xref: /netbsd/sys/dev/ic/ath.c (revision 22dee55a)
1 /*	$NetBSD: ath.c,v 1.130 2020/01/29 14:09:58 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.130 2020/01/29 14:09:58 thorpej Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #ifdef _KERNEL_OPT
55 #include "opt_inet.h"
56 #endif
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/sockio.h>
68 #include <sys/errno.h>
69 #include <sys/callout.h>
70 #include <sys/bus.h>
71 #include <sys/endian.h>
72 #include <sys/kauth.h>
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_types.h>
78 #include <net/if_arp.h>
79 #include <net/if_ether.h>
80 #include <net/if_llc.h>
81 
82 #include <net80211/ieee80211_netbsd.h>
83 #include <net80211/ieee80211_var.h>
84 
85 #include <net/bpf.h>
86 
87 #ifdef INET
88 #include <netinet/in.h>
89 #endif
90 
91 #include <sys/device.h>
92 #include <dev/ic/ath_netbsd.h>
93 
94 #define	AR_DEBUG
95 #include <dev/ic/athvar.h>
96 #include "ah_desc.h"
97 #include "ah_devid.h"	/* XXX for softled */
98 #include "opt_ah.h"
99 
100 #ifdef ATH_TX99_DIAG
101 #include <dev/ath/ath_tx99/ath_tx99.h>
102 #endif
103 
104 /* unaligned little endian access */
105 #define LE_READ_2(p)							\
106 	((u_int16_t)							\
107 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
108 #define LE_READ_4(p)							\
109 	((u_int32_t)							\
110 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
111 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
112 
113 enum {
114 	ATH_LED_TX,
115 	ATH_LED_RX,
116 	ATH_LED_POLL,
117 };
118 
119 #ifdef	AH_NEED_DESC_SWAP
120 #define	HTOAH32(x)	htole32(x)
121 #else
122 #define	HTOAH32(x)	(x)
123 #endif
124 
125 static int	ath_ifinit(struct ifnet *);
126 static int	ath_init(struct ath_softc *);
127 static void	ath_stop_locked(struct ifnet *, int);
128 static void	ath_stop(struct ifnet *, int);
129 static void	ath_start(struct ifnet *);
130 static int	ath_media_change(struct ifnet *);
131 static void	ath_watchdog(struct ifnet *);
132 static int	ath_ioctl(struct ifnet *, u_long, void *);
133 static void	ath_fatal_proc(void *, int);
134 static void	ath_rxorn_proc(void *, int);
135 static void	ath_bmiss_proc(void *, int);
136 static void	ath_radar_proc(void *, int);
137 static int	ath_key_alloc(struct ieee80211com *,
138 			const struct ieee80211_key *,
139 			ieee80211_keyix *, ieee80211_keyix *);
140 static int	ath_key_delete(struct ieee80211com *,
141 			const struct ieee80211_key *);
142 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
143 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
144 static void	ath_key_update_begin(struct ieee80211com *);
145 static void	ath_key_update_end(struct ieee80211com *);
146 static void	ath_mode_init(struct ath_softc *);
147 static void	ath_setslottime(struct ath_softc *);
148 static void	ath_updateslot(struct ifnet *);
149 static int	ath_beaconq_setup(struct ath_hal *);
150 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
151 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
152 static void	ath_beacon_proc(void *, int);
153 static void	ath_bstuck_proc(void *, int);
154 static void	ath_beacon_free(struct ath_softc *);
155 static void	ath_beacon_config(struct ath_softc *);
156 static void	ath_descdma_cleanup(struct ath_softc *sc,
157 			struct ath_descdma *, ath_bufhead *);
158 static int	ath_desc_alloc(struct ath_softc *);
159 static void	ath_desc_free(struct ath_softc *);
160 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
161 static void	ath_node_free(struct ieee80211_node *);
162 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
163 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
164 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
165 			struct ieee80211_node *ni,
166 			int subtype, int rssi, u_int32_t rstamp);
167 static void	ath_setdefantenna(struct ath_softc *, u_int);
168 static void	ath_rx_proc(void *, int);
169 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
170 static int	ath_tx_setup(struct ath_softc *, int, int);
171 static int	ath_wme_update(struct ieee80211com *);
172 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
173 static void	ath_tx_cleanup(struct ath_softc *);
174 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
175 			     struct ath_buf *, struct mbuf *);
176 static void	ath_tx_proc_q0(void *, int);
177 static void	ath_tx_proc_q0123(void *, int);
178 static void	ath_tx_proc(void *, int);
179 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
180 static void	ath_draintxq(struct ath_softc *);
181 static void	ath_stoprecv(struct ath_softc *);
182 static int	ath_startrecv(struct ath_softc *);
183 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
184 static void	ath_next_scan(void *);
185 static void	ath_calibrate(void *);
186 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
187 static void	ath_setup_stationkey(struct ieee80211_node *);
188 static void	ath_newassoc(struct ieee80211_node *, int);
189 static int	ath_getchannels(struct ath_softc *, u_int cc,
190 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
191 static void	ath_led_event(struct ath_softc *, int);
192 static void	ath_update_txpow(struct ath_softc *);
193 static void	ath_freetx(struct mbuf *);
194 static void	ath_restore_diversity(struct ath_softc *);
195 
196 static int	ath_rate_setup(struct ath_softc *, u_int mode);
197 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
198 
199 static void	ath_bpfattach(struct ath_softc *);
200 static void	ath_announce(struct ath_softc *);
201 
202 #ifdef __NetBSD__
203 #define	ATH_TASK_FUNC(__func)						\
204 static void __CONCAT(__func, _si)(void *arg)				\
205 {									\
206 	__func(arg, 1);							\
207 }
208 ATH_TASK_FUNC(ath_rx_proc);
209 ATH_TASK_FUNC(ath_rxorn_proc);
210 ATH_TASK_FUNC(ath_fatal_proc);
211 ATH_TASK_FUNC(ath_bmiss_proc);
212 ATH_TASK_FUNC(ath_bstuck_proc);
213 ATH_TASK_FUNC(ath_radar_proc);
214 ATH_TASK_FUNC(ath_tx_proc_q0);
215 ATH_TASK_FUNC(ath_tx_proc_q0123);
216 ATH_TASK_FUNC(ath_tx_proc);
217 #endif
218 
219 int ath_dwelltime = 200;		/* 5 channels/second */
220 int ath_calinterval = 30;		/* calibrate every 30 secs */
221 int ath_outdoor = AH_TRUE;		/* outdoor operation */
222 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
223 int ath_countrycode = CTRY_DEFAULT;	/* country code */
224 int ath_regdomain = 0;			/* regulatory domain */
225 int ath_debug = 0;
226 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
227 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
228 
229 #ifdef AR_DEBUG
230 enum {
231 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
232 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
233 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
234 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
235 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
236 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
237 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
238 	ATH_DEBUG_BEACON	= 0x00000080,	/* beacon handling */
239 	ATH_DEBUG_WATCHDOG	= 0x00000100,	/* watchdog timeout */
240 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
241 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
242 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
243 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
244 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
245 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
246 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
247 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
248 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
249 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
250 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
251 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
252 	ATH_DEBUG_ANY		= 0xffffffff
253 };
254 #define	IFF_DUMPPKTS(sc, m)					\
255 	((sc->sc_debug & (m)) ||				\
256 	    (sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2))	\
257 	    == (IFF_DEBUG | IFF_LINK2))
258 #define	DPRINTF(sc, m, fmt, ...) do {				\
259 	if (sc->sc_debug & (m))					\
260 		printf(fmt, __VA_ARGS__);			\
261 } while (0)
262 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
263 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
264 		ath_keyprint(__func__, ix, hk, mac);		\
265 } while (0)
266 static	void ath_printrxbuf(struct ath_buf *bf, int);
267 static	void ath_printtxbuf(struct ath_buf *bf, int);
268 #else
269 #define IFF_DUMPPKTS(sc, m)					\
270 	((sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2))		\
271 	    == (IFF_DEBUG | IFF_LINK2))
272 #define DPRINTF(m, fmt, ...)
273 #define KEYPRINTF(sc, k, ix, mac)
274 #endif
275 
276 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
277 
278 int
279 ath_attach(u_int16_t devid, struct ath_softc *sc)
280 {
281 	struct ifnet *ifp = &sc->sc_if;
282 	struct ieee80211com *ic = &sc->sc_ic;
283 	struct ath_hal *ah = NULL;
284 	HAL_STATUS status;
285 	int error = 0, i;
286 
287 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
288 
289 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
290 
291 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
292 
293 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
294 	if (ah == NULL) {
295 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
296 			status);
297 		error = ENXIO;
298 		goto bad;
299 	}
300 	if (ah->ah_abi != HAL_ABI_VERSION) {
301 		if_printf(ifp, "HAL ABI mismatch detected "
302 			"(HAL:0x%x != driver:0x%x)\n",
303 			ah->ah_abi, HAL_ABI_VERSION);
304 		error = ENXIO;
305 		goto bad;
306 	}
307 	sc->sc_ah = ah;
308 
309 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
310 	    "pmf-powerdown", false))
311 		goto bad;
312 
313 	/*
314 	 * Check if the MAC has multi-rate retry support.
315 	 * We do this by trying to setup a fake extended
316 	 * descriptor.  MAC's that don't have support will
317 	 * return false w/o doing anything.  MAC's that do
318 	 * support it will return true w/o doing anything.
319 	 */
320 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
321 
322 	/*
323 	 * Check if the device has hardware counters for PHY
324 	 * errors.  If so we need to enable the MIB interrupt
325 	 * so we can act on stat triggers.
326 	 */
327 	if (ath_hal_hwphycounters(ah))
328 		sc->sc_needmib = 1;
329 
330 	/*
331 	 * Get the hardware key cache size.
332 	 */
333 	sc->sc_keymax = ath_hal_keycachesize(ah);
334 	if (sc->sc_keymax > ATH_KEYMAX) {
335 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
336 			ATH_KEYMAX, sc->sc_keymax);
337 		sc->sc_keymax = ATH_KEYMAX;
338 	}
339 	/*
340 	 * Reset the key cache since some parts do not
341 	 * reset the contents on initial power up.
342 	 */
343 	for (i = 0; i < sc->sc_keymax; i++)
344 		ath_hal_keyreset(ah, i);
345 	/*
346 	 * Mark key cache slots associated with global keys
347 	 * as in use.  If we knew TKIP was not to be used we
348 	 * could leave the +32, +64, and +32+64 slots free.
349 	 * XXX only for splitmic.
350 	 */
351 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
352 		setbit(sc->sc_keymap, i);
353 		setbit(sc->sc_keymap, i+32);
354 		setbit(sc->sc_keymap, i+64);
355 		setbit(sc->sc_keymap, i+32+64);
356 	}
357 
358 	/*
359 	 * Collect the channel list using the default country
360 	 * code and including outdoor channels.  The 802.11 layer
361 	 * is resposible for filtering this list based on settings
362 	 * like the phy mode.
363 	 */
364 	error = ath_getchannels(sc, ath_countrycode,
365 			ath_outdoor, ath_xchanmode);
366 	if (error != 0)
367 		goto bad;
368 
369 	/*
370 	 * Setup rate tables for all potential media types.
371 	 */
372 	ath_rate_setup(sc, IEEE80211_MODE_11A);
373 	ath_rate_setup(sc, IEEE80211_MODE_11B);
374 	ath_rate_setup(sc, IEEE80211_MODE_11G);
375 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
376 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
377 	/* NB: setup here so ath_rate_update is happy */
378 	ath_setcurmode(sc, IEEE80211_MODE_11A);
379 
380 	/*
381 	 * Allocate tx+rx descriptors and populate the lists.
382 	 */
383 	error = ath_desc_alloc(sc);
384 	if (error != 0) {
385 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
386 		goto bad;
387 	}
388 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
389 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
390 #if 0
391 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
392 #endif
393 
394 	ATH_TXBUF_LOCK_INIT(sc);
395 
396 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
397 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
398 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
399 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
400 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
401 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
402 
403 	/*
404 	 * Allocate hardware transmit queues: one queue for
405 	 * beacon frames and one data queue for each QoS
406 	 * priority.  Note that the hal handles reseting
407 	 * these queues at the needed time.
408 	 *
409 	 * XXX PS-Poll
410 	 */
411 	sc->sc_bhalq = ath_beaconq_setup(ah);
412 	if (sc->sc_bhalq == (u_int) -1) {
413 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
414 		error = EIO;
415 		goto bad2;
416 	}
417 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
418 	if (sc->sc_cabq == NULL) {
419 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
420 		error = EIO;
421 		goto bad2;
422 	}
423 	/* NB: insure BK queue is the lowest priority h/w queue */
424 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
425 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
426 			ieee80211_wme_acnames[WME_AC_BK]);
427 		error = EIO;
428 		goto bad2;
429 	}
430 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
431 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
432 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
433 		/*
434 		 * Not enough hardware tx queues to properly do WME;
435 		 * just punt and assign them all to the same h/w queue.
436 		 * We could do a better job of this if, for example,
437 		 * we allocate queues when we switch from station to
438 		 * AP mode.
439 		 */
440 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
441 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
442 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
443 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
444 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
445 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
446 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
447 	}
448 
449 	/*
450 	 * Special case certain configurations.  Note the
451 	 * CAB queue is handled by these specially so don't
452 	 * include them when checking the txq setup mask.
453 	 */
454 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
455 	case 0x01:
456 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
457 		break;
458 	case 0x0f:
459 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
460 		break;
461 	default:
462 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
463 		break;
464 	}
465 
466 	/*
467 	 * Setup rate control.  Some rate control modules
468 	 * call back to change the anntena state so expose
469 	 * the necessary entry points.
470 	 * XXX maybe belongs in struct ath_ratectrl?
471 	 */
472 	sc->sc_setdefantenna = ath_setdefantenna;
473 	sc->sc_rc = ath_rate_attach(sc);
474 	if (sc->sc_rc == NULL) {
475 		error = EIO;
476 		goto bad2;
477 	}
478 
479 	sc->sc_blinking = 0;
480 	sc->sc_ledstate = 1;
481 	sc->sc_ledon = 0;			/* low true */
482 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
483 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
484 	/*
485 	 * Auto-enable soft led processing for IBM cards and for
486 	 * 5211 minipci cards.  Users can also manually enable/disable
487 	 * support with a sysctl.
488 	 */
489 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
490 	if (sc->sc_softled) {
491 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
492 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
493 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
494 	}
495 
496 	ifp->if_softc = sc;
497 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
498 	ifp->if_start = ath_start;
499 	ifp->if_stop = ath_stop;
500 	ifp->if_watchdog = ath_watchdog;
501 	ifp->if_ioctl = ath_ioctl;
502 	ifp->if_init = ath_ifinit;
503 	IFQ_SET_READY(&ifp->if_snd);
504 
505 	ic->ic_ifp = ifp;
506 	ic->ic_reset = ath_reset;
507 	ic->ic_newassoc = ath_newassoc;
508 	ic->ic_updateslot = ath_updateslot;
509 	ic->ic_wme.wme_update = ath_wme_update;
510 	/* XXX not right but it's not used anywhere important */
511 	ic->ic_phytype = IEEE80211_T_OFDM;
512 	ic->ic_opmode = IEEE80211_M_STA;
513 	ic->ic_caps =
514 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
515 		| IEEE80211_C_HOSTAP		/* hostap mode */
516 		| IEEE80211_C_MONITOR		/* monitor mode */
517 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
518 		| IEEE80211_C_SHSLOT		/* short slot time supported */
519 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
520 		| IEEE80211_C_TXFRAG		/* handle tx frags */
521 		;
522 	/*
523 	 * Query the hal to figure out h/w crypto support.
524 	 */
525 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
526 		ic->ic_caps |= IEEE80211_C_WEP;
527 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
528 		ic->ic_caps |= IEEE80211_C_AES;
529 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
530 		ic->ic_caps |= IEEE80211_C_AES_CCM;
531 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
532 		ic->ic_caps |= IEEE80211_C_CKIP;
533 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
534 		ic->ic_caps |= IEEE80211_C_TKIP;
535 		/*
536 		 * Check if h/w does the MIC and/or whether the
537 		 * separate key cache entries are required to
538 		 * handle both tx+rx MIC keys.
539 		 */
540 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
541 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
542 
543 		/*
544 		 * If the h/w supports storing tx+rx MIC keys
545 		 * in one cache slot automatically enable use.
546 		 */
547 		if (ath_hal_hastkipsplit(ah) ||
548 		    !ath_hal_settkipsplit(ah, AH_FALSE))
549 			sc->sc_splitmic = 1;
550 
551 		/*
552 		 * If the h/w can do TKIP MIC together with WME then
553 		 * we use it; otherwise we force the MIC to be done
554 		 * in software by the net80211 layer.
555 		 */
556 		if (ath_hal_haswmetkipmic(ah))
557 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
558 	}
559 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
560 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
561 	/*
562 	 * Mark key cache slots associated with global keys
563 	 * as in use.  If we knew TKIP was not to be used we
564 	 * could leave the +32, +64, and +32+64 slots free.
565 	 */
566 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
567 		setbit(sc->sc_keymap, i);
568 		setbit(sc->sc_keymap, i+64);
569 		if (sc->sc_splitmic) {
570 			setbit(sc->sc_keymap, i+32);
571 			setbit(sc->sc_keymap, i+32+64);
572 		}
573 	}
574 	/*
575 	 * TPC support can be done either with a global cap or
576 	 * per-packet support.  The latter is not available on
577 	 * all parts.  We're a bit pedantic here as all parts
578 	 * support a global cap.
579 	 */
580 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
581 		ic->ic_caps |= IEEE80211_C_TXPMGT;
582 
583 	/*
584 	 * Mark WME capability only if we have sufficient
585 	 * hardware queues to do proper priority scheduling.
586 	 */
587 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
588 		ic->ic_caps |= IEEE80211_C_WME;
589 	/*
590 	 * Check for misc other capabilities.
591 	 */
592 	if (ath_hal_hasbursting(ah))
593 		ic->ic_caps |= IEEE80211_C_BURST;
594 
595 	/*
596 	 * Indicate we need the 802.11 header padded to a
597 	 * 32-bit boundary for 4-address and QoS frames.
598 	 */
599 	ic->ic_flags |= IEEE80211_F_DATAPAD;
600 
601 	/*
602 	 * Query the hal about antenna support.
603 	 */
604 	sc->sc_defant = ath_hal_getdefantenna(ah);
605 
606 	/*
607 	 * Not all chips have the VEOL support we want to
608 	 * use with IBSS beacons; check here for it.
609 	 */
610 	sc->sc_hasveol = ath_hal_hasveol(ah);
611 
612 	/* get mac address from hardware */
613 	ath_hal_getmac(ah, ic->ic_myaddr);
614 
615 	if_attach(ifp);
616 	/* call MI attach routine. */
617 	ieee80211_ifattach(ic);
618 	/* override default methods */
619 	ic->ic_node_alloc = ath_node_alloc;
620 	sc->sc_node_free = ic->ic_node_free;
621 	ic->ic_node_free = ath_node_free;
622 	ic->ic_node_getrssi = ath_node_getrssi;
623 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
624 	ic->ic_recv_mgmt = ath_recv_mgmt;
625 	sc->sc_newstate = ic->ic_newstate;
626 	ic->ic_newstate = ath_newstate;
627 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
628 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
629 	ic->ic_crypto.cs_key_delete = ath_key_delete;
630 	ic->ic_crypto.cs_key_set = ath_key_set;
631 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
632 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
633 	/* complete initialization */
634 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
635 
636 	ath_bpfattach(sc);
637 
638 	sc->sc_flags |= ATH_ATTACHED;
639 
640 	/*
641 	 * Setup dynamic sysctl's now that country code and
642 	 * regdomain are available from the hal.
643 	 */
644 	ath_sysctlattach(sc);
645 
646 	ieee80211_announce(ic);
647 	ath_announce(sc);
648 	return 0;
649 bad2:
650 	ath_tx_cleanup(sc);
651 	ath_desc_free(sc);
652 bad:
653 	if (ah)
654 		ath_hal_detach(ah);
655 	/* XXX don't get under the abstraction like this */
656 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
657 	return error;
658 }
659 
660 int
661 ath_detach(struct ath_softc *sc)
662 {
663 	struct ifnet *ifp = &sc->sc_if;
664 	int s;
665 
666 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
667 		return (0);
668 
669 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
670 		__func__, ifp->if_flags);
671 
672 	s = splnet();
673 	ath_stop(ifp, 1);
674 	bpf_detach(ifp);
675 	/*
676 	 * NB: the order of these is important:
677 	 * o call the 802.11 layer before detaching the hal to
678 	 *   insure callbacks into the driver to delete global
679 	 *   key cache entries can be handled
680 	 * o reclaim the tx queue data structures after calling
681 	 *   the 802.11 layer as we'll get called back to reclaim
682 	 *   node state and potentially want to use them
683 	 * o to cleanup the tx queues the hal is called, so detach
684 	 *   it last
685 	 * Other than that, it's straightforward...
686 	 */
687 	ieee80211_ifdetach(&sc->sc_ic);
688 #ifdef ATH_TX99_DIAG
689 	if (sc->sc_tx99 != NULL)
690 		sc->sc_tx99->detach(sc->sc_tx99);
691 #endif
692 	ath_rate_detach(sc->sc_rc);
693 	ath_desc_free(sc);
694 	ath_tx_cleanup(sc);
695 	sysctl_teardown(&sc->sc_sysctllog);
696 	ath_hal_detach(sc->sc_ah);
697 	if_detach(ifp);
698 	splx(s);
699 
700 	return 0;
701 }
702 
703 void
704 ath_suspend(struct ath_softc *sc)
705 {
706 #if notyet
707 	/*
708 	 * Set the chip in full sleep mode.  Note that we are
709 	 * careful to do this only when bringing the interface
710 	 * completely to a stop.  When the chip is in this state
711 	 * it must be carefully woken up or references to
712 	 * registers in the PCI clock domain may freeze the bus
713 	 * (and system).  This varies by chip and is mostly an
714 	 * issue with newer parts that go to sleep more quickly.
715 	 */
716 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
717 #endif
718 }
719 
720 bool
721 ath_resume(struct ath_softc *sc)
722 {
723 	struct ath_hal *ah = sc->sc_ah;
724 	struct ieee80211com *ic = &sc->sc_ic;
725 	HAL_STATUS status;
726 	int i;
727 
728 #if notyet
729 	ath_hal_setpower(ah, HAL_PM_AWAKE);
730 #else
731 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
732 #endif
733 
734 	/*
735 	 * Reset the key cache since some parts do not
736 	 * reset the contents on initial power up.
737 	 */
738 	for (i = 0; i < sc->sc_keymax; i++)
739 		ath_hal_keyreset(ah, i);
740 
741 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
742 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
743 		if (ATH_TXQ_SETUP(sc, i))
744 			ath_hal_resettxqueue(ah, i);
745 
746 	if (sc->sc_softled) {
747 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
748 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
749 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
750 	}
751 	return true;
752 }
753 
754 /*
755  * Interrupt handler.  Most of the actual processing is deferred.
756  */
757 int
758 ath_intr(void *arg)
759 {
760 	struct ath_softc *sc = arg;
761 	struct ifnet *ifp = &sc->sc_if;
762 	struct ath_hal *ah = sc->sc_ah;
763 	HAL_INT status = 0;
764 
765 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
766 		/*
767 		 * The hardware is not ready/present, don't touch anything.
768 		 * Note this can happen early on if the IRQ is shared.
769 		 */
770 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
771 		return 0;
772 	}
773 
774 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
775 		return 0;
776 
777 	if ((ifp->if_flags & (IFF_RUNNING |IFF_UP)) != (IFF_RUNNING |IFF_UP)) {
778 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
779 			__func__, ifp->if_flags);
780 		ath_hal_getisr(ah, &status);	/* clear ISR */
781 		ath_hal_intrset(ah, 0);		/* disable further intr's */
782 		return 1; /* XXX */
783 	}
784 	/*
785 	 * Figure out the reason(s) for the interrupt.  Note
786 	 * that the hal returns a pseudo-ISR that may include
787 	 * bits we haven't explicitly enabled so we mask the
788 	 * value to insure we only process bits we requested.
789 	 */
790 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
791 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
792 	status &= sc->sc_imask;			/* discard unasked for bits */
793 	if (status & HAL_INT_FATAL) {
794 		/*
795 		 * Fatal errors are unrecoverable.  Typically
796 		 * these are caused by DMA errors.  Unfortunately
797 		 * the exact reason is not (presently) returned
798 		 * by the hal.
799 		 */
800 		sc->sc_stats.ast_hardware++;
801 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
802 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
803 	} else if (status & HAL_INT_RXORN) {
804 		sc->sc_stats.ast_rxorn++;
805 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
806 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
807 	} else {
808 		if (status & HAL_INT_SWBA) {
809 			/*
810 			 * Software beacon alert--time to send a beacon.
811 			 * Handle beacon transmission directly; deferring
812 			 * this is too slow to meet timing constraints
813 			 * under load.
814 			 */
815 			ath_beacon_proc(sc, 0);
816 		}
817 		if (status & HAL_INT_RXEOL) {
818 			/*
819 			 * NB: the hardware should re-read the link when
820 			 *     RXE bit is written, but it doesn't work at
821 			 *     least on older hardware revs.
822 			 */
823 			sc->sc_stats.ast_rxeol++;
824 			sc->sc_rxlink = NULL;
825 		}
826 		if (status & HAL_INT_TXURN) {
827 			sc->sc_stats.ast_txurn++;
828 			/* bump tx trigger level */
829 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
830 		}
831 		if (status & HAL_INT_RX)
832 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
833 		if (status & HAL_INT_TX)
834 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
835 		if (status & HAL_INT_BMISS) {
836 			sc->sc_stats.ast_bmiss++;
837 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
838 		}
839 		if (status & HAL_INT_MIB) {
840 			sc->sc_stats.ast_mib++;
841 			/*
842 			 * Disable interrupts until we service the MIB
843 			 * interrupt; otherwise it will continue to fire.
844 			 */
845 			ath_hal_intrset(ah, 0);
846 			/*
847 			 * Let the hal handle the event.  We assume it will
848 			 * clear whatever condition caused the interrupt.
849 			 */
850 			ath_hal_mibevent(ah, &sc->sc_halstats);
851 			ath_hal_intrset(ah, sc->sc_imask);
852 		}
853 	}
854 	return 1;
855 }
856 
857 /* Swap transmit descriptor.
858  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
859  * function.
860  */
861 static inline void
862 ath_desc_swap(struct ath_desc *ds)
863 {
864 #ifdef AH_NEED_DESC_SWAP
865 	ds->ds_link = htole32(ds->ds_link);
866 	ds->ds_data = htole32(ds->ds_data);
867 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
868 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
869 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
870 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
871 #endif
872 }
873 
874 static void
875 ath_fatal_proc(void *arg, int pending)
876 {
877 	struct ath_softc *sc = arg;
878 	struct ifnet *ifp = &sc->sc_if;
879 #ifdef __NetBSD__
880 	int s;
881 #endif
882 
883 	if_printf(ifp, "hardware error; resetting\n");
884 #ifdef __NetBSD__
885 	s = splnet();
886 #endif
887 	ath_reset(ifp);
888 #ifdef __NetBSD__
889 	splx(s);
890 #endif
891 }
892 
893 static void
894 ath_rxorn_proc(void *arg, int pending)
895 {
896 	struct ath_softc *sc = arg;
897 	struct ifnet *ifp = &sc->sc_if;
898 #ifdef __NetBSD__
899 	int s;
900 #endif
901 
902 	if_printf(ifp, "rx FIFO overrun; resetting\n");
903 #ifdef __NetBSD__
904 	s = splnet();
905 #endif
906 	ath_reset(ifp);
907 #ifdef __NetBSD__
908 	splx(s);
909 #endif
910 }
911 
912 static void
913 ath_bmiss_proc(void *arg, int pending)
914 {
915 	struct ath_softc *sc = arg;
916 	struct ieee80211com *ic = &sc->sc_ic;
917 	NET_LOCK_GIANT_FUNC_INIT();
918 
919 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
920 	KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA,
921 		"unexpect operating mode %u", ic->ic_opmode);
922 	if (ic->ic_state == IEEE80211_S_RUN) {
923 		u_int64_t lastrx = sc->sc_lastrx;
924 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
925 
926 		DPRINTF(sc, ATH_DEBUG_BEACON,
927 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
928 		    " (%" PRIu64 ") bmiss %u\n",
929 		    __func__, tsf, tsf - lastrx, lastrx,
930 		    ic->ic_bmisstimeout*1024);
931 		/*
932 		 * Workaround phantom bmiss interrupts by sanity-checking
933 		 * the time of our last rx'd frame.  If it is within the
934 		 * beacon miss interval then ignore the interrupt.  If it's
935 		 * truly a bmiss we'll get another interrupt soon and that'll
936 		 * be dispatched up for processing.
937 		 */
938 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
939 			NET_LOCK_GIANT();
940 			ieee80211_beacon_miss(ic);
941 			NET_UNLOCK_GIANT();
942 		} else
943 			sc->sc_stats.ast_bmiss_phantom++;
944 	}
945 }
946 
947 static void
948 ath_radar_proc(void *arg, int pending)
949 {
950 #if 0
951 	struct ath_softc *sc = arg;
952 	struct ifnet *ifp = &sc->sc_if;
953 	struct ath_hal *ah = sc->sc_ah;
954 	HAL_CHANNEL hchan;
955 
956 	if (ath_hal_procdfs(ah, &hchan)) {
957 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
958 			hchan.channel, hchan.channelFlags, hchan.privFlags);
959 		/*
960 		 * Initiate channel change.
961 		 */
962 		/* XXX not yet */
963 	}
964 #endif
965 }
966 
967 static u_int
968 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
969 {
970 #define	N(a)	(sizeof(a) / sizeof(a[0]))
971 	static const u_int modeflags[] = {
972 		0,			/* IEEE80211_MODE_AUTO */
973 		CHANNEL_A,		/* IEEE80211_MODE_11A */
974 		CHANNEL_B,		/* IEEE80211_MODE_11B */
975 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
976 		0,			/* IEEE80211_MODE_FH */
977 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
978 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
979 	};
980 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
981 
982 	KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode);
983 	KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode);
984 	return modeflags[mode];
985 #undef N
986 }
987 
988 static int
989 ath_ifinit(struct ifnet *ifp)
990 {
991 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
992 
993 	return ath_init(sc);
994 }
995 
996 static void
997 ath_settkipmic(struct ath_softc *sc)
998 {
999 	struct ieee80211com *ic = &sc->sc_ic;
1000 	struct ath_hal *ah = sc->sc_ah;
1001 
1002 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
1003 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
1004 		if (ic->ic_flags & IEEE80211_F_WME) {
1005 			(void)ath_hal_settkipmic(ah, AH_FALSE);
1006 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
1007 		} else {
1008 			(void)ath_hal_settkipmic(ah, AH_TRUE);
1009 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
1010 		}
1011 	}
1012 }
1013 
1014 static int
1015 ath_init(struct ath_softc *sc)
1016 {
1017 	struct ifnet *ifp = &sc->sc_if;
1018 	struct ieee80211com *ic = &sc->sc_ic;
1019 	struct ath_hal *ah = sc->sc_ah;
1020 	HAL_STATUS status;
1021 	int error = 0, s;
1022 
1023 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1024 		__func__, ifp->if_flags);
1025 
1026 	if (device_is_active(sc->sc_dev)) {
1027 		s = splnet();
1028 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1029 		   !device_is_active(sc->sc_dev))
1030 		return 0;
1031 	else
1032 		s = splnet();
1033 
1034 	/*
1035 	 * Stop anything previously setup.  This is safe
1036 	 * whether this is the first time through or not.
1037 	 */
1038 	ath_stop_locked(ifp, 0);
1039 
1040 	/*
1041 	 * The basic interface to setting the hardware in a good
1042 	 * state is ``reset''.  On return the hardware is known to
1043 	 * be powered up and with interrupts disabled.  This must
1044 	 * be followed by initialization of the appropriate bits
1045 	 * and then setup of the interrupt mask.
1046 	 */
1047 	ath_settkipmic(sc);
1048 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1049 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1050 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1051 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1052 			status);
1053 		error = EIO;
1054 		goto done;
1055 	}
1056 
1057 	/*
1058 	 * This is needed only to setup initial state
1059 	 * but it's best done after a reset.
1060 	 */
1061 	ath_update_txpow(sc);
1062 	/*
1063 	 * Likewise this is set during reset so update
1064 	 * state cached in the driver.
1065 	 */
1066 	ath_restore_diversity(sc);
1067 	sc->sc_calinterval = 1;
1068 	sc->sc_caltries = 0;
1069 
1070 	/*
1071 	 * Setup the hardware after reset: the key cache
1072 	 * is filled as needed and the receive engine is
1073 	 * set going.  Frame transmit is handled entirely
1074 	 * in the frame output path; there's nothing to do
1075 	 * here except setup the interrupt mask.
1076 	 */
1077 	if ((error = ath_startrecv(sc)) != 0) {
1078 		if_printf(ifp, "unable to start recv logic\n");
1079 		goto done;
1080 	}
1081 
1082 	/*
1083 	 * Enable interrupts.
1084 	 */
1085 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1086 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1087 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1088 	/*
1089 	 * Enable MIB interrupts when there are hardware phy counters.
1090 	 * Note we only do this (at the moment) for station mode.
1091 	 */
1092 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1093 		sc->sc_imask |= HAL_INT_MIB;
1094 	ath_hal_intrset(ah, sc->sc_imask);
1095 
1096 	ifp->if_flags |= IFF_RUNNING;
1097 	ic->ic_state = IEEE80211_S_INIT;
1098 
1099 	/*
1100 	 * The hardware should be ready to go now so it's safe
1101 	 * to kick the 802.11 state machine as it's likely to
1102 	 * immediately call back to us to send mgmt frames.
1103 	 */
1104 	ath_chan_change(sc, ic->ic_curchan);
1105 #ifdef ATH_TX99_DIAG
1106 	if (sc->sc_tx99 != NULL)
1107 		sc->sc_tx99->start(sc->sc_tx99);
1108 	else
1109 #endif
1110 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1111 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1112 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1113 	} else
1114 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1115 done:
1116 	splx(s);
1117 	return error;
1118 }
1119 
1120 static void
1121 ath_stop_locked(struct ifnet *ifp, int disable)
1122 {
1123 	struct ath_softc *sc = ifp->if_softc;
1124 	struct ieee80211com *ic = &sc->sc_ic;
1125 	struct ath_hal *ah = sc->sc_ah;
1126 
1127 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1128 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1129 
1130 	/* KASSERT() IPL_NET */
1131 	if (ifp->if_flags & IFF_RUNNING) {
1132 		/*
1133 		 * Shutdown the hardware and driver:
1134 		 *    reset 802.11 state machine
1135 		 *    turn off timers
1136 		 *    disable interrupts
1137 		 *    turn off the radio
1138 		 *    clear transmit machinery
1139 		 *    clear receive machinery
1140 		 *    drain and release tx queues
1141 		 *    reclaim beacon resources
1142 		 *    power down hardware
1143 		 *
1144 		 * Note that some of this work is not possible if the
1145 		 * hardware is gone (invalid).
1146 		 */
1147 #ifdef ATH_TX99_DIAG
1148 		if (sc->sc_tx99 != NULL)
1149 			sc->sc_tx99->stop(sc->sc_tx99);
1150 #endif
1151 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1152 		ifp->if_flags &= ~IFF_RUNNING;
1153 		ifp->if_timer = 0;
1154 		if (device_is_enabled(sc->sc_dev)) {
1155 			if (sc->sc_softled) {
1156 				callout_stop(&sc->sc_ledtimer);
1157 				ath_hal_gpioset(ah, sc->sc_ledpin,
1158 					!sc->sc_ledon);
1159 				sc->sc_blinking = 0;
1160 			}
1161 			ath_hal_intrset(ah, 0);
1162 		}
1163 		ath_draintxq(sc);
1164 		if (device_is_enabled(sc->sc_dev)) {
1165 			ath_stoprecv(sc);
1166 			ath_hal_phydisable(ah);
1167 		} else
1168 			sc->sc_rxlink = NULL;
1169 		IF_PURGE(&ifp->if_snd);
1170 		ath_beacon_free(sc);
1171 	}
1172 	if (disable)
1173 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1174 }
1175 
1176 static void
1177 ath_stop(struct ifnet *ifp, int disable)
1178 {
1179 	int s;
1180 
1181 	s = splnet();
1182 	ath_stop_locked(ifp, disable);
1183 	splx(s);
1184 }
1185 
1186 static void
1187 ath_restore_diversity(struct ath_softc *sc)
1188 {
1189 	struct ifnet *ifp = &sc->sc_if;
1190 	struct ath_hal *ah = sc->sc_ah;
1191 
1192 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1193 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1194 		if_printf(ifp, "could not restore diversity setting %d\n",
1195 		    sc->sc_diversity);
1196 		sc->sc_diversity = ath_hal_getdiversity(ah);
1197 	}
1198 }
1199 
1200 /*
1201  * Reset the hardware w/o losing operational state.  This is
1202  * basically a more efficient way of doing ath_stop, ath_init,
1203  * followed by state transitions to the current 802.11
1204  * operational state.  Used to recover from various errors and
1205  * to reset or reload hardware state.
1206  */
1207 int
1208 ath_reset(struct ifnet *ifp)
1209 {
1210 	struct ath_softc *sc = ifp->if_softc;
1211 	struct ieee80211com *ic = &sc->sc_ic;
1212 	struct ath_hal *ah = sc->sc_ah;
1213 	struct ieee80211_channel *c;
1214 	HAL_STATUS status;
1215 
1216 	/*
1217 	 * Convert to a HAL channel description with the flags
1218 	 * constrained to reflect the current operating mode.
1219 	 */
1220 	c = ic->ic_curchan;
1221 	sc->sc_curchan.channel = c->ic_freq;
1222 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1223 
1224 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1225 	ath_draintxq(sc);		/* stop xmit side */
1226 	ath_stoprecv(sc);		/* stop recv side */
1227 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1228 	/* NB: indicate channel change so we do a full reset */
1229 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1230 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1231 			__func__, status);
1232 	ath_update_txpow(sc);		/* update tx power state */
1233 	ath_restore_diversity(sc);
1234 	sc->sc_calinterval = 1;
1235 	sc->sc_caltries = 0;
1236 	if (ath_startrecv(sc) != 0)	/* restart recv */
1237 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1238 	/*
1239 	 * We may be doing a reset in response to an ioctl
1240 	 * that changes the channel so update any state that
1241 	 * might change as a result.
1242 	 */
1243 	ath_chan_change(sc, c);
1244 	if (ic->ic_state == IEEE80211_S_RUN)
1245 		ath_beacon_config(sc);	/* restart beacons */
1246 	ath_hal_intrset(ah, sc->sc_imask);
1247 
1248 	ath_start(ifp);			/* restart xmit */
1249 	return 0;
1250 }
1251 
1252 /*
1253  * Cleanup driver resources when we run out of buffers
1254  * while processing fragments; return the tx buffers
1255  * allocated and drop node references.
1256  */
1257 static void
1258 ath_txfrag_cleanup(struct ath_softc *sc,
1259 	ath_bufhead *frags, struct ieee80211_node *ni)
1260 {
1261 	struct ath_buf *bf;
1262 
1263 	ATH_TXBUF_LOCK_ASSERT(sc);
1264 
1265 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1266 		STAILQ_REMOVE_HEAD(frags, bf_list);
1267 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1268 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1269 		ieee80211_node_decref(ni);
1270 	}
1271 }
1272 
1273 /*
1274  * Setup xmit of a fragmented frame.  Allocate a buffer
1275  * for each frag and bump the node reference count to
1276  * reflect the held reference to be setup by ath_tx_start.
1277  */
1278 static int
1279 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1280 	struct mbuf *m0, struct ieee80211_node *ni)
1281 {
1282 	struct mbuf *m;
1283 	struct ath_buf *bf;
1284 
1285 	ATH_TXBUF_LOCK(sc);
1286 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1287 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1288 		if (bf == NULL) {	/* out of buffers, cleanup */
1289 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1290 				__func__);
1291 			sc->sc_if.if_flags |= IFF_OACTIVE;
1292 			ath_txfrag_cleanup(sc, frags, ni);
1293 			break;
1294 		}
1295 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1296 		ieee80211_node_incref(ni);
1297 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1298 	}
1299 	ATH_TXBUF_UNLOCK(sc);
1300 
1301 	return !STAILQ_EMPTY(frags);
1302 }
1303 
1304 static void
1305 ath_start(struct ifnet *ifp)
1306 {
1307 	struct ath_softc *sc = ifp->if_softc;
1308 	struct ath_hal *ah = sc->sc_ah;
1309 	struct ieee80211com *ic = &sc->sc_ic;
1310 	struct ieee80211_node *ni;
1311 	struct ath_buf *bf;
1312 	struct mbuf *m, *next;
1313 	struct ieee80211_frame *wh;
1314 	struct ether_header *eh;
1315 	ath_bufhead frags;
1316 
1317 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1318 	    !device_is_active(sc->sc_dev))
1319 		return;
1320 
1321 	if (sc->sc_flags & ATH_KEY_UPDATING)
1322 		return;
1323 
1324 	for (;;) {
1325 		/*
1326 		 * Grab a TX buffer and associated resources.
1327 		 */
1328 		ATH_TXBUF_LOCK(sc);
1329 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1330 		if (bf != NULL)
1331 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1332 		ATH_TXBUF_UNLOCK(sc);
1333 		if (bf == NULL) {
1334 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1335 				__func__);
1336 			sc->sc_stats.ast_tx_qstop++;
1337 			ifp->if_flags |= IFF_OACTIVE;
1338 			break;
1339 		}
1340 		/*
1341 		 * Poll the management queue for frames; they
1342 		 * have priority over normal data frames.
1343 		 */
1344 		IF_DEQUEUE(&ic->ic_mgtq, m);
1345 		if (m == NULL) {
1346 			/*
1347 			 * No data frames go out unless we're associated.
1348 			 */
1349 			if (ic->ic_state != IEEE80211_S_RUN) {
1350 				DPRINTF(sc, ATH_DEBUG_XMIT,
1351 				    "%s: discard data packet, state %s\n",
1352 				    __func__,
1353 				    ieee80211_state_name[ic->ic_state]);
1354 				sc->sc_stats.ast_tx_discard++;
1355 				ATH_TXBUF_LOCK(sc);
1356 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1357 				ATH_TXBUF_UNLOCK(sc);
1358 				break;
1359 			}
1360 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1361 			if (m == NULL) {
1362 				ATH_TXBUF_LOCK(sc);
1363 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1364 				ATH_TXBUF_UNLOCK(sc);
1365 				break;
1366 			}
1367 			STAILQ_INIT(&frags);
1368 			/*
1369 			 * Find the node for the destination so we can do
1370 			 * things like power save and fast frames aggregation.
1371 			 */
1372 			if (m->m_len < sizeof(struct ether_header) &&
1373 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1374 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1375 				ni = NULL;
1376 				goto bad;
1377 			}
1378 			eh = mtod(m, struct ether_header *);
1379 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1380 			if (ni == NULL) {
1381 				/* NB: ieee80211_find_txnode does stat+msg */
1382 				m_freem(m);
1383 				goto bad;
1384 			}
1385 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1386 			    (m->m_flags & M_PWR_SAV) == 0) {
1387 				/*
1388 				 * Station in power save mode; pass the frame
1389 				 * to the 802.11 layer and continue.  We'll get
1390 				 * the frame back when the time is right.
1391 				 */
1392 				ieee80211_pwrsave(ic, ni, m);
1393 				goto reclaim;
1394 			}
1395 			/* calculate priority so we can find the tx queue */
1396 			if (ieee80211_classify(ic, m, ni)) {
1397 				DPRINTF(sc, ATH_DEBUG_XMIT,
1398 					"%s: discard, classification failure\n",
1399 					__func__);
1400 				m_freem(m);
1401 				goto bad;
1402 			}
1403 			if_statinc(ifp, if_opackets);
1404 
1405 			bpf_mtap(ifp, m, BPF_D_OUT);
1406 			/*
1407 			 * Encapsulate the packet in prep for transmission.
1408 			 */
1409 			m = ieee80211_encap(ic, m, ni);
1410 			if (m == NULL) {
1411 				DPRINTF(sc, ATH_DEBUG_XMIT,
1412 					"%s: encapsulation failure\n",
1413 					__func__);
1414 				sc->sc_stats.ast_tx_encap++;
1415 				goto bad;
1416 			}
1417 			/*
1418 			 * Check for fragmentation.  If this has frame
1419 			 * has been broken up verify we have enough
1420 			 * buffers to send all the fragments so all
1421 			 * go out or none...
1422 			 */
1423 			if ((m->m_flags & M_FRAG) &&
1424 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1425 				DPRINTF(sc, ATH_DEBUG_ANY,
1426 				    "%s: out of txfrag buffers\n", __func__);
1427 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1428 				ath_freetx(m);
1429 				goto bad;
1430 			}
1431 		} else {
1432 			/*
1433 			 * Hack!  The referenced node pointer is in the
1434 			 * rcvif field of the packet header.  This is
1435 			 * placed there by ieee80211_mgmt_output because
1436 			 * we need to hold the reference with the frame
1437 			 * and there's no other way (other than packet
1438 			 * tags which we consider too expensive to use)
1439 			 * to pass it along.
1440 			 */
1441 			ni = M_GETCTX(m, struct ieee80211_node *);
1442 			M_CLEARCTX(m);
1443 
1444 			wh = mtod(m, struct ieee80211_frame *);
1445 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1446 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1447 				/* fill time stamp */
1448 				u_int64_t tsf;
1449 				u_int32_t *tstamp;
1450 
1451 				tsf = ath_hal_gettsf64(ah);
1452 				/* XXX: adjust 100us delay to xmit */
1453 				tsf += 100;
1454 				tstamp = (u_int32_t *)&wh[1];
1455 				tstamp[0] = htole32(tsf & 0xffffffff);
1456 				tstamp[1] = htole32(tsf >> 32);
1457 			}
1458 			sc->sc_stats.ast_tx_mgmt++;
1459 		}
1460 
1461 	nextfrag:
1462 		next = m->m_nextpkt;
1463 		if (ath_tx_start(sc, ni, bf, m)) {
1464 	bad:
1465 			if_statinc(ifp, if_oerrors);
1466 	reclaim:
1467 			ATH_TXBUF_LOCK(sc);
1468 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1469 			ath_txfrag_cleanup(sc, &frags, ni);
1470 			ATH_TXBUF_UNLOCK(sc);
1471 			if (ni != NULL)
1472 				ieee80211_free_node(ni);
1473 			continue;
1474 		}
1475 		if (next != NULL) {
1476 			m = next;
1477 			bf = STAILQ_FIRST(&frags);
1478 			KASSERTMSG(bf != NULL, "no buf for txfrag");
1479 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1480 			goto nextfrag;
1481 		}
1482 
1483 		ifp->if_timer = 1;
1484 	}
1485 }
1486 
1487 static int
1488 ath_media_change(struct ifnet *ifp)
1489 {
1490 #define	IS_UP(ifp) \
1491 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1492 	int error;
1493 
1494 	error = ieee80211_media_change(ifp);
1495 	if (error == ENETRESET) {
1496 		if (IS_UP(ifp))
1497 			ath_init(ifp->if_softc);	/* XXX lose error */
1498 		error = 0;
1499 	}
1500 	return error;
1501 #undef IS_UP
1502 }
1503 
1504 #ifdef AR_DEBUG
1505 static void
1506 ath_keyprint(const char *tag, u_int ix,
1507 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1508 {
1509 	static const char *ciphers[] = {
1510 		"WEP",
1511 		"AES-OCB",
1512 		"AES-CCM",
1513 		"CKIP",
1514 		"TKIP",
1515 		"CLR",
1516 	};
1517 	int i, n;
1518 
1519 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1520 	for (i = 0, n = hk->kv_len; i < n; i++)
1521 		printf("%02x", hk->kv_val[i]);
1522 	printf(" mac %s", ether_sprintf(mac));
1523 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1524 		printf(" mic ");
1525 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1526 			printf("%02x", hk->kv_mic[i]);
1527 	}
1528 	printf("\n");
1529 }
1530 #endif
1531 
1532 /*
1533  * Set a TKIP key into the hardware.  This handles the
1534  * potential distribution of key state to multiple key
1535  * cache slots for TKIP.
1536  */
1537 static int
1538 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1539 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1540 {
1541 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1542 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1543 	struct ath_hal *ah = sc->sc_ah;
1544 
1545 	KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1546 		"got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher);
1547 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1548 		if (sc->sc_splitmic) {
1549 			/*
1550 			 * TX key goes at first index, RX key at the rx index.
1551 			 * The hal handles the MIC keys at index+64.
1552 			 */
1553 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1554 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1555 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1556 						zerobssid))
1557 				return 0;
1558 
1559 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1560 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1561 			/* XXX delete tx key on failure? */
1562 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1563 					hk, mac);
1564 		} else {
1565 			/*
1566 			 * Room for both TX+RX MIC keys in one key cache
1567 			 * slot, just set key at the first index; the HAL
1568 			 * will handle the reset.
1569 			 */
1570 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1571 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1572 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1573 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1574 		}
1575 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1576 		if (sc->sc_splitmic) {
1577 			/*
1578 			 * NB: must pass MIC key in expected location when
1579 			 * the keycache only holds one MIC key per entry.
1580 			 */
1581 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1582 		} else
1583 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1584 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1585 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1586 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1587 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1588 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1589 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1590 	}
1591 	return 0;
1592 #undef IEEE80211_KEY_XR
1593 }
1594 
1595 /*
1596  * Set a net80211 key into the hardware.  This handles the
1597  * potential distribution of key state to multiple key
1598  * cache slots for TKIP with hardware MIC support.
1599  */
1600 static int
1601 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1602 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1603 	struct ieee80211_node *bss)
1604 {
1605 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1606 	static const u_int8_t ciphermap[] = {
1607 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1608 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1609 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1610 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1611 		(u_int8_t) -1,		/* 4 is not allocated */
1612 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1613 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1614 	};
1615 	struct ath_hal *ah = sc->sc_ah;
1616 	const struct ieee80211_cipher *cip = k->wk_cipher;
1617 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1618 	const u_int8_t *mac;
1619 	HAL_KEYVAL hk;
1620 
1621 	memset(&hk, 0, sizeof(hk));
1622 	/*
1623 	 * Software crypto uses a "clear key" so non-crypto
1624 	 * state kept in the key cache are maintained and
1625 	 * so that rx frames have an entry to match.
1626 	 */
1627 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1628 		KASSERTMSG(cip->ic_cipher < N(ciphermap),
1629 			"invalid cipher type %u", cip->ic_cipher);
1630 		hk.kv_type = ciphermap[cip->ic_cipher];
1631 		hk.kv_len = k->wk_keylen;
1632 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1633 	} else
1634 		hk.kv_type = HAL_CIPHER_CLR;
1635 
1636 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1637 		/*
1638 		 * Group keys on hardware that supports multicast frame
1639 		 * key search use a mac that is the sender's address with
1640 		 * the high bit set instead of the app-specified address.
1641 		 */
1642 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1643 		gmac[0] |= 0x80;
1644 		mac = gmac;
1645 	} else
1646 		mac = mac0;
1647 
1648 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
1649 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1650 		return ath_keyset_tkip(sc, k, &hk, mac);
1651 	} else {
1652 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1653 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1654 	}
1655 #undef N
1656 }
1657 
1658 /*
1659  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1660  * each key, one for decrypt/encrypt and the other for the MIC.
1661  */
1662 static u_int16_t
1663 key_alloc_2pair(struct ath_softc *sc,
1664 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1665 {
1666 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1667 	u_int i, keyix;
1668 
1669 	KASSERTMSG(sc->sc_splitmic, "key cache !split");
1670 	/* XXX could optimize */
1671 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1672 		u_int8_t b = sc->sc_keymap[i];
1673 		if (b != 0xff) {
1674 			/*
1675 			 * One or more slots in this byte are free.
1676 			 */
1677 			keyix = i*NBBY;
1678 			while (b & 1) {
1679 		again:
1680 				keyix++;
1681 				b >>= 1;
1682 			}
1683 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1684 			if (isset(sc->sc_keymap, keyix+32) ||
1685 			    isset(sc->sc_keymap, keyix+64) ||
1686 			    isset(sc->sc_keymap, keyix+32+64)) {
1687 				/* full pair unavailable */
1688 				/* XXX statistic */
1689 				if (keyix == (i+1)*NBBY) {
1690 					/* no slots were appropriate, advance */
1691 					continue;
1692 				}
1693 				goto again;
1694 			}
1695 			setbit(sc->sc_keymap, keyix);
1696 			setbit(sc->sc_keymap, keyix+64);
1697 			setbit(sc->sc_keymap, keyix+32);
1698 			setbit(sc->sc_keymap, keyix+32+64);
1699 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1700 				"%s: key pair %u,%u %u,%u\n",
1701 				__func__, keyix, keyix+64,
1702 				keyix+32, keyix+32+64);
1703 			*txkeyix = keyix;
1704 			*rxkeyix = keyix+32;
1705 			return keyix;
1706 		}
1707 	}
1708 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1709 	return IEEE80211_KEYIX_NONE;
1710 #undef N
1711 }
1712 
1713 /*
1714  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1715  * each key, one for decrypt/encrypt and the other for the MIC.
1716  */
1717 static int
1718 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1719     ieee80211_keyix *rxkeyix)
1720 {
1721 #define N(a)	(sizeof(a)/sizeof(a[0]))
1722 	u_int i, keyix;
1723 
1724 	KASSERTMSG(!sc->sc_splitmic, "key cache split");
1725 	/* XXX could optimize */
1726 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1727 		uint8_t b = sc->sc_keymap[i];
1728 		if (b != 0xff) {
1729 			/*
1730 			 * One or more slots in this byte are free.
1731 			 */
1732 			keyix = i*NBBY;
1733 			while (b & 1) {
1734 		again:
1735 				keyix++;
1736 				b >>= 1;
1737 			}
1738 			if (isset(sc->sc_keymap, keyix+64)) {
1739 				/* full pair unavailable */
1740 				/* XXX statistic */
1741 				if (keyix == (i+1)*NBBY) {
1742 					/* no slots were appropriate, advance */
1743 					continue;
1744 				}
1745 				goto again;
1746 			}
1747 			setbit(sc->sc_keymap, keyix);
1748 			setbit(sc->sc_keymap, keyix+64);
1749 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1750 				"%s: key pair %u,%u\n",
1751 				__func__, keyix, keyix+64);
1752 			*txkeyix = *rxkeyix = keyix;
1753 			return 1;
1754 		}
1755 	}
1756 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1757 	return 0;
1758 #undef N
1759 }
1760 
1761 /*
1762  * Allocate a single key cache slot.
1763  */
1764 static int
1765 key_alloc_single(struct ath_softc *sc,
1766 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1767 {
1768 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1769 	u_int i, keyix;
1770 
1771 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1772 	for (i = 0; i < N(sc->sc_keymap); i++) {
1773 		u_int8_t b = sc->sc_keymap[i];
1774 		if (b != 0xff) {
1775 			/*
1776 			 * One or more slots are free.
1777 			 */
1778 			keyix = i*NBBY;
1779 			while (b & 1)
1780 				keyix++, b >>= 1;
1781 			setbit(sc->sc_keymap, keyix);
1782 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1783 				__func__, keyix);
1784 			*txkeyix = *rxkeyix = keyix;
1785 			return 1;
1786 		}
1787 	}
1788 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1789 	return 0;
1790 #undef N
1791 }
1792 
1793 /*
1794  * Allocate one or more key cache slots for a uniacst key.  The
1795  * key itself is needed only to identify the cipher.  For hardware
1796  * TKIP with split cipher+MIC keys we allocate two key cache slot
1797  * pairs so that we can setup separate TX and RX MIC keys.  Note
1798  * that the MIC key for a TKIP key at slot i is assumed by the
1799  * hardware to be at slot i+64.  This limits TKIP keys to the first
1800  * 64 entries.
1801  */
1802 static int
1803 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1804 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1805 {
1806 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1807 
1808 	/*
1809 	 * Group key allocation must be handled specially for
1810 	 * parts that do not support multicast key cache search
1811 	 * functionality.  For those parts the key id must match
1812 	 * the h/w key index so lookups find the right key.  On
1813 	 * parts w/ the key search facility we install the sender's
1814 	 * mac address (with the high bit set) and let the hardware
1815 	 * find the key w/o using the key id.  This is preferred as
1816 	 * it permits us to support multiple users for adhoc and/or
1817 	 * multi-station operation.
1818 	 */
1819 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1820 		if (!(&ic->ic_nw_keys[0] <= k &&
1821 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1822 			/* should not happen */
1823 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1824 				"%s: bogus group key\n", __func__);
1825 			return 0;
1826 		}
1827 		/*
1828 		 * XXX we pre-allocate the global keys so
1829 		 * have no way to check if they've already been allocated.
1830 		 */
1831 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1832 		return 1;
1833 	}
1834 
1835 	/*
1836 	 * We allocate two pair for TKIP when using the h/w to do
1837 	 * the MIC.  For everything else, including software crypto,
1838 	 * we allocate a single entry.  Note that s/w crypto requires
1839 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1840 	 * not support pass-through cache entries and we map all
1841 	 * those requests to slot 0.
1842 	 */
1843 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1844 		return key_alloc_single(sc, keyix, rxkeyix);
1845 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1846 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1847 		if (sc->sc_splitmic)
1848 			return key_alloc_2pair(sc, keyix, rxkeyix);
1849 		else
1850 			return key_alloc_pair(sc, keyix, rxkeyix);
1851 	} else {
1852 		return key_alloc_single(sc, keyix, rxkeyix);
1853 	}
1854 }
1855 
1856 /*
1857  * Delete an entry in the key cache allocated by ath_key_alloc.
1858  */
1859 static int
1860 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1861 {
1862 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1863 	struct ath_hal *ah = sc->sc_ah;
1864 	const struct ieee80211_cipher *cip = k->wk_cipher;
1865 	u_int keyix = k->wk_keyix;
1866 
1867 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1868 
1869 	if (!device_has_power(sc->sc_dev)) {
1870 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1871 		    k->wk_keyix);
1872 	}
1873 
1874 	ath_hal_keyreset(ah, keyix);
1875 	/*
1876 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1877 	 */
1878 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1879 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1880 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1881 	if (keyix >= IEEE80211_WEP_NKID) {
1882 		/*
1883 		 * Don't touch keymap entries for global keys so
1884 		 * they are never considered for dynamic allocation.
1885 		 */
1886 		clrbit(sc->sc_keymap, keyix);
1887 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1888 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1889 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1890 			if (sc->sc_splitmic) {
1891 				/* +32 for RX key, +32+64 for RX key MIC */
1892 				clrbit(sc->sc_keymap, keyix+32);
1893 				clrbit(sc->sc_keymap, keyix+32+64);
1894 			}
1895 		}
1896 	}
1897 	return 1;
1898 }
1899 
1900 /*
1901  * Set the key cache contents for the specified key.  Key cache
1902  * slot(s) must already have been allocated by ath_key_alloc.
1903  */
1904 static int
1905 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1906 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1907 {
1908 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1909 
1910 	if (!device_has_power(sc->sc_dev)) {
1911 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1912 		    k->wk_keyix);
1913 	}
1914 	return ath_keyset(sc, k, mac, ic->ic_bss);
1915 }
1916 
1917 /*
1918  * Block/unblock tx+rx processing while a key change is done.
1919  * We assume the caller serializes key management operations
1920  * so we only need to worry about synchronization with other
1921  * uses that originate in the driver.
1922  */
1923 static void
1924 ath_key_update_begin(struct ieee80211com *ic)
1925 {
1926 	struct ifnet *ifp = ic->ic_ifp;
1927 	struct ath_softc *sc = ifp->if_softc;
1928 
1929 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1930 #if 0
1931 	tasklet_disable(&sc->sc_rxtq);
1932 #endif
1933 	sc->sc_flags |= ATH_KEY_UPDATING;
1934 }
1935 
1936 static void
1937 ath_key_update_end(struct ieee80211com *ic)
1938 {
1939 	struct ifnet *ifp = ic->ic_ifp;
1940 	struct ath_softc *sc = ifp->if_softc;
1941 
1942 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1943 	sc->sc_flags &= ~ATH_KEY_UPDATING;
1944 #if 0
1945 	tasklet_enable(&sc->sc_rxtq);
1946 #endif
1947 }
1948 
1949 /*
1950  * Calculate the receive filter according to the
1951  * operating mode and state:
1952  *
1953  * o always accept unicast, broadcast, and multicast traffic
1954  * o maintain current state of phy error reception (the hal
1955  *   may enable phy error frames for noise immunity work)
1956  * o probe request frames are accepted only when operating in
1957  *   hostap, adhoc, or monitor modes
1958  * o enable promiscuous mode according to the interface state
1959  * o accept beacons:
1960  *   - when operating in adhoc mode so the 802.11 layer creates
1961  *     node table entries for peers,
1962  *   - when operating in station mode for collecting rssi data when
1963  *     the station is otherwise quiet, or
1964  *   - when scanning
1965  */
1966 static u_int32_t
1967 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1968 {
1969 	struct ieee80211com *ic = &sc->sc_ic;
1970 	struct ath_hal *ah = sc->sc_ah;
1971 	struct ifnet *ifp = &sc->sc_if;
1972 	u_int32_t rfilt;
1973 
1974 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1975 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1976 	if (ic->ic_opmode != IEEE80211_M_STA)
1977 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1978 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1979 	    (ifp->if_flags & IFF_PROMISC))
1980 		rfilt |= HAL_RX_FILTER_PROM;
1981 	if (ifp->if_flags & IFF_PROMISC)
1982 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1983 	if (ic->ic_opmode == IEEE80211_M_STA ||
1984 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1985 	    state == IEEE80211_S_SCAN)
1986 		rfilt |= HAL_RX_FILTER_BEACON;
1987 	return rfilt;
1988 }
1989 
1990 static void
1991 ath_mode_init(struct ath_softc *sc)
1992 {
1993 	struct ethercom *ec = &sc->sc_ec;
1994 	struct ifnet *ifp = &sc->sc_if;
1995 	struct ieee80211com *ic = &sc->sc_ic;
1996 	struct ath_hal *ah = sc->sc_ah;
1997 	struct ether_multi *enm;
1998 	struct ether_multistep estep;
1999 	u_int32_t rfilt, mfilt[2], val;
2000 	int i;
2001 	uint8_t pos;
2002 
2003 	/* configure rx filter */
2004 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
2005 	ath_hal_setrxfilter(ah, rfilt);
2006 
2007 	/* configure operational mode */
2008 	ath_hal_setopmode(ah);
2009 
2010 	/* Write keys to hardware; it may have been powered down. */
2011 	ath_key_update_begin(ic);
2012 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2013 		ath_key_set(ic,
2014 			    &ic->ic_crypto.cs_nw_keys[i],
2015 			    ic->ic_myaddr);
2016 	}
2017 	ath_key_update_end(ic);
2018 
2019 	/*
2020 	 * Handle any link-level address change.  Note that we only
2021 	 * need to force ic_myaddr; any other addresses are handled
2022 	 * as a byproduct of the ifnet code marking the interface
2023 	 * down then up.
2024 	 *
2025 	 * XXX should get from lladdr instead of arpcom but that's more work
2026 	 */
2027 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
2028 	ath_hal_setmac(ah, ic->ic_myaddr);
2029 
2030 	/* calculate and install multicast filter */
2031 	ifp->if_flags &= ~IFF_ALLMULTI;
2032 	mfilt[0] = mfilt[1] = 0;
2033 	ETHER_LOCK(ec);
2034 	ETHER_FIRST_MULTI(estep, ec, enm);
2035 	while (enm != NULL) {
2036 		void *dl;
2037 		/* XXX Punt on ranges. */
2038 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
2039 			mfilt[0] = mfilt[1] = 0xffffffff;
2040 			ifp->if_flags |= IFF_ALLMULTI;
2041 			break;
2042 		}
2043 		dl = enm->enm_addrlo;
2044 		val = LE_READ_4((char *)dl + 0);
2045 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2046 		val = LE_READ_4((char *)dl + 3);
2047 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2048 		pos &= 0x3f;
2049 		mfilt[pos / 32] |= (1 << (pos % 32));
2050 
2051 		ETHER_NEXT_MULTI(estep, enm);
2052 	}
2053 	ETHER_UNLOCK(ec);
2054 
2055 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2056 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2057 		__func__, rfilt, mfilt[0], mfilt[1]);
2058 }
2059 
2060 /*
2061  * Set the slot time based on the current setting.
2062  */
2063 static void
2064 ath_setslottime(struct ath_softc *sc)
2065 {
2066 	struct ieee80211com *ic = &sc->sc_ic;
2067 	struct ath_hal *ah = sc->sc_ah;
2068 
2069 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2070 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2071 	else
2072 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2073 	sc->sc_updateslot = OK;
2074 }
2075 
2076 /*
2077  * Callback from the 802.11 layer to update the
2078  * slot time based on the current setting.
2079  */
2080 static void
2081 ath_updateslot(struct ifnet *ifp)
2082 {
2083 	struct ath_softc *sc = ifp->if_softc;
2084 	struct ieee80211com *ic = &sc->sc_ic;
2085 
2086 	/*
2087 	 * When not coordinating the BSS, change the hardware
2088 	 * immediately.  For other operation we defer the change
2089 	 * until beacon updates have propagated to the stations.
2090 	 */
2091 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2092 		sc->sc_updateslot = UPDATE;
2093 	else
2094 		ath_setslottime(sc);
2095 }
2096 
2097 /*
2098  * Setup a h/w transmit queue for beacons.
2099  */
2100 static int
2101 ath_beaconq_setup(struct ath_hal *ah)
2102 {
2103 	HAL_TXQ_INFO qi;
2104 
2105 	memset(&qi, 0, sizeof(qi));
2106 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2107 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2108 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2109 	/* NB: for dynamic turbo, don't enable any other interrupts */
2110 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2111 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2112 }
2113 
2114 /*
2115  * Setup the transmit queue parameters for the beacon queue.
2116  */
2117 static int
2118 ath_beaconq_config(struct ath_softc *sc)
2119 {
2120 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2121 	struct ieee80211com *ic = &sc->sc_ic;
2122 	struct ath_hal *ah = sc->sc_ah;
2123 	HAL_TXQ_INFO qi;
2124 
2125 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2126 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2127 		/*
2128 		 * Always burst out beacon and CAB traffic.
2129 		 */
2130 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2131 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2132 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2133 	} else {
2134 		struct wmeParams *wmep =
2135 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2136 		/*
2137 		 * Adhoc mode; important thing is to use 2x cwmin.
2138 		 */
2139 		qi.tqi_aifs = wmep->wmep_aifsn;
2140 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2141 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2142 	}
2143 
2144 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2145 		device_printf(sc->sc_dev, "unable to update parameters for "
2146 			"beacon hardware queue!\n");
2147 		return 0;
2148 	} else {
2149 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2150 		return 1;
2151 	}
2152 #undef ATH_EXPONENT_TO_VALUE
2153 }
2154 
2155 /*
2156  * Allocate and setup an initial beacon frame.
2157  */
2158 static int
2159 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2160 {
2161 	struct ieee80211com *ic = ni->ni_ic;
2162 	struct ath_buf *bf;
2163 	struct mbuf *m;
2164 	int error;
2165 
2166 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2167 	if (bf == NULL) {
2168 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2169 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2170 		return ENOMEM;			/* XXX */
2171 	}
2172 	/*
2173 	 * NB: the beacon data buffer must be 32-bit aligned;
2174 	 * we assume the mbuf routines will return us something
2175 	 * with this alignment (perhaps should assert).
2176 	 */
2177 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2178 	if (m == NULL) {
2179 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2180 			__func__);
2181 		sc->sc_stats.ast_be_nombuf++;
2182 		return ENOMEM;
2183 	}
2184 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2185 				     BUS_DMA_NOWAIT);
2186 	if (error == 0) {
2187 		bf->bf_m = m;
2188 		bf->bf_node = ieee80211_ref_node(ni);
2189 	} else {
2190 		m_freem(m);
2191 	}
2192 	return error;
2193 }
2194 
2195 /*
2196  * Setup the beacon frame for transmit.
2197  */
2198 static void
2199 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2200 {
2201 #define	USE_SHPREAMBLE(_ic) \
2202 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2203 		== IEEE80211_F_SHPREAMBLE)
2204 	struct ieee80211_node *ni = bf->bf_node;
2205 	struct ieee80211com *ic = ni->ni_ic;
2206 	struct mbuf *m = bf->bf_m;
2207 	struct ath_hal *ah = sc->sc_ah;
2208 	struct ath_desc *ds;
2209 	int flags, antenna;
2210 	const HAL_RATE_TABLE *rt;
2211 	u_int8_t rix, rate;
2212 
2213 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2214 		__func__, m, m->m_len);
2215 
2216 	/* setup descriptors */
2217 	ds = bf->bf_desc;
2218 
2219 	flags = HAL_TXDESC_NOACK;
2220 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2221 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2222 		flags |= HAL_TXDESC_VEOL;
2223 		/*
2224 		 * Let hardware handle antenna switching unless
2225 		 * the user has selected a transmit antenna
2226 		 * (sc_txantenna is not 0).
2227 		 */
2228 		antenna = sc->sc_txantenna;
2229 	} else {
2230 		ds->ds_link = 0;
2231 		/*
2232 		 * Switch antenna every 4 beacons, unless the user
2233 		 * has selected a transmit antenna (sc_txantenna
2234 		 * is not 0).
2235 		 *
2236 		 * XXX assumes two antenna
2237 		 */
2238 		if (sc->sc_txantenna == 0)
2239 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2240 		else
2241 			antenna = sc->sc_txantenna;
2242 	}
2243 
2244 	KASSERTMSG(bf->bf_nseg == 1,
2245 		"multi-segment beacon frame; nseg %u", bf->bf_nseg);
2246 	ds->ds_data = bf->bf_segs[0].ds_addr;
2247 	/*
2248 	 * Calculate rate code.
2249 	 * XXX everything at min xmit rate
2250 	 */
2251 	rix = sc->sc_minrateix;
2252 	rt = sc->sc_currates;
2253 	rate = rt->info[rix].rateCode;
2254 	if (USE_SHPREAMBLE(ic))
2255 		rate |= rt->info[rix].shortPreamble;
2256 	ath_hal_setuptxdesc(ah, ds
2257 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2258 		, sizeof(struct ieee80211_frame)/* header length */
2259 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2260 		, ni->ni_txpower		/* txpower XXX */
2261 		, rate, 1			/* series 0 rate/tries */
2262 		, HAL_TXKEYIX_INVALID		/* no encryption */
2263 		, antenna			/* antenna mode */
2264 		, flags				/* no ack, veol for beacons */
2265 		, 0				/* rts/cts rate */
2266 		, 0				/* rts/cts duration */
2267 	);
2268 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2269 	ath_hal_filltxdesc(ah, ds
2270 		, roundup(m->m_len, 4)		/* buffer length */
2271 		, AH_TRUE			/* first segment */
2272 		, AH_TRUE			/* last segment */
2273 		, ds				/* first descriptor */
2274 	);
2275 
2276 	/* NB: The desc swap function becomes void, if descriptor swapping
2277 	 * is not enabled
2278 	 */
2279 	ath_desc_swap(ds);
2280 
2281 #undef USE_SHPREAMBLE
2282 }
2283 
2284 /*
2285  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2286  * frame contents are done as needed and the slot time is
2287  * also adjusted based on current state.
2288  */
2289 static void
2290 ath_beacon_proc(void *arg, int pending)
2291 {
2292 	struct ath_softc *sc = arg;
2293 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2294 	struct ieee80211_node *ni = bf->bf_node;
2295 	struct ieee80211com *ic = ni->ni_ic;
2296 	struct ath_hal *ah = sc->sc_ah;
2297 	struct mbuf *m;
2298 	int ncabq, error, otherant;
2299 
2300 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2301 		__func__, pending);
2302 
2303 	if (ic->ic_opmode == IEEE80211_M_STA ||
2304 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2305 	    bf == NULL || bf->bf_m == NULL) {
2306 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2307 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2308 		return;
2309 	}
2310 	/*
2311 	 * Check if the previous beacon has gone out.  If
2312 	 * not don't try to post another, skip this period
2313 	 * and wait for the next.  Missed beacons indicate
2314 	 * a problem and should not occur.  If we miss too
2315 	 * many consecutive beacons reset the device.
2316 	 */
2317 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2318 		sc->sc_bmisscount++;
2319 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2320 			"%s: missed %u consecutive beacons\n",
2321 			__func__, sc->sc_bmisscount);
2322 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2323 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2324 		return;
2325 	}
2326 	if (sc->sc_bmisscount != 0) {
2327 		DPRINTF(sc, ATH_DEBUG_BEACON,
2328 			"%s: resume beacon xmit after %u misses\n",
2329 			__func__, sc->sc_bmisscount);
2330 		sc->sc_bmisscount = 0;
2331 	}
2332 
2333 	/*
2334 	 * Update dynamic beacon contents.  If this returns
2335 	 * non-zero then we need to remap the memory because
2336 	 * the beacon frame changed size (probably because
2337 	 * of the TIM bitmap).
2338 	 */
2339 	m = bf->bf_m;
2340 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2341 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2342 		/* XXX too conservative? */
2343 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2344 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2345 					     BUS_DMA_NOWAIT);
2346 		if (error != 0) {
2347 			if_printf(&sc->sc_if,
2348 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2349 			    __func__, error);
2350 			return;
2351 		}
2352 	}
2353 
2354 	/*
2355 	 * Handle slot time change when a non-ERP station joins/leaves
2356 	 * an 11g network.  The 802.11 layer notifies us via callback,
2357 	 * we mark updateslot, then wait one beacon before effecting
2358 	 * the change.  This gives associated stations at least one
2359 	 * beacon interval to note the state change.
2360 	 */
2361 	/* XXX locking */
2362 	if (sc->sc_updateslot == UPDATE)
2363 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2364 	else if (sc->sc_updateslot == COMMIT)
2365 		ath_setslottime(sc);		/* commit change to h/w */
2366 
2367 	/*
2368 	 * Check recent per-antenna transmit statistics and flip
2369 	 * the default antenna if noticeably more frames went out
2370 	 * on the non-default antenna.
2371 	 * XXX assumes 2 anntenae
2372 	 */
2373 	otherant = sc->sc_defant & 1 ? 2 : 1;
2374 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2375 		ath_setdefantenna(sc, otherant);
2376 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2377 
2378 	/*
2379 	 * Construct tx descriptor.
2380 	 */
2381 	ath_beacon_setup(sc, bf);
2382 
2383 	/*
2384 	 * Stop any current dma and put the new frame on the queue.
2385 	 * This should never fail since we check above that no frames
2386 	 * are still pending on the queue.
2387 	 */
2388 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2389 		DPRINTF(sc, ATH_DEBUG_ANY,
2390 			"%s: beacon queue %u did not stop?\n",
2391 			__func__, sc->sc_bhalq);
2392 	}
2393 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2394 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2395 
2396 	/*
2397 	 * Enable the CAB queue before the beacon queue to
2398 	 * insure cab frames are triggered by this beacon.
2399 	 */
2400 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2401 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2402 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2403 	ath_hal_txstart(ah, sc->sc_bhalq);
2404 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2405 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2406 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2407 
2408 	sc->sc_stats.ast_be_xmit++;
2409 }
2410 
2411 /*
2412  * Reset the hardware after detecting beacons have stopped.
2413  */
2414 static void
2415 ath_bstuck_proc(void *arg, int pending)
2416 {
2417 	struct ath_softc *sc = arg;
2418 	struct ifnet *ifp = &sc->sc_if;
2419 #ifdef __NetBSD__
2420 	int s;
2421 #endif
2422 
2423 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2424 		sc->sc_bmisscount);
2425 #ifdef __NetBSD__
2426 	s = splnet();
2427 #endif
2428 	ath_reset(ifp);
2429 #ifdef __NetBSD__
2430 	splx(s);
2431 #endif
2432 }
2433 
2434 /*
2435  * Reclaim beacon resources.
2436  */
2437 static void
2438 ath_beacon_free(struct ath_softc *sc)
2439 {
2440 	struct ath_buf *bf;
2441 
2442 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2443 		if (bf->bf_m != NULL) {
2444 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2445 			m_freem(bf->bf_m);
2446 			bf->bf_m = NULL;
2447 		}
2448 		if (bf->bf_node != NULL) {
2449 			ieee80211_free_node(bf->bf_node);
2450 			bf->bf_node = NULL;
2451 		}
2452 	}
2453 }
2454 
2455 /*
2456  * Configure the beacon and sleep timers.
2457  *
2458  * When operating as an AP this resets the TSF and sets
2459  * up the hardware to notify us when we need to issue beacons.
2460  *
2461  * When operating in station mode this sets up the beacon
2462  * timers according to the timestamp of the last received
2463  * beacon and the current TSF, configures PCF and DTIM
2464  * handling, programs the sleep registers so the hardware
2465  * will wakeup in time to receive beacons, and configures
2466  * the beacon miss handling so we'll receive a BMISS
2467  * interrupt when we stop seeing beacons from the AP
2468  * we've associated with.
2469  */
2470 static void
2471 ath_beacon_config(struct ath_softc *sc)
2472 {
2473 #define	TSF_TO_TU(_h,_l) \
2474 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2475 #define	FUDGE	2
2476 	struct ath_hal *ah = sc->sc_ah;
2477 	struct ieee80211com *ic = &sc->sc_ic;
2478 	struct ieee80211_node *ni = ic->ic_bss;
2479 	u_int32_t nexttbtt, intval, tsftu;
2480 	u_int64_t tsf;
2481 
2482 	/* extract tstamp from last beacon and convert to TU */
2483 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2484 			     LE_READ_4(ni->ni_tstamp.data));
2485 	/* NB: the beacon interval is kept internally in TU's */
2486 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2487 	if (nexttbtt == 0)		/* e.g. for ap mode */
2488 		nexttbtt = intval;
2489 	else if (intval)		/* NB: can be 0 for monitor mode */
2490 		nexttbtt = roundup(nexttbtt, intval);
2491 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2492 		__func__, nexttbtt, intval, ni->ni_intval);
2493 	if (ic->ic_opmode == IEEE80211_M_STA) {
2494 		HAL_BEACON_STATE bs;
2495 		int dtimperiod, dtimcount;
2496 		int cfpperiod, cfpcount;
2497 
2498 		/*
2499 		 * Setup dtim and cfp parameters according to
2500 		 * last beacon we received (which may be none).
2501 		 */
2502 		dtimperiod = ni->ni_dtim_period;
2503 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2504 			dtimperiod = 1;
2505 		dtimcount = ni->ni_dtim_count;
2506 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2507 			dtimcount = 0;		/* XXX? */
2508 		cfpperiod = 1;			/* NB: no PCF support yet */
2509 		cfpcount = 0;
2510 		/*
2511 		 * Pull nexttbtt forward to reflect the current
2512 		 * TSF and calculate dtim+cfp state for the result.
2513 		 */
2514 		tsf = ath_hal_gettsf64(ah);
2515 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2516 		do {
2517 			nexttbtt += intval;
2518 			if (--dtimcount < 0) {
2519 				dtimcount = dtimperiod - 1;
2520 				if (--cfpcount < 0)
2521 					cfpcount = cfpperiod - 1;
2522 			}
2523 		} while (nexttbtt < tsftu);
2524 		memset(&bs, 0, sizeof(bs));
2525 		bs.bs_intval = intval;
2526 		bs.bs_nexttbtt = nexttbtt;
2527 		bs.bs_dtimperiod = dtimperiod*intval;
2528 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2529 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2530 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2531 		bs.bs_cfpmaxduration = 0;
2532 #if 0
2533 		/*
2534 		 * The 802.11 layer records the offset to the DTIM
2535 		 * bitmap while receiving beacons; use it here to
2536 		 * enable h/w detection of our AID being marked in
2537 		 * the bitmap vector (to indicate frames for us are
2538 		 * pending at the AP).
2539 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2540 		 * XXX enable based on h/w rev for newer chips
2541 		 */
2542 		bs.bs_timoffset = ni->ni_timoff;
2543 #endif
2544 		/*
2545 		 * Calculate the number of consecutive beacons to miss
2546 		 * before taking a BMISS interrupt.  The configuration
2547 		 * is specified in ms, so we need to convert that to
2548 		 * TU's and then calculate based on the beacon interval.
2549 		 * Note that we clamp the result to at most 10 beacons.
2550 		 */
2551 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2552 		if (bs.bs_bmissthreshold > 10)
2553 			bs.bs_bmissthreshold = 10;
2554 		else if (bs.bs_bmissthreshold <= 0)
2555 			bs.bs_bmissthreshold = 1;
2556 
2557 		/*
2558 		 * Calculate sleep duration.  The configuration is
2559 		 * given in ms.  We insure a multiple of the beacon
2560 		 * period is used.  Also, if the sleep duration is
2561 		 * greater than the DTIM period then it makes senses
2562 		 * to make it a multiple of that.
2563 		 *
2564 		 * XXX fixed at 100ms
2565 		 */
2566 		bs.bs_sleepduration =
2567 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2568 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2569 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2570 
2571 		DPRINTF(sc, ATH_DEBUG_BEACON,
2572 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2573 			, __func__
2574 			, tsf, tsftu
2575 			, bs.bs_intval
2576 			, bs.bs_nexttbtt
2577 			, bs.bs_dtimperiod
2578 			, bs.bs_nextdtim
2579 			, bs.bs_bmissthreshold
2580 			, bs.bs_sleepduration
2581 			, bs.bs_cfpperiod
2582 			, bs.bs_cfpmaxduration
2583 			, bs.bs_cfpnext
2584 			, bs.bs_timoffset
2585 		);
2586 		ath_hal_intrset(ah, 0);
2587 		ath_hal_beacontimers(ah, &bs);
2588 		sc->sc_imask |= HAL_INT_BMISS;
2589 		ath_hal_intrset(ah, sc->sc_imask);
2590 	} else {
2591 		ath_hal_intrset(ah, 0);
2592 		if (nexttbtt == intval)
2593 			intval |= HAL_BEACON_RESET_TSF;
2594 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2595 			/*
2596 			 * In IBSS mode enable the beacon timers but only
2597 			 * enable SWBA interrupts if we need to manually
2598 			 * prepare beacon frames.  Otherwise we use a
2599 			 * self-linked tx descriptor and let the hardware
2600 			 * deal with things.
2601 			 */
2602 			intval |= HAL_BEACON_ENA;
2603 			if (!sc->sc_hasveol)
2604 				sc->sc_imask |= HAL_INT_SWBA;
2605 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2606 				/*
2607 				 * Pull nexttbtt forward to reflect
2608 				 * the current TSF.
2609 				 */
2610 				tsf = ath_hal_gettsf64(ah);
2611 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2612 				do {
2613 					nexttbtt += intval;
2614 				} while (nexttbtt < tsftu);
2615 			}
2616 			ath_beaconq_config(sc);
2617 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2618 			/*
2619 			 * In AP mode we enable the beacon timers and
2620 			 * SWBA interrupts to prepare beacon frames.
2621 			 */
2622 			intval |= HAL_BEACON_ENA;
2623 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2624 			ath_beaconq_config(sc);
2625 		}
2626 		ath_hal_beaconinit(ah, nexttbtt, intval);
2627 		sc->sc_bmisscount = 0;
2628 		ath_hal_intrset(ah, sc->sc_imask);
2629 		/*
2630 		 * When using a self-linked beacon descriptor in
2631 		 * ibss mode load it once here.
2632 		 */
2633 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2634 			ath_beacon_proc(sc, 0);
2635 	}
2636 	sc->sc_syncbeacon = 0;
2637 #undef UNDEF
2638 #undef TSF_TO_TU
2639 }
2640 
2641 static int
2642 ath_descdma_setup(struct ath_softc *sc,
2643 	struct ath_descdma *dd, ath_bufhead *head,
2644 	const char *name, int nbuf, int ndesc)
2645 {
2646 #define	DS2PHYS(_dd, _ds) \
2647 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2648 	struct ifnet *ifp = &sc->sc_if;
2649 	struct ath_desc *ds;
2650 	struct ath_buf *bf;
2651 	int i, bsize, error;
2652 
2653 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2654 	    __func__, name, nbuf, ndesc);
2655 
2656 	dd->dd_name = name;
2657 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2658 
2659 	/*
2660 	 * Setup DMA descriptor area.
2661 	 */
2662 	dd->dd_dmat = sc->sc_dmat;
2663 
2664 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2665 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2666 
2667 	if (error != 0) {
2668 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2669 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2670 		goto fail0;
2671 	}
2672 
2673 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2674 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2675 	if (error != 0) {
2676 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2677 		    nbuf * ndesc, dd->dd_name, error);
2678 		goto fail1;
2679 	}
2680 
2681 	/* allocate descriptors */
2682 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2683 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2684 	if (error != 0) {
2685 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2686 			"error %u\n", dd->dd_name, error);
2687 		goto fail2;
2688 	}
2689 
2690 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2691 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2692 	if (error != 0) {
2693 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2694 			dd->dd_name, error);
2695 		goto fail3;
2696 	}
2697 
2698 	ds = dd->dd_desc;
2699 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2700 	DPRINTF(sc, ATH_DEBUG_RESET,
2701 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2702 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2703 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2704 
2705 	/* allocate rx buffers */
2706 	bsize = sizeof(struct ath_buf) * nbuf;
2707 	bf = malloc(bsize, M_ATHDEV, M_WAITOK | M_ZERO);
2708 	dd->dd_bufptr = bf;
2709 
2710 	STAILQ_INIT(head);
2711 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2712 		bf->bf_desc = ds;
2713 		bf->bf_daddr = DS2PHYS(dd, ds);
2714 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2715 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2716 		if (error != 0) {
2717 			if_printf(ifp, "unable to create dmamap for %s "
2718 				"buffer %u, error %u\n", dd->dd_name, i, error);
2719 			ath_descdma_cleanup(sc, dd, head);
2720 			return error;
2721 		}
2722 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2723 	}
2724 	return 0;
2725 fail3:
2726 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2727 fail2:
2728 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2729 fail1:
2730 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2731 fail0:
2732 	memset(dd, 0, sizeof(*dd));
2733 	return error;
2734 #undef DS2PHYS
2735 }
2736 
2737 static void
2738 ath_descdma_cleanup(struct ath_softc *sc,
2739 	struct ath_descdma *dd, ath_bufhead *head)
2740 {
2741 	struct ath_buf *bf;
2742 	struct ieee80211_node *ni;
2743 
2744 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2745 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2746 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2747 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2748 
2749 	STAILQ_FOREACH(bf, head, bf_list) {
2750 		if (bf->bf_m) {
2751 			m_freem(bf->bf_m);
2752 			bf->bf_m = NULL;
2753 		}
2754 		if (bf->bf_dmamap != NULL) {
2755 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2756 			bf->bf_dmamap = NULL;
2757 		}
2758 		ni = bf->bf_node;
2759 		bf->bf_node = NULL;
2760 		if (ni != NULL) {
2761 			/*
2762 			 * Reclaim node reference.
2763 			 */
2764 			ieee80211_free_node(ni);
2765 		}
2766 	}
2767 
2768 	STAILQ_INIT(head);
2769 	free(dd->dd_bufptr, M_ATHDEV);
2770 	memset(dd, 0, sizeof(*dd));
2771 }
2772 
2773 static int
2774 ath_desc_alloc(struct ath_softc *sc)
2775 {
2776 	int error;
2777 
2778 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2779 			"rx", ath_rxbuf, 1);
2780 	if (error != 0)
2781 		return error;
2782 
2783 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2784 			"tx", ath_txbuf, ATH_TXDESC);
2785 	if (error != 0) {
2786 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2787 		return error;
2788 	}
2789 
2790 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2791 			"beacon", 1, 1);
2792 	if (error != 0) {
2793 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2794 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2795 		return error;
2796 	}
2797 	return 0;
2798 }
2799 
2800 static void
2801 ath_desc_free(struct ath_softc *sc)
2802 {
2803 
2804 	if (sc->sc_bdma.dd_desc_len != 0)
2805 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2806 	if (sc->sc_txdma.dd_desc_len != 0)
2807 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2808 	if (sc->sc_rxdma.dd_desc_len != 0)
2809 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2810 }
2811 
2812 static struct ieee80211_node *
2813 ath_node_alloc(struct ieee80211_node_table *nt)
2814 {
2815 	struct ieee80211com *ic = nt->nt_ic;
2816 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2817 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2818 	struct ath_node *an;
2819 
2820 	an = malloc(space, M_80211_NODE, M_NOWAIT | M_ZERO);
2821 	if (an == NULL) {
2822 		/* XXX stat+msg */
2823 		return NULL;
2824 	}
2825 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2826 	ath_rate_node_init(sc, an);
2827 
2828 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2829 	return &an->an_node;
2830 }
2831 
2832 static void
2833 ath_node_free(struct ieee80211_node *ni)
2834 {
2835 	struct ieee80211com *ic = ni->ni_ic;
2836 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2837 
2838 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2839 
2840 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2841 	sc->sc_node_free(ni);
2842 }
2843 
2844 static u_int8_t
2845 ath_node_getrssi(const struct ieee80211_node *ni)
2846 {
2847 #define	HAL_EP_RND(x, mul) \
2848 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2849 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2850 	int32_t rssi;
2851 
2852 	/*
2853 	 * When only one frame is received there will be no state in
2854 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2855 	 */
2856 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2857 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2858 	else
2859 		rssi = ni->ni_rssi;
2860 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2861 #undef HAL_EP_RND
2862 }
2863 
2864 static int
2865 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2866 {
2867 	struct ath_hal *ah = sc->sc_ah;
2868 	int error;
2869 	struct mbuf *m;
2870 	struct ath_desc *ds;
2871 
2872 	m = bf->bf_m;
2873 	if (m == NULL) {
2874 		/*
2875 		 * NB: by assigning a page to the rx dma buffer we
2876 		 * implicitly satisfy the Atheros requirement that
2877 		 * this buffer be cache-line-aligned and sized to be
2878 		 * multiple of the cache line size.  Not doing this
2879 		 * causes weird stuff to happen (for the 5210 at least).
2880 		 */
2881 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2882 		if (m == NULL) {
2883 			DPRINTF(sc, ATH_DEBUG_ANY,
2884 				"%s: no mbuf/cluster\n", __func__);
2885 			sc->sc_stats.ast_rx_nombuf++;
2886 			return ENOMEM;
2887 		}
2888 		bf->bf_m = m;
2889 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2890 
2891 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2892 					     bf->bf_dmamap, m,
2893 					     BUS_DMA_NOWAIT);
2894 		if (error != 0) {
2895 			DPRINTF(sc, ATH_DEBUG_ANY,
2896 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2897 			    __func__, error);
2898 			sc->sc_stats.ast_rx_busdma++;
2899 			return error;
2900 		}
2901 		KASSERTMSG(bf->bf_nseg == 1,
2902 			"multi-segment packet; nseg %u", bf->bf_nseg);
2903 	}
2904 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2905 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2906 
2907 	/*
2908 	 * Setup descriptors.  For receive we always terminate
2909 	 * the descriptor list with a self-linked entry so we'll
2910 	 * not get overrun under high load (as can happen with a
2911 	 * 5212 when ANI processing enables PHY error frames).
2912 	 *
2913 	 * To insure the last descriptor is self-linked we create
2914 	 * each descriptor as self-linked and add it to the end.  As
2915 	 * each additional descriptor is added the previous self-linked
2916 	 * entry is ``fixed'' naturally.  This should be safe even
2917 	 * if DMA is happening.  When processing RX interrupts we
2918 	 * never remove/process the last, self-linked, entry on the
2919 	 * descriptor list.  This insures the hardware always has
2920 	 * someplace to write a new frame.
2921 	 */
2922 	ds = bf->bf_desc;
2923 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2924 	ds->ds_data = bf->bf_segs[0].ds_addr;
2925 	/* ds->ds_vdata = mtod(m, void *);	for radar */
2926 	ath_hal_setuprxdesc(ah, ds
2927 		, m->m_len		/* buffer size */
2928 		, 0
2929 	);
2930 
2931 	if (sc->sc_rxlink != NULL)
2932 		*sc->sc_rxlink = bf->bf_daddr;
2933 	sc->sc_rxlink = &ds->ds_link;
2934 	return 0;
2935 }
2936 
2937 /*
2938  * Extend 15-bit time stamp from rx descriptor to
2939  * a full 64-bit TSF using the specified TSF.
2940  */
2941 static inline u_int64_t
2942 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2943 {
2944 	if ((tsf & 0x7fff) < rstamp)
2945 		tsf -= 0x8000;
2946 	return ((tsf &~ 0x7fff) | rstamp);
2947 }
2948 
2949 /*
2950  * Intercept management frames to collect beacon rssi data
2951  * and to do ibss merges.
2952  */
2953 static void
2954 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2955 	struct ieee80211_node *ni,
2956 	int subtype, int rssi, u_int32_t rstamp)
2957 {
2958 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2959 
2960 	/*
2961 	 * Call up first so subsequent work can use information
2962 	 * potentially stored in the node (e.g. for ibss merge).
2963 	 */
2964 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2965 	switch (subtype) {
2966 	case IEEE80211_FC0_SUBTYPE_BEACON:
2967 		/* update rssi statistics for use by the hal */
2968 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2969 		if (sc->sc_syncbeacon &&
2970 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2971 			/*
2972 			 * Resync beacon timers using the tsf of the beacon
2973 			 * frame we just received.
2974 			 */
2975 			ath_beacon_config(sc);
2976 		}
2977 		/* fall thru... */
2978 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2979 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2980 		    ic->ic_state == IEEE80211_S_RUN) {
2981 			u_int64_t tsf = ath_extend_tsf(rstamp,
2982 				ath_hal_gettsf64(sc->sc_ah));
2983 
2984 			/*
2985 			 * Handle ibss merge as needed; check the tsf on the
2986 			 * frame before attempting the merge.  The 802.11 spec
2987 			 * says the station should change its bssid to match
2988 			 * the oldest station with the same ssid, where oldest
2989 			 * is determined by the tsf.  Note that hardware
2990 			 * reconfiguration happens through callback to
2991 			 * ath_newstate as the state machine will go from
2992 			 * RUN -> RUN when this happens.
2993 			 */
2994 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2995 				DPRINTF(sc, ATH_DEBUG_STATE,
2996 				    "ibss merge, rstamp %u tsf %ju "
2997 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2998 				    (uintmax_t)ni->ni_tstamp.tsf);
2999 				(void) ieee80211_ibss_merge(ni);
3000 			}
3001 		}
3002 		break;
3003 	}
3004 }
3005 
3006 /*
3007  * Set the default antenna.
3008  */
3009 static void
3010 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3011 {
3012 	struct ath_hal *ah = sc->sc_ah;
3013 
3014 	/* XXX block beacon interrupts */
3015 	ath_hal_setdefantenna(ah, antenna);
3016 	if (sc->sc_defant != antenna)
3017 		sc->sc_stats.ast_ant_defswitch++;
3018 	sc->sc_defant = antenna;
3019 	sc->sc_rxotherant = 0;
3020 }
3021 
3022 static void
3023 ath_handle_micerror(struct ieee80211com *ic,
3024 	struct ieee80211_frame *wh, int keyix)
3025 {
3026 	struct ieee80211_node *ni;
3027 
3028 	/* XXX recheck MIC to deal w/ chips that lie */
3029 	/* XXX discard MIC errors on !data frames */
3030 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
3031 	if (ni != NULL) {
3032 		ieee80211_notify_michael_failure(ic, wh, keyix);
3033 		ieee80211_free_node(ni);
3034 	}
3035 }
3036 
3037 static void
3038 ath_rx_proc(void *arg, int npending)
3039 {
3040 #define	PA2DESC(_sc, _pa) \
3041 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
3042 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3043 	struct ath_softc *sc = arg;
3044 	struct ath_buf *bf;
3045 	struct ieee80211com *ic = &sc->sc_ic;
3046 	struct ifnet *ifp = &sc->sc_if;
3047 	struct ath_hal *ah = sc->sc_ah;
3048 	struct ath_desc *ds;
3049 	struct mbuf *m;
3050 	struct ieee80211_node *ni;
3051 	struct ath_node *an;
3052 	int len, ngood, type;
3053 	u_int phyerr;
3054 	HAL_STATUS status;
3055 	int16_t nf;
3056 	u_int64_t tsf;
3057 	uint8_t rxerr_tap, rxerr_mon;
3058 	NET_LOCK_GIANT_FUNC_INIT();
3059 
3060 	NET_LOCK_GIANT();		/* XXX */
3061 
3062 	rxerr_tap =
3063 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3064 
3065 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3066 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3067 	else if (ifp->if_flags & IFF_PROMISC)
3068 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3069 
3070 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3071 	ngood = 0;
3072 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3073 	tsf = ath_hal_gettsf64(ah);
3074 	do {
3075 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3076 		if (bf == NULL) {		/* NB: shouldn't happen */
3077 			if_printf(ifp, "%s: no buffer!\n", __func__);
3078 			break;
3079 		}
3080 		ds = bf->bf_desc;
3081 		if (ds->ds_link == bf->bf_daddr) {
3082 			/* NB: never process the self-linked entry at the end */
3083 			break;
3084 		}
3085 		m = bf->bf_m;
3086 		if (m == NULL) {		/* NB: shouldn't happen */
3087 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3088 			break;
3089 		}
3090 		/* XXX sync descriptor memory */
3091 		/*
3092 		 * Must provide the virtual address of the current
3093 		 * descriptor, the physical address, and the virtual
3094 		 * address of the next descriptor in the h/w chain.
3095 		 * This allows the HAL to look ahead to see if the
3096 		 * hardware is done with a descriptor by checking the
3097 		 * done bit in the following descriptor and the address
3098 		 * of the current descriptor the DMA engine is working
3099 		 * on.  All this is necessary because of our use of
3100 		 * a self-linked list to avoid rx overruns.
3101 		 */
3102 		status = ath_hal_rxprocdesc(ah, ds,
3103 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3104 				&ds->ds_rxstat);
3105 #ifdef AR_DEBUG
3106 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3107 			ath_printrxbuf(bf, status == HAL_OK);
3108 #endif
3109 		if (status == HAL_EINPROGRESS)
3110 			break;
3111 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3112 		if (ds->ds_rxstat.rs_more) {
3113 			/*
3114 			 * Frame spans multiple descriptors; this
3115 			 * cannot happen yet as we don't support
3116 			 * jumbograms.  If not in monitor mode,
3117 			 * discard the frame.
3118 			 */
3119 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3120 				sc->sc_stats.ast_rx_toobig++;
3121 				goto rx_next;
3122 			}
3123 			/* fall thru for monitor mode handling... */
3124 		} else if (ds->ds_rxstat.rs_status != 0) {
3125 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3126 				sc->sc_stats.ast_rx_crcerr++;
3127 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3128 				sc->sc_stats.ast_rx_fifoerr++;
3129 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3130 				sc->sc_stats.ast_rx_phyerr++;
3131 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3132 				sc->sc_stats.ast_rx_phy[phyerr]++;
3133 				goto rx_next;
3134 			}
3135 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3136 				/*
3137 				 * Decrypt error.  If the error occurred
3138 				 * because there was no hardware key, then
3139 				 * let the frame through so the upper layers
3140 				 * can process it.  This is necessary for 5210
3141 				 * parts which have no way to setup a ``clear''
3142 				 * key cache entry.
3143 				 *
3144 				 * XXX do key cache faulting
3145 				 */
3146 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3147 					goto rx_accept;
3148 				sc->sc_stats.ast_rx_badcrypt++;
3149 			}
3150 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3151 				sc->sc_stats.ast_rx_badmic++;
3152 				/*
3153 				 * Do minimal work required to hand off
3154 				 * the 802.11 header for notifcation.
3155 				 */
3156 				/* XXX frag's and qos frames */
3157 				len = ds->ds_rxstat.rs_datalen;
3158 				if (len >= sizeof (struct ieee80211_frame)) {
3159 					bus_dmamap_sync(sc->sc_dmat,
3160 					    bf->bf_dmamap,
3161 					    0, bf->bf_dmamap->dm_mapsize,
3162 					    BUS_DMASYNC_POSTREAD);
3163 					ath_handle_micerror(ic,
3164 					    mtod(m, struct ieee80211_frame *),
3165 					    sc->sc_splitmic ?
3166 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3167 				}
3168 			}
3169 			if_statinc(ifp, if_ierrors);
3170 			/*
3171 			 * Reject error frames, we normally don't want
3172 			 * to see them in monitor mode (in monitor mode
3173 			 * allow through packets that have crypto problems).
3174 			 */
3175 
3176 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3177 				goto rx_next;
3178 		}
3179 rx_accept:
3180 		/*
3181 		 * Sync and unmap the frame.  At this point we're
3182 		 * committed to passing the mbuf somewhere so clear
3183 		 * bf_m; this means a new sk_buff must be allocated
3184 		 * when the rx descriptor is setup again to receive
3185 		 * another frame.
3186 		 */
3187 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3188 		    0, bf->bf_dmamap->dm_mapsize,
3189 		    BUS_DMASYNC_POSTREAD);
3190 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3191 		bf->bf_m = NULL;
3192 
3193 		m_set_rcvif(m, ifp);
3194 		len = ds->ds_rxstat.rs_datalen;
3195 		m->m_pkthdr.len = m->m_len = len;
3196 
3197 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3198 
3199 		if (sc->sc_drvbpf) {
3200 			u_int8_t rix;
3201 
3202 			/*
3203 			 * Discard anything shorter than an ack or cts.
3204 			 */
3205 			if (len < IEEE80211_ACK_LEN) {
3206 				DPRINTF(sc, ATH_DEBUG_RECV,
3207 					"%s: runt packet %d\n",
3208 					__func__, len);
3209 				sc->sc_stats.ast_rx_tooshort++;
3210 				m_freem(m);
3211 				goto rx_next;
3212 			}
3213 			rix = ds->ds_rxstat.rs_rate;
3214 			sc->sc_rx_th.wr_tsf = htole64(
3215 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3216 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3217 			if (ds->ds_rxstat.rs_status &
3218 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3219 				sc->sc_rx_th.wr_flags |=
3220 				    IEEE80211_RADIOTAP_F_BADFCS;
3221 			}
3222 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3223 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3224 			sc->sc_rx_th.wr_antnoise = nf;
3225 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3226 
3227 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
3228 			    sc->sc_rx_th_len, m, BPF_D_IN);
3229 		}
3230 
3231 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
3232 			m_freem(m);
3233 			goto rx_next;
3234 		}
3235 		/*
3236 		 * From this point on we assume the frame is at least
3237 		 * as large as ieee80211_frame_min; verify that.
3238 		 */
3239 		if (len < IEEE80211_MIN_LEN) {
3240 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3241 				__func__, len);
3242 			sc->sc_stats.ast_rx_tooshort++;
3243 			m_freem(m);
3244 			goto rx_next;
3245 		}
3246 
3247 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3248 			ieee80211_dump_pkt(mtod(m, void *), len,
3249 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3250 				   ds->ds_rxstat.rs_rssi);
3251 		}
3252 
3253 		m_adj(m, -IEEE80211_CRC_LEN);
3254 
3255 		/*
3256 		 * Locate the node for sender, track state, and then
3257 		 * pass the (referenced) node up to the 802.11 layer
3258 		 * for its use.
3259 		 */
3260 		ni = ieee80211_find_rxnode_withkey(ic,
3261 			mtod(m, const struct ieee80211_frame_min *),
3262 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3263 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3264 		/*
3265 		 * Track rx rssi and do any rx antenna management.
3266 		 */
3267 		an = ATH_NODE(ni);
3268 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3269 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3270 		/*
3271 		 * Send frame up for processing.
3272 		 */
3273 		type = ieee80211_input(ic, m, ni,
3274 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3275 		ieee80211_free_node(ni);
3276 		if (sc->sc_diversity) {
3277 			/*
3278 			 * When using fast diversity, change the default rx
3279 			 * antenna if diversity chooses the other antenna 3
3280 			 * times in a row.
3281 			 */
3282 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3283 				if (++sc->sc_rxotherant >= 3)
3284 					ath_setdefantenna(sc,
3285 						ds->ds_rxstat.rs_antenna);
3286 			} else
3287 				sc->sc_rxotherant = 0;
3288 		}
3289 		if (sc->sc_softled) {
3290 			/*
3291 			 * Blink for any data frame.  Otherwise do a
3292 			 * heartbeat-style blink when idle.  The latter
3293 			 * is mainly for station mode where we depend on
3294 			 * periodic beacon frames to trigger the poll event.
3295 			 */
3296 			if (type == IEEE80211_FC0_TYPE_DATA) {
3297 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3298 				ath_led_event(sc, ATH_LED_RX);
3299 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3300 				ath_led_event(sc, ATH_LED_POLL);
3301 		}
3302 		/*
3303 		 * Arrange to update the last rx timestamp only for
3304 		 * frames from our ap when operating in station mode.
3305 		 * This assumes the rx key is always setup when associated.
3306 		 */
3307 		if (ic->ic_opmode == IEEE80211_M_STA &&
3308 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3309 			ngood++;
3310 rx_next:
3311 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3312 	} while (ath_rxbuf_init(sc, bf) == 0);
3313 
3314 	/* rx signal state monitoring */
3315 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3316 #if 0
3317 	if (ath_hal_radar_event(ah))
3318 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3319 #endif
3320 	if (ngood)
3321 		sc->sc_lastrx = tsf;
3322 
3323 #ifdef __NetBSD__
3324 	/* XXX Why isn't this necessary in FreeBSD? */
3325 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3326 		ath_start(ifp);
3327 #endif /* __NetBSD__ */
3328 
3329 	NET_UNLOCK_GIANT();		/* XXX */
3330 #undef PA2DESC
3331 }
3332 
3333 /*
3334  * Setup a h/w transmit queue.
3335  */
3336 static struct ath_txq *
3337 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3338 {
3339 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3340 	struct ath_hal *ah = sc->sc_ah;
3341 	HAL_TXQ_INFO qi;
3342 	int qnum;
3343 
3344 	memset(&qi, 0, sizeof(qi));
3345 	qi.tqi_subtype = subtype;
3346 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3347 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3348 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3349 	/*
3350 	 * Enable interrupts only for EOL and DESC conditions.
3351 	 * We mark tx descriptors to receive a DESC interrupt
3352 	 * when a tx queue gets deep; otherwise waiting for the
3353 	 * EOL to reap descriptors.  Note that this is done to
3354 	 * reduce interrupt load and this only defers reaping
3355 	 * descriptors, never transmitting frames.  Aside from
3356 	 * reducing interrupts this also permits more concurrency.
3357 	 * The only potential downside is if the tx queue backs
3358 	 * up in which case the top half of the kernel may backup
3359 	 * due to a lack of tx descriptors.
3360 	 */
3361 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3362 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3363 	if (qnum == -1) {
3364 		/*
3365 		 * NB: don't print a message, this happens
3366 		 * normally on parts with too few tx queues
3367 		 */
3368 		return NULL;
3369 	}
3370 	if (qnum >= N(sc->sc_txq)) {
3371 		device_printf(sc->sc_dev,
3372 			"hal qnum %u out of range, max %zu!\n",
3373 			qnum, N(sc->sc_txq));
3374 		ath_hal_releasetxqueue(ah, qnum);
3375 		return NULL;
3376 	}
3377 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3378 		struct ath_txq *txq = &sc->sc_txq[qnum];
3379 
3380 		txq->axq_qnum = qnum;
3381 		txq->axq_depth = 0;
3382 		txq->axq_intrcnt = 0;
3383 		txq->axq_link = NULL;
3384 		STAILQ_INIT(&txq->axq_q);
3385 		ATH_TXQ_LOCK_INIT(sc, txq);
3386 		sc->sc_txqsetup |= 1<<qnum;
3387 	}
3388 	return &sc->sc_txq[qnum];
3389 #undef N
3390 }
3391 
3392 /*
3393  * Setup a hardware data transmit queue for the specified
3394  * access control.  The hal may not support all requested
3395  * queues in which case it will return a reference to a
3396  * previously setup queue.  We record the mapping from ac's
3397  * to h/w queues for use by ath_tx_start and also track
3398  * the set of h/w queues being used to optimize work in the
3399  * transmit interrupt handler and related routines.
3400  */
3401 static int
3402 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3403 {
3404 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3405 	struct ath_txq *txq;
3406 
3407 	if (ac >= N(sc->sc_ac2q)) {
3408 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3409 			ac, N(sc->sc_ac2q));
3410 		return 0;
3411 	}
3412 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3413 	if (txq != NULL) {
3414 		sc->sc_ac2q[ac] = txq;
3415 		return 1;
3416 	} else
3417 		return 0;
3418 #undef N
3419 }
3420 
3421 /*
3422  * Update WME parameters for a transmit queue.
3423  */
3424 static int
3425 ath_txq_update(struct ath_softc *sc, int ac)
3426 {
3427 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3428 #define	ATH_TXOP_TO_US(v)		(v<<5)
3429 	struct ieee80211com *ic = &sc->sc_ic;
3430 	struct ath_txq *txq = sc->sc_ac2q[ac];
3431 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3432 	struct ath_hal *ah = sc->sc_ah;
3433 	HAL_TXQ_INFO qi;
3434 
3435 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3436 	qi.tqi_aifs = wmep->wmep_aifsn;
3437 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3438 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3439 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3440 
3441 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3442 		device_printf(sc->sc_dev, "unable to update hardware queue "
3443 			"parameters for %s traffic!\n",
3444 			ieee80211_wme_acnames[ac]);
3445 		return 0;
3446 	} else {
3447 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3448 		return 1;
3449 	}
3450 #undef ATH_TXOP_TO_US
3451 #undef ATH_EXPONENT_TO_VALUE
3452 }
3453 
3454 /*
3455  * Callback from the 802.11 layer to update WME parameters.
3456  */
3457 static int
3458 ath_wme_update(struct ieee80211com *ic)
3459 {
3460 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3461 
3462 	return !ath_txq_update(sc, WME_AC_BE) ||
3463 	    !ath_txq_update(sc, WME_AC_BK) ||
3464 	    !ath_txq_update(sc, WME_AC_VI) ||
3465 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3466 }
3467 
3468 /*
3469  * Reclaim resources for a setup queue.
3470  */
3471 static void
3472 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3473 {
3474 
3475 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3476 	ATH_TXQ_LOCK_DESTROY(txq);
3477 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3478 }
3479 
3480 /*
3481  * Reclaim all tx queue resources.
3482  */
3483 static void
3484 ath_tx_cleanup(struct ath_softc *sc)
3485 {
3486 	int i;
3487 
3488 	ATH_TXBUF_LOCK_DESTROY(sc);
3489 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3490 		if (ATH_TXQ_SETUP(sc, i))
3491 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3492 }
3493 
3494 /*
3495  * Defragment an mbuf chain, returning at most maxfrags separate
3496  * mbufs+clusters.  If this is not possible NULL is returned and
3497  * the original mbuf chain is left in its present (potentially
3498  * modified) state.  We use two techniques: collapsing consecutive
3499  * mbufs and replacing consecutive mbufs by a cluster.
3500  */
3501 static struct mbuf *
3502 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3503 {
3504 	struct mbuf *m, *n, *n2, **prev;
3505 	u_int curfrags;
3506 
3507 	/*
3508 	 * Calculate the current number of frags.
3509 	 */
3510 	curfrags = 0;
3511 	for (m = m0; m != NULL; m = m->m_next)
3512 		curfrags++;
3513 	/*
3514 	 * First, try to collapse mbufs.  Note that we always collapse
3515 	 * towards the front so we don't need to deal with moving the
3516 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3517 	 * less data than the following.
3518 	 */
3519 	m = m0;
3520 again:
3521 	for (;;) {
3522 		n = m->m_next;
3523 		if (n == NULL)
3524 			break;
3525 		if (n->m_len < M_TRAILINGSPACE(m)) {
3526 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3527 				n->m_len);
3528 			m->m_len += n->m_len;
3529 			m->m_next = n->m_next;
3530 			m_free(n);
3531 			if (--curfrags <= maxfrags)
3532 				return m0;
3533 		} else
3534 			m = n;
3535 	}
3536 	KASSERTMSG(maxfrags > 1,
3537 		"maxfrags %u, but normal collapse failed", maxfrags);
3538 	/*
3539 	 * Collapse consecutive mbufs to a cluster.
3540 	 */
3541 	prev = &m0->m_next;		/* NB: not the first mbuf */
3542 	while ((n = *prev) != NULL) {
3543 		if ((n2 = n->m_next) != NULL &&
3544 		    n->m_len + n2->m_len < MCLBYTES) {
3545 			m = m_getcl(how, MT_DATA, 0);
3546 			if (m == NULL)
3547 				goto bad;
3548 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3549 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3550 				n2->m_len);
3551 			m->m_len = n->m_len + n2->m_len;
3552 			m->m_next = n2->m_next;
3553 			*prev = m;
3554 			m_free(n);
3555 			m_free(n2);
3556 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3557 				return m0;
3558 			/*
3559 			 * Still not there, try the normal collapse
3560 			 * again before we allocate another cluster.
3561 			 */
3562 			goto again;
3563 		}
3564 		prev = &n->m_next;
3565 	}
3566 	/*
3567 	 * No place where we can collapse to a cluster; punt.
3568 	 * This can occur if, for example, you request 2 frags
3569 	 * but the packet requires that both be clusters (we
3570 	 * never reallocate the first mbuf to avoid moving the
3571 	 * packet header).
3572 	 */
3573 bad:
3574 	return NULL;
3575 }
3576 
3577 /*
3578  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3579  */
3580 static int
3581 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3582 {
3583 	int i;
3584 
3585 	for (i = 0; i < rt->rateCount; i++)
3586 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3587 			return i;
3588 	return 0;		/* NB: lowest rate */
3589 }
3590 
3591 static void
3592 ath_freetx(struct mbuf *m)
3593 {
3594 	struct mbuf *next;
3595 
3596 	do {
3597 		next = m->m_nextpkt;
3598 		m->m_nextpkt = NULL;
3599 		m_freem(m);
3600 	} while ((m = next) != NULL);
3601 }
3602 
3603 static int
3604 deduct_pad_bytes(int len, int hdrlen)
3605 {
3606 	/* XXX I am suspicious that this code, which I extracted
3607 	 * XXX from ath_tx_start() for reuse, does the right thing.
3608 	 */
3609 	return len - (hdrlen & 3);
3610 }
3611 
3612 static int
3613 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3614     struct mbuf *m0)
3615 {
3616 	struct ieee80211com *ic = &sc->sc_ic;
3617 	struct ath_hal *ah = sc->sc_ah;
3618 	struct ifnet *ifp = &sc->sc_if;
3619 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3620 	int i, error, iswep, ismcast, isfrag, ismrr;
3621 	int keyix, hdrlen, pktlen, try0;
3622 	u_int8_t rix, txrate, ctsrate;
3623 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3624 	struct ath_desc *ds, *ds0;
3625 	struct ath_txq *txq;
3626 	struct ieee80211_frame *wh;
3627 	u_int subtype, flags, ctsduration;
3628 	HAL_PKT_TYPE atype;
3629 	const HAL_RATE_TABLE *rt;
3630 	HAL_BOOL shortPreamble;
3631 	struct ath_node *an;
3632 	struct mbuf *m;
3633 	u_int pri;
3634 
3635 	wh = mtod(m0, struct ieee80211_frame *);
3636 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3637 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3638 	isfrag = m0->m_flags & M_FRAG;
3639 	hdrlen = ieee80211_anyhdrsize(wh);
3640 	/*
3641 	 * Packet length must not include any
3642 	 * pad bytes; deduct them here.
3643 	 */
3644 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3645 
3646 	if (iswep) {
3647 		const struct ieee80211_cipher *cip;
3648 		struct ieee80211_key *k;
3649 
3650 		/*
3651 		 * Construct the 802.11 header+trailer for an encrypted
3652 		 * frame. The only reason this can fail is because of an
3653 		 * unknown or unsupported cipher/key type.
3654 		 */
3655 		k = ieee80211_crypto_encap(ic, ni, m0);
3656 		if (k == NULL) {
3657 			/*
3658 			 * This can happen when the key is yanked after the
3659 			 * frame was queued.  Just discard the frame; the
3660 			 * 802.11 layer counts failures and provides
3661 			 * debugging/diagnostics.
3662 			 */
3663 			ath_freetx(m0);
3664 			return EIO;
3665 		}
3666 		/*
3667 		 * Adjust the packet + header lengths for the crypto
3668 		 * additions and calculate the h/w key index.  When
3669 		 * a s/w mic is done the frame will have had any mic
3670 		 * added to it prior to entry so m0->m_pkthdr.len above will
3671 		 * account for it. Otherwise we need to add it to the
3672 		 * packet length.
3673 		 */
3674 		cip = k->wk_cipher;
3675 		hdrlen += cip->ic_header;
3676 		pktlen += cip->ic_header + cip->ic_trailer;
3677 		/* NB: frags always have any TKIP MIC done in s/w */
3678 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3679 			pktlen += cip->ic_miclen;
3680 		keyix = k->wk_keyix;
3681 
3682 		/* packet header may have moved, reset our local pointer */
3683 		wh = mtod(m0, struct ieee80211_frame *);
3684 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3685 		/*
3686 		 * Use station key cache slot, if assigned.
3687 		 */
3688 		keyix = ni->ni_ucastkey.wk_keyix;
3689 		if (keyix == IEEE80211_KEYIX_NONE)
3690 			keyix = HAL_TXKEYIX_INVALID;
3691 	} else
3692 		keyix = HAL_TXKEYIX_INVALID;
3693 
3694 	pktlen += IEEE80211_CRC_LEN;
3695 
3696 	/*
3697 	 * Load the DMA map so any coalescing is done.  This
3698 	 * also calculates the number of descriptors we need.
3699 	 */
3700 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3701 				     BUS_DMA_NOWAIT);
3702 	if (error == EFBIG) {
3703 		/* XXX packet requires too many descriptors */
3704 		bf->bf_nseg = ATH_TXDESC+1;
3705 	} else if (error != 0) {
3706 		sc->sc_stats.ast_tx_busdma++;
3707 		ath_freetx(m0);
3708 		return error;
3709 	}
3710 	/*
3711 	 * Discard null packets and check for packets that
3712 	 * require too many TX descriptors.  We try to convert
3713 	 * the latter to a cluster.
3714 	 */
3715 	if (error == EFBIG) {		/* too many desc's, linearize */
3716 		sc->sc_stats.ast_tx_linear++;
3717 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3718 		if (m == NULL) {
3719 			ath_freetx(m0);
3720 			sc->sc_stats.ast_tx_nombuf++;
3721 			return ENOMEM;
3722 		}
3723 		m0 = m;
3724 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3725 					     BUS_DMA_NOWAIT);
3726 		if (error != 0) {
3727 			sc->sc_stats.ast_tx_busdma++;
3728 			ath_freetx(m0);
3729 			return error;
3730 		}
3731 		KASSERTMSG(bf->bf_nseg <= ATH_TXDESC,
3732 		    "too many segments after defrag; nseg %u", bf->bf_nseg);
3733 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3734 		sc->sc_stats.ast_tx_nodata++;
3735 		ath_freetx(m0);
3736 		return EIO;
3737 	}
3738 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3739 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3740 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3741 	bf->bf_m = m0;
3742 	bf->bf_node = ni;			/* NB: held reference */
3743 
3744 	/* setup descriptors */
3745 	ds = bf->bf_desc;
3746 	rt = sc->sc_currates;
3747 	KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
3748 
3749 	/*
3750 	 * NB: the 802.11 layer marks whether or not we should
3751 	 * use short preamble based on the current mode and
3752 	 * negotiated parameters.
3753 	 */
3754 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3755 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3756 		shortPreamble = AH_TRUE;
3757 		sc->sc_stats.ast_tx_shortpre++;
3758 	} else {
3759 		shortPreamble = AH_FALSE;
3760 	}
3761 
3762 	an = ATH_NODE(ni);
3763 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3764 	ismrr = 0;				/* default no multi-rate retry*/
3765 	/*
3766 	 * Calculate Atheros packet type from IEEE80211 packet header,
3767 	 * setup for rate calculations, and select h/w transmit queue.
3768 	 */
3769 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3770 	case IEEE80211_FC0_TYPE_MGT:
3771 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3772 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3773 			atype = HAL_PKT_TYPE_BEACON;
3774 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3775 			atype = HAL_PKT_TYPE_PROBE_RESP;
3776 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3777 			atype = HAL_PKT_TYPE_ATIM;
3778 		else
3779 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3780 		rix = sc->sc_minrateix;
3781 		txrate = rt->info[rix].rateCode;
3782 		if (shortPreamble)
3783 			txrate |= rt->info[rix].shortPreamble;
3784 		try0 = ATH_TXMGTTRY;
3785 		/* NB: force all management frames to highest queue */
3786 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3787 			/* NB: force all management frames to highest queue */
3788 			pri = WME_AC_VO;
3789 		} else
3790 			pri = WME_AC_BE;
3791 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3792 		break;
3793 	case IEEE80211_FC0_TYPE_CTL:
3794 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3795 		rix = sc->sc_minrateix;
3796 		txrate = rt->info[rix].rateCode;
3797 		if (shortPreamble)
3798 			txrate |= rt->info[rix].shortPreamble;
3799 		try0 = ATH_TXMGTTRY;
3800 		/* NB: force all ctl frames to highest queue */
3801 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3802 			/* NB: force all ctl frames to highest queue */
3803 			pri = WME_AC_VO;
3804 		} else
3805 			pri = WME_AC_BE;
3806 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3807 		break;
3808 	case IEEE80211_FC0_TYPE_DATA:
3809 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3810 		/*
3811 		 * Data frames: multicast frames go out at a fixed rate,
3812 		 * otherwise consult the rate control module for the
3813 		 * rate to use.
3814 		 */
3815 		if (ismcast) {
3816 			/*
3817 			 * Check mcast rate setting in case it's changed.
3818 			 * XXX move out of fastpath
3819 			 */
3820 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3821 				sc->sc_mcastrix =
3822 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3823 				sc->sc_mcastrate = ic->ic_mcast_rate;
3824 			}
3825 			rix = sc->sc_mcastrix;
3826 			txrate = rt->info[rix].rateCode;
3827 			try0 = 1;
3828 		} else {
3829 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3830 				&rix, &try0, &txrate);
3831 			sc->sc_txrate = txrate;		/* for LED blinking */
3832 			if (try0 != ATH_TXMAXTRY)
3833 				ismrr = 1;
3834 		}
3835 		pri = M_WME_GETAC(m0);
3836 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3837 			flags |= HAL_TXDESC_NOACK;
3838 		break;
3839 	default:
3840 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3841 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3842 		/* XXX statistic */
3843 		ath_freetx(m0);
3844 		return EIO;
3845 	}
3846 	txq = sc->sc_ac2q[pri];
3847 
3848 	/*
3849 	 * When servicing one or more stations in power-save mode
3850 	 * multicast frames must be buffered until after the beacon.
3851 	 * We use the CAB queue for that.
3852 	 */
3853 	if (ismcast && ic->ic_ps_sta) {
3854 		txq = sc->sc_cabq;
3855 		/* XXX? more bit in 802.11 frame header */
3856 	}
3857 
3858 	/*
3859 	 * Calculate miscellaneous flags.
3860 	 */
3861 	if (ismcast) {
3862 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3863 	} else if (pktlen > ic->ic_rtsthreshold) {
3864 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3865 		cix = rt->info[rix].controlRate;
3866 		sc->sc_stats.ast_tx_rts++;
3867 	}
3868 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3869 		sc->sc_stats.ast_tx_noack++;
3870 
3871 	/*
3872 	 * If 802.11g protection is enabled, determine whether
3873 	 * to use RTS/CTS or just CTS.  Note that this is only
3874 	 * done for OFDM unicast frames.
3875 	 */
3876 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3877 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3878 	    (flags & HAL_TXDESC_NOACK) == 0) {
3879 		/* XXX fragments must use CCK rates w/ protection */
3880 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3881 			flags |= HAL_TXDESC_RTSENA;
3882 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3883 			flags |= HAL_TXDESC_CTSENA;
3884 		if (isfrag) {
3885 			/*
3886 			 * For frags it would be desirable to use the
3887 			 * highest CCK rate for RTS/CTS.  But stations
3888 			 * farther away may detect it at a lower CCK rate
3889 			 * so use the configured protection rate instead
3890 			 * (for now).
3891 			 */
3892 			cix = rt->info[sc->sc_protrix].controlRate;
3893 		} else
3894 			cix = rt->info[sc->sc_protrix].controlRate;
3895 		sc->sc_stats.ast_tx_protect++;
3896 	}
3897 
3898 	/*
3899 	 * Calculate duration.  This logically belongs in the 802.11
3900 	 * layer but it lacks sufficient information to calculate it.
3901 	 */
3902 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3903 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3904 		u_int16_t dur;
3905 		/*
3906 		 * XXX not right with fragmentation.
3907 		 */
3908 		if (shortPreamble)
3909 			dur = rt->info[rix].spAckDuration;
3910 		else
3911 			dur = rt->info[rix].lpAckDuration;
3912 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3913 			dur += dur;		/* additional SIFS+ACK */
3914 			KASSERTMSG(m0->m_nextpkt != NULL, "no fragment");
3915 			/*
3916 			 * Include the size of next fragment so NAV is
3917 			 * updated properly.  The last fragment uses only
3918 			 * the ACK duration
3919 			 */
3920 			dur += ath_hal_computetxtime(ah, rt,
3921 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3922 				hdrlen) -
3923 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3924 			    rix, shortPreamble);
3925 		}
3926 		if (isfrag) {
3927 			/*
3928 			 * Force hardware to use computed duration for next
3929 			 * fragment by disabling multi-rate retry which updates
3930 			 * duration based on the multi-rate duration table.
3931 			 */
3932 			try0 = ATH_TXMAXTRY;
3933 		}
3934 		*(u_int16_t *)wh->i_dur = htole16(dur);
3935 	}
3936 
3937 	/*
3938 	 * Calculate RTS/CTS rate and duration if needed.
3939 	 */
3940 	ctsduration = 0;
3941 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3942 		/*
3943 		 * CTS transmit rate is derived from the transmit rate
3944 		 * by looking in the h/w rate table.  We must also factor
3945 		 * in whether or not a short preamble is to be used.
3946 		 */
3947 		/* NB: cix is set above where RTS/CTS is enabled */
3948 		KASSERTMSG(cix != 0xff, "cix not setup");
3949 		ctsrate = rt->info[cix].rateCode;
3950 		/*
3951 		 * Compute the transmit duration based on the frame
3952 		 * size and the size of an ACK frame.  We call into the
3953 		 * HAL to do the computation since it depends on the
3954 		 * characteristics of the actual PHY being used.
3955 		 *
3956 		 * NB: CTS is assumed the same size as an ACK so we can
3957 		 *     use the precalculated ACK durations.
3958 		 */
3959 		if (shortPreamble) {
3960 			ctsrate |= rt->info[cix].shortPreamble;
3961 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3962 				ctsduration += rt->info[cix].spAckDuration;
3963 			ctsduration += ath_hal_computetxtime(ah,
3964 				rt, pktlen, rix, AH_TRUE);
3965 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3966 				ctsduration += rt->info[rix].spAckDuration;
3967 		} else {
3968 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3969 				ctsduration += rt->info[cix].lpAckDuration;
3970 			ctsduration += ath_hal_computetxtime(ah,
3971 				rt, pktlen, rix, AH_FALSE);
3972 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3973 				ctsduration += rt->info[rix].lpAckDuration;
3974 		}
3975 		/*
3976 		 * Must disable multi-rate retry when using RTS/CTS.
3977 		 */
3978 		ismrr = 0;
3979 		try0 = ATH_TXMGTTRY;		/* XXX */
3980 	} else
3981 		ctsrate = 0;
3982 
3983 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3984 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3985 			sc->sc_hwmap[txrate].ieeerate, -1);
3986 	bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3987 	if (sc->sc_drvbpf) {
3988 		u_int64_t tsf = ath_hal_gettsf64(ah);
3989 
3990 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3991 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3992 		if (iswep)
3993 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3994 		if (isfrag)
3995 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3996 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3997 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3998 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3999 
4000 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0,
4001 		    BPF_D_OUT);
4002 	}
4003 
4004 	/*
4005 	 * Determine if a tx interrupt should be generated for
4006 	 * this descriptor.  We take a tx interrupt to reap
4007 	 * descriptors when the h/w hits an EOL condition or
4008 	 * when the descriptor is specifically marked to generate
4009 	 * an interrupt.  We periodically mark descriptors in this
4010 	 * way to insure timely replenishing of the supply needed
4011 	 * for sending frames.  Defering interrupts reduces system
4012 	 * load and potentially allows more concurrent work to be
4013 	 * done but if done to aggressively can cause senders to
4014 	 * backup.
4015 	 *
4016 	 * NB: use >= to deal with sc_txintrperiod changing
4017 	 *     dynamically through sysctl.
4018 	 */
4019 	if (flags & HAL_TXDESC_INTREQ) {
4020 		txq->axq_intrcnt = 0;
4021 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4022 		flags |= HAL_TXDESC_INTREQ;
4023 		txq->axq_intrcnt = 0;
4024 	}
4025 
4026 	/*
4027 	 * Formulate first tx descriptor with tx controls.
4028 	 */
4029 	/* XXX check return value? */
4030 	ath_hal_setuptxdesc(ah, ds
4031 		, pktlen		/* packet length */
4032 		, hdrlen		/* header length */
4033 		, atype			/* Atheros packet type */
4034 		, ni->ni_txpower	/* txpower */
4035 		, txrate, try0		/* series 0 rate/tries */
4036 		, keyix			/* key cache index */
4037 		, sc->sc_txantenna	/* antenna mode */
4038 		, flags			/* flags */
4039 		, ctsrate		/* rts/cts rate */
4040 		, ctsduration		/* rts/cts duration */
4041 	);
4042 	bf->bf_flags = flags;
4043 	/*
4044 	 * Setup the multi-rate retry state only when we're
4045 	 * going to use it.  This assumes ath_hal_setuptxdesc
4046 	 * initializes the descriptors (so we don't have to)
4047 	 * when the hardware supports multi-rate retry and
4048 	 * we don't use it.
4049 	 */
4050 	if (ismrr)
4051 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4052 
4053 	/*
4054 	 * Fillin the remainder of the descriptor info.
4055 	 */
4056 	ds0 = ds;
4057 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4058 		ds->ds_data = bf->bf_segs[i].ds_addr;
4059 		if (i == bf->bf_nseg - 1)
4060 			ds->ds_link = 0;
4061 		else
4062 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4063 		ath_hal_filltxdesc(ah, ds
4064 			, bf->bf_segs[i].ds_len	/* segment length */
4065 			, i == 0		/* first segment */
4066 			, i == bf->bf_nseg - 1	/* last segment */
4067 			, ds0			/* first descriptor */
4068 		);
4069 
4070 		/* NB: The desc swap function becomes void,
4071 		 * if descriptor swapping is not enabled
4072 		 */
4073 		ath_desc_swap(ds);
4074 
4075 		DPRINTF(sc, ATH_DEBUG_XMIT,
4076 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4077 			__func__, i, ds->ds_link, ds->ds_data,
4078 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4079 	}
4080 	/*
4081 	 * Insert the frame on the outbound list and
4082 	 * pass it on to the hardware.
4083 	 */
4084 	ATH_TXQ_LOCK(txq);
4085 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4086 	if (txq->axq_link == NULL) {
4087 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4088 		DPRINTF(sc, ATH_DEBUG_XMIT,
4089 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4090 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4091 		    txq->axq_depth);
4092 	} else {
4093 		*txq->axq_link = HTOAH32(bf->bf_daddr);
4094 		DPRINTF(sc, ATH_DEBUG_XMIT,
4095 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4096 		    __func__, txq->axq_qnum, txq->axq_link,
4097 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4098 	}
4099 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4100 	/*
4101 	 * The CAB queue is started from the SWBA handler since
4102 	 * frames only go out on DTIM and to avoid possible races.
4103 	 */
4104 	if (txq != sc->sc_cabq)
4105 		ath_hal_txstart(ah, txq->axq_qnum);
4106 	ATH_TXQ_UNLOCK(txq);
4107 
4108 	return 0;
4109 }
4110 
4111 /*
4112  * Process completed xmit descriptors from the specified queue.
4113  */
4114 static int
4115 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4116 {
4117 	struct ath_hal *ah = sc->sc_ah;
4118 	struct ieee80211com *ic = &sc->sc_ic;
4119 	struct ath_buf *bf;
4120 	struct ath_desc *ds, *ds0;
4121 	struct ieee80211_node *ni;
4122 	struct ath_node *an;
4123 	int sr, lr, pri, nacked;
4124 	HAL_STATUS status;
4125 
4126 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4127 		__func__, txq->axq_qnum,
4128 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4129 		txq->axq_link);
4130 	nacked = 0;
4131 	for (;;) {
4132 		ATH_TXQ_LOCK(txq);
4133 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4134 		bf = STAILQ_FIRST(&txq->axq_q);
4135 		if (bf == NULL) {
4136 			txq->axq_link = NULL;
4137 			ATH_TXQ_UNLOCK(txq);
4138 			break;
4139 		}
4140 		ds0 = &bf->bf_desc[0];
4141 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4142 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4143 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4144 			ath_printtxbuf(bf, status == HAL_OK);
4145 		if (status == HAL_EINPROGRESS) {
4146 			ATH_TXQ_UNLOCK(txq);
4147 			break;
4148 		}
4149 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4150 		ATH_TXQ_UNLOCK(txq);
4151 
4152 		ni = bf->bf_node;
4153 		if (ni != NULL) {
4154 			an = ATH_NODE(ni);
4155 			if (ds->ds_txstat.ts_status == 0) {
4156 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4157 				sc->sc_stats.ast_ant_tx[txant]++;
4158 				sc->sc_ant_tx[txant]++;
4159 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4160 					sc->sc_stats.ast_tx_altrate++;
4161 				sc->sc_stats.ast_tx_rssi =
4162 					ds->ds_txstat.ts_rssi;
4163 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4164 					ds->ds_txstat.ts_rssi);
4165 				pri = M_WME_GETAC(bf->bf_m);
4166 				if (pri >= WME_AC_VO)
4167 					ic->ic_wme.wme_hipri_traffic++;
4168 				ni->ni_inact = ni->ni_inact_reload;
4169 			} else {
4170 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4171 					sc->sc_stats.ast_tx_xretries++;
4172 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4173 					sc->sc_stats.ast_tx_fifoerr++;
4174 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4175 					sc->sc_stats.ast_tx_filtered++;
4176 			}
4177 			sr = ds->ds_txstat.ts_shortretry;
4178 			lr = ds->ds_txstat.ts_longretry;
4179 			sc->sc_stats.ast_tx_shortretry += sr;
4180 			sc->sc_stats.ast_tx_longretry += lr;
4181 			/*
4182 			 * Hand the descriptor to the rate control algorithm.
4183 			 */
4184 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4185 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4186 				/*
4187 				 * If frame was ack'd update the last rx time
4188 				 * used to workaround phantom bmiss interrupts.
4189 				 */
4190 				if (ds->ds_txstat.ts_status == 0)
4191 					nacked++;
4192 				ath_rate_tx_complete(sc, an, ds, ds0);
4193 			}
4194 			/*
4195 			 * Reclaim reference to node.
4196 			 *
4197 			 * NB: the node may be reclaimed here if, for example
4198 			 *     this is a DEAUTH message that was sent and the
4199 			 *     node was timed out due to inactivity.
4200 			 */
4201 			ieee80211_free_node(ni);
4202 		}
4203 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4204 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4205 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4206 		m_freem(bf->bf_m);
4207 		bf->bf_m = NULL;
4208 		bf->bf_node = NULL;
4209 
4210 		ATH_TXBUF_LOCK(sc);
4211 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4212 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4213 		ATH_TXBUF_UNLOCK(sc);
4214 	}
4215 	return nacked;
4216 }
4217 
4218 static inline int
4219 txqactive(struct ath_hal *ah, int qnum)
4220 {
4221 	u_int32_t txqs = 1<<qnum;
4222 	ath_hal_gettxintrtxqs(ah, &txqs);
4223 	return (txqs & (1<<qnum));
4224 }
4225 
4226 /*
4227  * Deferred processing of transmit interrupt; special-cased
4228  * for a single hardware transmit queue (e.g. 5210 and 5211).
4229  */
4230 static void
4231 ath_tx_proc_q0(void *arg, int npending)
4232 {
4233 	struct ath_softc *sc = arg;
4234 	struct ifnet *ifp = &sc->sc_if;
4235 #ifdef __NetBSD__
4236 	int s;
4237 #endif
4238 
4239 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0)
4240 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4241 
4242 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4243 		ath_tx_processq(sc, sc->sc_cabq);
4244 
4245 	if (sc->sc_softled)
4246 		ath_led_event(sc, ATH_LED_TX);
4247 
4248 #ifdef __NetBSD__
4249 	s = splnet();
4250 #endif
4251 	ath_start(ifp);
4252 #ifdef __NetBSD__
4253 	splx(s);
4254 #endif
4255 }
4256 
4257 /*
4258  * Deferred processing of transmit interrupt; special-cased
4259  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4260  */
4261 static void
4262 ath_tx_proc_q0123(void *arg, int npending)
4263 {
4264 	struct ath_softc *sc = arg;
4265 	struct ifnet *ifp = &sc->sc_if;
4266 	int nacked;
4267 #ifdef __NetBSD__
4268 	int s;
4269 #endif
4270 
4271 	/*
4272 	 * Process each active queue.
4273 	 */
4274 	nacked = 0;
4275 	if (txqactive(sc->sc_ah, 0))
4276 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4277 	if (txqactive(sc->sc_ah, 1))
4278 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4279 	if (txqactive(sc->sc_ah, 2))
4280 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4281 	if (txqactive(sc->sc_ah, 3))
4282 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4283 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4284 		ath_tx_processq(sc, sc->sc_cabq);
4285 	if (nacked) {
4286 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4287 	}
4288 
4289 	if (sc->sc_softled)
4290 		ath_led_event(sc, ATH_LED_TX);
4291 
4292 #ifdef __NetBSD__
4293 	s = splnet();
4294 #endif
4295 	ath_start(ifp);
4296 #ifdef __NetBSD__
4297 	splx(s);
4298 #endif
4299 }
4300 
4301 /*
4302  * Deferred processing of transmit interrupt.
4303  */
4304 static void
4305 ath_tx_proc(void *arg, int npending)
4306 {
4307 	struct ath_softc *sc = arg;
4308 	struct ifnet *ifp = &sc->sc_if;
4309 	int i, nacked;
4310 #ifdef __NetBSD__
4311 	int s;
4312 #endif
4313 
4314 	/*
4315 	 * Process each active queue.
4316 	 */
4317 	nacked = 0;
4318 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4319 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4320 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4321 	if (nacked) {
4322 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4323 	}
4324 
4325 	if (sc->sc_softled)
4326 		ath_led_event(sc, ATH_LED_TX);
4327 
4328 #ifdef __NetBSD__
4329 	s = splnet();
4330 #endif
4331 	ath_start(ifp);
4332 #ifdef __NetBSD__
4333 	splx(s);
4334 #endif
4335 }
4336 
4337 static void
4338 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4339 {
4340 	struct ath_hal *ah = sc->sc_ah;
4341 	struct ieee80211_node *ni;
4342 	struct ath_buf *bf;
4343 	struct ath_desc *ds;
4344 
4345 	/*
4346 	 * NB: this assumes output has been stopped and
4347 	 *     we do not need to block ath_tx_tasklet
4348 	 */
4349 	for (;;) {
4350 		ATH_TXQ_LOCK(txq);
4351 		bf = STAILQ_FIRST(&txq->axq_q);
4352 		if (bf == NULL) {
4353 			txq->axq_link = NULL;
4354 			ATH_TXQ_UNLOCK(txq);
4355 			break;
4356 		}
4357 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4358 		ATH_TXQ_UNLOCK(txq);
4359 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4360 		if (sc->sc_debug & ATH_DEBUG_RESET)
4361 			ath_printtxbuf(bf,
4362 				ath_hal_txprocdesc(ah, bf->bf_desc,
4363 					&ds->ds_txstat) == HAL_OK);
4364 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4365 		m_freem(bf->bf_m);
4366 		bf->bf_m = NULL;
4367 		ni = bf->bf_node;
4368 		bf->bf_node = NULL;
4369 		if (ni != NULL) {
4370 			/*
4371 			 * Reclaim node reference.
4372 			 */
4373 			ieee80211_free_node(ni);
4374 		}
4375 		ATH_TXBUF_LOCK(sc);
4376 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4377 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4378 		ATH_TXBUF_UNLOCK(sc);
4379 	}
4380 }
4381 
4382 static void
4383 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4384 {
4385 	struct ath_hal *ah = sc->sc_ah;
4386 
4387 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4388 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4389 	    __func__, txq->axq_qnum,
4390 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4391 	    txq->axq_link);
4392 }
4393 
4394 /*
4395  * Drain the transmit queues and reclaim resources.
4396  */
4397 static void
4398 ath_draintxq(struct ath_softc *sc)
4399 {
4400 	struct ath_hal *ah = sc->sc_ah;
4401 	int i;
4402 
4403 	/* XXX return value */
4404 	if (device_is_active(sc->sc_dev)) {
4405 		/* don't touch the hardware if marked invalid */
4406 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4407 		DPRINTF(sc, ATH_DEBUG_RESET,
4408 		    "%s: beacon queue %p\n", __func__,
4409 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4410 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4411 			if (ATH_TXQ_SETUP(sc, i))
4412 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4413 	}
4414 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4415 		if (ATH_TXQ_SETUP(sc, i))
4416 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4417 }
4418 
4419 /*
4420  * Disable the receive h/w in preparation for a reset.
4421  */
4422 static void
4423 ath_stoprecv(struct ath_softc *sc)
4424 {
4425 #define	PA2DESC(_sc, _pa) \
4426 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4427 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4428 	struct ath_hal *ah = sc->sc_ah;
4429 
4430 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4431 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4432 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4433 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4434 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4435 		struct ath_buf *bf;
4436 
4437 		printf("%s: rx queue %p, link %p\n", __func__,
4438 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4439 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4440 			struct ath_desc *ds = bf->bf_desc;
4441 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4442 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4443 				&ds->ds_rxstat);
4444 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4445 				ath_printrxbuf(bf, status == HAL_OK);
4446 		}
4447 	}
4448 	sc->sc_rxlink = NULL;		/* just in case */
4449 #undef PA2DESC
4450 }
4451 
4452 /*
4453  * Enable the receive h/w following a reset.
4454  */
4455 static int
4456 ath_startrecv(struct ath_softc *sc)
4457 {
4458 	struct ath_hal *ah = sc->sc_ah;
4459 	struct ath_buf *bf;
4460 
4461 	sc->sc_rxlink = NULL;
4462 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4463 		int error = ath_rxbuf_init(sc, bf);
4464 		if (error != 0) {
4465 			DPRINTF(sc, ATH_DEBUG_RECV,
4466 				"%s: ath_rxbuf_init failed %d\n",
4467 				__func__, error);
4468 			return error;
4469 		}
4470 	}
4471 
4472 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4473 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4474 	ath_hal_rxena(ah);		/* enable recv descriptors */
4475 	ath_mode_init(sc);		/* set filters, etc. */
4476 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4477 	return 0;
4478 }
4479 
4480 /*
4481  * Update internal state after a channel change.
4482  */
4483 static void
4484 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4485 {
4486 	struct ieee80211com *ic = &sc->sc_ic;
4487 	enum ieee80211_phymode mode;
4488 	u_int16_t flags;
4489 
4490 	/*
4491 	 * Change channels and update the h/w rate map
4492 	 * if we're switching; e.g. 11a to 11b/g.
4493 	 */
4494 	mode = ieee80211_chan2mode(ic, chan);
4495 	if (mode != sc->sc_curmode)
4496 		ath_setcurmode(sc, mode);
4497 	/*
4498 	 * Update BPF state.  NB: ethereal et. al. don't handle
4499 	 * merged flags well so pick a unique mode for their use.
4500 	 */
4501 	if (IEEE80211_IS_CHAN_A(chan))
4502 		flags = IEEE80211_CHAN_A;
4503 	/* XXX 11g schizophrenia */
4504 	else if (IEEE80211_IS_CHAN_G(chan) ||
4505 	    IEEE80211_IS_CHAN_PUREG(chan))
4506 		flags = IEEE80211_CHAN_G;
4507 	else
4508 		flags = IEEE80211_CHAN_B;
4509 	if (IEEE80211_IS_CHAN_T(chan))
4510 		flags |= IEEE80211_CHAN_TURBO;
4511 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4512 		htole16(chan->ic_freq);
4513 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4514 		htole16(flags);
4515 }
4516 
4517 #if 0
4518 /*
4519  * Poll for a channel clear indication; this is required
4520  * for channels requiring DFS and not previously visited
4521  * and/or with a recent radar detection.
4522  */
4523 static void
4524 ath_dfswait(void *arg)
4525 {
4526 	struct ath_softc *sc = arg;
4527 	struct ath_hal *ah = sc->sc_ah;
4528 	HAL_CHANNEL hchan;
4529 
4530 	ath_hal_radar_wait(ah, &hchan);
4531 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4532 		if_printf(&sc->sc_if,
4533 		    "channel %u/0x%x/0x%x has interference\n",
4534 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4535 		return;
4536 	}
4537 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4538 		/* XXX should not happen */
4539 		return;
4540 	}
4541 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4542 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4543 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4544 		if_printf(&sc->sc_if,
4545 		    "channel %u/0x%x/0x%x marked clear\n",
4546 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4547 	} else
4548 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4549 }
4550 #endif
4551 
4552 /*
4553  * Set/change channels.  If the channel is really being changed,
4554  * it's done by reseting the chip.  To accomplish this we must
4555  * first cleanup any pending DMA, then restart stuff after a la
4556  * ath_init.
4557  */
4558 static int
4559 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4560 {
4561 	struct ath_hal *ah = sc->sc_ah;
4562 	struct ieee80211com *ic = &sc->sc_ic;
4563 	HAL_CHANNEL hchan;
4564 
4565 	/*
4566 	 * Convert to a HAL channel description with
4567 	 * the flags constrained to reflect the current
4568 	 * operating mode.
4569 	 */
4570 	hchan.channel = chan->ic_freq;
4571 	hchan.channelFlags = ath_chan2flags(ic, chan);
4572 
4573 	DPRINTF(sc, ATH_DEBUG_RESET,
4574 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4575 	    __func__,
4576 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4577 		sc->sc_curchan.channelFlags),
4578 		sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4579 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4580 		hchan.channel, hchan.channelFlags);
4581 	if (hchan.channel != sc->sc_curchan.channel ||
4582 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4583 		HAL_STATUS status;
4584 
4585 		/*
4586 		 * To switch channels clear any pending DMA operations;
4587 		 * wait long enough for the RX fifo to drain, reset the
4588 		 * hardware at the new frequency, and then re-enable
4589 		 * the relevant bits of the h/w.
4590 		 */
4591 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4592 		ath_draintxq(sc);		/* clear pending tx frames */
4593 		ath_stoprecv(sc);		/* turn off frame recv */
4594 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4595 			if_printf(ic->ic_ifp, "%s: unable to reset "
4596 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4597 			    __func__, ieee80211_chan2ieee(ic, chan),
4598 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4599 			return EIO;
4600 		}
4601 		sc->sc_curchan = hchan;
4602 		ath_update_txpow(sc);		/* update tx power state */
4603 		ath_restore_diversity(sc);
4604 		sc->sc_calinterval = 1;
4605 		sc->sc_caltries = 0;
4606 
4607 		/*
4608 		 * Re-enable rx framework.
4609 		 */
4610 		if (ath_startrecv(sc) != 0) {
4611 			if_printf(&sc->sc_if,
4612 				"%s: unable to restart recv logic\n", __func__);
4613 			return EIO;
4614 		}
4615 
4616 		/*
4617 		 * Change channels and update the h/w rate map
4618 		 * if we're switching; e.g. 11a to 11b/g.
4619 		 */
4620 		ic->ic_ibss_chan = chan;
4621 		ath_chan_change(sc, chan);
4622 
4623 #if 0
4624 		/*
4625 		 * Handle DFS required waiting period to determine
4626 		 * if channel is clear of radar traffic.
4627 		 */
4628 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4629 #define	DFS_AND_NOT_CLEAR(_c) \
4630 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4631 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4632 				if_printf(&sc->sc_if,
4633 					"wait for DFS clear channel signal\n");
4634 				/* XXX stop sndq */
4635 				sc->sc_if.if_flags |= IFF_OACTIVE;
4636 				callout_reset(&sc->sc_dfs_ch,
4637 					2 * hz, ath_dfswait, sc);
4638 			} else
4639 				callout_stop(&sc->sc_dfs_ch);
4640 #undef DFS_NOT_CLEAR
4641 		}
4642 #endif
4643 
4644 		/*
4645 		 * Re-enable interrupts.
4646 		 */
4647 		ath_hal_intrset(ah, sc->sc_imask);
4648 	}
4649 	return 0;
4650 }
4651 
4652 static void
4653 ath_next_scan(void *arg)
4654 {
4655 	struct ath_softc *sc = arg;
4656 	struct ieee80211com *ic = &sc->sc_ic;
4657 	int s;
4658 
4659 	/* don't call ath_start w/o network interrupts blocked */
4660 	s = splnet();
4661 
4662 	if (ic->ic_state == IEEE80211_S_SCAN)
4663 		ieee80211_next_scan(ic);
4664 	splx(s);
4665 }
4666 
4667 /*
4668  * Periodically recalibrate the PHY to account
4669  * for temperature/environment changes.
4670  */
4671 static void
4672 ath_calibrate(void *arg)
4673 {
4674 	struct ath_softc *sc = arg;
4675 	struct ath_hal *ah = sc->sc_ah;
4676 	HAL_BOOL iqCalDone;
4677 	int s;
4678 
4679 	sc->sc_stats.ast_per_cal++;
4680 
4681 	 s = splnet();
4682 
4683 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4684 		/*
4685 		 * Rfgain is out of bounds, reset the chip
4686 		 * to load new gain values.
4687 		 */
4688 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4689 			"%s: rfgain change\n", __func__);
4690 		sc->sc_stats.ast_per_rfgain++;
4691 		ath_reset(&sc->sc_if);
4692 	}
4693 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4694 		DPRINTF(sc, ATH_DEBUG_ANY,
4695 			"%s: calibration of channel %u failed\n",
4696 			__func__, sc->sc_curchan.channel);
4697 		sc->sc_stats.ast_per_calfail++;
4698 	}
4699 	/*
4700 	 * Calibrate noise floor data again in case of change.
4701 	 */
4702 	ath_hal_process_noisefloor(ah);
4703 	/*
4704 	 * Poll more frequently when the IQ calibration is in
4705 	 * progress to speedup loading the final settings.
4706 	 * We temper this aggressive polling with an exponential
4707 	 * back off after 4 tries up to ath_calinterval.
4708 	 */
4709 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4710 		sc->sc_caltries = 0;
4711 		sc->sc_calinterval = ath_calinterval;
4712 	} else if (sc->sc_caltries > 4) {
4713 		sc->sc_caltries = 0;
4714 		sc->sc_calinterval <<= 1;
4715 		if (sc->sc_calinterval > ath_calinterval)
4716 			sc->sc_calinterval = ath_calinterval;
4717 	}
4718 	KASSERTMSG(0 < sc->sc_calinterval &&
4719 		   sc->sc_calinterval <= ath_calinterval,
4720 		   "bad calibration interval %u", sc->sc_calinterval);
4721 
4722 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4723 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4724 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4725 	sc->sc_caltries++;
4726 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4727 		ath_calibrate, sc);
4728 	splx(s);
4729 }
4730 
4731 static int
4732 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4733 {
4734 	struct ifnet *ifp = ic->ic_ifp;
4735 	struct ath_softc *sc = ifp->if_softc;
4736 	struct ath_hal *ah = sc->sc_ah;
4737 	struct ieee80211_node *ni;
4738 	int i, error;
4739 	const u_int8_t *bssid;
4740 	u_int32_t rfilt;
4741 	static const HAL_LED_STATE leds[] = {
4742 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4743 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4744 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4745 	    HAL_LED_ASSOC,	/* IEEE80211_S_ASSOC */
4746 	    HAL_LED_RUN,	/* IEEE80211_S_RUN */
4747 	};
4748 
4749 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4750 		ieee80211_state_name[ic->ic_state],
4751 		ieee80211_state_name[nstate]);
4752 
4753 	callout_stop(&sc->sc_scan_ch);
4754 	callout_stop(&sc->sc_cal_ch);
4755 #if 0
4756 	callout_stop(&sc->sc_dfs_ch);
4757 #endif
4758 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4759 
4760 	if (nstate == IEEE80211_S_INIT) {
4761 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4762 		/*
4763 		 * NB: disable interrupts so we don't rx frames.
4764 		 */
4765 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4766 		/*
4767 		 * Notify the rate control algorithm.
4768 		 */
4769 		ath_rate_newstate(sc, nstate);
4770 		goto done;
4771 	}
4772 	ni = ic->ic_bss;
4773 	error = ath_chan_set(sc, ic->ic_curchan);
4774 	if (error != 0)
4775 		goto bad;
4776 	rfilt = ath_calcrxfilter(sc, nstate);
4777 	if (nstate == IEEE80211_S_SCAN)
4778 		bssid = ifp->if_broadcastaddr;
4779 	else
4780 		bssid = ni->ni_bssid;
4781 	ath_hal_setrxfilter(ah, rfilt);
4782 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4783 		 __func__, rfilt, ether_sprintf(bssid));
4784 
4785 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4786 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4787 	else
4788 		ath_hal_setassocid(ah, bssid, 0);
4789 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4790 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4791 			if (ath_hal_keyisvalid(ah, i))
4792 				ath_hal_keysetmac(ah, i, bssid);
4793 	}
4794 
4795 	/*
4796 	 * Notify the rate control algorithm so rates
4797 	 * are setup should ath_beacon_alloc be called.
4798 	 */
4799 	ath_rate_newstate(sc, nstate);
4800 
4801 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4802 		/* nothing to do */;
4803 	} else if (nstate == IEEE80211_S_RUN) {
4804 		DPRINTF(sc, ATH_DEBUG_STATE,
4805 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4806 			"capinfo=0x%04x chan=%d\n"
4807 			 , __func__
4808 			 , ic->ic_flags
4809 			 , ni->ni_intval
4810 			 , ether_sprintf(ni->ni_bssid)
4811 			 , ni->ni_capinfo
4812 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4813 
4814 		switch (ic->ic_opmode) {
4815 		case IEEE80211_M_HOSTAP:
4816 		case IEEE80211_M_IBSS:
4817 			/*
4818 			 * Allocate and setup the beacon frame.
4819 			 *
4820 			 * Stop any previous beacon DMA.  This may be
4821 			 * necessary, for example, when an ibss merge
4822 			 * causes reconfiguration; there will be a state
4823 			 * transition from RUN->RUN that means we may
4824 			 * be called with beacon transmission active.
4825 			 */
4826 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4827 			ath_beacon_free(sc);
4828 			error = ath_beacon_alloc(sc, ni);
4829 			if (error != 0)
4830 				goto bad;
4831 			/*
4832 			 * If joining an adhoc network defer beacon timer
4833 			 * configuration to the next beacon frame so we
4834 			 * have a current TSF to use.  Otherwise we're
4835 			 * starting an ibss/bss so there's no need to delay.
4836 			 */
4837 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4838 			    ic->ic_bss->ni_tstamp.tsf != 0)
4839 				sc->sc_syncbeacon = 1;
4840 			else
4841 				ath_beacon_config(sc);
4842 			break;
4843 		case IEEE80211_M_STA:
4844 			/*
4845 			 * Allocate a key cache slot to the station.
4846 			 */
4847 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4848 			    sc->sc_hasclrkey &&
4849 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4850 				ath_setup_stationkey(ni);
4851 			/*
4852 			 * Defer beacon timer configuration to the next
4853 			 * beacon frame so we have a current TSF to use
4854 			 * (any TSF collected when scanning is likely old).
4855 			 */
4856 			sc->sc_syncbeacon = 1;
4857 			break;
4858 		default:
4859 			break;
4860 		}
4861 		/*
4862 		 * Let the hal process statistics collected during a
4863 		 * scan so it can provide calibrated noise floor data.
4864 		 */
4865 		ath_hal_process_noisefloor(ah);
4866 		/*
4867 		 * Reset rssi stats; maybe not the best place...
4868 		 */
4869 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4870 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4871 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4872 	} else {
4873 		ath_hal_intrset(ah,
4874 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4875 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4876 	}
4877 done:
4878 	/*
4879 	 * Invoke the parent method to complete the work.
4880 	 */
4881 	error = sc->sc_newstate(ic, nstate, arg);
4882 	/*
4883 	 * Finally, start any timers.
4884 	 */
4885 	if (nstate == IEEE80211_S_RUN) {
4886 		/* start periodic recalibration timer */
4887 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4888 			ath_calibrate, sc);
4889 	} else if (nstate == IEEE80211_S_SCAN) {
4890 		/* start ap/neighbor scan timer */
4891 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4892 			ath_next_scan, sc);
4893 	}
4894 bad:
4895 	return error;
4896 }
4897 
4898 /*
4899  * Allocate a key cache slot to the station so we can
4900  * setup a mapping from key index to node. The key cache
4901  * slot is needed for managing antenna state and for
4902  * compression when stations do not use crypto.  We do
4903  * it uniliaterally here; if crypto is employed this slot
4904  * will be reassigned.
4905  */
4906 static void
4907 ath_setup_stationkey(struct ieee80211_node *ni)
4908 {
4909 	struct ieee80211com *ic = ni->ni_ic;
4910 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4911 	ieee80211_keyix keyix, rxkeyix;
4912 
4913 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4914 		/*
4915 		 * Key cache is full; we'll fall back to doing
4916 		 * the more expensive lookup in software.  Note
4917 		 * this also means no h/w compression.
4918 		 */
4919 		/* XXX msg+statistic */
4920 	} else {
4921 		/* XXX locking? */
4922 		ni->ni_ucastkey.wk_keyix = keyix;
4923 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4924 		/* NB: this will create a pass-thru key entry */
4925 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4926 	}
4927 }
4928 
4929 /*
4930  * Setup driver-specific state for a newly associated node.
4931  * Note that we're called also on a re-associate, the isnew
4932  * param tells us if this is the first time or not.
4933  */
4934 static void
4935 ath_newassoc(struct ieee80211_node *ni, int isnew)
4936 {
4937 	struct ieee80211com *ic = ni->ni_ic;
4938 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4939 
4940 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4941 	if (isnew &&
4942 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4943 		KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4944 		    "new assoc with a unicast key already setup (keyix %u)",
4945 		    ni->ni_ucastkey.wk_keyix);
4946 		ath_setup_stationkey(ni);
4947 	}
4948 }
4949 
4950 static int
4951 ath_getchannels(struct ath_softc *sc, u_int cc,
4952 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4953 {
4954 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4955 	struct ieee80211com *ic = &sc->sc_ic;
4956 	struct ifnet *ifp = &sc->sc_if;
4957 	struct ath_hal *ah = sc->sc_ah;
4958 	HAL_CHANNEL *chans;
4959 	int i, ix, nchan;
4960 
4961 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4962 			M_TEMP, M_WAITOK);
4963 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4964 	    NULL, 0, NULL,
4965 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4966 		u_int32_t rd;
4967 
4968 		(void)ath_hal_getregdomain(ah, &rd);
4969 		if_printf(ifp, "unable to collect channel list from hal; "
4970 			"regdomain likely %u country code %u\n", rd, cc);
4971 		free(chans, M_TEMP);
4972 		return EINVAL;
4973 	}
4974 
4975 	/*
4976 	 * Convert HAL channels to ieee80211 ones and insert
4977 	 * them in the table according to their channel number.
4978 	 */
4979 	for (i = 0; i < nchan; i++) {
4980 		HAL_CHANNEL *c = &chans[i];
4981 		u_int16_t flags;
4982 
4983 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4984 		if (ix > IEEE80211_CHAN_MAX) {
4985 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4986 				ix, c->channel, c->channelFlags);
4987 			continue;
4988 		}
4989 		if (ix < 0) {
4990 			/* XXX can't handle stuff <2400 right now */
4991 			if (bootverbose)
4992 				if_printf(ifp, "hal channel %d (%u/%x) "
4993 				    "cannot be handled; ignored\n",
4994 				    ix, c->channel, c->channelFlags);
4995 			continue;
4996 		}
4997 		/*
4998 		 * Calculate net80211 flags; most are compatible
4999 		 * but some need massaging.  Note the static turbo
5000 		 * conversion can be removed once net80211 is updated
5001 		 * to understand static vs. dynamic turbo.
5002 		 */
5003 		flags = c->channelFlags & COMPAT;
5004 		if (c->channelFlags & CHANNEL_STURBO)
5005 			flags |= IEEE80211_CHAN_TURBO;
5006 		if (ic->ic_channels[ix].ic_freq == 0) {
5007 			ic->ic_channels[ix].ic_freq = c->channel;
5008 			ic->ic_channels[ix].ic_flags = flags;
5009 		} else {
5010 			/* channels overlap; e.g. 11g and 11b */
5011 			ic->ic_channels[ix].ic_flags |= flags;
5012 		}
5013 	}
5014 	free(chans, M_TEMP);
5015 	return 0;
5016 #undef COMPAT
5017 }
5018 
5019 static void
5020 ath_led_done(void *arg)
5021 {
5022 	struct ath_softc *sc = arg;
5023 
5024 	sc->sc_blinking = 0;
5025 }
5026 
5027 /*
5028  * Turn the LED off: flip the pin and then set a timer so no
5029  * update will happen for the specified duration.
5030  */
5031 static void
5032 ath_led_off(void *arg)
5033 {
5034 	struct ath_softc *sc = arg;
5035 
5036 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5037 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5038 }
5039 
5040 /*
5041  * Blink the LED according to the specified on/off times.
5042  */
5043 static void
5044 ath_led_blink(struct ath_softc *sc, int on, int off)
5045 {
5046 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5047 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5048 	sc->sc_blinking = 1;
5049 	sc->sc_ledoff = off;
5050 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5051 }
5052 
5053 static void
5054 ath_led_event(struct ath_softc *sc, int event)
5055 {
5056 
5057 	sc->sc_ledevent = ticks;	/* time of last event */
5058 	if (sc->sc_blinking)		/* don't interrupt active blink */
5059 		return;
5060 	switch (event) {
5061 	case ATH_LED_POLL:
5062 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
5063 			sc->sc_hwmap[0].ledoff);
5064 		break;
5065 	case ATH_LED_TX:
5066 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
5067 			sc->sc_hwmap[sc->sc_txrate].ledoff);
5068 		break;
5069 	case ATH_LED_RX:
5070 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
5071 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
5072 		break;
5073 	}
5074 }
5075 
5076 static void
5077 ath_update_txpow(struct ath_softc *sc)
5078 {
5079 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5080 	struct ieee80211com *ic = &sc->sc_ic;
5081 	struct ath_hal *ah = sc->sc_ah;
5082 	u_int32_t txpow;
5083 
5084 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5085 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5086 		/* read back in case value is clamped */
5087 		(void)ath_hal_gettxpowlimit(ah, &txpow);
5088 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5089 	}
5090 	/*
5091 	 * Fetch max tx power level for status requests.
5092 	 */
5093 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5094 	ic->ic_bss->ni_txpower = txpow;
5095 }
5096 
5097 static void
5098 rate_setup(struct ath_softc *sc,
5099 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5100 {
5101 	int i, maxrates;
5102 
5103 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5104 		DPRINTF(sc, ATH_DEBUG_ANY,
5105 			"%s: rate table too small (%u > %u)\n",
5106 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5107 		maxrates = IEEE80211_RATE_MAXSIZE;
5108 	} else
5109 		maxrates = rt->rateCount;
5110 	for (i = 0; i < maxrates; i++)
5111 		rs->rs_rates[i] = rt->info[i].dot11Rate;
5112 	rs->rs_nrates = maxrates;
5113 }
5114 
5115 static int
5116 ath_rate_setup(struct ath_softc *sc, u_int mode)
5117 {
5118 	struct ath_hal *ah = sc->sc_ah;
5119 	struct ieee80211com *ic = &sc->sc_ic;
5120 	const HAL_RATE_TABLE *rt;
5121 
5122 	switch (mode) {
5123 	case IEEE80211_MODE_11A:
5124 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5125 		break;
5126 	case IEEE80211_MODE_11B:
5127 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5128 		break;
5129 	case IEEE80211_MODE_11G:
5130 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5131 		break;
5132 	case IEEE80211_MODE_TURBO_A:
5133 		/* XXX until static/dynamic turbo is fixed */
5134 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5135 		break;
5136 	case IEEE80211_MODE_TURBO_G:
5137 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5138 		break;
5139 	default:
5140 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5141 			__func__, mode);
5142 		return 0;
5143 	}
5144 	sc->sc_rates[mode] = rt;
5145 	if (rt != NULL) {
5146 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5147 		return 1;
5148 	} else
5149 		return 0;
5150 }
5151 
5152 static void
5153 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5154 {
5155 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5156 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5157 	static const struct {
5158 		u_int		rate;		/* tx/rx 802.11 rate */
5159 		u_int16_t	timeOn;		/* LED on time (ms) */
5160 		u_int16_t	timeOff;	/* LED off time (ms) */
5161 	} blinkrates[] = {
5162 		{ 108,  40,  10 },
5163 		{  96,  44,  11 },
5164 		{  72,  50,  13 },
5165 		{  48,  57,  14 },
5166 		{  36,  67,  16 },
5167 		{  24,  80,  20 },
5168 		{  22, 100,  25 },
5169 		{  18, 133,  34 },
5170 		{  12, 160,  40 },
5171 		{  10, 200,  50 },
5172 		{   6, 240,  58 },
5173 		{   4, 267,  66 },
5174 		{   2, 400, 100 },
5175 		{   0, 500, 130 },
5176 	};
5177 	const HAL_RATE_TABLE *rt;
5178 	int i, j;
5179 
5180 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5181 	rt = sc->sc_rates[mode];
5182 	KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode);
5183 	for (i = 0; i < rt->rateCount; i++)
5184 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5185 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5186 	for (i = 0; i < 32; i++) {
5187 		u_int8_t ix = rt->rateCodeToIndex[i];
5188 		if (ix == 0xff) {
5189 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5190 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5191 			continue;
5192 		}
5193 		sc->sc_hwmap[i].ieeerate =
5194 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5195 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5196 		if (rt->info[ix].shortPreamble ||
5197 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5198 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5199 		/* NB: receive frames include FCS */
5200 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5201 			IEEE80211_RADIOTAP_F_FCS;
5202 		/* setup blink rate table to avoid per-packet lookup */
5203 		for (j = 0; j < N(blinkrates)-1; j++)
5204 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5205 				break;
5206 		/* NB: this uses the last entry if the rate isn't found */
5207 		/* XXX beware of overlow */
5208 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5209 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5210 	}
5211 	sc->sc_currates = rt;
5212 	sc->sc_curmode = mode;
5213 	/*
5214 	 * All protection frames are transmited at 2Mb/s for
5215 	 * 11g, otherwise at 1Mb/s.
5216 	 */
5217 	if (mode == IEEE80211_MODE_11G)
5218 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5219 	else
5220 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5221 	/* rate index used to send management frames */
5222 	sc->sc_minrateix = 0;
5223 	/*
5224 	 * Setup multicast rate state.
5225 	 */
5226 	/* XXX layering violation */
5227 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5228 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5229 	/* NB: caller is responsible for reseting rate control state */
5230 #undef N
5231 }
5232 
5233 #ifdef AR_DEBUG
5234 static void
5235 ath_printrxbuf(struct ath_buf *bf, int done)
5236 {
5237 	struct ath_desc *ds;
5238 	int i;
5239 
5240 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5241 		printf("R%d (%p %" PRIx64
5242 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5243 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5244 		    ds->ds_link, ds->ds_data,
5245 		    ds->ds_ctl0, ds->ds_ctl1,
5246 		    ds->ds_hw[0], ds->ds_hw[1],
5247 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5248 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5249 	}
5250 }
5251 
5252 static void
5253 ath_printtxbuf(struct ath_buf *bf, int done)
5254 {
5255 	struct ath_desc *ds;
5256 	int i;
5257 
5258 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5259 		printf("T%d (%p %" PRIx64
5260 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5261 		    i, ds,
5262 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5263 		    ds->ds_link, ds->ds_data,
5264 		    ds->ds_ctl0, ds->ds_ctl1,
5265 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5266 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5267 	}
5268 }
5269 #endif	/* AR_DEBUG */
5270 
5271 static void
5272 ath_watchdog(struct ifnet *ifp)
5273 {
5274 	struct ath_softc *sc = ifp->if_softc;
5275 	struct ieee80211com *ic = &sc->sc_ic;
5276 	struct ath_txq *axq;
5277 	int i;
5278 
5279 	ifp->if_timer = 0;
5280 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5281 	    !device_is_active(sc->sc_dev))
5282 		return;
5283 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5284 		if (!ATH_TXQ_SETUP(sc, i))
5285 			continue;
5286 		axq = &sc->sc_txq[i];
5287 		ATH_TXQ_LOCK(axq);
5288 		if (axq->axq_timer == 0)
5289 			;
5290 		else if (--axq->axq_timer == 0) {
5291 			ATH_TXQ_UNLOCK(axq);
5292 			if_printf(ifp, "device timeout (txq %d, "
5293 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5294 			if (sc->sc_txintrperiod > 1)
5295 				sc->sc_txintrperiod--;
5296 			ath_reset(ifp);
5297 			if_statinc(ifp, if_oerrors);
5298 			sc->sc_stats.ast_watchdog++;
5299 			break;
5300 		} else
5301 			ifp->if_timer = 1;
5302 		ATH_TXQ_UNLOCK(axq);
5303 	}
5304 	ieee80211_watchdog(ic);
5305 }
5306 
5307 /*
5308  * Diagnostic interface to the HAL.  This is used by various
5309  * tools to do things like retrieve register contents for
5310  * debugging.  The mechanism is intentionally opaque so that
5311  * it can change frequently w/o concern for compatiblity.
5312  */
5313 static int
5314 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5315 {
5316 	struct ath_hal *ah = sc->sc_ah;
5317 	u_int id = ad->ad_id & ATH_DIAG_ID;
5318 	void *indata = NULL;
5319 	void *outdata = NULL;
5320 	u_int32_t insize = ad->ad_in_size;
5321 	u_int32_t outsize = ad->ad_out_size;
5322 	int error = 0;
5323 
5324 	if (ad->ad_id & ATH_DIAG_IN) {
5325 		/*
5326 		 * Copy in data.
5327 		 */
5328 		indata = malloc(insize, M_TEMP, M_WAITOK);
5329 		error = copyin(ad->ad_in_data, indata, insize);
5330 		if (error)
5331 			goto bad;
5332 	}
5333 	if (ad->ad_id & ATH_DIAG_DYN) {
5334 		/*
5335 		 * Allocate a buffer for the results (otherwise the HAL
5336 		 * returns a pointer to a buffer where we can read the
5337 		 * results).  Note that we depend on the HAL leaving this
5338 		 * pointer for us to use below in reclaiming the buffer;
5339 		 * may want to be more defensive.
5340 		 */
5341 		outdata = malloc(outsize, M_TEMP, M_WAITOK);
5342 	}
5343 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5344 		if (outsize < ad->ad_out_size)
5345 			ad->ad_out_size = outsize;
5346 		if (outdata != NULL)
5347 			error = copyout(outdata, ad->ad_out_data,
5348 					ad->ad_out_size);
5349 	} else {
5350 		error = EINVAL;
5351 	}
5352 bad:
5353 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5354 		free(indata, M_TEMP);
5355 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5356 		free(outdata, M_TEMP);
5357 	return error;
5358 }
5359 
5360 static int
5361 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5362 {
5363 #define	IS_RUNNING(ifp) \
5364 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5365 	struct ath_softc *sc = ifp->if_softc;
5366 	struct ieee80211com *ic = &sc->sc_ic;
5367 	struct ifreq *ifr = (struct ifreq *)data;
5368 	int error = 0, s;
5369 
5370 	s = splnet();
5371 	switch (cmd) {
5372 	case SIOCSIFFLAGS:
5373 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5374 			break;
5375 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
5376 		case IFF_UP | IFF_RUNNING:
5377 			/*
5378 			 * To avoid rescanning another access point,
5379 			 * do not call ath_init() here.  Instead,
5380 			 * only reflect promisc mode settings.
5381 			 */
5382 			ath_mode_init(sc);
5383 			break;
5384 		case IFF_UP:
5385 			/*
5386 			 * Beware of being called during attach/detach
5387 			 * to reset promiscuous mode.  In that case we
5388 			 * will still be marked UP but not RUNNING.
5389 			 * However trying to re-init the interface
5390 			 * is the wrong thing to do as we've already
5391 			 * torn down much of our state.  There's
5392 			 * probably a better way to deal with this.
5393 			 */
5394 			error = ath_init(sc);
5395 			break;
5396 		case IFF_RUNNING:
5397 			ath_stop_locked(ifp, 1);
5398 			break;
5399 		case 0:
5400 			break;
5401 		}
5402 		break;
5403 	case SIOCADDMULTI:
5404 	case SIOCDELMULTI:
5405 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5406 			if (ifp->if_flags & IFF_RUNNING)
5407 				ath_mode_init(sc);
5408 			error = 0;
5409 		}
5410 		break;
5411 	case SIOCGATHSTATS: {
5412 		struct ath_stats stats_out;
5413 		struct if_data ifi;
5414 
5415 		/* NB: embed these numbers to get a consistent view */
5416 
5417 		stats_out = sc->sc_stats;
5418 		stats_out.ast_rx_rssi = ieee80211_getrssi(ic);
5419 		splx(s);
5420 
5421 		if_export_if_data(ifp, &ifi, false);
5422 		stats_out.ast_tx_packets = ifi.ifi_opackets;
5423 		stats_out.ast_rx_packets = ifi.ifi_ipackets;
5424 
5425 		return copyout(&stats_out,
5426 				ifr->ifr_data, sizeof (stats_out));
5427 	    }
5428 
5429 	case SIOCGATHDIAG:
5430 		error = kauth_authorize_network(curlwp->l_cred,
5431 		    KAUTH_NETWORK_INTERFACE,
5432 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
5433 		    NULL);
5434 		if (error)
5435 			break;
5436 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5437 		break;
5438 	default:
5439 		error = ieee80211_ioctl(ic, cmd, data);
5440 		if (error != ENETRESET)
5441 			;
5442 		else if (IS_RUNNING(ifp) &&
5443 			 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5444 			error = ath_init(sc);
5445 		else
5446 			error = 0;
5447 		break;
5448 	}
5449 	splx(s);
5450 	return error;
5451 #undef IS_RUNNING
5452 }
5453 
5454 static void
5455 ath_bpfattach(struct ath_softc *sc)
5456 {
5457 	struct ifnet *ifp = &sc->sc_if;
5458 
5459 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
5460 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5461 	    &sc->sc_drvbpf);
5462 
5463 	/*
5464 	 * Initialize constant fields.
5465 	 * XXX make header lengths a multiple of 32-bits so subsequent
5466 	 *     headers are properly aligned; this is a kludge to keep
5467 	 *     certain applications happy.
5468 	 *
5469 	 * NB: the channel is setup each time we transition to the
5470 	 *     RUN state to avoid filling it in for each frame.
5471 	 */
5472 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5473 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5474 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5475 
5476 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5477 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5478 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5479 }
5480 
5481 /*
5482  * Announce various information on device/driver attach.
5483  */
5484 static void
5485 ath_announce(struct ath_softc *sc)
5486 {
5487 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5488 	struct ifnet *ifp = &sc->sc_if;
5489 	struct ath_hal *ah = sc->sc_ah;
5490 	u_int modes, cc;
5491 
5492 	if_printf(ifp, "mac %d.%d phy %d.%d",
5493 		ah->ah_macVersion, ah->ah_macRev,
5494 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5495 	/*
5496 	 * Print radio revision(s).  We check the wireless modes
5497 	 * to avoid falsely printing revs for inoperable parts.
5498 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5499 	 */
5500 	ath_hal_getcountrycode(ah, &cc);
5501 	modes = ath_hal_getwirelessmodes(ah, cc);
5502 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5503 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5504 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5505 				ah->ah_analog5GhzRev >> 4,
5506 				ah->ah_analog5GhzRev & 0xf,
5507 				ah->ah_analog2GhzRev >> 4,
5508 				ah->ah_analog2GhzRev & 0xf);
5509 		else
5510 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5511 				ah->ah_analog5GhzRev & 0xf);
5512 	} else
5513 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5514 			ah->ah_analog5GhzRev & 0xf);
5515 	printf("\n");
5516 	if (bootverbose) {
5517 		int i;
5518 		for (i = 0; i <= WME_AC_VO; i++) {
5519 			struct ath_txq *txq = sc->sc_ac2q[i];
5520 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5521 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5522 		}
5523 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5524 			sc->sc_cabq->axq_qnum);
5525 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5526 	}
5527 	if (ath_rxbuf != ATH_RXBUF)
5528 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5529 	if (ath_txbuf != ATH_TXBUF)
5530 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5531 #undef HAL_MODE_DUALBAND
5532 }
5533