 ATH_TXBUF_LOCK_DESTROY(sc); 3489 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3490 if (ATH_TXQ_SETUP(sc, i)) 3491 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3492 } 3493 3494 /* 3495 * Defragment an mbuf chain, returning at most maxfrags separate 3496 * mbufs+clusters. If this is not possible NULL is returned and 3497 * the original mbuf chain is left in its present (potentially 3498 * modified) state. We use two techniques: collapsing consecutive 3499 * mbufs and replacing consecutive mbufs by a cluster. 3500 */ 3501 static struct mbuf * 3502 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3503 { 3504 struct mbuf *m, *n, *n2, **prev; 3505 u_int curfrags; 3506 3507 /* 3508 * Calculate the current number of frags. 3509 */ 3510 curfrags = 0; 3511 for (m = m0; m != NULL; m = m->m_next) 3512 curfrags++; 3513 /* 3514 * First, try to collapse mbufs. Note that we always collapse 3515 * towards the front so we don't need to deal with moving the 3516 * pkthdr. This may be suboptimal if the first mbuf has much 3517 * less data than the following. 3518 */ 3519 m = m0; 3520 again: 3521 for (;;) { 3522 n = m->m_next; 3523 if (n == NULL) 3524 break; 3525 if (n->m_len < M_TRAILINGSPACE(m)) { 3526 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *), 3527 n->m_len); 3528 m->m_len += n->m_len; 3529 m->m_next = n->m_next; 3530 m_free(n); 3531 if (--curfrags <= maxfrags) 3532 return m0; 3533 } else 3534 m = n; 3535 } 3536 KASSERTMSG(maxfrags > 1, 3537 "maxfrags %u, but normal collapse failed", maxfrags); 3538 /* 3539 * Collapse consecutive mbufs to a cluster. 3540 */ 3541 prev = &m0->m_next; /* NB: not the first mbuf */ 3542 while ((n = *prev) != NULL) { 3543 if ((n2 = n->m_next) != NULL && 3544 n->m_len + n2->m_len < MCLBYTES) { 3545 m = m_getcl(how, MT_DATA, 0); 3546 if (m == NULL) 3547 goto bad; 3548 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3549 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3550 n2->m_len); 3551 m->m_len = n->m_len + n2->m_len; 3552 m->m_next = n2->m_next; 3553 *prev = m; 3554 m_free(n); 3555 m_free(n2); 3556 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3557 return m0; 3558 /* 3559 * Still not there, try the normal collapse 3560 * again before we allocate another cluster. 3561 */ 3562 goto again; 3563 } 3564 prev = &n->m_next; 3565 } 3566 /* 3567 * No place where we can collapse to a cluster; punt. 3568 * This can occur if, for example, you request 2 frags 3569 * but the packet requires that both be clusters (we 3570 * never reallocate the first mbuf to avoid moving the 3571 * packet header). 3572 */ 3573 bad: 3574 return NULL; 3575 } 3576 3577 /* 3578 * Return h/w rate index for an IEEE rate (w/o basic rate bit). 3579 */ 3580 static int 3581 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate) 3582 { 3583 int i; 3584 3585 for (i = 0; i < rt->rateCount; i++) 3586 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate) 3587 return i; 3588 return 0; /* NB: lowest rate */ 3589 } 3590 3591 static void 3592 ath_freetx(struct mbuf *m) 3593 { 3594 struct mbuf *next; 3595 3596 do { 3597 next = m->m_nextpkt; 3598 m->m_nextpkt = NULL; 3599 m_freem(m); 3600 } while ((m = next) != NULL); 3601 } 3602 3603 static int 3604 deduct_pad_bytes(int len, int hdrlen) 3605 { 3606 /* XXX I am suspicious that this code, which I extracted 3607 * XXX from ath_tx_start() for reuse, does the right thing. 3608 */ 3609 return len - (hdrlen & 3); 3610 } 3611 3612 static int 3613 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3614 struct mbuf *m0) 3615 { 3616 struct ieee80211com *ic = &sc->sc_ic; 3617 struct ath_hal *ah = sc->sc_ah; 3618 struct ifnet *ifp = &sc->sc_if; 3619 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3620 int i, error, iswep, ismcast, isfrag, ismrr; 3621 int keyix, hdrlen, pktlen, try0; 3622 u_int8_t rix, txrate, ctsrate; 3623 u_int8_t cix = 0xff; /* NB: silence compiler */ 3624 struct ath_desc *ds, *ds0; 3625 struct ath_txq *txq; 3626 struct ieee80211_frame *wh; 3627 u_int subtype, flags, ctsduration; 3628 HAL_PKT_TYPE atype; 3629 const HAL_RATE_TABLE *rt; 3630 HAL_BOOL shortPreamble; 3631 struct ath_node *an; 3632 struct mbuf *m; 3633 u_int pri; 3634 3635 wh = mtod(m0, struct ieee80211_frame *); 3636 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3637 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3638 isfrag = m0->m_flags & M_FRAG; 3639 hdrlen = ieee80211_anyhdrsize(wh); 3640 /* 3641 * Packet length must not include any 3642 * pad bytes; deduct them here. 3643 */ 3644 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen); 3645 3646 if (iswep) { 3647 const struct ieee80211_cipher *cip; 3648 struct ieee80211_key *k; 3649 3650 /* 3651 * Construct the 802.11 header+trailer for an encrypted 3652 * frame. The only reason this can fail is because of an 3653 * unknown or unsupported cipher/key type. 3654 */ 3655 k = ieee80211_crypto_encap(ic, ni, m0); 3656 if (k == NULL) { 3657 /* 3658 * This can happen when the key is yanked after the 3659 * frame was queued. Just discard the frame; the 3660 * 802.11 layer counts failures and provides 3661 * debugging/diagnostics. 3662 */ 3663 ath_freetx(m0); 3664 return EIO; 3665 } 3666 /* 3667 * Adjust the packet + header lengths for the crypto 3668 * additions and calculate the h/w key index. When 3669 * a s/w mic is done the frame will have had any mic 3670 * added to it prior to entry so m0->m_pkthdr.len above will 3671 * account for it. Otherwise we need to add it to the 3672 * packet length. 3673 */ 3674 cip = k->wk_cipher; 3675 hdrlen += cip->ic_header; 3676 pktlen += cip->ic_header + cip->ic_trailer; 3677 /* NB: frags always have any TKIP MIC done in s/w */ 3678 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 3679 pktlen += cip->ic_miclen; 3680 keyix = k->wk_keyix; 3681 3682 /* packet header may have moved, reset our local pointer */ 3683 wh = mtod(m0, struct ieee80211_frame *); 3684 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3685 /* 3686 * Use station key cache slot, if assigned. 3687 */ 3688 keyix = ni->ni_ucastkey.wk_keyix; 3689 if (keyix == IEEE80211_KEYIX_NONE) 3690 keyix = HAL_TXKEYIX_INVALID; 3691 } else 3692 keyix = HAL_TXKEYIX_INVALID; 3693 3694 pktlen += IEEE80211_CRC_LEN; 3695 3696 /* 3697 * Load the DMA map so any coalescing is done. This 3698 * also calculates the number of descriptors we need. 3699 */ 3700 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3701 BUS_DMA_NOWAIT); 3702 if (error == EFBIG) { 3703 /* XXX packet requires too many descriptors */ 3704 bf->bf_nseg = ATH_TXDESC+1; 3705 } else if (error != 0) { 3706 sc->sc_stats.ast_tx_busdma++; 3707 ath_freetx(m0); 3708 return error; 3709 } 3710 /* 3711 * Discard null packets and check for packets that 3712 * require too many TX descriptors. We try to convert 3713 * the latter to a cluster. 3714 */ 3715 if (error == EFBIG) { /* too many desc's, linearize */ 3716 sc->sc_stats.ast_tx_linear++; 3717 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3718 if (m == NULL) { 3719 ath_freetx(m0); 3720 sc->sc_stats.ast_tx_nombuf++; 3721 return ENOMEM; 3722 } 3723 m0 = m; 3724 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3725 BUS_DMA_NOWAIT); 3726 if (error != 0) { 3727 sc->sc_stats.ast_tx_busdma++; 3728 ath_freetx(m0); 3729 return error; 3730 } 3731 KASSERTMSG(bf->bf_nseg <= ATH_TXDESC, 3732 "too many segments after defrag; nseg %u", bf->bf_nseg); 3733 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3734 sc->sc_stats.ast_tx_nodata++; 3735 ath_freetx(m0); 3736 return EIO; 3737 } 3738 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3739 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3740 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 3741 bf->bf_m = m0; 3742 bf->bf_node = ni; /* NB: held reference */ 3743 3744 /* setup descriptors */ 3745 ds = bf->bf_desc; 3746 rt = sc->sc_currates; 3747 KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode); 3748 3749 /* 3750 * NB: the 802.11 layer marks whether or not we should 3751 * use short preamble based on the current mode and 3752 * negotiated parameters. 3753 */ 3754 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3755 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) { 3756 shortPreamble = AH_TRUE; 3757 sc->sc_stats.ast_tx_shortpre++; 3758 } else { 3759 shortPreamble = AH_FALSE; 3760 } 3761 3762 an = ATH_NODE(ni); 3763 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3764 ismrr = 0; /* default no multi-rate retry*/ 3765 /* 3766 * Calculate Atheros packet type from IEEE80211 packet header, 3767 * setup for rate calculations, and select h/w transmit queue. 3768 */ 3769 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3770 case IEEE80211_FC0_TYPE_MGT: 3771 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3772 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3773 atype = HAL_PKT_TYPE_BEACON; 3774 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3775 atype = HAL_PKT_TYPE_PROBE_RESP; 3776 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3777 atype = HAL_PKT_TYPE_ATIM; 3778 else 3779 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3780 rix = sc->sc_minrateix; 3781 txrate = rt->info[rix].rateCode; 3782 if (shortPreamble) 3783 txrate |= rt->info[rix].shortPreamble; 3784 try0 = ATH_TXMGTTRY; 3785 /* NB: force all management frames to highest queue */ 3786 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3787 /* NB: force all management frames to highest queue */ 3788 pri = WME_AC_VO; 3789 } else 3790 pri = WME_AC_BE; 3791 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3792 break; 3793 case IEEE80211_FC0_TYPE_CTL: 3794 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3795 rix = sc->sc_minrateix; 3796 txrate = rt->info[rix].rateCode; 3797 if (shortPreamble) 3798 txrate |= rt->info[rix].shortPreamble; 3799 try0 = ATH_TXMGTTRY; 3800 /* NB: force all ctl frames to highest queue */ 3801 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3802 /* NB: force all ctl frames to highest queue */ 3803 pri = WME_AC_VO; 3804 } else 3805 pri = WME_AC_BE; 3806 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3807 break; 3808 case IEEE80211_FC0_TYPE_DATA: 3809 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3810 /* 3811 * Data frames: multicast frames go out at a fixed rate, 3812 * otherwise consult the rate control module for the 3813 * rate to use. 3814 */ 3815 if (ismcast) { 3816 /* 3817 * Check mcast rate setting in case it's changed. 3818 * XXX move out of fastpath 3819 */ 3820 if (ic->ic_mcast_rate != sc->sc_mcastrate) { 3821 sc->sc_mcastrix = 3822 ath_tx_findrix(rt, ic->ic_mcast_rate); 3823 sc->sc_mcastrate = ic->ic_mcast_rate; 3824 } 3825 rix = sc->sc_mcastrix; 3826 txrate = rt->info[rix].rateCode; 3827 try0 = 1; 3828 } else { 3829 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3830 &rix, &try0, &txrate); 3831 sc->sc_txrate = txrate; /* for LED blinking */ 3832 if (try0 != ATH_TXMAXTRY) 3833 ismrr = 1; 3834 } 3835 pri = M_WME_GETAC(m0); 3836 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 3837 flags |= HAL_TXDESC_NOACK; 3838 break; 3839 default: 3840 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3841 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3842 /* XXX statistic */ 3843 ath_freetx(m0); 3844 return EIO; 3845 } 3846 txq = sc->sc_ac2q[pri]; 3847 3848 /* 3849 * When servicing one or more stations in power-save mode 3850 * multicast frames must be buffered until after the beacon. 3851 * We use the CAB queue for that. 3852 */ 3853 if (ismcast && ic->ic_ps_sta) { 3854 txq = sc->sc_cabq; 3855 /* XXX? more bit in 802.11 frame header */ 3856 } 3857 3858 /* 3859 * Calculate miscellaneous flags. 3860 */ 3861 if (ismcast) { 3862 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3863 } else if (pktlen > ic->ic_rtsthreshold) { 3864 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3865 cix = rt->info[rix].controlRate; 3866 sc->sc_stats.ast_tx_rts++; 3867 } 3868 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 3869 sc->sc_stats.ast_tx_noack++; 3870 3871 /* 3872 * If 802.11g protection is enabled, determine whether 3873 * to use RTS/CTS or just CTS. Note that this is only 3874 * done for OFDM unicast frames. 3875 */ 3876 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3877 rt->info[rix].phy == IEEE80211_T_OFDM && 3878 (flags & HAL_TXDESC_NOACK) == 0) { 3879 /* XXX fragments must use CCK rates w/ protection */ 3880 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3881 flags |= HAL_TXDESC_RTSENA; 3882 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3883 flags |= HAL_TXDESC_CTSENA; 3884 if (isfrag) { 3885 /* 3886 * For frags it would be desirable to use the 3887 * highest CCK rate for RTS/CTS. But stations 3888 * farther away may detect it at a lower CCK rate 3889 * so use the configured protection rate instead 3890 * (for now). 3891 */ 3892 cix = rt->info[sc->sc_protrix].controlRate; 3893 } else 3894 cix = rt->info[sc->sc_protrix].controlRate; 3895 sc->sc_stats.ast_tx_protect++; 3896 } 3897 3898 /* 3899 * Calculate duration. This logically belongs in the 802.11 3900 * layer but it lacks sufficient information to calculate it. 3901 */ 3902 if ((flags & HAL_TXDESC_NOACK) == 0 && 3903 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3904 u_int16_t dur; 3905 /* 3906 * XXX not right with fragmentation. 3907 */ 3908 if (shortPreamble) 3909 dur = rt->info[rix].spAckDuration; 3910 else 3911 dur = rt->info[rix].lpAckDuration; 3912 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 3913 dur += dur; /* additional SIFS+ACK */ 3914 KASSERTMSG(m0->m_nextpkt != NULL, "no fragment"); 3915 /* 3916 * Include the size of next fragment so NAV is 3917 * updated properly. The last fragment uses only 3918 * the ACK duration 3919 */ 3920 dur += ath_hal_computetxtime(ah, rt, 3921 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len, 3922 hdrlen) - 3923 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen, 3924 rix, shortPreamble); 3925 } 3926 if (isfrag) { 3927 /* 3928 * Force hardware to use computed duration for next 3929 * fragment by disabling multi-rate retry which updates 3930 * duration based on the multi-rate duration table. 3931 */ 3932 try0 = ATH_TXMAXTRY; 3933 } 3934 *(u_int16_t *)wh->i_dur = htole16(dur); 3935 } 3936 3937 /* 3938 * Calculate RTS/CTS rate and duration if needed. 3939 */ 3940 ctsduration = 0; 3941 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3942 /* 3943 * CTS transmit rate is derived from the transmit rate 3944 * by looking in the h/w rate table. We must also factor 3945 * in whether or not a short preamble is to be used. 3946 */ 3947 /* NB: cix is set above where RTS/CTS is enabled */ 3948 KASSERTMSG(cix != 0xff, "cix not setup"); 3949 ctsrate = rt->info[cix].rateCode; 3950 /* 3951 * Compute the transmit duration based on the frame 3952 * size and the size of an ACK frame. We call into the 3953 * HAL to do the computation since it depends on the 3954 * characteristics of the actual PHY being used. 3955 * 3956 * NB: CTS is assumed the same size as an ACK so we can 3957 * use the precalculated ACK durations. 3958 */ 3959 if (shortPreamble) { 3960 ctsrate |= rt->info[cix].shortPreamble; 3961 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3962 ctsduration += rt->info[cix].spAckDuration; 3963 ctsduration += ath_hal_computetxtime(ah, 3964 rt, pktlen, rix, AH_TRUE); 3965 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3966 ctsduration += rt->info[rix].spAckDuration; 3967 } else { 3968 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3969 ctsduration += rt->info[cix].lpAckDuration; 3970 ctsduration += ath_hal_computetxtime(ah, 3971 rt, pktlen, rix, AH_FALSE); 3972 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3973 ctsduration += rt->info[rix].lpAckDuration; 3974 } 3975 /* 3976 * Must disable multi-rate retry when using RTS/CTS. 3977 */ 3978 ismrr = 0; 3979 try0 = ATH_TXMGTTRY; /* XXX */ 3980 } else 3981 ctsrate = 0; 3982 3983 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3984 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len, 3985 sc->sc_hwmap[txrate].ieeerate, -1); 3986 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 3987 if (sc->sc_drvbpf) { 3988 u_int64_t tsf = ath_hal_gettsf64(ah); 3989 3990 sc->sc_tx_th.wt_tsf = htole64(tsf); 3991 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3992 if (iswep) 3993 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3994 if (isfrag) 3995 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 3996 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3997 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3998 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3999 4000 bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0, 4001 BPF_D_OUT); 4002 } 4003 4004 /* 4005 * Determine if a tx interrupt should be generated for 4006 * this descriptor. We take a tx interrupt to reap 4007 * descriptors when the h/w hits an EOL condition or 4008 * when the descriptor is specifically marked to generate 4009 * an interrupt. We periodically mark descriptors in this 4010 * way to insure timely replenishing of the supply needed 4011 * for sending frames. Defering interrupts reduces system 4012 * load and potentially allows more concurrent work to be 4013 * done but if done to aggressively can cause senders to 4014 * backup. 4015 * 4016 * NB: use >= to deal with sc_txintrperiod changing 4017 * dynamically through sysctl. 4018 */ 4019 if (flags & HAL_TXDESC_INTREQ) { 4020 txq->axq_intrcnt = 0; 4021 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 4022 flags |= HAL_TXDESC_INTREQ; 4023 txq->axq_intrcnt = 0; 4024 } 4025 4026 /* 4027 * Formulate first tx descriptor with tx controls. 4028 */ 4029 /* XXX check return value? */ 4030 ath_hal_setuptxdesc(ah, ds 4031 , pktlen /* packet length */ 4032 , hdrlen /* header length */ 4033 , atype /* Atheros packet type */ 4034 , ni->ni_txpower /* txpower */ 4035 , txrate, try0 /* series 0 rate/tries */ 4036 , keyix /* key cache index */ 4037 , sc->sc_txantenna /* antenna mode */ 4038 , flags /* flags */ 4039 , ctsrate /* rts/cts rate */ 4040 , ctsduration /* rts/cts duration */ 4041 ); 4042 bf->bf_flags = flags; 4043 /* 4044 * Setup the multi-rate retry state only when we're 4045 * going to use it. This assumes ath_hal_setuptxdesc 4046 * initializes the descriptors (so we don't have to) 4047 * when the hardware supports multi-rate retry and 4048 * we don't use it. 4049 */ 4050 if (ismrr) 4051 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 4052 4053 /* 4054 * Fillin the remainder of the descriptor info. 4055 */ 4056 ds0 = ds; 4057 for (i = 0; i < bf->bf_nseg; i++, ds++) { 4058 ds->ds_data = bf->bf_segs[i].ds_addr; 4059 if (i == bf->bf_nseg - 1) 4060 ds->ds_link = 0; 4061 else 4062 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 4063 ath_hal_filltxdesc(ah, ds 4064 , bf->bf_segs[i].ds_len /* segment length */ 4065 , i == 0 /* first segment */ 4066 , i == bf->bf_nseg - 1 /* last segment */ 4067 , ds0 /* first descriptor */ 4068 ); 4069 4070 /* NB: The desc swap function becomes void, 4071 * if descriptor swapping is not enabled 4072 */ 4073 ath_desc_swap(ds); 4074 4075 DPRINTF(sc, ATH_DEBUG_XMIT, 4076 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 4077 __func__, i, ds->ds_link, ds->ds_data, 4078 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 4079 } 4080 /* 4081 * Insert the frame on the outbound list and 4082 * pass it on to the hardware. 4083 */ 4084 ATH_TXQ_LOCK(txq); 4085 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4086 if (txq->axq_link == NULL) { 4087 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 4088 DPRINTF(sc, ATH_DEBUG_XMIT, 4089 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__, 4090 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc, 4091 txq->axq_depth); 4092 } else { 4093 *txq->axq_link = HTOAH32(bf->bf_daddr); 4094 DPRINTF(sc, ATH_DEBUG_XMIT, 4095 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n", 4096 __func__, txq->axq_qnum, txq->axq_link, 4097 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 4098 } 4099 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 4100 /* 4101 * The CAB queue is started from the SWBA handler since 4102 * frames only go out on DTIM and to avoid possible races. 4103 */ 4104 if (txq != sc->sc_cabq) 4105 ath_hal_txstart(ah, txq->axq_qnum); 4106 ATH_TXQ_UNLOCK(txq); 4107 4108 return 0; 4109 } 4110 4111 /* 4112 * Process completed xmit descriptors from the specified queue. 4113 */ 4114 static int 4115 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 4116 { 4117 struct ath_hal *ah = sc->sc_ah; 4118 struct ieee80211com *ic = &sc->sc_ic; 4119 struct ath_buf *bf; 4120 struct ath_desc *ds, *ds0; 4121 struct ieee80211_node *ni; 4122 struct ath_node *an; 4123 int sr, lr, pri, nacked; 4124 HAL_STATUS status; 4125 4126 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4127 __func__, txq->axq_qnum, 4128 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4129 txq->axq_link); 4130 nacked = 0; 4131 for (;;) { 4132 ATH_TXQ_LOCK(txq); 4133 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4134 bf = STAILQ_FIRST(&txq->axq_q); 4135 if (bf == NULL) { 4136 txq->axq_link = NULL; 4137 ATH_TXQ_UNLOCK(txq); 4138 break; 4139 } 4140 ds0 = &bf->bf_desc[0]; 4141 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4142 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat); 4143 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4144 ath_printtxbuf(bf, status == HAL_OK); 4145 if (status == HAL_EINPROGRESS) { 4146 ATH_TXQ_UNLOCK(txq); 4147 break; 4148 } 4149 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4150 ATH_TXQ_UNLOCK(txq); 4151 4152 ni = bf->bf_node; 4153 if (ni != NULL) { 4154 an = ATH_NODE(ni); 4155 if (ds->ds_txstat.ts_status == 0) { 4156 u_int8_t txant = ds->ds_txstat.ts_antenna; 4157 sc->sc_stats.ast_ant_tx[txant]++; 4158 sc->sc_ant_tx[txant]++; 4159 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 4160 sc->sc_stats.ast_tx_altrate++; 4161 sc->sc_stats.ast_tx_rssi = 4162 ds->ds_txstat.ts_rssi; 4163 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4164 ds->ds_txstat.ts_rssi); 4165 pri = M_WME_GETAC(bf->bf_m); 4166 if (pri >= WME_AC_VO) 4167 ic->ic_wme.wme_hipri_traffic++; 4168 ni->ni_inact = ni->ni_inact_reload; 4169 } else { 4170 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 4171 sc->sc_stats.ast_tx_xretries++; 4172 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 4173 sc->sc_stats.ast_tx_fifoerr++; 4174 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 4175 sc->sc_stats.ast_tx_filtered++; 4176 } 4177 sr = ds->ds_txstat.ts_shortretry; 4178 lr = ds->ds_txstat.ts_longretry; 4179 sc->sc_stats.ast_tx_shortretry += sr; 4180 sc->sc_stats.ast_tx_longretry += lr; 4181 /* 4182 * Hand the descriptor to the rate control algorithm. 4183 */ 4184 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 && 4185 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) { 4186 /* 4187 * If frame was ack'd update the last rx time 4188 * used to workaround phantom bmiss interrupts. 4189 */ 4190 if (ds->ds_txstat.ts_status == 0) 4191 nacked++; 4192 ath_rate_tx_complete(sc, an, ds, ds0); 4193 } 4194 /* 4195 * Reclaim reference to node. 4196 * 4197 * NB: the node may be reclaimed here if, for example 4198 * this is a DEAUTH message that was sent and the 4199 * node was timed out due to inactivity. 4200 */ 4201 ieee80211_free_node(ni); 4202 } 4203 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 4204 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4205 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4206 m_freem(bf->bf_m); 4207 bf->bf_m = NULL; 4208 bf->bf_node = NULL; 4209 4210 ATH_TXBUF_LOCK(sc); 4211 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4212 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4213 ATH_TXBUF_UNLOCK(sc); 4214 } 4215 return nacked; 4216 } 4217 4218 static inline int 4219 txqactive(struct ath_hal *ah, int qnum) 4220 { 4221 u_int32_t txqs = 1<<qnum; 4222 ath_hal_gettxintrtxqs(ah, &txqs); 4223 return (txqs & (1<<qnum)); 4224 } 4225 4226 /* 4227 * Deferred processing of transmit interrupt; special-cased 4228 * for a single hardware transmit queue (e.g. 5210 and 5211). 4229 */ 4230 static void 4231 ath_tx_proc_q0(void *arg, int npending) 4232 { 4233 struct ath_softc *sc = arg; 4234 struct ifnet *ifp = &sc->sc_if; 4235 #ifdef __NetBSD__ 4236 int s; 4237 #endif 4238 4239 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0) 4240 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4241 4242 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4243 ath_tx_processq(sc, sc->sc_cabq); 4244 4245 if (sc->sc_softled) 4246 ath_led_event(sc, ATH_LED_TX); 4247 4248 #ifdef __NetBSD__ 4249 s = splnet(); 4250 #endif 4251 ath_start(ifp); 4252 #ifdef __NetBSD__ 4253 splx(s); 4254 #endif 4255 } 4256 4257 /* 4258 * Deferred processing of transmit interrupt; special-cased 4259 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4260 */ 4261 static void 4262 ath_tx_proc_q0123(void *arg, int npending) 4263 { 4264 struct ath_softc *sc = arg; 4265 struct ifnet *ifp = &sc->sc_if; 4266 int nacked; 4267 #ifdef __NetBSD__ 4268 int s; 4269 #endif 4270 4271 /* 4272 * Process each active queue. 4273 */ 4274 nacked = 0; 4275 if (txqactive(sc->sc_ah, 0)) 4276 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 4277 if (txqactive(sc->sc_ah, 1)) 4278 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 4279 if (txqactive(sc->sc_ah, 2)) 4280 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 4281 if (txqactive(sc->sc_ah, 3)) 4282 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 4283 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4284 ath_tx_processq(sc, sc->sc_cabq); 4285 if (nacked) { 4286 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4287 } 4288 4289 if (sc->sc_softled) 4290 ath_led_event(sc, ATH_LED_TX); 4291 4292 #ifdef __NetBSD__ 4293 s = splnet(); 4294 #endif 4295 ath_start(ifp); 4296 #ifdef __NetBSD__ 4297 splx(s); 4298 #endif 4299 } 4300 4301 /* 4302 * Deferred processing of transmit interrupt. 4303 */ 4304 static void 4305 ath_tx_proc(void *arg, int npending) 4306 { 4307 struct ath_softc *sc = arg; 4308 struct ifnet *ifp = &sc->sc_if; 4309 int i, nacked; 4310 #ifdef __NetBSD__ 4311 int s; 4312 #endif 4313 4314 /* 4315 * Process each active queue. 4316 */ 4317 nacked = 0; 4318 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4319 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 4320 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 4321 if (nacked) { 4322 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4323 } 4324 4325 if (sc->sc_softled) 4326 ath_led_event(sc, ATH_LED_TX); 4327 4328 #ifdef __NetBSD__ 4329 s = splnet(); 4330 #endif 4331 ath_start(ifp); 4332 #ifdef __NetBSD__ 4333 splx(s); 4334 #endif 4335 } 4336 4337 static void 4338 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4339 { 4340 struct ath_hal *ah = sc->sc_ah; 4341 struct ieee80211_node *ni; 4342 struct ath_buf *bf; 4343 struct ath_desc *ds; 4344 4345 /* 4346 * NB: this assumes output has been stopped and 4347 * we do not need to block ath_tx_tasklet 4348 */ 4349 for (;;) { 4350 ATH_TXQ_LOCK(txq); 4351 bf = STAILQ_FIRST(&txq->axq_q); 4352 if (bf == NULL) { 4353 txq->axq_link = NULL; 4354 ATH_TXQ_UNLOCK(txq); 4355 break; 4356 } 4357 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4358 ATH_TXQ_UNLOCK(txq); 4359 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4360 if (sc->sc_debug & ATH_DEBUG_RESET) 4361 ath_printtxbuf(bf, 4362 ath_hal_txprocdesc(ah, bf->bf_desc, 4363 &ds->ds_txstat) == HAL_OK); 4364 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4365 m_freem(bf->bf_m); 4366 bf->bf_m = NULL; 4367 ni = bf->bf_node; 4368 bf->bf_node = NULL; 4369 if (ni != NULL) { 4370 /* 4371 * Reclaim node reference. 4372 */ 4373 ieee80211_free_node(ni); 4374 } 4375 ATH_TXBUF_LOCK(sc); 4376 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4377 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4378 ATH_TXBUF_UNLOCK(sc); 4379 } 4380 } 4381 4382 static void 4383 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4384 { 4385 struct ath_hal *ah = sc->sc_ah; 4386 4387 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4388 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4389 __func__, txq->axq_qnum, 4390 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4391 txq->axq_link); 4392 } 4393 4394 /* 4395 * Drain the transmit queues and reclaim resources. 4396 */ 4397 static void 4398 ath_draintxq(struct ath_softc *sc) 4399 { 4400 struct ath_hal *ah = sc->sc_ah; 4401 int i; 4402 4403 /* XXX return value */ 4404 if (device_is_active(sc->sc_dev)) { 4405 /* don't touch the hardware if marked invalid */ 4406 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4407 DPRINTF(sc, ATH_DEBUG_RESET, 4408 "%s: beacon queue %p\n", __func__, 4409 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 4410 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4411 if (ATH_TXQ_SETUP(sc, i)) 4412 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4413 } 4414 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4415 if (ATH_TXQ_SETUP(sc, i)) 4416 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4417 } 4418 4419 /* 4420 * Disable the receive h/w in preparation for a reset. 4421 */ 4422 static void 4423 ath_stoprecv(struct ath_softc *sc) 4424 { 4425 #define PA2DESC(_sc, _pa) \ 4426 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 4427 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4428 struct ath_hal *ah = sc->sc_ah; 4429 4430 ath_hal_stoppcurecv(ah); /* disable PCU */ 4431 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4432 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4433 DELAY(3000); /* 3ms is long enough for 1 frame */ 4434 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4435 struct ath_buf *bf; 4436 4437 printf("%s: rx queue %p, link %p\n", __func__, 4438 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4439 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4440 struct ath_desc *ds = bf->bf_desc; 4441 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4442 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 4443 &ds->ds_rxstat); 4444 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4445 ath_printrxbuf(bf, status == HAL_OK); 4446 } 4447 } 4448 sc->sc_rxlink = NULL; /* just in case */ 4449 #undef PA2DESC 4450 } 4451 4452 /* 4453 * Enable the receive h/w following a reset. 4454 */ 4455 static int 4456 ath_startrecv(struct ath_softc *sc) 4457 { 4458 struct ath_hal *ah = sc->sc_ah; 4459 struct ath_buf *bf; 4460 4461 sc->sc_rxlink = NULL; 4462 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4463 int error = ath_rxbuf_init(sc, bf); 4464 if (error != 0) { 4465 DPRINTF(sc, ATH_DEBUG_RECV, 4466 "%s: ath_rxbuf_init failed %d\n", 4467 __func__, error); 4468 return error; 4469 } 4470 } 4471 4472 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4473 ath_hal_putrxbuf(ah, bf->bf_daddr); 4474 ath_hal_rxena(ah); /* enable recv descriptors */ 4475 ath_mode_init(sc); /* set filters, etc. */ 4476 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4477 return 0; 4478 } 4479 4480 /* 4481 * Update internal state after a channel change. 4482 */ 4483 static void 4484 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4485 { 4486 struct ieee80211com *ic = &sc->sc_ic; 4487 enum ieee80211_phymode mode; 4488 u_int16_t flags; 4489 4490 /* 4491 * Change channels and update the h/w rate map 4492 * if we're switching; e.g. 11a to 11b/g. 4493 */ 4494 mode = ieee80211_chan2mode(ic, chan); 4495 if (mode != sc->sc_curmode) 4496 ath_setcurmode(sc, mode); 4497 /* 4498 * Update BPF state. NB: ethereal et. al. don't handle 4499 * merged flags well so pick a unique mode for their use. 4500 */ 4501 if (IEEE80211_IS_CHAN_A(chan)) 4502 flags = IEEE80211_CHAN_A; 4503 /* XXX 11g schizophrenia */ 4504 else if (IEEE80211_IS_CHAN_G(chan) || 4505 IEEE80211_IS_CHAN_PUREG(chan)) 4506 flags = IEEE80211_CHAN_G; 4507 else 4508 flags = IEEE80211_CHAN_B; 4509 if (IEEE80211_IS_CHAN_T(chan)) 4510 flags |= IEEE80211_CHAN_TURBO; 4511 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 4512 htole16(chan->ic_freq); 4513 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 4514 htole16(flags); 4515 } 4516 4517 #if 0 4518 /* 4519 * Poll for a channel clear indication; this is required 4520 * for channels requiring DFS and not previously visited 4521 * and/or with a recent radar detection. 4522 */ 4523 static void 4524 ath_dfswait(void *arg) 4525 { 4526 struct ath_softc *sc = arg; 4527 struct ath_hal *ah = sc->sc_ah; 4528 HAL_CHANNEL hchan; 4529 4530 ath_hal_radar_wait(ah, &hchan); 4531 if (hchan.privFlags & CHANNEL_INTERFERENCE) { 4532 if_printf(&sc->sc_if, 4533 "channel %u/0x%x/0x%x has interference\n", 4534 hchan.channel, hchan.channelFlags, hchan.privFlags); 4535 return; 4536 } 4537 if ((hchan.privFlags & CHANNEL_DFS) == 0) { 4538 /* XXX should not happen */ 4539 return; 4540 } 4541 if (hchan.privFlags & CHANNEL_DFS_CLEAR) { 4542 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR; 4543 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4544 if_printf(&sc->sc_if, 4545 "channel %u/0x%x/0x%x marked clear\n", 4546 hchan.channel, hchan.channelFlags, hchan.privFlags); 4547 } else 4548 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc); 4549 } 4550 #endif 4551 4552 /* 4553 * Set/change channels. If the channel is really being changed, 4554 * it's done by reseting the chip. To accomplish this we must 4555 * first cleanup any pending DMA, then restart stuff after a la 4556 * ath_init. 4557 */ 4558 static int 4559 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4560 { 4561 struct ath_hal *ah = sc->sc_ah; 4562 struct ieee80211com *ic = &sc->sc_ic; 4563 HAL_CHANNEL hchan; 4564 4565 /* 4566 * Convert to a HAL channel description with 4567 * the flags constrained to reflect the current 4568 * operating mode. 4569 */ 4570 hchan.channel = chan->ic_freq; 4571 hchan.channelFlags = ath_chan2flags(ic, chan); 4572 4573 DPRINTF(sc, ATH_DEBUG_RESET, 4574 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n", 4575 __func__, 4576 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel, 4577 sc->sc_curchan.channelFlags), 4578 sc->sc_curchan.channel, sc->sc_curchan.channelFlags, 4579 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags), 4580 hchan.channel, hchan.channelFlags); 4581 if (hchan.channel != sc->sc_curchan.channel || 4582 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4583 HAL_STATUS status; 4584 4585 /* 4586 * To switch channels clear any pending DMA operations; 4587 * wait long enough for the RX fifo to drain, reset the 4588 * hardware at the new frequency, and then re-enable 4589 * the relevant bits of the h/w. 4590 */ 4591 ath_hal_intrset(ah, 0); /* disable interrupts */ 4592 ath_draintxq(sc); /* clear pending tx frames */ 4593 ath_stoprecv(sc); /* turn off frame recv */ 4594 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 4595 if_printf(ic->ic_ifp, "%s: unable to reset " 4596 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n", 4597 __func__, ieee80211_chan2ieee(ic, chan), 4598 chan->ic_freq, chan->ic_flags, hchan.channelFlags); 4599 return EIO; 4600 } 4601 sc->sc_curchan = hchan; 4602 ath_update_txpow(sc); /* update tx power state */ 4603 ath_restore_diversity(sc); 4604 sc->sc_calinterval = 1; 4605 sc->sc_caltries = 0; 4606 4607 /* 4608 * Re-enable rx framework. 4609 */ 4610 if (ath_startrecv(sc) != 0) { 4611 if_printf(&sc->sc_if, 4612 "%s: unable to restart recv logic\n", __func__); 4613 return EIO; 4614 } 4615 4616 /* 4617 * Change channels and update the h/w rate map 4618 * if we're switching; e.g. 11a to 11b/g. 4619 */ 4620 ic->ic_ibss_chan = chan; 4621 ath_chan_change(sc, chan); 4622 4623 #if 0 4624 /* 4625 * Handle DFS required waiting period to determine 4626 * if channel is clear of radar traffic. 4627 */ 4628 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 4629 #define DFS_AND_NOT_CLEAR(_c) \ 4630 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS) 4631 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) { 4632 if_printf(&sc->sc_if, 4633 "wait for DFS clear channel signal\n"); 4634 /* XXX stop sndq */ 4635 sc->sc_if.if_flags |= IFF_OACTIVE; 4636 callout_reset(&sc->sc_dfs_ch, 4637 2 * hz, ath_dfswait, sc); 4638 } else 4639 callout_stop(&sc->sc_dfs_ch); 4640 #undef DFS_NOT_CLEAR 4641 } 4642 #endif 4643 4644 /* 4645 * Re-enable interrupts. 4646 */ 4647 ath_hal_intrset(ah, sc->sc_imask); 4648 } 4649 return 0; 4650 } 4651 4652 static void 4653 ath_next_scan(void *arg) 4654 { 4655 struct ath_softc *sc = arg; 4656 struct ieee80211com *ic = &sc->sc_ic; 4657 int s; 4658 4659 /* don't call ath_start w/o network interrupts blocked */ 4660 s = splnet(); 4661 4662 if (ic->ic_state == IEEE80211_S_SCAN) 4663 ieee80211_next_scan(ic); 4664 splx(s); 4665 } 4666 4667 /* 4668 * Periodically recalibrate the PHY to account 4669 * for temperature/environment changes. 4670 */ 4671 static void 4672 ath_calibrate(void *arg) 4673 { 4674 struct ath_softc *sc = arg; 4675 struct ath_hal *ah = sc->sc_ah; 4676 HAL_BOOL iqCalDone; 4677 int s; 4678 4679 sc->sc_stats.ast_per_cal++; 4680 4681 s = splnet(); 4682 4683 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4684 /* 4685 * Rfgain is out of bounds, reset the chip 4686 * to load new gain values. 4687 */ 4688 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4689 "%s: rfgain change\n", __func__); 4690 sc->sc_stats.ast_per_rfgain++; 4691 ath_reset(&sc->sc_if); 4692 } 4693 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) { 4694 DPRINTF(sc, ATH_DEBUG_ANY, 4695 "%s: calibration of channel %u failed\n", 4696 __func__, sc->sc_curchan.channel); 4697 sc->sc_stats.ast_per_calfail++; 4698 } 4699 /* 4700 * Calibrate noise floor data again in case of change. 4701 */ 4702 ath_hal_process_noisefloor(ah); 4703 /* 4704 * Poll more frequently when the IQ calibration is in 4705 * progress to speedup loading the final settings. 4706 * We temper this aggressive polling with an exponential 4707 * back off after 4 tries up to ath_calinterval. 4708 */ 4709 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) { 4710 sc->sc_caltries = 0; 4711 sc->sc_calinterval = ath_calinterval; 4712 } else if (sc->sc_caltries > 4) { 4713 sc->sc_caltries = 0; 4714 sc->sc_calinterval <<= 1; 4715 if (sc->sc_calinterval > ath_calinterval) 4716 sc->sc_calinterval = ath_calinterval; 4717 } 4718 KASSERTMSG(0 < sc->sc_calinterval && 4719 sc->sc_calinterval <= ath_calinterval, 4720 "bad calibration interval %u", sc->sc_calinterval); 4721 4722 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4723 "%s: next +%u (%siqCalDone tries %u)\n", __func__, 4724 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries); 4725 sc->sc_caltries++; 4726 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4727 ath_calibrate, sc); 4728 splx(s); 4729 } 4730 4731 static int 4732 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4733 { 4734 struct ifnet *ifp = ic->ic_ifp; 4735 struct ath_softc *sc = ifp->if_softc; 4736 struct ath_hal *ah = sc->sc_ah; 4737 struct ieee80211_node *ni; 4738 int i, error; 4739 const u_int8_t *bssid; 4740 u_int32_t rfilt; 4741 static const HAL_LED_STATE leds[] = { 4742 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4743 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4744 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4745 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4746 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4747 }; 4748 4749 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4750 ieee80211_state_name[ic->ic_state], 4751 ieee80211_state_name[nstate]); 4752 4753 callout_stop(&sc->sc_scan_ch); 4754 callout_stop(&sc->sc_cal_ch); 4755 #if 0 4756 callout_stop(&sc->sc_dfs_ch); 4757 #endif 4758 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4759 4760 if (nstate == IEEE80211_S_INIT) { 4761 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4762 /* 4763 * NB: disable interrupts so we don't rx frames. 4764 */ 4765 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4766 /* 4767 * Notify the rate control algorithm. 4768 */ 4769 ath_rate_newstate(sc, nstate); 4770 goto done; 4771 } 4772 ni = ic->ic_bss; 4773 error = ath_chan_set(sc, ic->ic_curchan); 4774 if (error != 0) 4775 goto bad; 4776 rfilt = ath_calcrxfilter(sc, nstate); 4777 if (nstate == IEEE80211_S_SCAN) 4778 bssid = ifp->if_broadcastaddr; 4779 else 4780 bssid = ni->ni_bssid; 4781 ath_hal_setrxfilter(ah, rfilt); 4782 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4783 __func__, rfilt, ether_sprintf(bssid)); 4784 4785 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4786 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4787 else 4788 ath_hal_setassocid(ah, bssid, 0); 4789 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4790 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4791 if (ath_hal_keyisvalid(ah, i)) 4792 ath_hal_keysetmac(ah, i, bssid); 4793 } 4794 4795 /* 4796 * Notify the rate control algorithm so rates 4797 * are setup should ath_beacon_alloc be called. 4798 */ 4799 ath_rate_newstate(sc, nstate); 4800 4801 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4802 /* nothing to do */; 4803 } else if (nstate == IEEE80211_S_RUN) { 4804 DPRINTF(sc, ATH_DEBUG_STATE, 4805 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4806 "capinfo=0x%04x chan=%d\n" 4807 , __func__ 4808 , ic->ic_flags 4809 , ni->ni_intval 4810 , ether_sprintf(ni->ni_bssid) 4811 , ni->ni_capinfo 4812 , ieee80211_chan2ieee(ic, ic->ic_curchan)); 4813 4814 switch (ic->ic_opmode) { 4815 case IEEE80211_M_HOSTAP: 4816 case IEEE80211_M_IBSS: 4817 /* 4818 * Allocate and setup the beacon frame. 4819 * 4820 * Stop any previous beacon DMA. This may be 4821 * necessary, for example, when an ibss merge 4822 * causes reconfiguration; there will be a state 4823 * transition from RUN->RUN that means we may 4824 * be called with beacon transmission active. 4825 */ 4826 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4827 ath_beacon_free(sc); 4828 error = ath_beacon_alloc(sc, ni); 4829 if (error != 0) 4830 goto bad; 4831 /* 4832 * If joining an adhoc network defer beacon timer 4833 * configuration to the next beacon frame so we 4834 * have a current TSF to use. Otherwise we're 4835 * starting an ibss/bss so there's no need to delay. 4836 */ 4837 if (ic->ic_opmode == IEEE80211_M_IBSS && 4838 ic->ic_bss->ni_tstamp.tsf != 0) 4839 sc->sc_syncbeacon = 1; 4840 else 4841 ath_beacon_config(sc); 4842 break; 4843 case IEEE80211_M_STA: 4844 /* 4845 * Allocate a key cache slot to the station. 4846 */ 4847 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4848 sc->sc_hasclrkey && 4849 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4850 ath_setup_stationkey(ni); 4851 /* 4852 * Defer beacon timer configuration to the next 4853 * beacon frame so we have a current TSF to use 4854 * (any TSF collected when scanning is likely old). 4855 */ 4856 sc->sc_syncbeacon = 1; 4857 break; 4858 default: 4859 break; 4860 } 4861 /* 4862 * Let the hal process statistics collected during a 4863 * scan so it can provide calibrated noise floor data. 4864 */ 4865 ath_hal_process_noisefloor(ah); 4866 /* 4867 * Reset rssi stats; maybe not the best place... 4868 */ 4869 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4870 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4871 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4872 } else { 4873 ath_hal_intrset(ah, 4874 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4875 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4876 } 4877 done: 4878 /* 4879 * Invoke the parent method to complete the work. 4880 */ 4881 error = sc->sc_newstate(ic, nstate, arg); 4882 /* 4883 * Finally, start any timers. 4884 */ 4885 if (nstate == IEEE80211_S_RUN) { 4886 /* start periodic recalibration timer */ 4887 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4888 ath_calibrate, sc); 4889 } else if (nstate == IEEE80211_S_SCAN) { 4890 /* start ap/neighbor scan timer */ 4891 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4892 ath_next_scan, sc); 4893 } 4894 bad: 4895 return error; 4896 } 4897 4898 /* 4899 * Allocate a key cache slot to the station so we can 4900 * setup a mapping from key index to node. The key cache 4901 * slot is needed for managing antenna state and for 4902 * compression when stations do not use crypto. We do 4903 * it uniliaterally here; if crypto is employed this slot 4904 * will be reassigned. 4905 */ 4906 static void 4907 ath_setup_stationkey(struct ieee80211_node *ni) 4908 { 4909 struct ieee80211com *ic = ni->ni_ic; 4910 struct ath_softc *sc = ic->ic_ifp->if_softc; 4911 ieee80211_keyix keyix, rxkeyix; 4912 4913 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4914 /* 4915 * Key cache is full; we'll fall back to doing 4916 * the more expensive lookup in software. Note 4917 * this also means no h/w compression. 4918 */ 4919 /* XXX msg+statistic */ 4920 } else { 4921 /* XXX locking? */ 4922 ni->ni_ucastkey.wk_keyix = keyix; 4923 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4924 /* NB: this will create a pass-thru key entry */ 4925 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4926 } 4927 } 4928 4929 /* 4930 * Setup driver-specific state for a newly associated node. 4931 * Note that we're called also on a re-associate, the isnew 4932 * param tells us if this is the first time or not. 4933 */ 4934 static void 4935 ath_newassoc(struct ieee80211_node *ni, int isnew) 4936 { 4937 struct ieee80211com *ic = ni->ni_ic; 4938 struct ath_softc *sc = ic->ic_ifp->if_softc; 4939 4940 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4941 if (isnew && 4942 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4943 KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4944 "new assoc with a unicast key already setup (keyix %u)", 4945 ni->ni_ucastkey.wk_keyix); 4946 ath_setup_stationkey(ni); 4947 } 4948 } 4949 4950 static int 4951 ath_getchannels(struct ath_softc *sc, u_int cc, 4952 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4953 { 4954 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 4955 struct ieee80211com *ic = &sc->sc_ic; 4956 struct ifnet *ifp = &sc->sc_if; 4957 struct ath_hal *ah = sc->sc_ah; 4958 HAL_CHANNEL *chans; 4959 int i, ix, nchan; 4960 4961 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4962 M_TEMP, M_WAITOK); 4963 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4964 NULL, 0, NULL, 4965 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4966 u_int32_t rd; 4967 4968 (void)ath_hal_getregdomain(ah, &rd); 4969 if_printf(ifp, "unable to collect channel list from hal; " 4970 "regdomain likely %u country code %u\n", rd, cc); 4971 free(chans, M_TEMP); 4972 return EINVAL; 4973 } 4974 4975 /* 4976 * Convert HAL channels to ieee80211 ones and insert 4977 * them in the table according to their channel number. 4978 */ 4979 for (i = 0; i < nchan; i++) { 4980 HAL_CHANNEL *c = &chans[i]; 4981 u_int16_t flags; 4982 4983 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags); 4984 if (ix > IEEE80211_CHAN_MAX) { 4985 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n", 4986 ix, c->channel, c->channelFlags); 4987 continue; 4988 } 4989 if (ix < 0) { 4990 /* XXX can't handle stuff <2400 right now */ 4991 if (bootverbose) 4992 if_printf(ifp, "hal channel %d (%u/%x) " 4993 "cannot be handled; ignored\n", 4994 ix, c->channel, c->channelFlags); 4995 continue; 4996 } 4997 /* 4998 * Calculate net80211 flags; most are compatible 4999 * but some need massaging. Note the static turbo 5000 * conversion can be removed once net80211 is updated 5001 * to understand static vs. dynamic turbo. 5002 */ 5003 flags = c->channelFlags & COMPAT; 5004 if (c->channelFlags & CHANNEL_STURBO) 5005 flags |= IEEE80211_CHAN_TURBO; 5006 if (ic->ic_channels[ix].ic_freq == 0) { 5007 ic->ic_channels[ix].ic_freq = c->channel; 5008 ic->ic_channels[ix].ic_flags = flags; 5009 } else { 5010 /* channels overlap; e.g. 11g and 11b */ 5011 ic->ic_channels[ix].ic_flags |= flags; 5012 } 5013 } 5014 free(chans, M_TEMP); 5015 return 0; 5016 #undef COMPAT 5017 } 5018 5019 static void 5020 ath_led_done(void *arg) 5021 { 5022 struct ath_softc *sc = arg; 5023 5024 sc->sc_blinking = 0; 5025 } 5026 5027 /* 5028 * Turn the LED off: flip the pin and then set a timer so no 5029 * update will happen for the specified duration. 5030 */ 5031 static void 5032 ath_led_off(void *arg) 5033 { 5034 struct ath_softc *sc = arg; 5035 5036 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 5037 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 5038 } 5039 5040 /* 5041 * Blink the LED according to the specified on/off times. 5042 */ 5043 static void 5044 ath_led_blink(struct ath_softc *sc, int on, int off) 5045 { 5046 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 5047 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 5048 sc->sc_blinking = 1; 5049 sc->sc_ledoff = off; 5050 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 5051 } 5052 5053 static void 5054 ath_led_event(struct ath_softc *sc, int event) 5055 { 5056 5057 sc->sc_ledevent = ticks; /* time of last event */ 5058 if (sc->sc_blinking) /* don't interrupt active blink */ 5059 return; 5060 switch (event) { 5061 case ATH_LED_POLL: 5062 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 5063 sc->sc_hwmap[0].ledoff); 5064 break; 5065 case ATH_LED_TX: 5066 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 5067 sc->sc_hwmap[sc->sc_txrate].ledoff); 5068 break; 5069 case ATH_LED_RX: 5070 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 5071 sc->sc_hwmap[sc->sc_rxrate].ledoff); 5072 break; 5073 } 5074 } 5075 5076 static void 5077 ath_update_txpow(struct ath_softc *sc) 5078 { 5079 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 5080 struct ieee80211com *ic = &sc->sc_ic; 5081 struct ath_hal *ah = sc->sc_ah; 5082 u_int32_t txpow; 5083 5084 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 5085 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 5086 /* read back in case value is clamped */ 5087 (void)ath_hal_gettxpowlimit(ah, &txpow); 5088 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 5089 } 5090 /* 5091 * Fetch max tx power level for status requests. 5092 */ 5093 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 5094 ic->ic_bss->ni_txpower = txpow; 5095 } 5096 5097 static void 5098 rate_setup(struct ath_softc *sc, 5099 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs) 5100 { 5101 int i, maxrates; 5102 5103 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 5104 DPRINTF(sc, ATH_DEBUG_ANY, 5105 "%s: rate table too small (%u > %u)\n", 5106 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 5107 maxrates = IEEE80211_RATE_MAXSIZE; 5108 } else 5109 maxrates = rt->rateCount; 5110 for (i = 0; i < maxrates; i++) 5111 rs->rs_rates[i] = rt->info[i].dot11Rate; 5112 rs->rs_nrates = maxrates; 5113 } 5114 5115 static int 5116 ath_rate_setup(struct ath_softc *sc, u_int mode) 5117 { 5118 struct ath_hal *ah = sc->sc_ah; 5119 struct ieee80211com *ic = &sc->sc_ic; 5120 const HAL_RATE_TABLE *rt; 5121 5122 switch (mode) { 5123 case IEEE80211_MODE_11A: 5124 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5125 break; 5126 case IEEE80211_MODE_11B: 5127 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5128 break; 5129 case IEEE80211_MODE_11G: 5130 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5131 break; 5132 case IEEE80211_MODE_TURBO_A: 5133 /* XXX until static/dynamic turbo is fixed */ 5134 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5135 break; 5136 case IEEE80211_MODE_TURBO_G: 5137 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5138 break; 5139 default: 5140 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5141 __func__, mode); 5142 return 0; 5143 } 5144 sc->sc_rates[mode] = rt; 5145 if (rt != NULL) { 5146 rate_setup(sc, rt, &ic->ic_sup_rates[mode]); 5147 return 1; 5148 } else 5149 return 0; 5150 } 5151 5152 static void 5153 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5154 { 5155 #define N(a) (sizeof(a)/sizeof(a[0])) 5156 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5157 static const struct { 5158 u_int rate; /* tx/rx 802.11 rate */ 5159 u_int16_t timeOn; /* LED on time (ms) */ 5160 u_int16_t timeOff; /* LED off time (ms) */ 5161 } blinkrates[] = { 5162 { 108, 40, 10 }, 5163 { 96, 44, 11 }, 5164 { 72, 50, 13 }, 5165 { 48, 57, 14 }, 5166 { 36, 67, 16 }, 5167 { 24, 80, 20 }, 5168 { 22, 100, 25 }, 5169 { 18, 133, 34 }, 5170 { 12, 160, 40 }, 5171 { 10, 200, 50 }, 5172 { 6, 240, 58 }, 5173 { 4, 267, 66 }, 5174 { 2, 400, 100 }, 5175 { 0, 500, 130 }, 5176 }; 5177 const HAL_RATE_TABLE *rt; 5178 int i, j; 5179 5180 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5181 rt = sc->sc_rates[mode]; 5182 KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode); 5183 for (i = 0; i < rt->rateCount; i++) 5184 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 5185 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5186 for (i = 0; i < 32; i++) { 5187 u_int8_t ix = rt->rateCodeToIndex[i]; 5188 if (ix == 0xff) { 5189 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5190 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5191 continue; 5192 } 5193 sc->sc_hwmap[i].ieeerate = 5194 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 5195 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5196 if (rt->info[ix].shortPreamble || 5197 rt->info[ix].phy == IEEE80211_T_OFDM) 5198 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5199 /* NB: receive frames include FCS */ 5200 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 5201 IEEE80211_RADIOTAP_F_FCS; 5202 /* setup blink rate table to avoid per-packet lookup */ 5203 for (j = 0; j < N(blinkrates)-1; j++) 5204 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5205 break; 5206 /* NB: this uses the last entry if the rate isn't found */ 5207 /* XXX beware of overlow */ 5208 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5209 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5210 } 5211 sc->sc_currates = rt; 5212 sc->sc_curmode = mode; 5213 /* 5214 * All protection frames are transmited at 2Mb/s for 5215 * 11g, otherwise at 1Mb/s. 5216 */ 5217 if (mode == IEEE80211_MODE_11G) 5218 sc->sc_protrix = ath_tx_findrix(rt, 2*2); 5219 else 5220 sc->sc_protrix = ath_tx_findrix(rt, 2*1); 5221 /* rate index used to send management frames */ 5222 sc->sc_minrateix = 0; 5223 /* 5224 * Setup multicast rate state. 5225 */ 5226 /* XXX layering violation */ 5227 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate); 5228 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate; 5229 /* NB: caller is responsible for reseting rate control state */ 5230 #undef N 5231 } 5232 5233 #ifdef AR_DEBUG 5234 static void 5235 ath_printrxbuf(struct ath_buf *bf, int done) 5236 { 5237 struct ath_desc *ds; 5238 int i; 5239 5240 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5241 printf("R%d (%p %" PRIx64 5242 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds, 5243 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5244 ds->ds_link, ds->ds_data, 5245 ds->ds_ctl0, ds->ds_ctl1, 5246 ds->ds_hw[0], ds->ds_hw[1], 5247 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix, 5248 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 5249 } 5250 } 5251 5252 static void 5253 ath_printtxbuf(struct ath_buf *bf, int done) 5254 { 5255 struct ath_desc *ds; 5256 int i; 5257 5258 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5259 printf("T%d (%p %" PRIx64 5260 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 5261 i, ds, 5262 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5263 ds->ds_link, ds->ds_data, 5264 ds->ds_ctl0, ds->ds_ctl1, 5265 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 5266 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 5267 } 5268 } 5269 #endif /* AR_DEBUG */ 5270 5271 static void 5272 ath_watchdog(struct ifnet *ifp) 5273 { 5274 struct ath_softc *sc = ifp->if_softc; 5275 struct ieee80211com *ic = &sc->sc_ic; 5276 struct ath_txq *axq; 5277 int i; 5278 5279 ifp->if_timer = 0; 5280 if ((ifp->if_flags & IFF_RUNNING) == 0 || 5281 !device_is_active(sc->sc_dev)) 5282 return; 5283 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5284 if (!ATH_TXQ_SETUP(sc, i)) 5285 continue; 5286 axq = &sc->sc_txq[i]; 5287 ATH_TXQ_LOCK(axq); 5288 if (axq->axq_timer == 0) 5289 ; 5290 else if (--axq->axq_timer == 0) { 5291 ATH_TXQ_UNLOCK(axq); 5292 if_printf(ifp, "device timeout (txq %d, " 5293 "txintrperiod %d)\n", i, sc->sc_txintrperiod); 5294 if (sc->sc_txintrperiod > 1) 5295 sc->sc_txintrperiod--; 5296 ath_reset(ifp); 5297 if_statinc(ifp, if_oerrors); 5298 sc->sc_stats.ast_watchdog++; 5299 break; 5300 } else 5301 ifp->if_timer = 1; 5302 ATH_TXQ_UNLOCK(axq); 5303 } 5304 ieee80211_watchdog(ic); 5305 } 5306 5307 /* 5308 * Diagnostic interface to the HAL. This is used by various 5309 * tools to do things like retrieve register contents for 5310 * debugging. The mechanism is intentionally opaque so that 5311 * it can change frequently w/o concern for compatiblity. 5312 */ 5313 static int 5314 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5315 { 5316 struct ath_hal *ah = sc->sc_ah; 5317 u_int id = ad->ad_id & ATH_DIAG_ID; 5318 void *indata = NULL; 5319 void *outdata = NULL; 5320 u_int32_t insize = ad->ad_in_size; 5321 u_int32_t outsize = ad->ad_out_size; 5322 int error = 0; 5323 5324 if (ad->ad_id & ATH_DIAG_IN) { 5325 /* 5326 * Copy in data. 5327 */ 5328 indata = malloc(insize, M_TEMP, M_WAITOK); 5329 error = copyin(ad->ad_in_data, indata, insize); 5330 if (error) 5331 goto bad; 5332 } 5333 if (ad->ad_id & ATH_DIAG_DYN) { 5334 /* 5335 * Allocate a buffer for the results (otherwise the HAL 5336 * returns a pointer to a buffer where we can read the 5337 * results). Note that we depend on the HAL leaving this 5338 * pointer for us to use below in reclaiming the buffer; 5339 * may want to be more defensive. 5340 */ 5341 outdata = malloc(outsize, M_TEMP, M_WAITOK); 5342 } 5343 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5344 if (outsize < ad->ad_out_size) 5345 ad->ad_out_size = outsize; 5346 if (outdata != NULL) 5347 error = copyout(outdata, ad->ad_out_data, 5348 ad->ad_out_size); 5349 } else { 5350 error = EINVAL; 5351 } 5352 bad: 5353 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5354 free(indata, M_TEMP); 5355 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5356 free(outdata, M_TEMP); 5357 return error; 5358 } 5359 5360 static int 5361 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data) 5362 { 5363 #define IS_RUNNING(ifp) \ 5364 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 5365 struct ath_softc *sc = ifp->if_softc; 5366 struct ieee80211com *ic = &sc->sc_ic; 5367 struct ifreq *ifr = (struct ifreq *)data; 5368 int error = 0, s; 5369 5370 s = splnet(); 5371 switch (cmd) { 5372 case SIOCSIFFLAGS: 5373 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 5374 break; 5375 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 5376 case IFF_UP | IFF_RUNNING: 5377 /* 5378 * To avoid rescanning another access point, 5379 * do not call ath_init() here. Instead, 5380 * only reflect promisc mode settings. 5381 */ 5382 ath_mode_init(sc); 5383 break; 5384 case IFF_UP: 5385 /* 5386 * Beware of being called during attach/detach 5387 * to reset promiscuous mode. In that case we 5388 * will still be marked UP but not RUNNING. 5389 * However trying to re-init the interface 5390 * is the wrong thing to do as we've already 5391 * torn down much of our state. There's 5392 * probably a better way to deal with this. 5393 */ 5394 error = ath_init(sc); 5395 break; 5396 case IFF_RUNNING: 5397 ath_stop_locked(ifp, 1); 5398 break; 5399 case 0: 5400 break; 5401 } 5402 break; 5403 case SIOCADDMULTI: 5404 case SIOCDELMULTI: 5405 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 5406 if (ifp->if_flags & IFF_RUNNING) 5407 ath_mode_init(sc); 5408 error = 0; 5409 } 5410 break; 5411 case SIOCGATHSTATS: { 5412 struct ath_stats stats_out; 5413 struct if_data ifi; 5414 5415 /* NB: embed these numbers to get a consistent view */ 5416 5417 stats_out = sc->sc_stats; 5418 stats_out.ast_rx_rssi = ieee80211_getrssi(ic); 5419 splx(s); 5420 5421 if_export_if_data(ifp, &ifi, false); 5422 stats_out.ast_tx_packets = ifi.ifi_opackets; 5423 stats_out.ast_rx_packets = ifi.ifi_ipackets; 5424 5425 return copyout(&stats_out, 5426 ifr->ifr_data, sizeof (stats_out)); 5427 } 5428 5429 case SIOCGATHDIAG: 5430 error = kauth_authorize_network(curlwp->l_cred, 5431 KAUTH_NETWORK_INTERFACE, 5432 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 5433 NULL); 5434 if (error) 5435 break; 5436 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5437 break; 5438 default: 5439 error = ieee80211_ioctl(ic, cmd, data); 5440 if (error != ENETRESET) 5441 ; 5442 else if (IS_RUNNING(ifp) && 5443 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 5444 error = ath_init(sc); 5445 else 5446 error = 0; 5447 break; 5448 } 5449 splx(s); 5450 return error; 5451 #undef IS_RUNNING 5452 } 5453 5454 static void 5455 ath_bpfattach(struct ath_softc *sc) 5456 { 5457 struct ifnet *ifp = &sc->sc_if; 5458 5459 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 5460 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 5461 &sc->sc_drvbpf); 5462 5463 /* 5464 * Initialize constant fields. 5465 * XXX make header lengths a multiple of 32-bits so subsequent 5466 * headers are properly aligned; this is a kludge to keep 5467 * certain applications happy. 5468 * 5469 * NB: the channel is setup each time we transition to the 5470 * RUN state to avoid filling it in for each frame. 5471 */ 5472 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 5473 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 5474 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 5475 5476 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 5477 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 5478 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 5479 } 5480 5481 /* 5482 * Announce various information on device/driver attach. 5483 */ 5484 static void 5485 ath_announce(struct ath_softc *sc) 5486 { 5487 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 5488 struct ifnet *ifp = &sc->sc_if; 5489 struct ath_hal *ah = sc->sc_ah; 5490 u_int modes, cc; 5491 5492 if_printf(ifp, "mac %d.%d phy %d.%d", 5493 ah->ah_macVersion, ah->ah_macRev, 5494 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5495 /* 5496 * Print radio revision(s). We check the wireless modes 5497 * to avoid falsely printing revs for inoperable parts. 5498 * Dual-band radio revs are returned in the 5 GHz rev number. 5499 */ 5500 ath_hal_getcountrycode(ah, &cc); 5501 modes = ath_hal_getwirelessmodes(ah, cc); 5502 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 5503 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 5504 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d", 5505 ah->ah_analog5GhzRev >> 4, 5506 ah->ah_analog5GhzRev & 0xf, 5507 ah->ah_analog2GhzRev >> 4, 5508 ah->ah_analog2GhzRev & 0xf); 5509 else 5510 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5511 ah->ah_analog5GhzRev & 0xf); 5512 } else 5513 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5514 ah->ah_analog5GhzRev & 0xf); 5515 printf("\n"); 5516 if (bootverbose) { 5517 int i; 5518 for (i = 0; i <= WME_AC_VO; i++) { 5519 struct ath_txq *txq = sc->sc_ac2q[i]; 5520 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5521 txq->axq_qnum, ieee80211_wme_acnames[i]); 5522 } 5523 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5524 sc->sc_cabq->axq_qnum); 5525 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5526 } 5527 if (ath_rxbuf != ATH_RXBUF) 5528 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5529 if (ath_txbuf != ATH_TXBUF) 5530 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5531 #undef HAL_MODE_DUALBAND 5532 } 5533