xref: /netbsd/sys/dev/ic/ath.c (revision a0b1e536)
1 /*	$NetBSD: ath.c,v 1.136 2021/08/09 20:49:10 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.136 2021/08/09 20:49:10 andvar Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #ifdef _KERNEL_OPT
55 #include "opt_inet.h"
56 #endif
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/sockio.h>
68 #include <sys/errno.h>
69 #include <sys/callout.h>
70 #include <sys/bus.h>
71 #include <sys/endian.h>
72 #include <sys/kauth.h>
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_types.h>
78 #include <net/if_arp.h>
79 #include <net/if_ether.h>
80 #include <net/if_llc.h>
81 
82 #include <net80211/ieee80211_netbsd.h>
83 #include <net80211/ieee80211_var.h>
84 
85 #include <net/bpf.h>
86 
87 #ifdef INET
88 #include <netinet/in.h>
89 #endif
90 
91 #include <sys/device.h>
92 #include <dev/ic/ath_netbsd.h>
93 
94 #define	AR_DEBUG
95 #include <dev/ic/athvar.h>
96 #include "ah_desc.h"
97 #include "ah_devid.h"	/* XXX for softled */
98 #include "opt_ah.h"
99 
100 #ifdef ATH_TX99_DIAG
101 #include <dev/ath/ath_tx99/ath_tx99.h>
102 #endif
103 
104 /* unaligned little endian access */
105 #define LE_READ_2(p)							\
106 	((u_int16_t)							\
107 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
108 #define LE_READ_4(p)							\
109 	((u_int32_t)							\
110 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
111 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
112 
113 enum {
114 	ATH_LED_TX,
115 	ATH_LED_RX,
116 	ATH_LED_POLL,
117 };
118 
119 #ifdef	AH_NEED_DESC_SWAP
120 #define	HTOAH32(x)	htole32(x)
121 #else
122 #define	HTOAH32(x)	(x)
123 #endif
124 
125 static int	ath_ifinit(struct ifnet *);
126 static int	ath_init(struct ath_softc *);
127 static void	ath_stop_locked(struct ifnet *, int);
128 static void	ath_stop(struct ifnet *, int);
129 static void	ath_start(struct ifnet *);
130 static int	ath_media_change(struct ifnet *);
131 static void	ath_watchdog(struct ifnet *);
132 static int	ath_ioctl(struct ifnet *, u_long, void *);
133 static void	ath_fatal_proc(void *, int);
134 static void	ath_rxorn_proc(void *, int);
135 static void	ath_bmiss_proc(void *, int);
136 static void	ath_radar_proc(void *, int);
137 static int	ath_key_alloc(struct ieee80211com *,
138 			const struct ieee80211_key *,
139 			ieee80211_keyix *, ieee80211_keyix *);
140 static int	ath_key_delete(struct ieee80211com *,
141 			const struct ieee80211_key *);
142 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
143 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
144 static void	ath_key_update_begin(struct ieee80211com *);
145 static void	ath_key_update_end(struct ieee80211com *);
146 static void	ath_mode_init(struct ath_softc *);
147 static void	ath_setslottime(struct ath_softc *);
148 static void	ath_updateslot(struct ifnet *);
149 static int	ath_beaconq_setup(struct ath_hal *);
150 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
151 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
152 static void	ath_beacon_proc(void *, int);
153 static void	ath_bstuck_proc(void *, int);
154 static void	ath_beacon_free(struct ath_softc *);
155 static void	ath_beacon_config(struct ath_softc *);
156 static void	ath_descdma_cleanup(struct ath_softc *sc,
157 			struct ath_descdma *, ath_bufhead *);
158 static int	ath_desc_alloc(struct ath_softc *);
159 static void	ath_desc_free(struct ath_softc *);
160 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
161 static void	ath_node_free(struct ieee80211_node *);
162 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
163 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
164 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
165 			struct ieee80211_node *ni,
166 			int subtype, int rssi, u_int32_t rstamp);
167 static void	ath_setdefantenna(struct ath_softc *, u_int);
168 static void	ath_rx_proc(void *, int);
169 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
170 static int	ath_tx_setup(struct ath_softc *, int, int);
171 static int	ath_wme_update(struct ieee80211com *);
172 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
173 static void	ath_tx_cleanup(struct ath_softc *);
174 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
175 			     struct ath_buf *, struct mbuf *);
176 static void	ath_tx_proc_q0(void *, int);
177 static void	ath_tx_proc_q0123(void *, int);
178 static void	ath_tx_proc(void *, int);
179 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
180 static void	ath_draintxq(struct ath_softc *);
181 static void	ath_stoprecv(struct ath_softc *);
182 static int	ath_startrecv(struct ath_softc *);
183 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
184 static void	ath_next_scan(void *);
185 static void	ath_calibrate(void *);
186 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
187 static void	ath_setup_stationkey(struct ieee80211_node *);
188 static void	ath_newassoc(struct ieee80211_node *, int);
189 static int	ath_getchannels(struct ath_softc *, u_int cc,
190 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
191 static void	ath_led_event(struct ath_softc *, int);
192 static void	ath_update_txpow(struct ath_softc *);
193 static void	ath_freetx(struct mbuf *);
194 static void	ath_restore_diversity(struct ath_softc *);
195 
196 static int	ath_rate_setup(struct ath_softc *, u_int mode);
197 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
198 
199 static void	ath_bpfattach(struct ath_softc *);
200 static void	ath_announce(struct ath_softc *);
201 
202 #ifdef __NetBSD__
203 #define	ATH_TASK_FUNC(__func)						\
204 static void __CONCAT(__func, _si)(void *arg)				\
205 {									\
206 	__func(arg, 1);							\
207 }
208 ATH_TASK_FUNC(ath_rx_proc);
209 ATH_TASK_FUNC(ath_rxorn_proc);
210 ATH_TASK_FUNC(ath_fatal_proc);
211 ATH_TASK_FUNC(ath_bmiss_proc);
212 ATH_TASK_FUNC(ath_bstuck_proc);
213 ATH_TASK_FUNC(ath_radar_proc);
214 ATH_TASK_FUNC(ath_tx_proc_q0);
215 ATH_TASK_FUNC(ath_tx_proc_q0123);
216 ATH_TASK_FUNC(ath_tx_proc);
217 #endif
218 
219 int ath_dwelltime = 200;		/* 5 channels/second */
220 int ath_calinterval = 30;		/* calibrate every 30 secs */
221 int ath_outdoor = AH_TRUE;		/* outdoor operation */
222 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
223 int ath_countrycode = CTRY_DEFAULT;	/* country code */
224 int ath_regdomain = 0;			/* regulatory domain */
225 int ath_debug = 0;
226 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
227 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
228 
229 #ifdef AR_DEBUG
230 enum {
231 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
232 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
233 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
234 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
235 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
236 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
237 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
238 	ATH_DEBUG_BEACON	= 0x00000080,	/* beacon handling */
239 	ATH_DEBUG_WATCHDOG	= 0x00000100,	/* watchdog timeout */
240 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
241 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
242 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
243 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
244 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
245 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
246 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
247 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
248 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
249 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
250 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
251 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
252 	ATH_DEBUG_ANY		= 0xffffffff
253 };
254 #define	IFF_DUMPPKTS(sc, m)					\
255 	((sc->sc_debug & (m)) ||				\
256 	    (sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2))	\
257 	    == (IFF_DEBUG | IFF_LINK2))
258 #define	DPRINTF(sc, m, fmt, ...) do {				\
259 	if (sc->sc_debug & (m))					\
260 		printf(fmt, __VA_ARGS__);			\
261 } while (0)
262 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
263 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
264 		ath_keyprint(__func__, ix, hk, mac);		\
265 } while (0)
266 static	void ath_printrxbuf(struct ath_buf *bf, int);
267 static	void ath_printtxbuf(struct ath_buf *bf, int);
268 #else
269 #define IFF_DUMPPKTS(sc, m)					\
270 	((sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2))		\
271 	    == (IFF_DEBUG | IFF_LINK2))
272 #define DPRINTF(m, fmt, ...)
273 #define KEYPRINTF(sc, k, ix, mac)
274 #endif
275 
276 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
277 
278 int
279 ath_attach(u_int16_t devid, struct ath_softc *sc)
280 {
281 	struct ifnet *ifp = &sc->sc_if;
282 	struct ieee80211com *ic = &sc->sc_ic;
283 	struct ath_hal *ah = NULL;
284 	HAL_STATUS status;
285 	int error = 0, i;
286 
287 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
288 
289 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
290 
291 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
292 
293 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
294 	if (ah == NULL) {
295 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
296 			status);
297 		error = ENXIO;
298 		goto bad;
299 	}
300 	if (ah->ah_abi != HAL_ABI_VERSION) {
301 		if_printf(ifp, "HAL ABI mismatch detected "
302 			"(HAL:0x%x != driver:0x%x)\n",
303 			ah->ah_abi, HAL_ABI_VERSION);
304 		error = ENXIO;
305 		goto bad;
306 	}
307 	sc->sc_ah = ah;
308 
309 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
310 	    "pmf-no-powerdown", true))
311 		goto bad;
312 
313 	/*
314 	 * Check if the MAC has multi-rate retry support.
315 	 * We do this by trying to setup a fake extended
316 	 * descriptor.  MAC's that don't have support will
317 	 * return false w/o doing anything.  MAC's that do
318 	 * support it will return true w/o doing anything.
319 	 */
320 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
321 
322 	/*
323 	 * Check if the device has hardware counters for PHY
324 	 * errors.  If so we need to enable the MIB interrupt
325 	 * so we can act on stat triggers.
326 	 */
327 	if (ath_hal_hwphycounters(ah))
328 		sc->sc_needmib = 1;
329 
330 	/*
331 	 * Get the hardware key cache size.
332 	 */
333 	sc->sc_keymax = ath_hal_keycachesize(ah);
334 	if (sc->sc_keymax > ATH_KEYMAX) {
335 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
336 			ATH_KEYMAX, sc->sc_keymax);
337 		sc->sc_keymax = ATH_KEYMAX;
338 	}
339 	/*
340 	 * Reset the key cache since some parts do not
341 	 * reset the contents on initial power up.
342 	 */
343 	for (i = 0; i < sc->sc_keymax; i++)
344 		ath_hal_keyreset(ah, i);
345 	/*
346 	 * Mark key cache slots associated with global keys
347 	 * as in use.  If we knew TKIP was not to be used we
348 	 * could leave the +32, +64, and +32+64 slots free.
349 	 * XXX only for splitmic.
350 	 */
351 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
352 		setbit(sc->sc_keymap, i);
353 		setbit(sc->sc_keymap, i+32);
354 		setbit(sc->sc_keymap, i+64);
355 		setbit(sc->sc_keymap, i+32+64);
356 	}
357 
358 	/*
359 	 * Collect the channel list using the default country
360 	 * code and including outdoor channels.  The 802.11 layer
361 	 * is resposible for filtering this list based on settings
362 	 * like the phy mode.
363 	 */
364 	error = ath_getchannels(sc, ath_countrycode,
365 			ath_outdoor, ath_xchanmode);
366 	if (error != 0)
367 		goto bad;
368 
369 	/*
370 	 * Setup rate tables for all potential media types.
371 	 */
372 	ath_rate_setup(sc, IEEE80211_MODE_11A);
373 	ath_rate_setup(sc, IEEE80211_MODE_11B);
374 	ath_rate_setup(sc, IEEE80211_MODE_11G);
375 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
376 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
377 	/* NB: setup here so ath_rate_update is happy */
378 	ath_setcurmode(sc, IEEE80211_MODE_11A);
379 
380 	/*
381 	 * Allocate tx+rx descriptors and populate the lists.
382 	 */
383 	error = ath_desc_alloc(sc);
384 	if (error != 0) {
385 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
386 		goto bad;
387 	}
388 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
389 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
390 #if 0
391 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
392 #endif
393 
394 	ATH_TXBUF_LOCK_INIT(sc);
395 
396 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
397 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
398 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
399 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
400 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
401 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
402 
403 	/*
404 	 * Allocate hardware transmit queues: one queue for
405 	 * beacon frames and one data queue for each QoS
406 	 * priority.  Note that the hal handles resetting
407 	 * these queues at the needed time.
408 	 *
409 	 * XXX PS-Poll
410 	 */
411 	sc->sc_bhalq = ath_beaconq_setup(ah);
412 	if (sc->sc_bhalq == (u_int) -1) {
413 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
414 		error = EIO;
415 		goto bad2;
416 	}
417 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
418 	if (sc->sc_cabq == NULL) {
419 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
420 		error = EIO;
421 		goto bad2;
422 	}
423 	/* NB: insure BK queue is the lowest priority h/w queue */
424 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
425 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
426 			ieee80211_wme_acnames[WME_AC_BK]);
427 		error = EIO;
428 		goto bad2;
429 	}
430 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
431 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
432 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
433 		/*
434 		 * Not enough hardware tx queues to properly do WME;
435 		 * just punt and assign them all to the same h/w queue.
436 		 * We could do a better job of this if, for example,
437 		 * we allocate queues when we switch from station to
438 		 * AP mode.
439 		 */
440 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
441 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
442 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
443 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
444 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
445 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
446 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
447 	}
448 
449 	/*
450 	 * Special case certain configurations.  Note the
451 	 * CAB queue is handled by these specially so don't
452 	 * include them when checking the txq setup mask.
453 	 */
454 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
455 	case 0x01:
456 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
457 		break;
458 	case 0x0f:
459 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
460 		break;
461 	default:
462 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
463 		break;
464 	}
465 
466 	/*
467 	 * Setup rate control.  Some rate control modules
468 	 * call back to change the anntena state so expose
469 	 * the necessary entry points.
470 	 * XXX maybe belongs in struct ath_ratectrl?
471 	 */
472 	sc->sc_setdefantenna = ath_setdefantenna;
473 	sc->sc_rc = ath_rate_attach(sc);
474 	if (sc->sc_rc == NULL) {
475 		error = EIO;
476 		goto bad2;
477 	}
478 
479 	sc->sc_blinking = 0;
480 	sc->sc_ledstate = 1;
481 	sc->sc_ledon = 0;			/* low true */
482 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
483 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
484 	/*
485 	 * Auto-enable soft led processing for IBM cards and for
486 	 * 5211 minipci cards.  Users can also manually enable/disable
487 	 * support with a sysctl.
488 	 */
489 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
490 	if (sc->sc_softled) {
491 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
492 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
493 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
494 	}
495 
496 	ifp->if_softc = sc;
497 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
498 	ifp->if_start = ath_start;
499 	ifp->if_stop = ath_stop;
500 	ifp->if_watchdog = ath_watchdog;
501 	ifp->if_ioctl = ath_ioctl;
502 	ifp->if_init = ath_ifinit;
503 	IFQ_SET_READY(&ifp->if_snd);
504 
505 	ic->ic_ifp = ifp;
506 	ic->ic_reset = ath_reset;
507 	ic->ic_newassoc = ath_newassoc;
508 	ic->ic_updateslot = ath_updateslot;
509 	ic->ic_wme.wme_update = ath_wme_update;
510 	/* XXX not right but it's not used anywhere important */
511 	ic->ic_phytype = IEEE80211_T_OFDM;
512 	ic->ic_opmode = IEEE80211_M_STA;
513 	ic->ic_caps =
514 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
515 		| IEEE80211_C_HOSTAP		/* hostap mode */
516 		| IEEE80211_C_MONITOR		/* monitor mode */
517 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
518 		| IEEE80211_C_SHSLOT		/* short slot time supported */
519 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
520 		| IEEE80211_C_TXFRAG		/* handle tx frags */
521 		;
522 	/*
523 	 * Query the hal to figure out h/w crypto support.
524 	 */
525 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
526 		ic->ic_caps |= IEEE80211_C_WEP;
527 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
528 		ic->ic_caps |= IEEE80211_C_AES;
529 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
530 		ic->ic_caps |= IEEE80211_C_AES_CCM;
531 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
532 		ic->ic_caps |= IEEE80211_C_CKIP;
533 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
534 		ic->ic_caps |= IEEE80211_C_TKIP;
535 		/*
536 		 * Check if h/w does the MIC and/or whether the
537 		 * separate key cache entries are required to
538 		 * handle both tx+rx MIC keys.
539 		 */
540 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
541 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
542 
543 		/*
544 		 * If the h/w supports storing tx+rx MIC keys
545 		 * in one cache slot automatically enable use.
546 		 */
547 		if (ath_hal_hastkipsplit(ah) ||
548 		    !ath_hal_settkipsplit(ah, AH_FALSE))
549 			sc->sc_splitmic = 1;
550 
551 		/*
552 		 * If the h/w can do TKIP MIC together with WME then
553 		 * we use it; otherwise we force the MIC to be done
554 		 * in software by the net80211 layer.
555 		 */
556 		if (ath_hal_haswmetkipmic(ah))
557 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
558 	}
559 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
560 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
561 	/*
562 	 * Mark key cache slots associated with global keys
563 	 * as in use.  If we knew TKIP was not to be used we
564 	 * could leave the +32, +64, and +32+64 slots free.
565 	 */
566 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
567 		setbit(sc->sc_keymap, i);
568 		setbit(sc->sc_keymap, i+64);
569 		if (sc->sc_splitmic) {
570 			setbit(sc->sc_keymap, i+32);
571 			setbit(sc->sc_keymap, i+32+64);
572 		}
573 	}
574 	/*
575 	 * TPC support can be done either with a global cap or
576 	 * per-packet support.  The latter is not available on
577 	 * all parts.  We're a bit pedantic here as all parts
578 	 * support a global cap.
579 	 */
580 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
581 		ic->ic_caps |= IEEE80211_C_TXPMGT;
582 
583 	/*
584 	 * Mark WME capability only if we have sufficient
585 	 * hardware queues to do proper priority scheduling.
586 	 */
587 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
588 		ic->ic_caps |= IEEE80211_C_WME;
589 	/*
590 	 * Check for misc other capabilities.
591 	 */
592 	if (ath_hal_hasbursting(ah))
593 		ic->ic_caps |= IEEE80211_C_BURST;
594 
595 	/*
596 	 * Indicate we need the 802.11 header padded to a
597 	 * 32-bit boundary for 4-address and QoS frames.
598 	 */
599 	ic->ic_flags |= IEEE80211_F_DATAPAD;
600 
601 	/*
602 	 * Query the hal about antenna support.
603 	 */
604 	sc->sc_defant = ath_hal_getdefantenna(ah);
605 
606 	/*
607 	 * Not all chips have the VEOL support we want to
608 	 * use with IBSS beacons; check here for it.
609 	 */
610 	sc->sc_hasveol = ath_hal_hasveol(ah);
611 
612 	/* get mac address from hardware */
613 	ath_hal_getmac(ah, ic->ic_myaddr);
614 
615 	if_attach(ifp);
616 	/* call MI attach routine. */
617 	ieee80211_ifattach(ic);
618 	/* override default methods */
619 	ic->ic_node_alloc = ath_node_alloc;
620 	sc->sc_node_free = ic->ic_node_free;
621 	ic->ic_node_free = ath_node_free;
622 	ic->ic_node_getrssi = ath_node_getrssi;
623 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
624 	ic->ic_recv_mgmt = ath_recv_mgmt;
625 	sc->sc_newstate = ic->ic_newstate;
626 	ic->ic_newstate = ath_newstate;
627 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
628 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
629 	ic->ic_crypto.cs_key_delete = ath_key_delete;
630 	ic->ic_crypto.cs_key_set = ath_key_set;
631 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
632 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
633 	/* complete initialization */
634 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
635 
636 	ath_bpfattach(sc);
637 
638 	sc->sc_flags |= ATH_ATTACHED;
639 
640 	/*
641 	 * Setup dynamic sysctl's now that country code and
642 	 * regdomain are available from the hal.
643 	 */
644 	ath_sysctlattach(sc);
645 
646 	ieee80211_announce(ic);
647 	ath_announce(sc);
648 	return 0;
649 bad2:
650 	ath_tx_cleanup(sc);
651 	ath_desc_free(sc);
652 bad:
653 	if (ah)
654 		ath_hal_detach(ah);
655 	(void)config_deactivate(sc->sc_dev);
656 	return error;
657 }
658 
659 int
660 ath_detach(struct ath_softc *sc)
661 {
662 	struct ifnet *ifp = &sc->sc_if;
663 	int s;
664 
665 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
666 		return (0);
667 
668 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
669 		__func__, ifp->if_flags);
670 
671 	s = splnet();
672 	ath_stop(ifp, 1);
673 	bpf_detach(ifp);
674 	/*
675 	 * NB: the order of these is important:
676 	 * o call the 802.11 layer before detaching the hal to
677 	 *   insure callbacks into the driver to delete global
678 	 *   key cache entries can be handled
679 	 * o reclaim the tx queue data structures after calling
680 	 *   the 802.11 layer as we'll get called back to reclaim
681 	 *   node state and potentially want to use them
682 	 * o to cleanup the tx queues the hal is called, so detach
683 	 *   it last
684 	 * Other than that, it's straightforward...
685 	 */
686 	ieee80211_ifdetach(&sc->sc_ic);
687 #ifdef ATH_TX99_DIAG
688 	if (sc->sc_tx99 != NULL)
689 		sc->sc_tx99->detach(sc->sc_tx99);
690 #endif
691 	ath_rate_detach(sc->sc_rc);
692 	ath_desc_free(sc);
693 	ath_tx_cleanup(sc);
694 	sysctl_teardown(&sc->sc_sysctllog);
695 	ath_hal_detach(sc->sc_ah);
696 	if_detach(ifp);
697 	splx(s);
698 
699 	return 0;
700 }
701 
702 void
703 ath_suspend(struct ath_softc *sc)
704 {
705 #if notyet
706 	/*
707 	 * Set the chip in full sleep mode.  Note that we are
708 	 * careful to do this only when bringing the interface
709 	 * completely to a stop.  When the chip is in this state
710 	 * it must be carefully woken up or references to
711 	 * registers in the PCI clock domain may freeze the bus
712 	 * (and system).  This varies by chip and is mostly an
713 	 * issue with newer parts that go to sleep more quickly.
714 	 */
715 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
716 #endif
717 }
718 
719 bool
720 ath_resume(struct ath_softc *sc)
721 {
722 	struct ath_hal *ah = sc->sc_ah;
723 	struct ieee80211com *ic = &sc->sc_ic;
724 	HAL_STATUS status;
725 	int i;
726 
727 #if notyet
728 	ath_hal_setpower(ah, HAL_PM_AWAKE);
729 #else
730 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, HAL_M_IBSS, &status);
731 #endif
732 
733 	/*
734 	 * Reset the key cache since some parts do not
735 	 * reset the contents on initial power up.
736 	 */
737 	for (i = 0; i < sc->sc_keymax; i++)
738 		ath_hal_keyreset(ah, i);
739 
740 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
741 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
742 		if (ATH_TXQ_SETUP(sc, i))
743 			ath_hal_resettxqueue(ah, i);
744 
745 	if (sc->sc_softled) {
746 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
747 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
748 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
749 	}
750 	return true;
751 }
752 
753 /*
754  * Interrupt handler.  Most of the actual processing is deferred.
755  */
756 int
757 ath_intr(void *arg)
758 {
759 	struct ath_softc *sc = arg;
760 	struct ifnet *ifp = &sc->sc_if;
761 	struct ath_hal *ah = sc->sc_ah;
762 	HAL_INT status = 0;
763 
764 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
765 		/*
766 		 * The hardware is not ready/present, don't touch anything.
767 		 * Note this can happen early on if the IRQ is shared.
768 		 */
769 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
770 		return 0;
771 	}
772 
773 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
774 		return 0;
775 
776 	if ((ifp->if_flags & (IFF_RUNNING |IFF_UP)) != (IFF_RUNNING |IFF_UP)) {
777 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
778 			__func__, ifp->if_flags);
779 		ath_hal_getisr(ah, &status);	/* clear ISR */
780 		ath_hal_intrset(ah, 0);		/* disable further intr's */
781 		return 1; /* XXX */
782 	}
783 	/*
784 	 * Figure out the reason(s) for the interrupt.  Note
785 	 * that the hal returns a pseudo-ISR that may include
786 	 * bits we haven't explicitly enabled so we mask the
787 	 * value to insure we only process bits we requested.
788 	 */
789 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
790 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
791 	status &= sc->sc_imask;			/* discard unasked for bits */
792 	if (status & HAL_INT_FATAL) {
793 		/*
794 		 * Fatal errors are unrecoverable.  Typically
795 		 * these are caused by DMA errors.  Unfortunately
796 		 * the exact reason is not (presently) returned
797 		 * by the hal.
798 		 */
799 		sc->sc_stats.ast_hardware++;
800 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
801 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
802 	} else if (status & HAL_INT_RXORN) {
803 		sc->sc_stats.ast_rxorn++;
804 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
805 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
806 	} else {
807 		if (status & HAL_INT_SWBA) {
808 			/*
809 			 * Software beacon alert--time to send a beacon.
810 			 * Handle beacon transmission directly; deferring
811 			 * this is too slow to meet timing constraints
812 			 * under load.
813 			 */
814 			ath_beacon_proc(sc, 0);
815 		}
816 		if (status & HAL_INT_RXEOL) {
817 			/*
818 			 * NB: the hardware should re-read the link when
819 			 *     RXE bit is written, but it doesn't work at
820 			 *     least on older hardware revs.
821 			 */
822 			sc->sc_stats.ast_rxeol++;
823 			sc->sc_rxlink = NULL;
824 		}
825 		if (status & HAL_INT_TXURN) {
826 			sc->sc_stats.ast_txurn++;
827 			/* bump tx trigger level */
828 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
829 		}
830 		if (status & HAL_INT_RX)
831 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
832 		if (status & HAL_INT_TX)
833 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
834 		if (status & HAL_INT_BMISS) {
835 			sc->sc_stats.ast_bmiss++;
836 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
837 		}
838 		if (status & HAL_INT_MIB) {
839 			sc->sc_stats.ast_mib++;
840 			/*
841 			 * Disable interrupts until we service the MIB
842 			 * interrupt; otherwise it will continue to fire.
843 			 */
844 			ath_hal_intrset(ah, 0);
845 			/*
846 			 * Let the hal handle the event.  We assume it will
847 			 * clear whatever condition caused the interrupt.
848 			 */
849 			ath_hal_mibevent(ah, &sc->sc_halstats);
850 			ath_hal_intrset(ah, sc->sc_imask);
851 		}
852 	}
853 	return 1;
854 }
855 
856 /* Swap transmit descriptor.
857  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
858  * function.
859  */
860 static inline void
861 ath_desc_swap(struct ath_desc *ds)
862 {
863 #ifdef AH_NEED_DESC_SWAP
864 	ds->ds_link = htole32(ds->ds_link);
865 	ds->ds_data = htole32(ds->ds_data);
866 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
867 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
868 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
869 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
870 #endif
871 }
872 
873 static void
874 ath_fatal_proc(void *arg, int pending)
875 {
876 	struct ath_softc *sc = arg;
877 	struct ifnet *ifp = &sc->sc_if;
878 #ifdef __NetBSD__
879 	int s;
880 #endif
881 
882 	if_printf(ifp, "hardware error; resetting\n");
883 #ifdef __NetBSD__
884 	s = splnet();
885 #endif
886 	ath_reset(ifp);
887 #ifdef __NetBSD__
888 	splx(s);
889 #endif
890 }
891 
892 static void
893 ath_rxorn_proc(void *arg, int pending)
894 {
895 	struct ath_softc *sc = arg;
896 	struct ifnet *ifp = &sc->sc_if;
897 #ifdef __NetBSD__
898 	int s;
899 #endif
900 
901 	if_printf(ifp, "rx FIFO overrun; resetting\n");
902 #ifdef __NetBSD__
903 	s = splnet();
904 #endif
905 	ath_reset(ifp);
906 #ifdef __NetBSD__
907 	splx(s);
908 #endif
909 }
910 
911 static void
912 ath_bmiss_proc(void *arg, int pending)
913 {
914 	struct ath_softc *sc = arg;
915 	struct ieee80211com *ic = &sc->sc_ic;
916 	NET_LOCK_GIANT_FUNC_INIT();
917 
918 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
919 	KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA,
920 		"unexpect operating mode %u", ic->ic_opmode);
921 	if (ic->ic_state == IEEE80211_S_RUN) {
922 		u_int64_t lastrx = sc->sc_lastrx;
923 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
924 
925 		DPRINTF(sc, ATH_DEBUG_BEACON,
926 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
927 		    " (%" PRIu64 ") bmiss %u\n",
928 		    __func__, tsf, tsf - lastrx, lastrx,
929 		    ic->ic_bmisstimeout*1024);
930 		/*
931 		 * Workaround phantom bmiss interrupts by sanity-checking
932 		 * the time of our last rx'd frame.  If it is within the
933 		 * beacon miss interval then ignore the interrupt.  If it's
934 		 * truly a bmiss we'll get another interrupt soon and that'll
935 		 * be dispatched up for processing.
936 		 */
937 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
938 			NET_LOCK_GIANT();
939 			ieee80211_beacon_miss(ic);
940 			NET_UNLOCK_GIANT();
941 		} else
942 			sc->sc_stats.ast_bmiss_phantom++;
943 	}
944 }
945 
946 static void
947 ath_radar_proc(void *arg, int pending)
948 {
949 #if 0
950 	struct ath_softc *sc = arg;
951 	struct ifnet *ifp = &sc->sc_if;
952 	struct ath_hal *ah = sc->sc_ah;
953 	HAL_CHANNEL hchan;
954 
955 	if (ath_hal_procdfs(ah, &hchan)) {
956 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
957 			hchan.channel, hchan.channelFlags, hchan.privFlags);
958 		/*
959 		 * Initiate channel change.
960 		 */
961 		/* XXX not yet */
962 	}
963 #endif
964 }
965 
966 static u_int
967 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
968 {
969 #define	N(a)	(sizeof(a) / sizeof(a[0]))
970 	static const u_int modeflags[] = {
971 		0,			/* IEEE80211_MODE_AUTO */
972 		CHANNEL_A,		/* IEEE80211_MODE_11A */
973 		CHANNEL_B,		/* IEEE80211_MODE_11B */
974 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
975 		0,			/* IEEE80211_MODE_FH */
976 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
977 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
978 	};
979 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
980 
981 	KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode);
982 	KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode);
983 	return modeflags[mode];
984 #undef N
985 }
986 
987 static int
988 ath_ifinit(struct ifnet *ifp)
989 {
990 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
991 
992 	return ath_init(sc);
993 }
994 
995 static void
996 ath_settkipmic(struct ath_softc *sc)
997 {
998 	struct ieee80211com *ic = &sc->sc_ic;
999 	struct ath_hal *ah = sc->sc_ah;
1000 
1001 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
1002 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
1003 		if (ic->ic_flags & IEEE80211_F_WME) {
1004 			(void)ath_hal_settkipmic(ah, AH_FALSE);
1005 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
1006 		} else {
1007 			(void)ath_hal_settkipmic(ah, AH_TRUE);
1008 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
1009 		}
1010 	}
1011 }
1012 
1013 static int
1014 ath_init(struct ath_softc *sc)
1015 {
1016 	struct ifnet *ifp = &sc->sc_if;
1017 	struct ieee80211com *ic = &sc->sc_ic;
1018 	struct ath_hal *ah = sc->sc_ah;
1019 	HAL_STATUS status;
1020 	int error = 0, s;
1021 
1022 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1023 		__func__, ifp->if_flags);
1024 
1025 	if (device_is_active(sc->sc_dev)) {
1026 		s = splnet();
1027 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1028 		   !device_is_active(sc->sc_dev))
1029 		return 0;
1030 	else
1031 		s = splnet();
1032 
1033 	/*
1034 	 * Stop anything previously setup.  This is safe
1035 	 * whether this is the first time through or not.
1036 	 */
1037 	ath_stop_locked(ifp, 0);
1038 
1039 	/*
1040 	 * The basic interface to setting the hardware in a good
1041 	 * state is ``reset''.  On return the hardware is known to
1042 	 * be powered up and with interrupts disabled.  This must
1043 	 * be followed by initialization of the appropriate bits
1044 	 * and then setup of the interrupt mask.
1045 	 */
1046 	ath_settkipmic(sc);
1047 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1048 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1049 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1050 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1051 			status);
1052 		error = EIO;
1053 		goto done;
1054 	}
1055 
1056 	/*
1057 	 * This is needed only to setup initial state
1058 	 * but it's best done after a reset.
1059 	 */
1060 	ath_update_txpow(sc);
1061 	/*
1062 	 * Likewise this is set during reset so update
1063 	 * state cached in the driver.
1064 	 */
1065 	ath_restore_diversity(sc);
1066 	sc->sc_calinterval = 1;
1067 	sc->sc_caltries = 0;
1068 
1069 	/*
1070 	 * Setup the hardware after reset: the key cache
1071 	 * is filled as needed and the receive engine is
1072 	 * set going.  Frame transmit is handled entirely
1073 	 * in the frame output path; there's nothing to do
1074 	 * here except setup the interrupt mask.
1075 	 */
1076 	if ((error = ath_startrecv(sc)) != 0) {
1077 		if_printf(ifp, "unable to start recv logic\n");
1078 		goto done;
1079 	}
1080 
1081 	/*
1082 	 * Enable interrupts.
1083 	 */
1084 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1085 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1086 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1087 	/*
1088 	 * Enable MIB interrupts when there are hardware phy counters.
1089 	 * Note we only do this (at the moment) for station mode.
1090 	 */
1091 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1092 		sc->sc_imask |= HAL_INT_MIB;
1093 	ath_hal_intrset(ah, sc->sc_imask);
1094 
1095 	ifp->if_flags |= IFF_RUNNING;
1096 	ic->ic_state = IEEE80211_S_INIT;
1097 
1098 	/*
1099 	 * The hardware should be ready to go now so it's safe
1100 	 * to kick the 802.11 state machine as it's likely to
1101 	 * immediately call back to us to send mgmt frames.
1102 	 */
1103 	ath_chan_change(sc, ic->ic_curchan);
1104 #ifdef ATH_TX99_DIAG
1105 	if (sc->sc_tx99 != NULL)
1106 		sc->sc_tx99->start(sc->sc_tx99);
1107 	else
1108 #endif
1109 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1110 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1111 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1112 	} else
1113 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1114 done:
1115 	splx(s);
1116 	return error;
1117 }
1118 
1119 static void
1120 ath_stop_locked(struct ifnet *ifp, int disable)
1121 {
1122 	struct ath_softc *sc = ifp->if_softc;
1123 	struct ieee80211com *ic = &sc->sc_ic;
1124 	struct ath_hal *ah = sc->sc_ah;
1125 
1126 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1127 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1128 
1129 	/* KASSERT() IPL_NET */
1130 	if (ifp->if_flags & IFF_RUNNING) {
1131 		/*
1132 		 * Shutdown the hardware and driver:
1133 		 *    reset 802.11 state machine
1134 		 *    turn off timers
1135 		 *    disable interrupts
1136 		 *    turn off the radio
1137 		 *    clear transmit machinery
1138 		 *    clear receive machinery
1139 		 *    drain and release tx queues
1140 		 *    reclaim beacon resources
1141 		 *    power down hardware
1142 		 *
1143 		 * Note that some of this work is not possible if the
1144 		 * hardware is gone (invalid).
1145 		 */
1146 #ifdef ATH_TX99_DIAG
1147 		if (sc->sc_tx99 != NULL)
1148 			sc->sc_tx99->stop(sc->sc_tx99);
1149 #endif
1150 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1151 		ifp->if_flags &= ~IFF_RUNNING;
1152 		ifp->if_timer = 0;
1153 		if (device_is_enabled(sc->sc_dev)) {
1154 			if (sc->sc_softled) {
1155 				callout_stop(&sc->sc_ledtimer);
1156 				ath_hal_gpioset(ah, sc->sc_ledpin,
1157 					!sc->sc_ledon);
1158 				sc->sc_blinking = 0;
1159 			}
1160 			ath_hal_intrset(ah, 0);
1161 		}
1162 		ath_draintxq(sc);
1163 		if (device_is_enabled(sc->sc_dev)) {
1164 			ath_stoprecv(sc);
1165 			ath_hal_phydisable(ah);
1166 		} else
1167 			sc->sc_rxlink = NULL;
1168 		IF_PURGE(&ifp->if_snd);
1169 		ath_beacon_free(sc);
1170 	}
1171 	if (disable)
1172 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1173 }
1174 
1175 static void
1176 ath_stop(struct ifnet *ifp, int disable)
1177 {
1178 	int s;
1179 
1180 	s = splnet();
1181 	ath_stop_locked(ifp, disable);
1182 	splx(s);
1183 }
1184 
1185 static void
1186 ath_restore_diversity(struct ath_softc *sc)
1187 {
1188 	struct ifnet *ifp = &sc->sc_if;
1189 	struct ath_hal *ah = sc->sc_ah;
1190 
1191 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1192 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1193 		if_printf(ifp, "could not restore diversity setting %d\n",
1194 		    sc->sc_diversity);
1195 		sc->sc_diversity = ath_hal_getdiversity(ah);
1196 	}
1197 }
1198 
1199 /*
1200  * Reset the hardware w/o losing operational state.  This is
1201  * basically a more efficient way of doing ath_stop, ath_init,
1202  * followed by state transitions to the current 802.11
1203  * operational state.  Used to recover from various errors and
1204  * to reset or reload hardware state.
1205  */
1206 int
1207 ath_reset(struct ifnet *ifp)
1208 {
1209 	struct ath_softc *sc = ifp->if_softc;
1210 	struct ieee80211com *ic = &sc->sc_ic;
1211 	struct ath_hal *ah = sc->sc_ah;
1212 	struct ieee80211_channel *c;
1213 	HAL_STATUS status;
1214 
1215 	/*
1216 	 * Convert to a HAL channel description with the flags
1217 	 * constrained to reflect the current operating mode.
1218 	 */
1219 	c = ic->ic_curchan;
1220 	sc->sc_curchan.channel = c->ic_freq;
1221 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1222 
1223 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1224 	ath_draintxq(sc);		/* stop xmit side */
1225 	ath_stoprecv(sc);		/* stop recv side */
1226 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1227 	/* NB: indicate channel change so we do a full reset */
1228 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1229 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1230 			__func__, status);
1231 	ath_update_txpow(sc);		/* update tx power state */
1232 	ath_restore_diversity(sc);
1233 	sc->sc_calinterval = 1;
1234 	sc->sc_caltries = 0;
1235 	if (ath_startrecv(sc) != 0)	/* restart recv */
1236 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1237 	/*
1238 	 * We may be doing a reset in response to an ioctl
1239 	 * that changes the channel so update any state that
1240 	 * might change as a result.
1241 	 */
1242 	ath_chan_change(sc, c);
1243 	if (ic->ic_state == IEEE80211_S_RUN)
1244 		ath_beacon_config(sc);	/* restart beacons */
1245 	ath_hal_intrset(ah, sc->sc_imask);
1246 
1247 	ath_start(ifp);			/* restart xmit */
1248 	return 0;
1249 }
1250 
1251 /*
1252  * Cleanup driver resources when we run out of buffers
1253  * while processing fragments; return the tx buffers
1254  * allocated and drop node references.
1255  */
1256 static void
1257 ath_txfrag_cleanup(struct ath_softc *sc,
1258 	ath_bufhead *frags, struct ieee80211_node *ni)
1259 {
1260 	struct ath_buf *bf;
1261 
1262 	ATH_TXBUF_LOCK_ASSERT(sc);
1263 
1264 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1265 		STAILQ_REMOVE_HEAD(frags, bf_list);
1266 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1267 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1268 		ieee80211_node_decref(ni);
1269 	}
1270 }
1271 
1272 /*
1273  * Setup xmit of a fragmented frame.  Allocate a buffer
1274  * for each frag and bump the node reference count to
1275  * reflect the held reference to be setup by ath_tx_start.
1276  */
1277 static int
1278 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1279 	struct mbuf *m0, struct ieee80211_node *ni)
1280 {
1281 	struct mbuf *m;
1282 	struct ath_buf *bf;
1283 
1284 	ATH_TXBUF_LOCK(sc);
1285 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1286 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1287 		if (bf == NULL) {	/* out of buffers, cleanup */
1288 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1289 				__func__);
1290 			sc->sc_if.if_flags |= IFF_OACTIVE;
1291 			ath_txfrag_cleanup(sc, frags, ni);
1292 			break;
1293 		}
1294 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1295 		ieee80211_node_incref(ni);
1296 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1297 	}
1298 	ATH_TXBUF_UNLOCK(sc);
1299 
1300 	return !STAILQ_EMPTY(frags);
1301 }
1302 
1303 static void
1304 ath_start(struct ifnet *ifp)
1305 {
1306 	struct ath_softc *sc = ifp->if_softc;
1307 	struct ath_hal *ah = sc->sc_ah;
1308 	struct ieee80211com *ic = &sc->sc_ic;
1309 	struct ieee80211_node *ni;
1310 	struct ath_buf *bf;
1311 	struct mbuf *m, *next;
1312 	struct ieee80211_frame *wh;
1313 	struct ether_header *eh;
1314 	ath_bufhead frags;
1315 
1316 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1317 	    !device_is_active(sc->sc_dev))
1318 		return;
1319 
1320 	if (sc->sc_flags & ATH_KEY_UPDATING)
1321 		return;
1322 
1323 	for (;;) {
1324 		/*
1325 		 * Grab a TX buffer and associated resources.
1326 		 */
1327 		ATH_TXBUF_LOCK(sc);
1328 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1329 		if (bf != NULL)
1330 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1331 		ATH_TXBUF_UNLOCK(sc);
1332 		if (bf == NULL) {
1333 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1334 				__func__);
1335 			sc->sc_stats.ast_tx_qstop++;
1336 			ifp->if_flags |= IFF_OACTIVE;
1337 			break;
1338 		}
1339 		/*
1340 		 * Poll the management queue for frames; they
1341 		 * have priority over normal data frames.
1342 		 */
1343 		IF_DEQUEUE(&ic->ic_mgtq, m);
1344 		if (m == NULL) {
1345 			/*
1346 			 * No data frames go out unless we're associated.
1347 			 */
1348 			if (ic->ic_state != IEEE80211_S_RUN) {
1349 				DPRINTF(sc, ATH_DEBUG_XMIT,
1350 				    "%s: discard data packet, state %s\n",
1351 				    __func__,
1352 				    ieee80211_state_name[ic->ic_state]);
1353 				sc->sc_stats.ast_tx_discard++;
1354 				ATH_TXBUF_LOCK(sc);
1355 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1356 				ATH_TXBUF_UNLOCK(sc);
1357 				break;
1358 			}
1359 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1360 			if (m == NULL) {
1361 				ATH_TXBUF_LOCK(sc);
1362 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1363 				ATH_TXBUF_UNLOCK(sc);
1364 				break;
1365 			}
1366 			STAILQ_INIT(&frags);
1367 			/*
1368 			 * Find the node for the destination so we can do
1369 			 * things like power save and fast frames aggregation.
1370 			 */
1371 			if (m->m_len < sizeof(struct ether_header) &&
1372 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1373 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1374 				ni = NULL;
1375 				goto bad;
1376 			}
1377 			eh = mtod(m, struct ether_header *);
1378 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1379 			if (ni == NULL) {
1380 				/* NB: ieee80211_find_txnode does stat+msg */
1381 				m_freem(m);
1382 				goto bad;
1383 			}
1384 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1385 			    (m->m_flags & M_PWR_SAV) == 0) {
1386 				/*
1387 				 * Station in power save mode; pass the frame
1388 				 * to the 802.11 layer and continue.  We'll get
1389 				 * the frame back when the time is right.
1390 				 */
1391 				ieee80211_pwrsave(ic, ni, m);
1392 				goto reclaim;
1393 			}
1394 			/* calculate priority so we can find the tx queue */
1395 			if (ieee80211_classify(ic, m, ni)) {
1396 				DPRINTF(sc, ATH_DEBUG_XMIT,
1397 					"%s: discard, classification failure\n",
1398 					__func__);
1399 				m_freem(m);
1400 				goto bad;
1401 			}
1402 			if_statinc(ifp, if_opackets);
1403 
1404 			bpf_mtap(ifp, m, BPF_D_OUT);
1405 			/*
1406 			 * Encapsulate the packet in prep for transmission.
1407 			 */
1408 			m = ieee80211_encap(ic, m, ni);
1409 			if (m == NULL) {
1410 				DPRINTF(sc, ATH_DEBUG_XMIT,
1411 					"%s: encapsulation failure\n",
1412 					__func__);
1413 				sc->sc_stats.ast_tx_encap++;
1414 				goto bad;
1415 			}
1416 			/*
1417 			 * Check for fragmentation.  If this has frame
1418 			 * has been broken up verify we have enough
1419 			 * buffers to send all the fragments so all
1420 			 * go out or none...
1421 			 */
1422 			if ((m->m_flags & M_FRAG) &&
1423 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1424 				DPRINTF(sc, ATH_DEBUG_ANY,
1425 				    "%s: out of txfrag buffers\n", __func__);
1426 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1427 				ath_freetx(m);
1428 				goto bad;
1429 			}
1430 		} else {
1431 			/*
1432 			 * Hack!  The referenced node pointer is in the
1433 			 * rcvif field of the packet header.  This is
1434 			 * placed there by ieee80211_mgmt_output because
1435 			 * we need to hold the reference with the frame
1436 			 * and there's no other way (other than packet
1437 			 * tags which we consider too expensive to use)
1438 			 * to pass it along.
1439 			 */
1440 			ni = M_GETCTX(m, struct ieee80211_node *);
1441 			M_CLEARCTX(m);
1442 
1443 			wh = mtod(m, struct ieee80211_frame *);
1444 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1445 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1446 				/* fill time stamp */
1447 				u_int64_t tsf;
1448 				u_int32_t *tstamp;
1449 
1450 				tsf = ath_hal_gettsf64(ah);
1451 				/* XXX: adjust 100us delay to xmit */
1452 				tsf += 100;
1453 				tstamp = (u_int32_t *)&wh[1];
1454 				tstamp[0] = htole32(tsf & 0xffffffff);
1455 				tstamp[1] = htole32(tsf >> 32);
1456 			}
1457 			sc->sc_stats.ast_tx_mgmt++;
1458 		}
1459 
1460 	nextfrag:
1461 		next = m->m_nextpkt;
1462 		if (ath_tx_start(sc, ni, bf, m)) {
1463 	bad:
1464 			if_statinc(ifp, if_oerrors);
1465 	reclaim:
1466 			ATH_TXBUF_LOCK(sc);
1467 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1468 			ath_txfrag_cleanup(sc, &frags, ni);
1469 			ATH_TXBUF_UNLOCK(sc);
1470 			if (ni != NULL)
1471 				ieee80211_free_node(ni);
1472 			continue;
1473 		}
1474 		if (next != NULL) {
1475 			m = next;
1476 			bf = STAILQ_FIRST(&frags);
1477 			KASSERTMSG(bf != NULL, "no buf for txfrag");
1478 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1479 			goto nextfrag;
1480 		}
1481 
1482 		ifp->if_timer = 1;
1483 	}
1484 }
1485 
1486 static int
1487 ath_media_change(struct ifnet *ifp)
1488 {
1489 #define	IS_UP(ifp) \
1490 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1491 	int error;
1492 
1493 	error = ieee80211_media_change(ifp);
1494 	if (error == ENETRESET) {
1495 		if (IS_UP(ifp))
1496 			ath_init(ifp->if_softc);	/* XXX lose error */
1497 		error = 0;
1498 	}
1499 	return error;
1500 #undef IS_UP
1501 }
1502 
1503 #ifdef AR_DEBUG
1504 static void
1505 ath_keyprint(const char *tag, u_int ix,
1506 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1507 {
1508 	static const char *ciphers[] = {
1509 		"WEP",
1510 		"AES-OCB",
1511 		"AES-CCM",
1512 		"CKIP",
1513 		"TKIP",
1514 		"CLR",
1515 	};
1516 	int i, n;
1517 
1518 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1519 	for (i = 0, n = hk->kv_len; i < n; i++)
1520 		printf("%02x", hk->kv_val[i]);
1521 	printf(" mac %s", ether_sprintf(mac));
1522 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1523 		printf(" mic ");
1524 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1525 			printf("%02x", hk->kv_mic[i]);
1526 	}
1527 	printf("\n");
1528 }
1529 #endif
1530 
1531 /*
1532  * Set a TKIP key into the hardware.  This handles the
1533  * potential distribution of key state to multiple key
1534  * cache slots for TKIP.
1535  */
1536 static int
1537 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1538 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1539 {
1540 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1541 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1542 	struct ath_hal *ah = sc->sc_ah;
1543 
1544 	KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1545 		"got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher);
1546 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1547 		if (sc->sc_splitmic) {
1548 			/*
1549 			 * TX key goes at first index, RX key at the rx index.
1550 			 * The hal handles the MIC keys at index+64.
1551 			 */
1552 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1553 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1554 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1555 						zerobssid))
1556 				return 0;
1557 
1558 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1559 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1560 			/* XXX delete tx key on failure? */
1561 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1562 					hk, mac);
1563 		} else {
1564 			/*
1565 			 * Room for both TX+RX MIC keys in one key cache
1566 			 * slot, just set key at the first index; the HAL
1567 			 * will handle the reset.
1568 			 */
1569 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1570 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1571 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1572 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1573 		}
1574 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1575 		if (sc->sc_splitmic) {
1576 			/*
1577 			 * NB: must pass MIC key in expected location when
1578 			 * the keycache only holds one MIC key per entry.
1579 			 */
1580 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1581 		} else
1582 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1583 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1584 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1585 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1586 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1587 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1588 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1589 	}
1590 	return 0;
1591 #undef IEEE80211_KEY_XR
1592 }
1593 
1594 /*
1595  * Set a net80211 key into the hardware.  This handles the
1596  * potential distribution of key state to multiple key
1597  * cache slots for TKIP with hardware MIC support.
1598  */
1599 static int
1600 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1601 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1602 	struct ieee80211_node *bss)
1603 {
1604 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1605 	static const u_int8_t ciphermap[] = {
1606 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1607 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1608 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1609 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1610 		(u_int8_t) -1,		/* 4 is not allocated */
1611 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1612 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1613 	};
1614 	struct ath_hal *ah = sc->sc_ah;
1615 	const struct ieee80211_cipher *cip = k->wk_cipher;
1616 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1617 	const u_int8_t *mac;
1618 	HAL_KEYVAL hk;
1619 
1620 	memset(&hk, 0, sizeof(hk));
1621 	/*
1622 	 * Software crypto uses a "clear key" so non-crypto
1623 	 * state kept in the key cache are maintained and
1624 	 * so that rx frames have an entry to match.
1625 	 */
1626 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1627 		KASSERTMSG(cip->ic_cipher < N(ciphermap),
1628 			"invalid cipher type %u", cip->ic_cipher);
1629 		hk.kv_type = ciphermap[cip->ic_cipher];
1630 		hk.kv_len = k->wk_keylen;
1631 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1632 	} else
1633 		hk.kv_type = HAL_CIPHER_CLR;
1634 
1635 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1636 		/*
1637 		 * Group keys on hardware that supports multicast frame
1638 		 * key search use a mac that is the sender's address with
1639 		 * the high bit set instead of the app-specified address.
1640 		 */
1641 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1642 		gmac[0] |= 0x80;
1643 		mac = gmac;
1644 	} else
1645 		mac = mac0;
1646 
1647 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
1648 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1649 		return ath_keyset_tkip(sc, k, &hk, mac);
1650 	} else {
1651 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1652 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1653 	}
1654 #undef N
1655 }
1656 
1657 /*
1658  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1659  * each key, one for decrypt/encrypt and the other for the MIC.
1660  */
1661 static u_int16_t
1662 key_alloc_2pair(struct ath_softc *sc,
1663 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1664 {
1665 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1666 	u_int i, keyix;
1667 
1668 	KASSERTMSG(sc->sc_splitmic, "key cache !split");
1669 	/* XXX could optimize */
1670 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1671 		u_int8_t b = sc->sc_keymap[i];
1672 		if (b != 0xff) {
1673 			/*
1674 			 * One or more slots in this byte are free.
1675 			 */
1676 			keyix = i*NBBY;
1677 			while (b & 1) {
1678 		again:
1679 				keyix++;
1680 				b >>= 1;
1681 			}
1682 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1683 			if (isset(sc->sc_keymap, keyix+32) ||
1684 			    isset(sc->sc_keymap, keyix+64) ||
1685 			    isset(sc->sc_keymap, keyix+32+64)) {
1686 				/* full pair unavailable */
1687 				/* XXX statistic */
1688 				if (keyix == (i+1)*NBBY) {
1689 					/* no slots were appropriate, advance */
1690 					continue;
1691 				}
1692 				goto again;
1693 			}
1694 			setbit(sc->sc_keymap, keyix);
1695 			setbit(sc->sc_keymap, keyix+64);
1696 			setbit(sc->sc_keymap, keyix+32);
1697 			setbit(sc->sc_keymap, keyix+32+64);
1698 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1699 				"%s: key pair %u,%u %u,%u\n",
1700 				__func__, keyix, keyix+64,
1701 				keyix+32, keyix+32+64);
1702 			*txkeyix = keyix;
1703 			*rxkeyix = keyix+32;
1704 			return keyix;
1705 		}
1706 	}
1707 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1708 	return IEEE80211_KEYIX_NONE;
1709 #undef N
1710 }
1711 
1712 /*
1713  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1714  * each key, one for decrypt/encrypt and the other for the MIC.
1715  */
1716 static int
1717 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1718     ieee80211_keyix *rxkeyix)
1719 {
1720 #define N(a)	(sizeof(a)/sizeof(a[0]))
1721 	u_int i, keyix;
1722 
1723 	KASSERTMSG(!sc->sc_splitmic, "key cache split");
1724 	/* XXX could optimize */
1725 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1726 		uint8_t b = sc->sc_keymap[i];
1727 		if (b != 0xff) {
1728 			/*
1729 			 * One or more slots in this byte are free.
1730 			 */
1731 			keyix = i*NBBY;
1732 			while (b & 1) {
1733 		again:
1734 				keyix++;
1735 				b >>= 1;
1736 			}
1737 			if (isset(sc->sc_keymap, keyix+64)) {
1738 				/* full pair unavailable */
1739 				/* XXX statistic */
1740 				if (keyix == (i+1)*NBBY) {
1741 					/* no slots were appropriate, advance */
1742 					continue;
1743 				}
1744 				goto again;
1745 			}
1746 			setbit(sc->sc_keymap, keyix);
1747 			setbit(sc->sc_keymap, keyix+64);
1748 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1749 				"%s: key pair %u,%u\n",
1750 				__func__, keyix, keyix+64);
1751 			*txkeyix = *rxkeyix = keyix;
1752 			return 1;
1753 		}
1754 	}
1755 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1756 	return 0;
1757 #undef N
1758 }
1759 
1760 /*
1761  * Allocate a single key cache slot.
1762  */
1763 static int
1764 key_alloc_single(struct ath_softc *sc,
1765 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1766 {
1767 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1768 	u_int i, keyix;
1769 
1770 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1771 	for (i = 0; i < N(sc->sc_keymap); i++) {
1772 		u_int8_t b = sc->sc_keymap[i];
1773 		if (b != 0xff) {
1774 			/*
1775 			 * One or more slots are free.
1776 			 */
1777 			keyix = i*NBBY;
1778 			while (b & 1)
1779 				keyix++, b >>= 1;
1780 			setbit(sc->sc_keymap, keyix);
1781 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1782 				__func__, keyix);
1783 			*txkeyix = *rxkeyix = keyix;
1784 			return 1;
1785 		}
1786 	}
1787 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1788 	return 0;
1789 #undef N
1790 }
1791 
1792 /*
1793  * Allocate one or more key cache slots for a uniacst key.  The
1794  * key itself is needed only to identify the cipher.  For hardware
1795  * TKIP with split cipher+MIC keys we allocate two key cache slot
1796  * pairs so that we can setup separate TX and RX MIC keys.  Note
1797  * that the MIC key for a TKIP key at slot i is assumed by the
1798  * hardware to be at slot i+64.  This limits TKIP keys to the first
1799  * 64 entries.
1800  */
1801 static int
1802 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1803 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1804 {
1805 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1806 
1807 	/*
1808 	 * Group key allocation must be handled specially for
1809 	 * parts that do not support multicast key cache search
1810 	 * functionality.  For those parts the key id must match
1811 	 * the h/w key index so lookups find the right key.  On
1812 	 * parts w/ the key search facility we install the sender's
1813 	 * mac address (with the high bit set) and let the hardware
1814 	 * find the key w/o using the key id.  This is preferred as
1815 	 * it permits us to support multiple users for adhoc and/or
1816 	 * multi-station operation.
1817 	 */
1818 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1819 		if (!(&ic->ic_nw_keys[0] <= k &&
1820 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1821 			/* should not happen */
1822 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1823 				"%s: bogus group key\n", __func__);
1824 			return 0;
1825 		}
1826 		/*
1827 		 * XXX we pre-allocate the global keys so
1828 		 * have no way to check if they've already been allocated.
1829 		 */
1830 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1831 		return 1;
1832 	}
1833 
1834 	/*
1835 	 * We allocate two pair for TKIP when using the h/w to do
1836 	 * the MIC.  For everything else, including software crypto,
1837 	 * we allocate a single entry.  Note that s/w crypto requires
1838 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1839 	 * not support pass-through cache entries and we map all
1840 	 * those requests to slot 0.
1841 	 */
1842 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1843 		return key_alloc_single(sc, keyix, rxkeyix);
1844 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1845 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1846 		if (sc->sc_splitmic)
1847 			return key_alloc_2pair(sc, keyix, rxkeyix);
1848 		else
1849 			return key_alloc_pair(sc, keyix, rxkeyix);
1850 	} else {
1851 		return key_alloc_single(sc, keyix, rxkeyix);
1852 	}
1853 }
1854 
1855 /*
1856  * Delete an entry in the key cache allocated by ath_key_alloc.
1857  */
1858 static int
1859 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1860 {
1861 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1862 	struct ath_hal *ah = sc->sc_ah;
1863 	const struct ieee80211_cipher *cip = k->wk_cipher;
1864 	u_int keyix = k->wk_keyix;
1865 
1866 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1867 
1868 	if (!device_has_power(sc->sc_dev)) {
1869 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1870 		    k->wk_keyix);
1871 	}
1872 
1873 	ath_hal_keyreset(ah, keyix);
1874 	/*
1875 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1876 	 */
1877 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1878 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1879 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1880 	if (keyix >= IEEE80211_WEP_NKID) {
1881 		/*
1882 		 * Don't touch keymap entries for global keys so
1883 		 * they are never considered for dynamic allocation.
1884 		 */
1885 		clrbit(sc->sc_keymap, keyix);
1886 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1887 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1888 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1889 			if (sc->sc_splitmic) {
1890 				/* +32 for RX key, +32+64 for RX key MIC */
1891 				clrbit(sc->sc_keymap, keyix+32);
1892 				clrbit(sc->sc_keymap, keyix+32+64);
1893 			}
1894 		}
1895 	}
1896 	return 1;
1897 }
1898 
1899 /*
1900  * Set the key cache contents for the specified key.  Key cache
1901  * slot(s) must already have been allocated by ath_key_alloc.
1902  */
1903 static int
1904 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1905 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1906 {
1907 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1908 
1909 	if (!device_has_power(sc->sc_dev)) {
1910 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1911 		    k->wk_keyix);
1912 	}
1913 	return ath_keyset(sc, k, mac, ic->ic_bss);
1914 }
1915 
1916 /*
1917  * Block/unblock tx+rx processing while a key change is done.
1918  * We assume the caller serializes key management operations
1919  * so we only need to worry about synchronization with other
1920  * uses that originate in the driver.
1921  */
1922 static void
1923 ath_key_update_begin(struct ieee80211com *ic)
1924 {
1925 	struct ifnet *ifp = ic->ic_ifp;
1926 	struct ath_softc *sc = ifp->if_softc;
1927 
1928 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1929 #if 0
1930 	tasklet_disable(&sc->sc_rxtq);
1931 #endif
1932 	sc->sc_flags |= ATH_KEY_UPDATING;
1933 }
1934 
1935 static void
1936 ath_key_update_end(struct ieee80211com *ic)
1937 {
1938 	struct ifnet *ifp = ic->ic_ifp;
1939 	struct ath_softc *sc = ifp->if_softc;
1940 
1941 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1942 	sc->sc_flags &= ~ATH_KEY_UPDATING;
1943 #if 0
1944 	tasklet_enable(&sc->sc_rxtq);
1945 #endif
1946 }
1947 
1948 /*
1949  * Calculate the receive filter according to the
1950  * operating mode and state:
1951  *
1952  * o always accept unicast, broadcast, and multicast traffic
1953  * o maintain current state of phy error reception (the hal
1954  *   may enable phy error frames for noise immunity work)
1955  * o probe request frames are accepted only when operating in
1956  *   hostap, adhoc, or monitor modes
1957  * o enable promiscuous mode according to the interface state
1958  * o accept beacons:
1959  *   - when operating in adhoc mode so the 802.11 layer creates
1960  *     node table entries for peers,
1961  *   - when operating in station mode for collecting rssi data when
1962  *     the station is otherwise quiet, or
1963  *   - when scanning
1964  */
1965 static u_int32_t
1966 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1967 {
1968 	struct ieee80211com *ic = &sc->sc_ic;
1969 	struct ath_hal *ah = sc->sc_ah;
1970 	struct ifnet *ifp = &sc->sc_if;
1971 	u_int32_t rfilt;
1972 
1973 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1974 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1975 	if (ic->ic_opmode != IEEE80211_M_STA)
1976 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1977 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1978 	    (ifp->if_flags & IFF_PROMISC))
1979 		rfilt |= HAL_RX_FILTER_PROM;
1980 	if (ifp->if_flags & IFF_PROMISC)
1981 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1982 	if (ic->ic_opmode == IEEE80211_M_STA ||
1983 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1984 	    state == IEEE80211_S_SCAN)
1985 		rfilt |= HAL_RX_FILTER_BEACON;
1986 	return rfilt;
1987 }
1988 
1989 static void
1990 ath_mode_init(struct ath_softc *sc)
1991 {
1992 	struct ethercom *ec = &sc->sc_ec;
1993 	struct ifnet *ifp = &sc->sc_if;
1994 	struct ieee80211com *ic = &sc->sc_ic;
1995 	struct ath_hal *ah = sc->sc_ah;
1996 	struct ether_multi *enm;
1997 	struct ether_multistep estep;
1998 	u_int32_t rfilt, mfilt[2], val;
1999 	int i;
2000 	uint8_t pos;
2001 
2002 	/* configure rx filter */
2003 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
2004 	ath_hal_setrxfilter(ah, rfilt);
2005 
2006 	/* configure operational mode */
2007 	ath_hal_setopmode(ah);
2008 
2009 	/* Write keys to hardware; it may have been powered down. */
2010 	ath_key_update_begin(ic);
2011 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2012 		ath_key_set(ic,
2013 			    &ic->ic_crypto.cs_nw_keys[i],
2014 			    ic->ic_myaddr);
2015 	}
2016 	ath_key_update_end(ic);
2017 
2018 	/*
2019 	 * Handle any link-level address change.  Note that we only
2020 	 * need to force ic_myaddr; any other addresses are handled
2021 	 * as a byproduct of the ifnet code marking the interface
2022 	 * down then up.
2023 	 *
2024 	 * XXX should get from lladdr instead of arpcom but that's more work
2025 	 */
2026 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
2027 	ath_hal_setmac(ah, ic->ic_myaddr);
2028 
2029 	/* calculate and install multicast filter */
2030 	ifp->if_flags &= ~IFF_ALLMULTI;
2031 	mfilt[0] = mfilt[1] = 0;
2032 	ETHER_LOCK(ec);
2033 	ETHER_FIRST_MULTI(estep, ec, enm);
2034 	while (enm != NULL) {
2035 		void *dl;
2036 		/* XXX Punt on ranges. */
2037 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
2038 			mfilt[0] = mfilt[1] = 0xffffffff;
2039 			ifp->if_flags |= IFF_ALLMULTI;
2040 			break;
2041 		}
2042 		dl = enm->enm_addrlo;
2043 		val = LE_READ_4((char *)dl + 0);
2044 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2045 		val = LE_READ_4((char *)dl + 3);
2046 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2047 		pos &= 0x3f;
2048 		mfilt[pos / 32] |= (1 << (pos % 32));
2049 
2050 		ETHER_NEXT_MULTI(estep, enm);
2051 	}
2052 	ETHER_UNLOCK(ec);
2053 
2054 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2055 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2056 		__func__, rfilt, mfilt[0], mfilt[1]);
2057 }
2058 
2059 /*
2060  * Set the slot time based on the current setting.
2061  */
2062 static void
2063 ath_setslottime(struct ath_softc *sc)
2064 {
2065 	struct ieee80211com *ic = &sc->sc_ic;
2066 	struct ath_hal *ah = sc->sc_ah;
2067 
2068 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2069 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2070 	else
2071 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2072 	sc->sc_updateslot = OK;
2073 }
2074 
2075 /*
2076  * Callback from the 802.11 layer to update the
2077  * slot time based on the current setting.
2078  */
2079 static void
2080 ath_updateslot(struct ifnet *ifp)
2081 {
2082 	struct ath_softc *sc = ifp->if_softc;
2083 	struct ieee80211com *ic = &sc->sc_ic;
2084 
2085 	/*
2086 	 * When not coordinating the BSS, change the hardware
2087 	 * immediately.  For other operation we defer the change
2088 	 * until beacon updates have propagated to the stations.
2089 	 */
2090 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2091 		sc->sc_updateslot = UPDATE;
2092 	else
2093 		ath_setslottime(sc);
2094 }
2095 
2096 /*
2097  * Setup a h/w transmit queue for beacons.
2098  */
2099 static int
2100 ath_beaconq_setup(struct ath_hal *ah)
2101 {
2102 	HAL_TXQ_INFO qi;
2103 
2104 	memset(&qi, 0, sizeof(qi));
2105 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2106 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2107 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2108 	/* NB: for dynamic turbo, don't enable any other interrupts */
2109 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2110 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2111 }
2112 
2113 /*
2114  * Setup the transmit queue parameters for the beacon queue.
2115  */
2116 static int
2117 ath_beaconq_config(struct ath_softc *sc)
2118 {
2119 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2120 	struct ieee80211com *ic = &sc->sc_ic;
2121 	struct ath_hal *ah = sc->sc_ah;
2122 	HAL_TXQ_INFO qi;
2123 
2124 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2125 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2126 		/*
2127 		 * Always burst out beacon and CAB traffic.
2128 		 */
2129 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2130 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2131 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2132 	} else {
2133 		struct wmeParams *wmep =
2134 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2135 		/*
2136 		 * Adhoc mode; important thing is to use 2x cwmin.
2137 		 */
2138 		qi.tqi_aifs = wmep->wmep_aifsn;
2139 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2140 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2141 	}
2142 
2143 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2144 		device_printf(sc->sc_dev, "unable to update parameters for "
2145 			"beacon hardware queue!\n");
2146 		return 0;
2147 	} else {
2148 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2149 		return 1;
2150 	}
2151 #undef ATH_EXPONENT_TO_VALUE
2152 }
2153 
2154 /*
2155  * Allocate and setup an initial beacon frame.
2156  */
2157 static int
2158 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2159 {
2160 	struct ieee80211com *ic = ni->ni_ic;
2161 	struct ath_buf *bf;
2162 	struct mbuf *m;
2163 	int error;
2164 
2165 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2166 	if (bf == NULL) {
2167 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2168 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2169 		return ENOMEM;			/* XXX */
2170 	}
2171 	/*
2172 	 * NB: the beacon data buffer must be 32-bit aligned;
2173 	 * we assume the mbuf routines will return us something
2174 	 * with this alignment (perhaps should assert).
2175 	 */
2176 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2177 	if (m == NULL) {
2178 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2179 			__func__);
2180 		sc->sc_stats.ast_be_nombuf++;
2181 		return ENOMEM;
2182 	}
2183 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2184 				     BUS_DMA_NOWAIT);
2185 	if (error == 0) {
2186 		bf->bf_m = m;
2187 		bf->bf_node = ieee80211_ref_node(ni);
2188 	} else {
2189 		m_freem(m);
2190 	}
2191 	return error;
2192 }
2193 
2194 /*
2195  * Setup the beacon frame for transmit.
2196  */
2197 static void
2198 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2199 {
2200 #define	USE_SHPREAMBLE(_ic) \
2201 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2202 		== IEEE80211_F_SHPREAMBLE)
2203 	struct ieee80211_node *ni = bf->bf_node;
2204 	struct ieee80211com *ic = ni->ni_ic;
2205 	struct mbuf *m = bf->bf_m;
2206 	struct ath_hal *ah = sc->sc_ah;
2207 	struct ath_desc *ds;
2208 	int flags, antenna;
2209 	const HAL_RATE_TABLE *rt;
2210 	u_int8_t rix, rate;
2211 
2212 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2213 		__func__, m, m->m_len);
2214 
2215 	/* setup descriptors */
2216 	ds = bf->bf_desc;
2217 
2218 	flags = HAL_TXDESC_NOACK;
2219 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2220 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2221 		flags |= HAL_TXDESC_VEOL;
2222 		/*
2223 		 * Let hardware handle antenna switching unless
2224 		 * the user has selected a transmit antenna
2225 		 * (sc_txantenna is not 0).
2226 		 */
2227 		antenna = sc->sc_txantenna;
2228 	} else {
2229 		ds->ds_link = 0;
2230 		/*
2231 		 * Switch antenna every 4 beacons, unless the user
2232 		 * has selected a transmit antenna (sc_txantenna
2233 		 * is not 0).
2234 		 *
2235 		 * XXX assumes two antenna
2236 		 */
2237 		if (sc->sc_txantenna == 0)
2238 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2239 		else
2240 			antenna = sc->sc_txantenna;
2241 	}
2242 
2243 	KASSERTMSG(bf->bf_nseg == 1,
2244 		"multi-segment beacon frame; nseg %u", bf->bf_nseg);
2245 	ds->ds_data = bf->bf_segs[0].ds_addr;
2246 	/*
2247 	 * Calculate rate code.
2248 	 * XXX everything at min xmit rate
2249 	 */
2250 	rix = sc->sc_minrateix;
2251 	rt = sc->sc_currates;
2252 	rate = rt->info[rix].rateCode;
2253 	if (USE_SHPREAMBLE(ic))
2254 		rate |= rt->info[rix].shortPreamble;
2255 	ath_hal_setuptxdesc(ah, ds
2256 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2257 		, sizeof(struct ieee80211_frame)/* header length */
2258 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2259 		, ni->ni_txpower		/* txpower XXX */
2260 		, rate, 1			/* series 0 rate/tries */
2261 		, HAL_TXKEYIX_INVALID		/* no encryption */
2262 		, antenna			/* antenna mode */
2263 		, flags				/* no ack, veol for beacons */
2264 		, 0				/* rts/cts rate */
2265 		, 0				/* rts/cts duration */
2266 	);
2267 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2268 	ath_hal_filltxdesc(ah, ds
2269 		, roundup(m->m_len, 4)		/* buffer length */
2270 		, AH_TRUE			/* first segment */
2271 		, AH_TRUE			/* last segment */
2272 		, ds				/* first descriptor */
2273 	);
2274 
2275 	/* NB: The desc swap function becomes void, if descriptor swapping
2276 	 * is not enabled
2277 	 */
2278 	ath_desc_swap(ds);
2279 
2280 #undef USE_SHPREAMBLE
2281 }
2282 
2283 /*
2284  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2285  * frame contents are done as needed and the slot time is
2286  * also adjusted based on current state.
2287  */
2288 static void
2289 ath_beacon_proc(void *arg, int pending)
2290 {
2291 	struct ath_softc *sc = arg;
2292 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2293 	struct ieee80211_node *ni = bf->bf_node;
2294 	struct ieee80211com *ic = ni->ni_ic;
2295 	struct ath_hal *ah = sc->sc_ah;
2296 	struct mbuf *m;
2297 	int ncabq, error, otherant;
2298 
2299 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2300 		__func__, pending);
2301 
2302 	if (ic->ic_opmode == IEEE80211_M_STA ||
2303 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2304 	    bf == NULL || bf->bf_m == NULL) {
2305 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2306 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2307 		return;
2308 	}
2309 	/*
2310 	 * Check if the previous beacon has gone out.  If
2311 	 * not don't try to post another, skip this period
2312 	 * and wait for the next.  Missed beacons indicate
2313 	 * a problem and should not occur.  If we miss too
2314 	 * many consecutive beacons reset the device.
2315 	 */
2316 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2317 		sc->sc_bmisscount++;
2318 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2319 			"%s: missed %u consecutive beacons\n",
2320 			__func__, sc->sc_bmisscount);
2321 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2322 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2323 		return;
2324 	}
2325 	if (sc->sc_bmisscount != 0) {
2326 		DPRINTF(sc, ATH_DEBUG_BEACON,
2327 			"%s: resume beacon xmit after %u misses\n",
2328 			__func__, sc->sc_bmisscount);
2329 		sc->sc_bmisscount = 0;
2330 	}
2331 
2332 	/*
2333 	 * Update dynamic beacon contents.  If this returns
2334 	 * non-zero then we need to remap the memory because
2335 	 * the beacon frame changed size (probably because
2336 	 * of the TIM bitmap).
2337 	 */
2338 	m = bf->bf_m;
2339 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2340 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2341 		/* XXX too conservative? */
2342 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2343 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2344 					     BUS_DMA_NOWAIT);
2345 		if (error != 0) {
2346 			if_printf(&sc->sc_if,
2347 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2348 			    __func__, error);
2349 			return;
2350 		}
2351 	}
2352 
2353 	/*
2354 	 * Handle slot time change when a non-ERP station joins/leaves
2355 	 * an 11g network.  The 802.11 layer notifies us via callback,
2356 	 * we mark updateslot, then wait one beacon before effecting
2357 	 * the change.  This gives associated stations at least one
2358 	 * beacon interval to note the state change.
2359 	 */
2360 	/* XXX locking */
2361 	if (sc->sc_updateslot == UPDATE)
2362 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2363 	else if (sc->sc_updateslot == COMMIT)
2364 		ath_setslottime(sc);		/* commit change to h/w */
2365 
2366 	/*
2367 	 * Check recent per-antenna transmit statistics and flip
2368 	 * the default antenna if noticeably more frames went out
2369 	 * on the non-default antenna.
2370 	 * XXX assumes 2 anntenae
2371 	 */
2372 	otherant = sc->sc_defant & 1 ? 2 : 1;
2373 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2374 		ath_setdefantenna(sc, otherant);
2375 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2376 
2377 	/*
2378 	 * Construct tx descriptor.
2379 	 */
2380 	ath_beacon_setup(sc, bf);
2381 
2382 	/*
2383 	 * Stop any current dma and put the new frame on the queue.
2384 	 * This should never fail since we check above that no frames
2385 	 * are still pending on the queue.
2386 	 */
2387 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2388 		DPRINTF(sc, ATH_DEBUG_ANY,
2389 			"%s: beacon queue %u did not stop?\n",
2390 			__func__, sc->sc_bhalq);
2391 	}
2392 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2393 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2394 
2395 	/*
2396 	 * Enable the CAB queue before the beacon queue to
2397 	 * insure cab frames are triggered by this beacon.
2398 	 */
2399 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2400 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2401 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2402 	ath_hal_txstart(ah, sc->sc_bhalq);
2403 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2404 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2405 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2406 
2407 	sc->sc_stats.ast_be_xmit++;
2408 }
2409 
2410 /*
2411  * Reset the hardware after detecting beacons have stopped.
2412  */
2413 static void
2414 ath_bstuck_proc(void *arg, int pending)
2415 {
2416 	struct ath_softc *sc = arg;
2417 	struct ifnet *ifp = &sc->sc_if;
2418 #ifdef __NetBSD__
2419 	int s;
2420 #endif
2421 
2422 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2423 		sc->sc_bmisscount);
2424 #ifdef __NetBSD__
2425 	s = splnet();
2426 #endif
2427 	ath_reset(ifp);
2428 #ifdef __NetBSD__
2429 	splx(s);
2430 #endif
2431 }
2432 
2433 /*
2434  * Reclaim beacon resources.
2435  */
2436 static void
2437 ath_beacon_free(struct ath_softc *sc)
2438 {
2439 	struct ath_buf *bf;
2440 
2441 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2442 		if (bf->bf_m != NULL) {
2443 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2444 			m_freem(bf->bf_m);
2445 			bf->bf_m = NULL;
2446 		}
2447 		if (bf->bf_node != NULL) {
2448 			ieee80211_free_node(bf->bf_node);
2449 			bf->bf_node = NULL;
2450 		}
2451 	}
2452 }
2453 
2454 /*
2455  * Configure the beacon and sleep timers.
2456  *
2457  * When operating as an AP this resets the TSF and sets
2458  * up the hardware to notify us when we need to issue beacons.
2459  *
2460  * When operating in station mode this sets up the beacon
2461  * timers according to the timestamp of the last received
2462  * beacon and the current TSF, configures PCF and DTIM
2463  * handling, programs the sleep registers so the hardware
2464  * will wakeup in time to receive beacons, and configures
2465  * the beacon miss handling so we'll receive a BMISS
2466  * interrupt when we stop seeing beacons from the AP
2467  * we've associated with.
2468  */
2469 static void
2470 ath_beacon_config(struct ath_softc *sc)
2471 {
2472 #define	TSF_TO_TU(_h,_l) \
2473 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2474 #define	FUDGE	2
2475 	struct ath_hal *ah = sc->sc_ah;
2476 	struct ieee80211com *ic = &sc->sc_ic;
2477 	struct ieee80211_node *ni = ic->ic_bss;
2478 	u_int32_t nexttbtt, intval, tsftu;
2479 	u_int64_t tsf;
2480 
2481 	/* extract tstamp from last beacon and convert to TU */
2482 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2483 			     LE_READ_4(ni->ni_tstamp.data));
2484 	/* NB: the beacon interval is kept internally in TU's */
2485 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2486 	if (nexttbtt == 0)		/* e.g. for ap mode */
2487 		nexttbtt = intval;
2488 	else if (intval)		/* NB: can be 0 for monitor mode */
2489 		nexttbtt = roundup(nexttbtt, intval);
2490 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2491 		__func__, nexttbtt, intval, ni->ni_intval);
2492 	if (ic->ic_opmode == IEEE80211_M_STA) {
2493 		HAL_BEACON_STATE bs;
2494 		int dtimperiod, dtimcount;
2495 		int cfpperiod, cfpcount;
2496 
2497 		/*
2498 		 * Setup dtim and cfp parameters according to
2499 		 * last beacon we received (which may be none).
2500 		 */
2501 		dtimperiod = ni->ni_dtim_period;
2502 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2503 			dtimperiod = 1;
2504 		dtimcount = ni->ni_dtim_count;
2505 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2506 			dtimcount = 0;		/* XXX? */
2507 		cfpperiod = 1;			/* NB: no PCF support yet */
2508 		cfpcount = 0;
2509 		/*
2510 		 * Pull nexttbtt forward to reflect the current
2511 		 * TSF and calculate dtim+cfp state for the result.
2512 		 */
2513 		tsf = ath_hal_gettsf64(ah);
2514 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2515 		do {
2516 			nexttbtt += intval;
2517 			if (--dtimcount < 0) {
2518 				dtimcount = dtimperiod - 1;
2519 				if (--cfpcount < 0)
2520 					cfpcount = cfpperiod - 1;
2521 			}
2522 		} while (nexttbtt < tsftu);
2523 		memset(&bs, 0, sizeof(bs));
2524 		bs.bs_intval = intval;
2525 		bs.bs_nexttbtt = nexttbtt;
2526 		bs.bs_dtimperiod = dtimperiod*intval;
2527 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2528 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2529 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2530 		bs.bs_cfpmaxduration = 0;
2531 #if 0
2532 		/*
2533 		 * The 802.11 layer records the offset to the DTIM
2534 		 * bitmap while receiving beacons; use it here to
2535 		 * enable h/w detection of our AID being marked in
2536 		 * the bitmap vector (to indicate frames for us are
2537 		 * pending at the AP).
2538 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2539 		 * XXX enable based on h/w rev for newer chips
2540 		 */
2541 		bs.bs_timoffset = ni->ni_timoff;
2542 #endif
2543 		/*
2544 		 * Calculate the number of consecutive beacons to miss
2545 		 * before taking a BMISS interrupt.  The configuration
2546 		 * is specified in ms, so we need to convert that to
2547 		 * TU's and then calculate based on the beacon interval.
2548 		 * Note that we clamp the result to at most 10 beacons.
2549 		 */
2550 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2551 		if (bs.bs_bmissthreshold > 10)
2552 			bs.bs_bmissthreshold = 10;
2553 		else if (bs.bs_bmissthreshold <= 0)
2554 			bs.bs_bmissthreshold = 1;
2555 
2556 		/*
2557 		 * Calculate sleep duration.  The configuration is
2558 		 * given in ms.  We insure a multiple of the beacon
2559 		 * period is used.  Also, if the sleep duration is
2560 		 * greater than the DTIM period then it makes senses
2561 		 * to make it a multiple of that.
2562 		 *
2563 		 * XXX fixed at 100ms
2564 		 */
2565 		bs.bs_sleepduration =
2566 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2567 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2568 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2569 
2570 		DPRINTF(sc, ATH_DEBUG_BEACON,
2571 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2572 			, __func__
2573 			, tsf, tsftu
2574 			, bs.bs_intval
2575 			, bs.bs_nexttbtt
2576 			, bs.bs_dtimperiod
2577 			, bs.bs_nextdtim
2578 			, bs.bs_bmissthreshold
2579 			, bs.bs_sleepduration
2580 			, bs.bs_cfpperiod
2581 			, bs.bs_cfpmaxduration
2582 			, bs.bs_cfpnext
2583 			, bs.bs_timoffset
2584 		);
2585 		ath_hal_intrset(ah, 0);
2586 		ath_hal_beacontimers(ah, &bs);
2587 		sc->sc_imask |= HAL_INT_BMISS;
2588 		ath_hal_intrset(ah, sc->sc_imask);
2589 	} else {
2590 		ath_hal_intrset(ah, 0);
2591 		if (nexttbtt == intval)
2592 			intval |= HAL_BEACON_RESET_TSF;
2593 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2594 			/*
2595 			 * In IBSS mode enable the beacon timers but only
2596 			 * enable SWBA interrupts if we need to manually
2597 			 * prepare beacon frames.  Otherwise we use a
2598 			 * self-linked tx descriptor and let the hardware
2599 			 * deal with things.
2600 			 */
2601 			intval |= HAL_BEACON_ENA;
2602 			if (!sc->sc_hasveol)
2603 				sc->sc_imask |= HAL_INT_SWBA;
2604 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2605 				/*
2606 				 * Pull nexttbtt forward to reflect
2607 				 * the current TSF.
2608 				 */
2609 				tsf = ath_hal_gettsf64(ah);
2610 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2611 				do {
2612 					nexttbtt += intval;
2613 				} while (nexttbtt < tsftu);
2614 			}
2615 			ath_beaconq_config(sc);
2616 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2617 			/*
2618 			 * In AP mode we enable the beacon timers and
2619 			 * SWBA interrupts to prepare beacon frames.
2620 			 */
2621 			intval |= HAL_BEACON_ENA;
2622 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2623 			ath_beaconq_config(sc);
2624 		}
2625 		ath_hal_beaconinit(ah, nexttbtt, intval);
2626 		sc->sc_bmisscount = 0;
2627 		ath_hal_intrset(ah, sc->sc_imask);
2628 		/*
2629 		 * When using a self-linked beacon descriptor in
2630 		 * ibss mode load it once here.
2631 		 */
2632 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2633 			ath_beacon_proc(sc, 0);
2634 	}
2635 	sc->sc_syncbeacon = 0;
2636 #undef UNDEF
2637 #undef TSF_TO_TU
2638 }
2639 
2640 static int
2641 ath_descdma_setup(struct ath_softc *sc,
2642 	struct ath_descdma *dd, ath_bufhead *head,
2643 	const char *name, int nbuf, int ndesc)
2644 {
2645 #define	DS2PHYS(_dd, _ds) \
2646 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2647 	struct ifnet *ifp = &sc->sc_if;
2648 	struct ath_desc *ds;
2649 	struct ath_buf *bf;
2650 	int i, bsize, error;
2651 
2652 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2653 	    __func__, name, nbuf, ndesc);
2654 
2655 	dd->dd_name = name;
2656 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2657 
2658 	/*
2659 	 * Setup DMA descriptor area.
2660 	 */
2661 	dd->dd_dmat = sc->sc_dmat;
2662 
2663 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2664 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2665 
2666 	if (error != 0) {
2667 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2668 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2669 		goto fail0;
2670 	}
2671 
2672 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2673 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2674 	if (error != 0) {
2675 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2676 		    nbuf * ndesc, dd->dd_name, error);
2677 		goto fail1;
2678 	}
2679 
2680 	/* allocate descriptors */
2681 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2682 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2683 	if (error != 0) {
2684 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2685 			"error %u\n", dd->dd_name, error);
2686 		goto fail2;
2687 	}
2688 
2689 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2690 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2691 	if (error != 0) {
2692 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2693 			dd->dd_name, error);
2694 		goto fail3;
2695 	}
2696 
2697 	ds = dd->dd_desc;
2698 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2699 	DPRINTF(sc, ATH_DEBUG_RESET,
2700 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2701 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2702 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2703 
2704 	/* allocate rx buffers */
2705 	bsize = sizeof(struct ath_buf) * nbuf;
2706 	bf = malloc(bsize, M_ATHDEV, M_WAITOK | M_ZERO);
2707 	dd->dd_bufptr = bf;
2708 
2709 	STAILQ_INIT(head);
2710 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2711 		bf->bf_desc = ds;
2712 		bf->bf_daddr = DS2PHYS(dd, ds);
2713 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2714 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2715 		if (error != 0) {
2716 			if_printf(ifp, "unable to create dmamap for %s "
2717 				"buffer %u, error %u\n", dd->dd_name, i, error);
2718 			ath_descdma_cleanup(sc, dd, head);
2719 			return error;
2720 		}
2721 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2722 	}
2723 	return 0;
2724 fail3:
2725 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2726 fail2:
2727 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2728 fail1:
2729 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2730 fail0:
2731 	memset(dd, 0, sizeof(*dd));
2732 	return error;
2733 #undef DS2PHYS
2734 }
2735 
2736 static void
2737 ath_descdma_cleanup(struct ath_softc *sc,
2738 	struct ath_descdma *dd, ath_bufhead *head)
2739 {
2740 	struct ath_buf *bf;
2741 	struct ieee80211_node *ni;
2742 
2743 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2744 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2745 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2746 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2747 
2748 	STAILQ_FOREACH(bf, head, bf_list) {
2749 		if (bf->bf_m) {
2750 			m_freem(bf->bf_m);
2751 			bf->bf_m = NULL;
2752 		}
2753 		if (bf->bf_dmamap != NULL) {
2754 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2755 			bf->bf_dmamap = NULL;
2756 		}
2757 		ni = bf->bf_node;
2758 		bf->bf_node = NULL;
2759 		if (ni != NULL) {
2760 			/*
2761 			 * Reclaim node reference.
2762 			 */
2763 			ieee80211_free_node(ni);
2764 		}
2765 	}
2766 
2767 	STAILQ_INIT(head);
2768 	free(dd->dd_bufptr, M_ATHDEV);
2769 	memset(dd, 0, sizeof(*dd));
2770 }
2771 
2772 static int
2773 ath_desc_alloc(struct ath_softc *sc)
2774 {
2775 	int error;
2776 
2777 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2778 			"rx", ath_rxbuf, 1);
2779 	if (error != 0)
2780 		return error;
2781 
2782 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2783 			"tx", ath_txbuf, ATH_TXDESC);
2784 	if (error != 0) {
2785 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2786 		return error;
2787 	}
2788 
2789 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2790 			"beacon", 1, 1);
2791 	if (error != 0) {
2792 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2793 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2794 		return error;
2795 	}
2796 	return 0;
2797 }
2798 
2799 static void
2800 ath_desc_free(struct ath_softc *sc)
2801 {
2802 
2803 	if (sc->sc_bdma.dd_desc_len != 0)
2804 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2805 	if (sc->sc_txdma.dd_desc_len != 0)
2806 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2807 	if (sc->sc_rxdma.dd_desc_len != 0)
2808 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2809 }
2810 
2811 static struct ieee80211_node *
2812 ath_node_alloc(struct ieee80211_node_table *nt)
2813 {
2814 	struct ieee80211com *ic = nt->nt_ic;
2815 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2816 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2817 	struct ath_node *an;
2818 
2819 	an = malloc(space, M_80211_NODE, M_NOWAIT | M_ZERO);
2820 	if (an == NULL) {
2821 		/* XXX stat+msg */
2822 		return NULL;
2823 	}
2824 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2825 	ath_rate_node_init(sc, an);
2826 
2827 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2828 	return &an->an_node;
2829 }
2830 
2831 static void
2832 ath_node_free(struct ieee80211_node *ni)
2833 {
2834 	struct ieee80211com *ic = ni->ni_ic;
2835 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2836 
2837 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2838 
2839 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2840 	sc->sc_node_free(ni);
2841 }
2842 
2843 static u_int8_t
2844 ath_node_getrssi(const struct ieee80211_node *ni)
2845 {
2846 #define	HAL_EP_RND(x, mul) \
2847 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2848 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2849 	int32_t rssi;
2850 
2851 	/*
2852 	 * When only one frame is received there will be no state in
2853 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2854 	 */
2855 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2856 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2857 	else
2858 		rssi = ni->ni_rssi;
2859 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2860 #undef HAL_EP_RND
2861 }
2862 
2863 static int
2864 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2865 {
2866 	struct ath_hal *ah = sc->sc_ah;
2867 	int error;
2868 	struct mbuf *m;
2869 	struct ath_desc *ds;
2870 
2871 	m = bf->bf_m;
2872 	if (m == NULL) {
2873 		/*
2874 		 * NB: by assigning a page to the rx dma buffer we
2875 		 * implicitly satisfy the Atheros requirement that
2876 		 * this buffer be cache-line-aligned and sized to be
2877 		 * multiple of the cache line size.  Not doing this
2878 		 * causes weird stuff to happen (for the 5210 at least).
2879 		 */
2880 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2881 		if (m == NULL) {
2882 			DPRINTF(sc, ATH_DEBUG_ANY,
2883 				"%s: no mbuf/cluster\n", __func__);
2884 			sc->sc_stats.ast_rx_nombuf++;
2885 			return ENOMEM;
2886 		}
2887 		bf->bf_m = m;
2888 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2889 
2890 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2891 					     bf->bf_dmamap, m,
2892 					     BUS_DMA_NOWAIT);
2893 		if (error != 0) {
2894 			DPRINTF(sc, ATH_DEBUG_ANY,
2895 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2896 			    __func__, error);
2897 			sc->sc_stats.ast_rx_busdma++;
2898 			return error;
2899 		}
2900 		KASSERTMSG(bf->bf_nseg == 1,
2901 			"multi-segment packet; nseg %u", bf->bf_nseg);
2902 	}
2903 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2904 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2905 
2906 	/*
2907 	 * Setup descriptors.  For receive we always terminate
2908 	 * the descriptor list with a self-linked entry so we'll
2909 	 * not get overrun under high load (as can happen with a
2910 	 * 5212 when ANI processing enables PHY error frames).
2911 	 *
2912 	 * To insure the last descriptor is self-linked we create
2913 	 * each descriptor as self-linked and add it to the end.  As
2914 	 * each additional descriptor is added the previous self-linked
2915 	 * entry is ``fixed'' naturally.  This should be safe even
2916 	 * if DMA is happening.  When processing RX interrupts we
2917 	 * never remove/process the last, self-linked, entry on the
2918 	 * descriptor list.  This insures the hardware always has
2919 	 * someplace to write a new frame.
2920 	 */
2921 	ds = bf->bf_desc;
2922 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2923 	ds->ds_data = bf->bf_segs[0].ds_addr;
2924 	/* ds->ds_vdata = mtod(m, void *);	for radar */
2925 	ath_hal_setuprxdesc(ah, ds
2926 		, m->m_len		/* buffer size */
2927 		, 0
2928 	);
2929 
2930 	if (sc->sc_rxlink != NULL)
2931 		*sc->sc_rxlink = bf->bf_daddr;
2932 	sc->sc_rxlink = &ds->ds_link;
2933 	return 0;
2934 }
2935 
2936 /*
2937  * Extend 15-bit time stamp from rx descriptor to
2938  * a full 64-bit TSF using the specified TSF.
2939  */
2940 static inline u_int64_t
2941 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2942 {
2943 	if ((tsf & 0x7fff) < rstamp)
2944 		tsf -= 0x8000;
2945 	return ((tsf &~ 0x7fff) | rstamp);
2946 }
2947 
2948 /*
2949  * Intercept management frames to collect beacon rssi data
2950  * and to do ibss merges.
2951  */
2952 static void
2953 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2954 	struct ieee80211_node *ni,
2955 	int subtype, int rssi, u_int32_t rstamp)
2956 {
2957 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2958 
2959 	/*
2960 	 * Call up first so subsequent work can use information
2961 	 * potentially stored in the node (e.g. for ibss merge).
2962 	 */
2963 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2964 	switch (subtype) {
2965 	case IEEE80211_FC0_SUBTYPE_BEACON:
2966 		/* update rssi statistics for use by the hal */
2967 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2968 		if (sc->sc_syncbeacon &&
2969 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2970 			/*
2971 			 * Resync beacon timers using the tsf of the beacon
2972 			 * frame we just received.
2973 			 */
2974 			ath_beacon_config(sc);
2975 		}
2976 		/* fall thru... */
2977 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2978 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2979 		    ic->ic_state == IEEE80211_S_RUN) {
2980 			u_int64_t tsf = ath_extend_tsf(rstamp,
2981 				ath_hal_gettsf64(sc->sc_ah));
2982 
2983 			/*
2984 			 * Handle ibss merge as needed; check the tsf on the
2985 			 * frame before attempting the merge.  The 802.11 spec
2986 			 * says the station should change its bssid to match
2987 			 * the oldest station with the same ssid, where oldest
2988 			 * is determined by the tsf.  Note that hardware
2989 			 * reconfiguration happens through callback to
2990 			 * ath_newstate as the state machine will go from
2991 			 * RUN -> RUN when this happens.
2992 			 */
2993 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2994 				DPRINTF(sc, ATH_DEBUG_STATE,
2995 				    "ibss merge, rstamp %u tsf %ju "
2996 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2997 				    (uintmax_t)ni->ni_tstamp.tsf);
2998 				(void) ieee80211_ibss_merge(ni);
2999 			}
3000 		}
3001 		break;
3002 	}
3003 }
3004 
3005 /*
3006  * Set the default antenna.
3007  */
3008 static void
3009 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3010 {
3011 	struct ath_hal *ah = sc->sc_ah;
3012 
3013 	/* XXX block beacon interrupts */
3014 	ath_hal_setdefantenna(ah, antenna);
3015 	if (sc->sc_defant != antenna)
3016 		sc->sc_stats.ast_ant_defswitch++;
3017 	sc->sc_defant = antenna;
3018 	sc->sc_rxotherant = 0;
3019 }
3020 
3021 static void
3022 ath_handle_micerror(struct ieee80211com *ic,
3023 	struct ieee80211_frame *wh, int keyix)
3024 {
3025 	struct ieee80211_node *ni;
3026 
3027 	/* XXX recheck MIC to deal w/ chips that lie */
3028 	/* XXX discard MIC errors on !data frames */
3029 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
3030 	if (ni != NULL) {
3031 		ieee80211_notify_michael_failure(ic, wh, keyix);
3032 		ieee80211_free_node(ni);
3033 	}
3034 }
3035 
3036 static void
3037 ath_rx_proc(void *arg, int npending)
3038 {
3039 #define	PA2DESC(_sc, _pa) \
3040 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
3041 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3042 	struct ath_softc *sc = arg;
3043 	struct ath_buf *bf;
3044 	struct ieee80211com *ic = &sc->sc_ic;
3045 	struct ifnet *ifp = &sc->sc_if;
3046 	struct ath_hal *ah = sc->sc_ah;
3047 	struct ath_desc *ds;
3048 	struct mbuf *m;
3049 	struct ieee80211_node *ni;
3050 	struct ath_node *an;
3051 	int len, ngood, type;
3052 	u_int phyerr;
3053 	HAL_STATUS status;
3054 	int16_t nf;
3055 	u_int64_t tsf;
3056 	uint8_t rxerr_tap, rxerr_mon;
3057 	NET_LOCK_GIANT_FUNC_INIT();
3058 
3059 	NET_LOCK_GIANT();		/* XXX */
3060 
3061 	rxerr_tap =
3062 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3063 
3064 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3065 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3066 	else if (ifp->if_flags & IFF_PROMISC)
3067 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3068 
3069 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3070 	ngood = 0;
3071 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3072 	tsf = ath_hal_gettsf64(ah);
3073 	do {
3074 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3075 		if (bf == NULL) {		/* NB: shouldn't happen */
3076 			if_printf(ifp, "%s: no buffer!\n", __func__);
3077 			break;
3078 		}
3079 		ds = bf->bf_desc;
3080 		if (ds->ds_link == bf->bf_daddr) {
3081 			/* NB: never process the self-linked entry at the end */
3082 			break;
3083 		}
3084 		m = bf->bf_m;
3085 		if (m == NULL) {		/* NB: shouldn't happen */
3086 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3087 			break;
3088 		}
3089 		/* XXX sync descriptor memory */
3090 		/*
3091 		 * Must provide the virtual address of the current
3092 		 * descriptor, the physical address, and the virtual
3093 		 * address of the next descriptor in the h/w chain.
3094 		 * This allows the HAL to look ahead to see if the
3095 		 * hardware is done with a descriptor by checking the
3096 		 * done bit in the following descriptor and the address
3097 		 * of the current descriptor the DMA engine is working
3098 		 * on.  All this is necessary because of our use of
3099 		 * a self-linked list to avoid rx overruns.
3100 		 */
3101 		status = ath_hal_rxprocdesc(ah, ds,
3102 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3103 				&ds->ds_rxstat);
3104 #ifdef AR_DEBUG
3105 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3106 			ath_printrxbuf(bf, status == HAL_OK);
3107 #endif
3108 		if (status == HAL_EINPROGRESS)
3109 			break;
3110 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3111 		if (ds->ds_rxstat.rs_more) {
3112 			/*
3113 			 * Frame spans multiple descriptors; this
3114 			 * cannot happen yet as we don't support
3115 			 * jumbograms.  If not in monitor mode,
3116 			 * discard the frame.
3117 			 */
3118 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3119 				sc->sc_stats.ast_rx_toobig++;
3120 				goto rx_next;
3121 			}
3122 			/* fall thru for monitor mode handling... */
3123 		} else if (ds->ds_rxstat.rs_status != 0) {
3124 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3125 				sc->sc_stats.ast_rx_crcerr++;
3126 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3127 				sc->sc_stats.ast_rx_fifoerr++;
3128 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3129 				sc->sc_stats.ast_rx_phyerr++;
3130 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3131 				sc->sc_stats.ast_rx_phy[phyerr]++;
3132 				goto rx_next;
3133 			}
3134 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3135 				/*
3136 				 * Decrypt error.  If the error occurred
3137 				 * because there was no hardware key, then
3138 				 * let the frame through so the upper layers
3139 				 * can process it.  This is necessary for 5210
3140 				 * parts which have no way to setup a ``clear''
3141 				 * key cache entry.
3142 				 *
3143 				 * XXX do key cache faulting
3144 				 */
3145 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3146 					goto rx_accept;
3147 				sc->sc_stats.ast_rx_badcrypt++;
3148 			}
3149 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3150 				sc->sc_stats.ast_rx_badmic++;
3151 				/*
3152 				 * Do minimal work required to hand off
3153 				 * the 802.11 header for notifcation.
3154 				 */
3155 				/* XXX frag's and qos frames */
3156 				len = ds->ds_rxstat.rs_datalen;
3157 				if (len >= sizeof (struct ieee80211_frame)) {
3158 					bus_dmamap_sync(sc->sc_dmat,
3159 					    bf->bf_dmamap,
3160 					    0, bf->bf_dmamap->dm_mapsize,
3161 					    BUS_DMASYNC_POSTREAD);
3162 					ath_handle_micerror(ic,
3163 					    mtod(m, struct ieee80211_frame *),
3164 					    sc->sc_splitmic ?
3165 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3166 				}
3167 			}
3168 			if_statinc(ifp, if_ierrors);
3169 			/*
3170 			 * Reject error frames, we normally don't want
3171 			 * to see them in monitor mode (in monitor mode
3172 			 * allow through packets that have crypto problems).
3173 			 */
3174 
3175 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3176 				goto rx_next;
3177 		}
3178 rx_accept:
3179 		/*
3180 		 * Sync and unmap the frame.  At this point we're
3181 		 * committed to passing the mbuf somewhere so clear
3182 		 * bf_m; this means a new sk_buff must be allocated
3183 		 * when the rx descriptor is setup again to receive
3184 		 * another frame.
3185 		 */
3186 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3187 		    0, bf->bf_dmamap->dm_mapsize,
3188 		    BUS_DMASYNC_POSTREAD);
3189 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3190 		bf->bf_m = NULL;
3191 
3192 		m_set_rcvif(m, ifp);
3193 		len = ds->ds_rxstat.rs_datalen;
3194 		m->m_pkthdr.len = m->m_len = len;
3195 
3196 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3197 
3198 		if (sc->sc_drvbpf) {
3199 			u_int8_t rix;
3200 
3201 			/*
3202 			 * Discard anything shorter than an ack or cts.
3203 			 */
3204 			if (len < IEEE80211_ACK_LEN) {
3205 				DPRINTF(sc, ATH_DEBUG_RECV,
3206 					"%s: runt packet %d\n",
3207 					__func__, len);
3208 				sc->sc_stats.ast_rx_tooshort++;
3209 				m_freem(m);
3210 				goto rx_next;
3211 			}
3212 			rix = ds->ds_rxstat.rs_rate;
3213 			sc->sc_rx_th.wr_tsf = htole64(
3214 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3215 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3216 			if (ds->ds_rxstat.rs_status &
3217 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3218 				sc->sc_rx_th.wr_flags |=
3219 				    IEEE80211_RADIOTAP_F_BADFCS;
3220 			}
3221 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3222 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3223 			sc->sc_rx_th.wr_antnoise = nf;
3224 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3225 
3226 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
3227 			    sc->sc_rx_th_len, m, BPF_D_IN);
3228 		}
3229 
3230 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
3231 			m_freem(m);
3232 			goto rx_next;
3233 		}
3234 		/*
3235 		 * From this point on we assume the frame is at least
3236 		 * as large as ieee80211_frame_min; verify that.
3237 		 */
3238 		if (len < IEEE80211_MIN_LEN) {
3239 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3240 				__func__, len);
3241 			sc->sc_stats.ast_rx_tooshort++;
3242 			m_freem(m);
3243 			goto rx_next;
3244 		}
3245 
3246 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3247 			ieee80211_dump_pkt(mtod(m, void *), len,
3248 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3249 				   ds->ds_rxstat.rs_rssi);
3250 		}
3251 
3252 		m_adj(m, -IEEE80211_CRC_LEN);
3253 
3254 		/*
3255 		 * Locate the node for sender, track state, and then
3256 		 * pass the (referenced) node up to the 802.11 layer
3257 		 * for its use.
3258 		 */
3259 		ni = ieee80211_find_rxnode_withkey(ic,
3260 			mtod(m, const struct ieee80211_frame_min *),
3261 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3262 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3263 		/*
3264 		 * Track rx rssi and do any rx antenna management.
3265 		 */
3266 		an = ATH_NODE(ni);
3267 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3268 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3269 		/*
3270 		 * Send frame up for processing.
3271 		 */
3272 		type = ieee80211_input(ic, m, ni,
3273 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3274 		ieee80211_free_node(ni);
3275 		if (sc->sc_diversity) {
3276 			/*
3277 			 * When using fast diversity, change the default rx
3278 			 * antenna if diversity chooses the other antenna 3
3279 			 * times in a row.
3280 			 */
3281 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3282 				if (++sc->sc_rxotherant >= 3)
3283 					ath_setdefantenna(sc,
3284 						ds->ds_rxstat.rs_antenna);
3285 			} else
3286 				sc->sc_rxotherant = 0;
3287 		}
3288 		if (sc->sc_softled) {
3289 			/*
3290 			 * Blink for any data frame.  Otherwise do a
3291 			 * heartbeat-style blink when idle.  The latter
3292 			 * is mainly for station mode where we depend on
3293 			 * periodic beacon frames to trigger the poll event.
3294 			 */
3295 			if (type == IEEE80211_FC0_TYPE_DATA) {
3296 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3297 				ath_led_event(sc, ATH_LED_RX);
3298 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3299 				ath_led_event(sc, ATH_LED_POLL);
3300 		}
3301 		/*
3302 		 * Arrange to update the last rx timestamp only for
3303 		 * frames from our ap when operating in station mode.
3304 		 * This assumes the rx key is always setup when associated.
3305 		 */
3306 		if (ic->ic_opmode == IEEE80211_M_STA &&
3307 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3308 			ngood++;
3309 rx_next:
3310 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3311 	} while (ath_rxbuf_init(sc, bf) == 0);
3312 
3313 	/* rx signal state monitoring */
3314 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3315 #if 0
3316 	if (ath_hal_radar_event(ah))
3317 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3318 #endif
3319 	if (ngood)
3320 		sc->sc_lastrx = tsf;
3321 
3322 #ifdef __NetBSD__
3323 	/* XXX Why isn't this necessary in FreeBSD? */
3324 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3325 		ath_start(ifp);
3326 #endif /* __NetBSD__ */
3327 
3328 	NET_UNLOCK_GIANT();		/* XXX */
3329 #undef PA2DESC
3330 }
3331 
3332 /*
3333  * Setup a h/w transmit queue.
3334  */
3335 static struct ath_txq *
3336 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3337 {
3338 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3339 	struct ath_hal *ah = sc->sc_ah;
3340 	HAL_TXQ_INFO qi;
3341 	int qnum;
3342 
3343 	memset(&qi, 0, sizeof(qi));
3344 	qi.tqi_subtype = subtype;
3345 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3346 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3347 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3348 	/*
3349 	 * Enable interrupts only for EOL and DESC conditions.
3350 	 * We mark tx descriptors to receive a DESC interrupt
3351 	 * when a tx queue gets deep; otherwise waiting for the
3352 	 * EOL to reap descriptors.  Note that this is done to
3353 	 * reduce interrupt load and this only defers reaping
3354 	 * descriptors, never transmitting frames.  Aside from
3355 	 * reducing interrupts this also permits more concurrency.
3356 	 * The only potential downside is if the tx queue backs
3357 	 * up in which case the top half of the kernel may backup
3358 	 * due to a lack of tx descriptors.
3359 	 */
3360 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3361 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3362 	if (qnum == -1) {
3363 		/*
3364 		 * NB: don't print a message, this happens
3365 		 * normally on parts with too few tx queues
3366 		 */
3367 		return NULL;
3368 	}
3369 	if (qnum >= N(sc->sc_txq)) {
3370 		device_printf(sc->sc_dev,
3371 			"hal qnum %u out of range, max %zu!\n",
3372 			qnum, N(sc->sc_txq));
3373 		ath_hal_releasetxqueue(ah, qnum);
3374 		return NULL;
3375 	}
3376 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3377 		struct ath_txq *txq = &sc->sc_txq[qnum];
3378 
3379 		txq->axq_qnum = qnum;
3380 		txq->axq_depth = 0;
3381 		txq->axq_intrcnt = 0;
3382 		txq->axq_link = NULL;
3383 		STAILQ_INIT(&txq->axq_q);
3384 		ATH_TXQ_LOCK_INIT(sc, txq);
3385 		sc->sc_txqsetup |= 1<<qnum;
3386 	}
3387 	return &sc->sc_txq[qnum];
3388 #undef N
3389 }
3390 
3391 /*
3392  * Setup a hardware data transmit queue for the specified
3393  * access control.  The hal may not support all requested
3394  * queues in which case it will return a reference to a
3395  * previously setup queue.  We record the mapping from ac's
3396  * to h/w queues for use by ath_tx_start and also track
3397  * the set of h/w queues being used to optimize work in the
3398  * transmit interrupt handler and related routines.
3399  */
3400 static int
3401 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3402 {
3403 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3404 	struct ath_txq *txq;
3405 
3406 	if (ac >= N(sc->sc_ac2q)) {
3407 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3408 			ac, N(sc->sc_ac2q));
3409 		return 0;
3410 	}
3411 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3412 	if (txq != NULL) {
3413 		sc->sc_ac2q[ac] = txq;
3414 		return 1;
3415 	} else
3416 		return 0;
3417 #undef N
3418 }
3419 
3420 /*
3421  * Update WME parameters for a transmit queue.
3422  */
3423 static int
3424 ath_txq_update(struct ath_softc *sc, int ac)
3425 {
3426 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3427 #define	ATH_TXOP_TO_US(v)		(v<<5)
3428 	struct ieee80211com *ic = &sc->sc_ic;
3429 	struct ath_txq *txq = sc->sc_ac2q[ac];
3430 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3431 	struct ath_hal *ah = sc->sc_ah;
3432 	HAL_TXQ_INFO qi;
3433 
3434 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3435 	qi.tqi_aifs = wmep->wmep_aifsn;
3436 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3437 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3438 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3439 
3440 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3441 		device_printf(sc->sc_dev, "unable to update hardware queue "
3442 			"parameters for %s traffic!\n",
3443 			ieee80211_wme_acnames[ac]);
3444 		return 0;
3445 	} else {
3446 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3447 		return 1;
3448 	}
3449 #undef ATH_TXOP_TO_US
3450 #undef ATH_EXPONENT_TO_VALUE
3451 }
3452 
3453 /*
3454  * Callback from the 802.11 layer to update WME parameters.
3455  */
3456 static int
3457 ath_wme_update(struct ieee80211com *ic)
3458 {
3459 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3460 
3461 	return !ath_txq_update(sc, WME_AC_BE) ||
3462 	    !ath_txq_update(sc, WME_AC_BK) ||
3463 	    !ath_txq_update(sc, WME_AC_VI) ||
3464 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3465 }
3466 
3467 /*
3468  * Reclaim resources for a setup queue.
3469  */
3470 static void
3471 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3472 {
3473 
3474 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3475 	ATH_TXQ_LOCK_DESTROY(txq);
3476 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3477 }
3478 
3479 /*
3480  * Reclaim all tx queue resources.
3481  */
3482 static void
3483 ath_tx_cleanup(struct ath_softc *sc)
3484 {
3485 	int i;
3486 
3487 	ATH_TXBUF_LOCK_DESTROY(sc);
3488 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3489 		if (ATH_TXQ_SETUP(sc, i))
3490 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3491 }
3492 
3493 /*
3494  * Defragment an mbuf chain, returning at most maxfrags separate
3495  * mbufs+clusters.  If this is not possible NULL is returned and
3496  * the original mbuf chain is left in its present (potentially
3497  * modified) state.  We use two techniques: collapsing consecutive
3498  * mbufs and replacing consecutive mbufs by a cluster.
3499  */
3500 static struct mbuf *
3501 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3502 {
3503 	struct mbuf *m, *n, *n2, **prev;
3504 	u_int curfrags;
3505 
3506 	/*
3507 	 * Calculate the current number of frags.
3508 	 */
3509 	curfrags = 0;
3510 	for (m = m0; m != NULL; m = m->m_next)
3511 		curfrags++;
3512 	/*
3513 	 * First, try to collapse mbufs.  Note that we always collapse
3514 	 * towards the front so we don't need to deal with moving the
3515 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3516 	 * less data than the following.
3517 	 */
3518 	m = m0;
3519 again:
3520 	for (;;) {
3521 		n = m->m_next;
3522 		if (n == NULL)
3523 			break;
3524 		if (n->m_len < M_TRAILINGSPACE(m)) {
3525 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3526 				n->m_len);
3527 			m->m_len += n->m_len;
3528 			m->m_next = n->m_next;
3529 			m_free(n);
3530 			if (--curfrags <= maxfrags)
3531 				return m0;
3532 		} else
3533 			m = n;
3534 	}
3535 	KASSERTMSG(maxfrags > 1,
3536 		"maxfrags %u, but normal collapse failed", maxfrags);
3537 	/*
3538 	 * Collapse consecutive mbufs to a cluster.
3539 	 */
3540 	prev = &m0->m_next;		/* NB: not the first mbuf */
3541 	while ((n = *prev) != NULL) {
3542 		if ((n2 = n->m_next) != NULL &&
3543 		    n->m_len + n2->m_len < MCLBYTES) {
3544 			m = m_getcl(how, MT_DATA, 0);
3545 			if (m == NULL)
3546 				goto bad;
3547 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3548 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3549 				n2->m_len);
3550 			m->m_len = n->m_len + n2->m_len;
3551 			m->m_next = n2->m_next;
3552 			*prev = m;
3553 			m_free(n);
3554 			m_free(n2);
3555 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3556 				return m0;
3557 			/*
3558 			 * Still not there, try the normal collapse
3559 			 * again before we allocate another cluster.
3560 			 */
3561 			goto again;
3562 		}
3563 		prev = &n->m_next;
3564 	}
3565 	/*
3566 	 * No place where we can collapse to a cluster; punt.
3567 	 * This can occur if, for example, you request 2 frags
3568 	 * but the packet requires that both be clusters (we
3569 	 * never reallocate the first mbuf to avoid moving the
3570 	 * packet header).
3571 	 */
3572 bad:
3573 	return NULL;
3574 }
3575 
3576 /*
3577  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3578  */
3579 static int
3580 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3581 {
3582 	int i;
3583 
3584 	for (i = 0; i < rt->rateCount; i++)
3585 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3586 			return i;
3587 	return 0;		/* NB: lowest rate */
3588 }
3589 
3590 static void
3591 ath_freetx(struct mbuf *m)
3592 {
3593 	struct mbuf *next;
3594 
3595 	do {
3596 		next = m->m_nextpkt;
3597 		m->m_nextpkt = NULL;
3598 		m_freem(m);
3599 	} while ((m = next) != NULL);
3600 }
3601 
3602 static int
3603 deduct_pad_bytes(int len, int hdrlen)
3604 {
3605 	/* XXX I am suspicious that this code, which I extracted
3606 	 * XXX from ath_tx_start() for reuse, does the right thing.
3607 	 */
3608 	return len - (hdrlen & 3);
3609 }
3610 
3611 static int
3612 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3613     struct mbuf *m0)
3614 {
3615 	struct ieee80211com *ic = &sc->sc_ic;
3616 	struct ath_hal *ah = sc->sc_ah;
3617 	struct ifnet *ifp = &sc->sc_if;
3618 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3619 	int i, error, iswep, ismcast, isfrag, ismrr;
3620 	int keyix, hdrlen, pktlen, try0;
3621 	u_int8_t rix, txrate, ctsrate;
3622 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3623 	struct ath_desc *ds, *ds0;
3624 	struct ath_txq *txq;
3625 	struct ieee80211_frame *wh;
3626 	u_int subtype, flags, ctsduration;
3627 	HAL_PKT_TYPE atype;
3628 	const HAL_RATE_TABLE *rt;
3629 	HAL_BOOL shortPreamble;
3630 	struct ath_node *an;
3631 	struct mbuf *m;
3632 	u_int pri;
3633 
3634 	wh = mtod(m0, struct ieee80211_frame *);
3635 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3636 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3637 	isfrag = m0->m_flags & M_FRAG;
3638 	hdrlen = ieee80211_anyhdrsize(wh);
3639 	/*
3640 	 * Packet length must not include any
3641 	 * pad bytes; deduct them here.
3642 	 */
3643 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3644 
3645 	if (iswep) {
3646 		const struct ieee80211_cipher *cip;
3647 		struct ieee80211_key *k;
3648 
3649 		/*
3650 		 * Construct the 802.11 header+trailer for an encrypted
3651 		 * frame. The only reason this can fail is because of an
3652 		 * unknown or unsupported cipher/key type.
3653 		 */
3654 		k = ieee80211_crypto_encap(ic, ni, m0);
3655 		if (k == NULL) {
3656 			/*
3657 			 * This can happen when the key is yanked after the
3658 			 * frame was queued.  Just discard the frame; the
3659 			 * 802.11 layer counts failures and provides
3660 			 * debugging/diagnostics.
3661 			 */
3662 			ath_freetx(m0);
3663 			return EIO;
3664 		}
3665 		/*
3666 		 * Adjust the packet + header lengths for the crypto
3667 		 * additions and calculate the h/w key index.  When
3668 		 * a s/w mic is done the frame will have had any mic
3669 		 * added to it prior to entry so m0->m_pkthdr.len above will
3670 		 * account for it. Otherwise we need to add it to the
3671 		 * packet length.
3672 		 */
3673 		cip = k->wk_cipher;
3674 		hdrlen += cip->ic_header;
3675 		pktlen += cip->ic_header + cip->ic_trailer;
3676 		/* NB: frags always have any TKIP MIC done in s/w */
3677 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3678 			pktlen += cip->ic_miclen;
3679 		keyix = k->wk_keyix;
3680 
3681 		/* packet header may have moved, reset our local pointer */
3682 		wh = mtod(m0, struct ieee80211_frame *);
3683 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3684 		/*
3685 		 * Use station key cache slot, if assigned.
3686 		 */
3687 		keyix = ni->ni_ucastkey.wk_keyix;
3688 		if (keyix == IEEE80211_KEYIX_NONE)
3689 			keyix = HAL_TXKEYIX_INVALID;
3690 	} else
3691 		keyix = HAL_TXKEYIX_INVALID;
3692 
3693 	pktlen += IEEE80211_CRC_LEN;
3694 
3695 	/*
3696 	 * Load the DMA map so any coalescing is done.  This
3697 	 * also calculates the number of descriptors we need.
3698 	 */
3699 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3700 				     BUS_DMA_NOWAIT);
3701 	if (error == EFBIG) {
3702 		/* XXX packet requires too many descriptors */
3703 		bf->bf_nseg = ATH_TXDESC+1;
3704 	} else if (error != 0) {
3705 		sc->sc_stats.ast_tx_busdma++;
3706 		ath_freetx(m0);
3707 		return error;
3708 	}
3709 	/*
3710 	 * Discard null packets and check for packets that
3711 	 * require too many TX descriptors.  We try to convert
3712 	 * the latter to a cluster.
3713 	 */
3714 	if (error == EFBIG) {		/* too many desc's, linearize */
3715 		sc->sc_stats.ast_tx_linear++;
3716 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3717 		if (m == NULL) {
3718 			ath_freetx(m0);
3719 			sc->sc_stats.ast_tx_nombuf++;
3720 			return ENOMEM;
3721 		}
3722 		m0 = m;
3723 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3724 					     BUS_DMA_NOWAIT);
3725 		if (error != 0) {
3726 			sc->sc_stats.ast_tx_busdma++;
3727 			ath_freetx(m0);
3728 			return error;
3729 		}
3730 		KASSERTMSG(bf->bf_nseg <= ATH_TXDESC,
3731 		    "too many segments after defrag; nseg %u", bf->bf_nseg);
3732 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3733 		sc->sc_stats.ast_tx_nodata++;
3734 		ath_freetx(m0);
3735 		return EIO;
3736 	}
3737 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3738 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3739 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3740 	bf->bf_m = m0;
3741 	bf->bf_node = ni;			/* NB: held reference */
3742 
3743 	/* setup descriptors */
3744 	ds = bf->bf_desc;
3745 	rt = sc->sc_currates;
3746 	KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
3747 
3748 	/*
3749 	 * NB: the 802.11 layer marks whether or not we should
3750 	 * use short preamble based on the current mode and
3751 	 * negotiated parameters.
3752 	 */
3753 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3754 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3755 		shortPreamble = AH_TRUE;
3756 		sc->sc_stats.ast_tx_shortpre++;
3757 	} else {
3758 		shortPreamble = AH_FALSE;
3759 	}
3760 
3761 	an = ATH_NODE(ni);
3762 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3763 	ismrr = 0;				/* default no multi-rate retry*/
3764 	/*
3765 	 * Calculate Atheros packet type from IEEE80211 packet header,
3766 	 * setup for rate calculations, and select h/w transmit queue.
3767 	 */
3768 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3769 	case IEEE80211_FC0_TYPE_MGT:
3770 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3771 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3772 			atype = HAL_PKT_TYPE_BEACON;
3773 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3774 			atype = HAL_PKT_TYPE_PROBE_RESP;
3775 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3776 			atype = HAL_PKT_TYPE_ATIM;
3777 		else
3778 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3779 		rix = sc->sc_minrateix;
3780 		txrate = rt->info[rix].rateCode;
3781 		if (shortPreamble)
3782 			txrate |= rt->info[rix].shortPreamble;
3783 		try0 = ATH_TXMGTTRY;
3784 		/* NB: force all management frames to highest queue */
3785 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3786 			/* NB: force all management frames to highest queue */
3787 			pri = WME_AC_VO;
3788 		} else
3789 			pri = WME_AC_BE;
3790 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3791 		break;
3792 	case IEEE80211_FC0_TYPE_CTL:
3793 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3794 		rix = sc->sc_minrateix;
3795 		txrate = rt->info[rix].rateCode;
3796 		if (shortPreamble)
3797 			txrate |= rt->info[rix].shortPreamble;
3798 		try0 = ATH_TXMGTTRY;
3799 		/* NB: force all ctl frames to highest queue */
3800 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3801 			/* NB: force all ctl frames to highest queue */
3802 			pri = WME_AC_VO;
3803 		} else
3804 			pri = WME_AC_BE;
3805 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3806 		break;
3807 	case IEEE80211_FC0_TYPE_DATA:
3808 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3809 		/*
3810 		 * Data frames: multicast frames go out at a fixed rate,
3811 		 * otherwise consult the rate control module for the
3812 		 * rate to use.
3813 		 */
3814 		if (ismcast) {
3815 			/*
3816 			 * Check mcast rate setting in case it's changed.
3817 			 * XXX move out of fastpath
3818 			 */
3819 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3820 				sc->sc_mcastrix =
3821 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3822 				sc->sc_mcastrate = ic->ic_mcast_rate;
3823 			}
3824 			rix = sc->sc_mcastrix;
3825 			txrate = rt->info[rix].rateCode;
3826 			try0 = 1;
3827 		} else {
3828 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3829 				&rix, &try0, &txrate);
3830 			sc->sc_txrate = txrate;		/* for LED blinking */
3831 			if (try0 != ATH_TXMAXTRY)
3832 				ismrr = 1;
3833 		}
3834 		pri = M_WME_GETAC(m0);
3835 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3836 			flags |= HAL_TXDESC_NOACK;
3837 		break;
3838 	default:
3839 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3840 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3841 		/* XXX statistic */
3842 		ath_freetx(m0);
3843 		return EIO;
3844 	}
3845 	txq = sc->sc_ac2q[pri];
3846 
3847 	/*
3848 	 * When servicing one or more stations in power-save mode
3849 	 * multicast frames must be buffered until after the beacon.
3850 	 * We use the CAB queue for that.
3851 	 */
3852 	if (ismcast && ic->ic_ps_sta) {
3853 		txq = sc->sc_cabq;
3854 		/* XXX? more bit in 802.11 frame header */
3855 	}
3856 
3857 	/*
3858 	 * Calculate miscellaneous flags.
3859 	 */
3860 	if (ismcast) {
3861 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3862 	} else if (pktlen > ic->ic_rtsthreshold) {
3863 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3864 		cix = rt->info[rix].controlRate;
3865 		sc->sc_stats.ast_tx_rts++;
3866 	}
3867 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3868 		sc->sc_stats.ast_tx_noack++;
3869 
3870 	/*
3871 	 * If 802.11g protection is enabled, determine whether
3872 	 * to use RTS/CTS or just CTS.  Note that this is only
3873 	 * done for OFDM unicast frames.
3874 	 */
3875 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3876 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3877 	    (flags & HAL_TXDESC_NOACK) == 0) {
3878 		/* XXX fragments must use CCK rates w/ protection */
3879 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3880 			flags |= HAL_TXDESC_RTSENA;
3881 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3882 			flags |= HAL_TXDESC_CTSENA;
3883 		if (isfrag) {
3884 			/*
3885 			 * For frags it would be desirable to use the
3886 			 * highest CCK rate for RTS/CTS.  But stations
3887 			 * farther away may detect it at a lower CCK rate
3888 			 * so use the configured protection rate instead
3889 			 * (for now).
3890 			 */
3891 			cix = rt->info[sc->sc_protrix].controlRate;
3892 		} else
3893 			cix = rt->info[sc->sc_protrix].controlRate;
3894 		sc->sc_stats.ast_tx_protect++;
3895 	}
3896 
3897 	/*
3898 	 * Calculate duration.  This logically belongs in the 802.11
3899 	 * layer but it lacks sufficient information to calculate it.
3900 	 */
3901 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3902 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3903 		u_int16_t dur;
3904 		/*
3905 		 * XXX not right with fragmentation.
3906 		 */
3907 		if (shortPreamble)
3908 			dur = rt->info[rix].spAckDuration;
3909 		else
3910 			dur = rt->info[rix].lpAckDuration;
3911 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3912 			dur += dur;		/* additional SIFS+ACK */
3913 			KASSERTMSG(m0->m_nextpkt != NULL, "no fragment");
3914 			/*
3915 			 * Include the size of next fragment so NAV is
3916 			 * updated properly.  The last fragment uses only
3917 			 * the ACK duration
3918 			 */
3919 			dur += ath_hal_computetxtime(ah, rt,
3920 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3921 				hdrlen) -
3922 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3923 			    rix, shortPreamble);
3924 		}
3925 		if (isfrag) {
3926 			/*
3927 			 * Force hardware to use computed duration for next
3928 			 * fragment by disabling multi-rate retry which updates
3929 			 * duration based on the multi-rate duration table.
3930 			 */
3931 			try0 = ATH_TXMAXTRY;
3932 		}
3933 		*(u_int16_t *)wh->i_dur = htole16(dur);
3934 	}
3935 
3936 	/*
3937 	 * Calculate RTS/CTS rate and duration if needed.
3938 	 */
3939 	ctsduration = 0;
3940 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3941 		/*
3942 		 * CTS transmit rate is derived from the transmit rate
3943 		 * by looking in the h/w rate table.  We must also factor
3944 		 * in whether or not a short preamble is to be used.
3945 		 */
3946 		/* NB: cix is set above where RTS/CTS is enabled */
3947 		KASSERTMSG(cix != 0xff, "cix not setup");
3948 		ctsrate = rt->info[cix].rateCode;
3949 		/*
3950 		 * Compute the transmit duration based on the frame
3951 		 * size and the size of an ACK frame.  We call into the
3952 		 * HAL to do the computation since it depends on the
3953 		 * characteristics of the actual PHY being used.
3954 		 *
3955 		 * NB: CTS is assumed the same size as an ACK so we can
3956 		 *     use the precalculated ACK durations.
3957 		 */
3958 		if (shortPreamble) {
3959 			ctsrate |= rt->info[cix].shortPreamble;
3960 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3961 				ctsduration += rt->info[cix].spAckDuration;
3962 			ctsduration += ath_hal_computetxtime(ah,
3963 				rt, pktlen, rix, AH_TRUE);
3964 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3965 				ctsduration += rt->info[rix].spAckDuration;
3966 		} else {
3967 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3968 				ctsduration += rt->info[cix].lpAckDuration;
3969 			ctsduration += ath_hal_computetxtime(ah,
3970 				rt, pktlen, rix, AH_FALSE);
3971 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3972 				ctsduration += rt->info[rix].lpAckDuration;
3973 		}
3974 		/*
3975 		 * Must disable multi-rate retry when using RTS/CTS.
3976 		 */
3977 		ismrr = 0;
3978 		try0 = ATH_TXMGTTRY;		/* XXX */
3979 	} else
3980 		ctsrate = 0;
3981 
3982 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3983 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3984 			sc->sc_hwmap[txrate].ieeerate, -1);
3985 	bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3986 	if (sc->sc_drvbpf) {
3987 		u_int64_t tsf = ath_hal_gettsf64(ah);
3988 
3989 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3990 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3991 		if (iswep)
3992 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3993 		if (isfrag)
3994 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3995 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3996 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3997 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3998 
3999 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0,
4000 		    BPF_D_OUT);
4001 	}
4002 
4003 	/*
4004 	 * Determine if a tx interrupt should be generated for
4005 	 * this descriptor.  We take a tx interrupt to reap
4006 	 * descriptors when the h/w hits an EOL condition or
4007 	 * when the descriptor is specifically marked to generate
4008 	 * an interrupt.  We periodically mark descriptors in this
4009 	 * way to insure timely replenishing of the supply needed
4010 	 * for sending frames.  Defering interrupts reduces system
4011 	 * load and potentially allows more concurrent work to be
4012 	 * done but if done to aggressively can cause senders to
4013 	 * backup.
4014 	 *
4015 	 * NB: use >= to deal with sc_txintrperiod changing
4016 	 *     dynamically through sysctl.
4017 	 */
4018 	if (flags & HAL_TXDESC_INTREQ) {
4019 		txq->axq_intrcnt = 0;
4020 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4021 		flags |= HAL_TXDESC_INTREQ;
4022 		txq->axq_intrcnt = 0;
4023 	}
4024 
4025 	/*
4026 	 * Formulate first tx descriptor with tx controls.
4027 	 */
4028 	/* XXX check return value? */
4029 	ath_hal_setuptxdesc(ah, ds
4030 		, pktlen		/* packet length */
4031 		, hdrlen		/* header length */
4032 		, atype			/* Atheros packet type */
4033 		, ni->ni_txpower	/* txpower */
4034 		, txrate, try0		/* series 0 rate/tries */
4035 		, keyix			/* key cache index */
4036 		, sc->sc_txantenna	/* antenna mode */
4037 		, flags			/* flags */
4038 		, ctsrate		/* rts/cts rate */
4039 		, ctsduration		/* rts/cts duration */
4040 	);
4041 	bf->bf_flags = flags;
4042 	/*
4043 	 * Setup the multi-rate retry state only when we're
4044 	 * going to use it.  This assumes ath_hal_setuptxdesc
4045 	 * initializes the descriptors (so we don't have to)
4046 	 * when the hardware supports multi-rate retry and
4047 	 * we don't use it.
4048 	 */
4049 	if (ismrr)
4050 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4051 
4052 	/*
4053 	 * Fillin the remainder of the descriptor info.
4054 	 */
4055 	ds0 = ds;
4056 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4057 		ds->ds_data = bf->bf_segs[i].ds_addr;
4058 		if (i == bf->bf_nseg - 1)
4059 			ds->ds_link = 0;
4060 		else
4061 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4062 		ath_hal_filltxdesc(ah, ds
4063 			, bf->bf_segs[i].ds_len	/* segment length */
4064 			, i == 0		/* first segment */
4065 			, i == bf->bf_nseg - 1	/* last segment */
4066 			, ds0			/* first descriptor */
4067 		);
4068 
4069 		/* NB: The desc swap function becomes void,
4070 		 * if descriptor swapping is not enabled
4071 		 */
4072 		ath_desc_swap(ds);
4073 
4074 		DPRINTF(sc, ATH_DEBUG_XMIT,
4075 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4076 			__func__, i, ds->ds_link, ds->ds_data,
4077 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4078 	}
4079 	/*
4080 	 * Insert the frame on the outbound list and
4081 	 * pass it on to the hardware.
4082 	 */
4083 	ATH_TXQ_LOCK(txq);
4084 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4085 	if (txq->axq_link == NULL) {
4086 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4087 		DPRINTF(sc, ATH_DEBUG_XMIT,
4088 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4089 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4090 		    txq->axq_depth);
4091 	} else {
4092 		*txq->axq_link = HTOAH32(bf->bf_daddr);
4093 		DPRINTF(sc, ATH_DEBUG_XMIT,
4094 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4095 		    __func__, txq->axq_qnum, txq->axq_link,
4096 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4097 	}
4098 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4099 	/*
4100 	 * The CAB queue is started from the SWBA handler since
4101 	 * frames only go out on DTIM and to avoid possible races.
4102 	 */
4103 	if (txq != sc->sc_cabq)
4104 		ath_hal_txstart(ah, txq->axq_qnum);
4105 	ATH_TXQ_UNLOCK(txq);
4106 
4107 	return 0;
4108 }
4109 
4110 /*
4111  * Process completed xmit descriptors from the specified queue.
4112  */
4113 static int
4114 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4115 {
4116 	struct ath_hal *ah = sc->sc_ah;
4117 	struct ieee80211com *ic = &sc->sc_ic;
4118 	struct ath_buf *bf;
4119 	struct ath_desc *ds, *ds0;
4120 	struct ieee80211_node *ni;
4121 	struct ath_node *an;
4122 	int sr, lr, pri, nacked;
4123 	HAL_STATUS status;
4124 
4125 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4126 		__func__, txq->axq_qnum,
4127 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4128 		txq->axq_link);
4129 	nacked = 0;
4130 	for (;;) {
4131 		ATH_TXQ_LOCK(txq);
4132 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4133 		bf = STAILQ_FIRST(&txq->axq_q);
4134 		if (bf == NULL) {
4135 			txq->axq_link = NULL;
4136 			ATH_TXQ_UNLOCK(txq);
4137 			break;
4138 		}
4139 		ds0 = &bf->bf_desc[0];
4140 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4141 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4142 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4143 			ath_printtxbuf(bf, status == HAL_OK);
4144 		if (status == HAL_EINPROGRESS) {
4145 			ATH_TXQ_UNLOCK(txq);
4146 			break;
4147 		}
4148 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4149 		ATH_TXQ_UNLOCK(txq);
4150 
4151 		ni = bf->bf_node;
4152 		if (ni != NULL) {
4153 			an = ATH_NODE(ni);
4154 			if (ds->ds_txstat.ts_status == 0) {
4155 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4156 				sc->sc_stats.ast_ant_tx[txant]++;
4157 				sc->sc_ant_tx[txant]++;
4158 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4159 					sc->sc_stats.ast_tx_altrate++;
4160 				sc->sc_stats.ast_tx_rssi =
4161 					ds->ds_txstat.ts_rssi;
4162 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4163 					ds->ds_txstat.ts_rssi);
4164 				pri = M_WME_GETAC(bf->bf_m);
4165 				if (pri >= WME_AC_VO)
4166 					ic->ic_wme.wme_hipri_traffic++;
4167 				ni->ni_inact = ni->ni_inact_reload;
4168 			} else {
4169 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4170 					sc->sc_stats.ast_tx_xretries++;
4171 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4172 					sc->sc_stats.ast_tx_fifoerr++;
4173 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4174 					sc->sc_stats.ast_tx_filtered++;
4175 			}
4176 			sr = ds->ds_txstat.ts_shortretry;
4177 			lr = ds->ds_txstat.ts_longretry;
4178 			sc->sc_stats.ast_tx_shortretry += sr;
4179 			sc->sc_stats.ast_tx_longretry += lr;
4180 			/*
4181 			 * Hand the descriptor to the rate control algorithm.
4182 			 */
4183 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4184 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4185 				/*
4186 				 * If frame was ack'd update the last rx time
4187 				 * used to workaround phantom bmiss interrupts.
4188 				 */
4189 				if (ds->ds_txstat.ts_status == 0)
4190 					nacked++;
4191 				ath_rate_tx_complete(sc, an, ds, ds0);
4192 			}
4193 			/*
4194 			 * Reclaim reference to node.
4195 			 *
4196 			 * NB: the node may be reclaimed here if, for example
4197 			 *     this is a DEAUTH message that was sent and the
4198 			 *     node was timed out due to inactivity.
4199 			 */
4200 			ieee80211_free_node(ni);
4201 		}
4202 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4203 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4204 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4205 		m_freem(bf->bf_m);
4206 		bf->bf_m = NULL;
4207 		bf->bf_node = NULL;
4208 
4209 		ATH_TXBUF_LOCK(sc);
4210 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4211 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4212 		ATH_TXBUF_UNLOCK(sc);
4213 	}
4214 	return nacked;
4215 }
4216 
4217 static inline int
4218 txqactive(struct ath_hal *ah, int qnum)
4219 {
4220 	u_int32_t txqs = 1<<qnum;
4221 	ath_hal_gettxintrtxqs(ah, &txqs);
4222 	return (txqs & (1<<qnum));
4223 }
4224 
4225 /*
4226  * Deferred processing of transmit interrupt; special-cased
4227  * for a single hardware transmit queue (e.g. 5210 and 5211).
4228  */
4229 static void
4230 ath_tx_proc_q0(void *arg, int npending)
4231 {
4232 	struct ath_softc *sc = arg;
4233 	struct ifnet *ifp = &sc->sc_if;
4234 #ifdef __NetBSD__
4235 	int s;
4236 #endif
4237 
4238 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0)
4239 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4240 
4241 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4242 		ath_tx_processq(sc, sc->sc_cabq);
4243 
4244 	if (sc->sc_softled)
4245 		ath_led_event(sc, ATH_LED_TX);
4246 
4247 #ifdef __NetBSD__
4248 	s = splnet();
4249 #endif
4250 	ath_start(ifp);
4251 #ifdef __NetBSD__
4252 	splx(s);
4253 #endif
4254 }
4255 
4256 /*
4257  * Deferred processing of transmit interrupt; special-cased
4258  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4259  */
4260 static void
4261 ath_tx_proc_q0123(void *arg, int npending)
4262 {
4263 	struct ath_softc *sc = arg;
4264 	struct ifnet *ifp = &sc->sc_if;
4265 	int nacked;
4266 #ifdef __NetBSD__
4267 	int s;
4268 #endif
4269 
4270 	/*
4271 	 * Process each active queue.
4272 	 */
4273 	nacked = 0;
4274 	if (txqactive(sc->sc_ah, 0))
4275 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4276 	if (txqactive(sc->sc_ah, 1))
4277 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4278 	if (txqactive(sc->sc_ah, 2))
4279 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4280 	if (txqactive(sc->sc_ah, 3))
4281 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4282 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4283 		ath_tx_processq(sc, sc->sc_cabq);
4284 	if (nacked) {
4285 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4286 	}
4287 
4288 	if (sc->sc_softled)
4289 		ath_led_event(sc, ATH_LED_TX);
4290 
4291 #ifdef __NetBSD__
4292 	s = splnet();
4293 #endif
4294 	ath_start(ifp);
4295 #ifdef __NetBSD__
4296 	splx(s);
4297 #endif
4298 }
4299 
4300 /*
4301  * Deferred processing of transmit interrupt.
4302  */
4303 static void
4304 ath_tx_proc(void *arg, int npending)
4305 {
4306 	struct ath_softc *sc = arg;
4307 	struct ifnet *ifp = &sc->sc_if;
4308 	int i, nacked;
4309 #ifdef __NetBSD__
4310 	int s;
4311 #endif
4312 
4313 	/*
4314 	 * Process each active queue.
4315 	 */
4316 	nacked = 0;
4317 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4318 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4319 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4320 	if (nacked) {
4321 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4322 	}
4323 
4324 	if (sc->sc_softled)
4325 		ath_led_event(sc, ATH_LED_TX);
4326 
4327 #ifdef __NetBSD__
4328 	s = splnet();
4329 #endif
4330 	ath_start(ifp);
4331 #ifdef __NetBSD__
4332 	splx(s);
4333 #endif
4334 }
4335 
4336 static void
4337 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4338 {
4339 	struct ath_hal *ah = sc->sc_ah;
4340 	struct ieee80211_node *ni;
4341 	struct ath_buf *bf;
4342 	struct ath_desc *ds;
4343 
4344 	/*
4345 	 * NB: this assumes output has been stopped and
4346 	 *     we do not need to block ath_tx_tasklet
4347 	 */
4348 	for (;;) {
4349 		ATH_TXQ_LOCK(txq);
4350 		bf = STAILQ_FIRST(&txq->axq_q);
4351 		if (bf == NULL) {
4352 			txq->axq_link = NULL;
4353 			ATH_TXQ_UNLOCK(txq);
4354 			break;
4355 		}
4356 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4357 		ATH_TXQ_UNLOCK(txq);
4358 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4359 		if (sc->sc_debug & ATH_DEBUG_RESET)
4360 			ath_printtxbuf(bf,
4361 				ath_hal_txprocdesc(ah, bf->bf_desc,
4362 					&ds->ds_txstat) == HAL_OK);
4363 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4364 		m_freem(bf->bf_m);
4365 		bf->bf_m = NULL;
4366 		ni = bf->bf_node;
4367 		bf->bf_node = NULL;
4368 		if (ni != NULL) {
4369 			/*
4370 			 * Reclaim node reference.
4371 			 */
4372 			ieee80211_free_node(ni);
4373 		}
4374 		ATH_TXBUF_LOCK(sc);
4375 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4376 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4377 		ATH_TXBUF_UNLOCK(sc);
4378 	}
4379 }
4380 
4381 static void
4382 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4383 {
4384 	struct ath_hal *ah = sc->sc_ah;
4385 
4386 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4387 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4388 	    __func__, txq->axq_qnum,
4389 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4390 	    txq->axq_link);
4391 }
4392 
4393 /*
4394  * Drain the transmit queues and reclaim resources.
4395  */
4396 static void
4397 ath_draintxq(struct ath_softc *sc)
4398 {
4399 	struct ath_hal *ah = sc->sc_ah;
4400 	int i;
4401 
4402 	/* XXX return value */
4403 	if (device_is_active(sc->sc_dev)) {
4404 		/* don't touch the hardware if marked invalid */
4405 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4406 		DPRINTF(sc, ATH_DEBUG_RESET,
4407 		    "%s: beacon queue %p\n", __func__,
4408 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4409 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4410 			if (ATH_TXQ_SETUP(sc, i))
4411 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4412 	}
4413 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4414 		if (ATH_TXQ_SETUP(sc, i))
4415 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4416 }
4417 
4418 /*
4419  * Disable the receive h/w in preparation for a reset.
4420  */
4421 static void
4422 ath_stoprecv(struct ath_softc *sc)
4423 {
4424 #define	PA2DESC(_sc, _pa) \
4425 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4426 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4427 	struct ath_hal *ah = sc->sc_ah;
4428 
4429 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4430 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4431 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4432 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4433 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4434 		struct ath_buf *bf;
4435 
4436 		printf("%s: rx queue %p, link %p\n", __func__,
4437 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4438 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4439 			struct ath_desc *ds = bf->bf_desc;
4440 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4441 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4442 				&ds->ds_rxstat);
4443 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4444 				ath_printrxbuf(bf, status == HAL_OK);
4445 		}
4446 	}
4447 	sc->sc_rxlink = NULL;		/* just in case */
4448 #undef PA2DESC
4449 }
4450 
4451 /*
4452  * Enable the receive h/w following a reset.
4453  */
4454 static int
4455 ath_startrecv(struct ath_softc *sc)
4456 {
4457 	struct ath_hal *ah = sc->sc_ah;
4458 	struct ath_buf *bf;
4459 
4460 	sc->sc_rxlink = NULL;
4461 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4462 		int error = ath_rxbuf_init(sc, bf);
4463 		if (error != 0) {
4464 			DPRINTF(sc, ATH_DEBUG_RECV,
4465 				"%s: ath_rxbuf_init failed %d\n",
4466 				__func__, error);
4467 			return error;
4468 		}
4469 	}
4470 
4471 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4472 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4473 	ath_hal_rxena(ah);		/* enable recv descriptors */
4474 	ath_mode_init(sc);		/* set filters, etc. */
4475 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4476 	return 0;
4477 }
4478 
4479 /*
4480  * Update internal state after a channel change.
4481  */
4482 static void
4483 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4484 {
4485 	struct ieee80211com *ic = &sc->sc_ic;
4486 	enum ieee80211_phymode mode;
4487 	u_int16_t flags;
4488 
4489 	/*
4490 	 * Change channels and update the h/w rate map
4491 	 * if we're switching; e.g. 11a to 11b/g.
4492 	 */
4493 	mode = ieee80211_chan2mode(ic, chan);
4494 	if (mode != sc->sc_curmode)
4495 		ath_setcurmode(sc, mode);
4496 	/*
4497 	 * Update BPF state.  NB: ethereal et. al. don't handle
4498 	 * merged flags well so pick a unique mode for their use.
4499 	 */
4500 	if (IEEE80211_IS_CHAN_A(chan))
4501 		flags = IEEE80211_CHAN_A;
4502 	/* XXX 11g schizophrenia */
4503 	else if (IEEE80211_IS_CHAN_G(chan) ||
4504 	    IEEE80211_IS_CHAN_PUREG(chan))
4505 		flags = IEEE80211_CHAN_G;
4506 	else
4507 		flags = IEEE80211_CHAN_B;
4508 	if (IEEE80211_IS_CHAN_T(chan))
4509 		flags |= IEEE80211_CHAN_TURBO;
4510 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4511 		htole16(chan->ic_freq);
4512 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4513 		htole16(flags);
4514 }
4515 
4516 #if 0
4517 /*
4518  * Poll for a channel clear indication; this is required
4519  * for channels requiring DFS and not previously visited
4520  * and/or with a recent radar detection.
4521  */
4522 static void
4523 ath_dfswait(void *arg)
4524 {
4525 	struct ath_softc *sc = arg;
4526 	struct ath_hal *ah = sc->sc_ah;
4527 	HAL_CHANNEL hchan;
4528 
4529 	ath_hal_radar_wait(ah, &hchan);
4530 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4531 		if_printf(&sc->sc_if,
4532 		    "channel %u/0x%x/0x%x has interference\n",
4533 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4534 		return;
4535 	}
4536 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4537 		/* XXX should not happen */
4538 		return;
4539 	}
4540 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4541 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4542 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4543 		if_printf(&sc->sc_if,
4544 		    "channel %u/0x%x/0x%x marked clear\n",
4545 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4546 	} else
4547 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4548 }
4549 #endif
4550 
4551 /*
4552  * Set/change channels.  If the channel is really being changed,
4553  * it's done by resetting the chip.  To accomplish this we must
4554  * first cleanup any pending DMA, then restart stuff after a la
4555  * ath_init.
4556  */
4557 static int
4558 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4559 {
4560 	struct ath_hal *ah = sc->sc_ah;
4561 	struct ieee80211com *ic = &sc->sc_ic;
4562 	HAL_CHANNEL hchan;
4563 
4564 	/*
4565 	 * Convert to a HAL channel description with
4566 	 * the flags constrained to reflect the current
4567 	 * operating mode.
4568 	 */
4569 	hchan.channel = chan->ic_freq;
4570 	hchan.channelFlags = ath_chan2flags(ic, chan);
4571 
4572 	DPRINTF(sc, ATH_DEBUG_RESET,
4573 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4574 	    __func__,
4575 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4576 		sc->sc_curchan.channelFlags),
4577 		sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4578 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4579 		hchan.channel, hchan.channelFlags);
4580 	if (hchan.channel != sc->sc_curchan.channel ||
4581 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4582 		HAL_STATUS status;
4583 
4584 		/*
4585 		 * To switch channels clear any pending DMA operations;
4586 		 * wait long enough for the RX fifo to drain, reset the
4587 		 * hardware at the new frequency, and then re-enable
4588 		 * the relevant bits of the h/w.
4589 		 */
4590 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4591 		ath_draintxq(sc);		/* clear pending tx frames */
4592 		ath_stoprecv(sc);		/* turn off frame recv */
4593 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4594 			if_printf(ic->ic_ifp, "%s: unable to reset "
4595 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4596 			    __func__, ieee80211_chan2ieee(ic, chan),
4597 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4598 			return EIO;
4599 		}
4600 		sc->sc_curchan = hchan;
4601 		ath_update_txpow(sc);		/* update tx power state */
4602 		ath_restore_diversity(sc);
4603 		sc->sc_calinterval = 1;
4604 		sc->sc_caltries = 0;
4605 
4606 		/*
4607 		 * Re-enable rx framework.
4608 		 */
4609 		if (ath_startrecv(sc) != 0) {
4610 			if_printf(&sc->sc_if,
4611 				"%s: unable to restart recv logic\n", __func__);
4612 			return EIO;
4613 		}
4614 
4615 		/*
4616 		 * Change channels and update the h/w rate map
4617 		 * if we're switching; e.g. 11a to 11b/g.
4618 		 */
4619 		ic->ic_ibss_chan = chan;
4620 		ath_chan_change(sc, chan);
4621 
4622 #if 0
4623 		/*
4624 		 * Handle DFS required waiting period to determine
4625 		 * if channel is clear of radar traffic.
4626 		 */
4627 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4628 #define	DFS_AND_NOT_CLEAR(_c) \
4629 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4630 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4631 				if_printf(&sc->sc_if,
4632 					"wait for DFS clear channel signal\n");
4633 				/* XXX stop sndq */
4634 				sc->sc_if.if_flags |= IFF_OACTIVE;
4635 				callout_reset(&sc->sc_dfs_ch,
4636 					2 * hz, ath_dfswait, sc);
4637 			} else
4638 				callout_stop(&sc->sc_dfs_ch);
4639 #undef DFS_NOT_CLEAR
4640 		}
4641 #endif
4642 
4643 		/*
4644 		 * Re-enable interrupts.
4645 		 */
4646 		ath_hal_intrset(ah, sc->sc_imask);
4647 	}
4648 	return 0;
4649 }
4650 
4651 static void
4652 ath_next_scan(void *arg)
4653 {
4654 	struct ath_softc *sc = arg;
4655 	struct ieee80211com *ic = &sc->sc_ic;
4656 	int s;
4657 
4658 	/* don't call ath_start w/o network interrupts blocked */
4659 	s = splnet();
4660 
4661 	if (ic->ic_state == IEEE80211_S_SCAN)
4662 		ieee80211_next_scan(ic);
4663 	splx(s);
4664 }
4665 
4666 /*
4667  * Periodically recalibrate the PHY to account
4668  * for temperature/environment changes.
4669  */
4670 static void
4671 ath_calibrate(void *arg)
4672 {
4673 	struct ath_softc *sc = arg;
4674 	struct ath_hal *ah = sc->sc_ah;
4675 	HAL_BOOL iqCalDone;
4676 	int s;
4677 
4678 	sc->sc_stats.ast_per_cal++;
4679 
4680 	 s = splnet();
4681 
4682 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4683 		/*
4684 		 * Rfgain is out of bounds, reset the chip
4685 		 * to load new gain values.
4686 		 */
4687 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4688 			"%s: rfgain change\n", __func__);
4689 		sc->sc_stats.ast_per_rfgain++;
4690 		ath_reset(&sc->sc_if);
4691 	}
4692 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4693 		DPRINTF(sc, ATH_DEBUG_ANY,
4694 			"%s: calibration of channel %u failed\n",
4695 			__func__, sc->sc_curchan.channel);
4696 		sc->sc_stats.ast_per_calfail++;
4697 	}
4698 	/*
4699 	 * Calibrate noise floor data again in case of change.
4700 	 */
4701 	ath_hal_process_noisefloor(ah);
4702 	/*
4703 	 * Poll more frequently when the IQ calibration is in
4704 	 * progress to speedup loading the final settings.
4705 	 * We temper this aggressive polling with an exponential
4706 	 * back off after 4 tries up to ath_calinterval.
4707 	 */
4708 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4709 		sc->sc_caltries = 0;
4710 		sc->sc_calinterval = ath_calinterval;
4711 	} else if (sc->sc_caltries > 4) {
4712 		sc->sc_caltries = 0;
4713 		sc->sc_calinterval <<= 1;
4714 		if (sc->sc_calinterval > ath_calinterval)
4715 			sc->sc_calinterval = ath_calinterval;
4716 	}
4717 	KASSERTMSG(0 < sc->sc_calinterval &&
4718 		   sc->sc_calinterval <= ath_calinterval,
4719 		   "bad calibration interval %u", sc->sc_calinterval);
4720 
4721 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4722 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4723 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4724 	sc->sc_caltries++;
4725 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4726 		ath_calibrate, sc);
4727 	splx(s);
4728 }
4729 
4730 static int
4731 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4732 {
4733 	struct ifnet *ifp = ic->ic_ifp;
4734 	struct ath_softc *sc = ifp->if_softc;
4735 	struct ath_hal *ah = sc->sc_ah;
4736 	struct ieee80211_node *ni;
4737 	int i, error;
4738 	const u_int8_t *bssid;
4739 	u_int32_t rfilt;
4740 	static const HAL_LED_STATE leds[] = {
4741 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4742 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4743 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4744 	    HAL_LED_ASSOC,	/* IEEE80211_S_ASSOC */
4745 	    HAL_LED_RUN,	/* IEEE80211_S_RUN */
4746 	};
4747 
4748 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4749 		ieee80211_state_name[ic->ic_state],
4750 		ieee80211_state_name[nstate]);
4751 
4752 	callout_stop(&sc->sc_scan_ch);
4753 	callout_stop(&sc->sc_cal_ch);
4754 #if 0
4755 	callout_stop(&sc->sc_dfs_ch);
4756 #endif
4757 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4758 
4759 	if (nstate == IEEE80211_S_INIT) {
4760 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4761 		/*
4762 		 * NB: disable interrupts so we don't rx frames.
4763 		 */
4764 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4765 		/*
4766 		 * Notify the rate control algorithm.
4767 		 */
4768 		ath_rate_newstate(sc, nstate);
4769 		goto done;
4770 	}
4771 	ni = ic->ic_bss;
4772 	error = ath_chan_set(sc, ic->ic_curchan);
4773 	if (error != 0)
4774 		goto bad;
4775 	rfilt = ath_calcrxfilter(sc, nstate);
4776 	if (nstate == IEEE80211_S_SCAN)
4777 		bssid = ifp->if_broadcastaddr;
4778 	else
4779 		bssid = ni->ni_bssid;
4780 	ath_hal_setrxfilter(ah, rfilt);
4781 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4782 		 __func__, rfilt, ether_sprintf(bssid));
4783 
4784 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4785 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4786 	else
4787 		ath_hal_setassocid(ah, bssid, 0);
4788 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4789 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4790 			if (ath_hal_keyisvalid(ah, i))
4791 				ath_hal_keysetmac(ah, i, bssid);
4792 	}
4793 
4794 	/*
4795 	 * Notify the rate control algorithm so rates
4796 	 * are setup should ath_beacon_alloc be called.
4797 	 */
4798 	ath_rate_newstate(sc, nstate);
4799 
4800 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4801 		/* nothing to do */;
4802 	} else if (nstate == IEEE80211_S_RUN) {
4803 		DPRINTF(sc, ATH_DEBUG_STATE,
4804 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4805 			"capinfo=0x%04x chan=%d\n"
4806 			 , __func__
4807 			 , ic->ic_flags
4808 			 , ni->ni_intval
4809 			 , ether_sprintf(ni->ni_bssid)
4810 			 , ni->ni_capinfo
4811 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4812 
4813 		switch (ic->ic_opmode) {
4814 		case IEEE80211_M_HOSTAP:
4815 		case IEEE80211_M_IBSS:
4816 			/*
4817 			 * Allocate and setup the beacon frame.
4818 			 *
4819 			 * Stop any previous beacon DMA.  This may be
4820 			 * necessary, for example, when an ibss merge
4821 			 * causes reconfiguration; there will be a state
4822 			 * transition from RUN->RUN that means we may
4823 			 * be called with beacon transmission active.
4824 			 */
4825 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4826 			ath_beacon_free(sc);
4827 			error = ath_beacon_alloc(sc, ni);
4828 			if (error != 0)
4829 				goto bad;
4830 			/*
4831 			 * If joining an adhoc network defer beacon timer
4832 			 * configuration to the next beacon frame so we
4833 			 * have a current TSF to use.  Otherwise we're
4834 			 * starting an ibss/bss so there's no need to delay.
4835 			 */
4836 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4837 			    ic->ic_bss->ni_tstamp.tsf != 0)
4838 				sc->sc_syncbeacon = 1;
4839 			else
4840 				ath_beacon_config(sc);
4841 			break;
4842 		case IEEE80211_M_STA:
4843 			/*
4844 			 * Allocate a key cache slot to the station.
4845 			 */
4846 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4847 			    sc->sc_hasclrkey &&
4848 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4849 				ath_setup_stationkey(ni);
4850 			/*
4851 			 * Defer beacon timer configuration to the next
4852 			 * beacon frame so we have a current TSF to use
4853 			 * (any TSF collected when scanning is likely old).
4854 			 */
4855 			sc->sc_syncbeacon = 1;
4856 			break;
4857 		default:
4858 			break;
4859 		}
4860 		/*
4861 		 * Let the hal process statistics collected during a
4862 		 * scan so it can provide calibrated noise floor data.
4863 		 */
4864 		ath_hal_process_noisefloor(ah);
4865 		/*
4866 		 * Reset rssi stats; maybe not the best place...
4867 		 */
4868 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4869 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4870 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4871 	} else {
4872 		ath_hal_intrset(ah,
4873 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4874 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4875 	}
4876 done:
4877 	/*
4878 	 * Invoke the parent method to complete the work.
4879 	 */
4880 	error = sc->sc_newstate(ic, nstate, arg);
4881 	/*
4882 	 * Finally, start any timers.
4883 	 */
4884 	if (nstate == IEEE80211_S_RUN) {
4885 		/* start periodic recalibration timer */
4886 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4887 			ath_calibrate, sc);
4888 	} else if (nstate == IEEE80211_S_SCAN) {
4889 		/* start ap/neighbor scan timer */
4890 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4891 			ath_next_scan, sc);
4892 	}
4893 bad:
4894 	return error;
4895 }
4896 
4897 /*
4898  * Allocate a key cache slot to the station so we can
4899  * setup a mapping from key index to node. The key cache
4900  * slot is needed for managing antenna state and for
4901  * compression when stations do not use crypto.  We do
4902  * it uniliaterally here; if crypto is employed this slot
4903  * will be reassigned.
4904  */
4905 static void
4906 ath_setup_stationkey(struct ieee80211_node *ni)
4907 {
4908 	struct ieee80211com *ic = ni->ni_ic;
4909 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4910 	ieee80211_keyix keyix, rxkeyix;
4911 
4912 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4913 		/*
4914 		 * Key cache is full; we'll fall back to doing
4915 		 * the more expensive lookup in software.  Note
4916 		 * this also means no h/w compression.
4917 		 */
4918 		/* XXX msg+statistic */
4919 	} else {
4920 		/* XXX locking? */
4921 		ni->ni_ucastkey.wk_keyix = keyix;
4922 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4923 		/* NB: this will create a pass-thru key entry */
4924 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4925 	}
4926 }
4927 
4928 /*
4929  * Setup driver-specific state for a newly associated node.
4930  * Note that we're called also on a re-associate, the isnew
4931  * param tells us if this is the first time or not.
4932  */
4933 static void
4934 ath_newassoc(struct ieee80211_node *ni, int isnew)
4935 {
4936 	struct ieee80211com *ic = ni->ni_ic;
4937 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4938 
4939 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4940 	if (isnew &&
4941 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4942 		KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4943 		    "new assoc with a unicast key already setup (keyix %u)",
4944 		    ni->ni_ucastkey.wk_keyix);
4945 		ath_setup_stationkey(ni);
4946 	}
4947 }
4948 
4949 static int
4950 ath_getchannels(struct ath_softc *sc, u_int cc,
4951 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4952 {
4953 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4954 	struct ieee80211com *ic = &sc->sc_ic;
4955 	struct ifnet *ifp = &sc->sc_if;
4956 	struct ath_hal *ah = sc->sc_ah;
4957 	HAL_CHANNEL *chans;
4958 	int i, ix, nchan;
4959 
4960 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4961 			M_TEMP, M_WAITOK);
4962 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4963 	    NULL, 0, NULL,
4964 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4965 		u_int32_t rd;
4966 
4967 		(void)ath_hal_getregdomain(ah, &rd);
4968 		if_printf(ifp, "unable to collect channel list from hal; "
4969 			"regdomain likely %u country code %u\n", rd, cc);
4970 		free(chans, M_TEMP);
4971 		return EINVAL;
4972 	}
4973 
4974 	/*
4975 	 * Convert HAL channels to ieee80211 ones and insert
4976 	 * them in the table according to their channel number.
4977 	 */
4978 	for (i = 0; i < nchan; i++) {
4979 		HAL_CHANNEL *c = &chans[i];
4980 		u_int16_t flags;
4981 
4982 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4983 		if (ix > IEEE80211_CHAN_MAX) {
4984 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4985 				ix, c->channel, c->channelFlags);
4986 			continue;
4987 		}
4988 		if (ix < 0) {
4989 			/* XXX can't handle stuff <2400 right now */
4990 			if (bootverbose)
4991 				if_printf(ifp, "hal channel %d (%u/%x) "
4992 				    "cannot be handled; ignored\n",
4993 				    ix, c->channel, c->channelFlags);
4994 			continue;
4995 		}
4996 		/*
4997 		 * Calculate net80211 flags; most are compatible
4998 		 * but some need massaging.  Note the static turbo
4999 		 * conversion can be removed once net80211 is updated
5000 		 * to understand static vs. dynamic turbo.
5001 		 */
5002 		flags = c->channelFlags & COMPAT;
5003 		if (c->channelFlags & CHANNEL_STURBO)
5004 			flags |= IEEE80211_CHAN_TURBO;
5005 		if (ic->ic_channels[ix].ic_freq == 0) {
5006 			ic->ic_channels[ix].ic_freq = c->channel;
5007 			ic->ic_channels[ix].ic_flags = flags;
5008 		} else {
5009 			/* channels overlap; e.g. 11g and 11b */
5010 			ic->ic_channels[ix].ic_flags |= flags;
5011 		}
5012 	}
5013 	free(chans, M_TEMP);
5014 	return 0;
5015 #undef COMPAT
5016 }
5017 
5018 static void
5019 ath_led_done(void *arg)
5020 {
5021 	struct ath_softc *sc = arg;
5022 
5023 	sc->sc_blinking = 0;
5024 }
5025 
5026 /*
5027  * Turn the LED off: flip the pin and then set a timer so no
5028  * update will happen for the specified duration.
5029  */
5030 static void
5031 ath_led_off(void *arg)
5032 {
5033 	struct ath_softc *sc = arg;
5034 
5035 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5036 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5037 }
5038 
5039 /*
5040  * Blink the LED according to the specified on/off times.
5041  */
5042 static void
5043 ath_led_blink(struct ath_softc *sc, int on, int off)
5044 {
5045 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5046 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5047 	sc->sc_blinking = 1;
5048 	sc->sc_ledoff = off;
5049 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5050 }
5051 
5052 static void
5053 ath_led_event(struct ath_softc *sc, int event)
5054 {
5055 
5056 	sc->sc_ledevent = ticks;	/* time of last event */
5057 	if (sc->sc_blinking)		/* don't interrupt active blink */
5058 		return;
5059 	switch (event) {
5060 	case ATH_LED_POLL:
5061 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
5062 			sc->sc_hwmap[0].ledoff);
5063 		break;
5064 	case ATH_LED_TX:
5065 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
5066 			sc->sc_hwmap[sc->sc_txrate].ledoff);
5067 		break;
5068 	case ATH_LED_RX:
5069 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
5070 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
5071 		break;
5072 	}
5073 }
5074 
5075 static void
5076 ath_update_txpow(struct ath_softc *sc)
5077 {
5078 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5079 	struct ieee80211com *ic = &sc->sc_ic;
5080 	struct ath_hal *ah = sc->sc_ah;
5081 	u_int32_t txpow;
5082 
5083 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5084 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5085 		/* read back in case value is clamped */
5086 		(void)ath_hal_gettxpowlimit(ah, &txpow);
5087 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5088 	}
5089 	/*
5090 	 * Fetch max tx power level for status requests.
5091 	 */
5092 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5093 	ic->ic_bss->ni_txpower = txpow;
5094 }
5095 
5096 static void
5097 rate_setup(struct ath_softc *sc,
5098 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5099 {
5100 	int i, maxrates;
5101 
5102 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5103 		DPRINTF(sc, ATH_DEBUG_ANY,
5104 			"%s: rate table too small (%u > %u)\n",
5105 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5106 		maxrates = IEEE80211_RATE_MAXSIZE;
5107 	} else
5108 		maxrates = rt->rateCount;
5109 	for (i = 0; i < maxrates; i++)
5110 		rs->rs_rates[i] = rt->info[i].dot11Rate;
5111 	rs->rs_nrates = maxrates;
5112 }
5113 
5114 static int
5115 ath_rate_setup(struct ath_softc *sc, u_int mode)
5116 {
5117 	struct ath_hal *ah = sc->sc_ah;
5118 	struct ieee80211com *ic = &sc->sc_ic;
5119 	const HAL_RATE_TABLE *rt;
5120 
5121 	switch (mode) {
5122 	case IEEE80211_MODE_11A:
5123 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5124 		break;
5125 	case IEEE80211_MODE_11B:
5126 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5127 		break;
5128 	case IEEE80211_MODE_11G:
5129 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5130 		break;
5131 	case IEEE80211_MODE_TURBO_A:
5132 		/* XXX until static/dynamic turbo is fixed */
5133 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5134 		break;
5135 	case IEEE80211_MODE_TURBO_G:
5136 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5137 		break;
5138 	default:
5139 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5140 			__func__, mode);
5141 		return 0;
5142 	}
5143 	sc->sc_rates[mode] = rt;
5144 	if (rt != NULL) {
5145 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5146 		return 1;
5147 	} else
5148 		return 0;
5149 }
5150 
5151 static void
5152 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5153 {
5154 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5155 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5156 	static const struct {
5157 		u_int		rate;		/* tx/rx 802.11 rate */
5158 		u_int16_t	timeOn;		/* LED on time (ms) */
5159 		u_int16_t	timeOff;	/* LED off time (ms) */
5160 	} blinkrates[] = {
5161 		{ 108,  40,  10 },
5162 		{  96,  44,  11 },
5163 		{  72,  50,  13 },
5164 		{  48,  57,  14 },
5165 		{  36,  67,  16 },
5166 		{  24,  80,  20 },
5167 		{  22, 100,  25 },
5168 		{  18, 133,  34 },
5169 		{  12, 160,  40 },
5170 		{  10, 200,  50 },
5171 		{   6, 240,  58 },
5172 		{   4, 267,  66 },
5173 		{   2, 400, 100 },
5174 		{   0, 500, 130 },
5175 	};
5176 	const HAL_RATE_TABLE *rt;
5177 	int i, j;
5178 
5179 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5180 	rt = sc->sc_rates[mode];
5181 	KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode);
5182 	for (i = 0; i < rt->rateCount; i++)
5183 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5184 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5185 	for (i = 0; i < 32; i++) {
5186 		u_int8_t ix = rt->rateCodeToIndex[i];
5187 		if (ix == 0xff) {
5188 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5189 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5190 			continue;
5191 		}
5192 		sc->sc_hwmap[i].ieeerate =
5193 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5194 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5195 		if (rt->info[ix].shortPreamble ||
5196 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5197 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5198 		/* NB: receive frames include FCS */
5199 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5200 			IEEE80211_RADIOTAP_F_FCS;
5201 		/* setup blink rate table to avoid per-packet lookup */
5202 		for (j = 0; j < N(blinkrates)-1; j++)
5203 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5204 				break;
5205 		/* NB: this uses the last entry if the rate isn't found */
5206 		/* XXX beware of overlow */
5207 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5208 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5209 	}
5210 	sc->sc_currates = rt;
5211 	sc->sc_curmode = mode;
5212 	/*
5213 	 * All protection frames are transmited at 2Mb/s for
5214 	 * 11g, otherwise at 1Mb/s.
5215 	 */
5216 	if (mode == IEEE80211_MODE_11G)
5217 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5218 	else
5219 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5220 	/* rate index used to send management frames */
5221 	sc->sc_minrateix = 0;
5222 	/*
5223 	 * Setup multicast rate state.
5224 	 */
5225 	/* XXX layering violation */
5226 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5227 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5228 	/* NB: caller is responsible for resetting rate control state */
5229 #undef N
5230 }
5231 
5232 #ifdef AR_DEBUG
5233 static void
5234 ath_printrxbuf(struct ath_buf *bf, int done)
5235 {
5236 	struct ath_desc *ds;
5237 	int i;
5238 
5239 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5240 		printf("R%d (%p %" PRIx64
5241 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5242 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5243 		    ds->ds_link, ds->ds_data,
5244 		    ds->ds_ctl0, ds->ds_ctl1,
5245 		    ds->ds_hw[0], ds->ds_hw[1],
5246 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5247 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5248 	}
5249 }
5250 
5251 static void
5252 ath_printtxbuf(struct ath_buf *bf, int done)
5253 {
5254 	struct ath_desc *ds;
5255 	int i;
5256 
5257 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5258 		printf("T%d (%p %" PRIx64
5259 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5260 		    i, ds,
5261 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5262 		    ds->ds_link, ds->ds_data,
5263 		    ds->ds_ctl0, ds->ds_ctl1,
5264 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5265 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5266 	}
5267 }
5268 #endif	/* AR_DEBUG */
5269 
5270 static void
5271 ath_watchdog(struct ifnet *ifp)
5272 {
5273 	struct ath_softc *sc = ifp->if_softc;
5274 	struct ieee80211com *ic = &sc->sc_ic;
5275 	struct ath_txq *axq;
5276 	int i;
5277 
5278 	ifp->if_timer = 0;
5279 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5280 	    !device_is_active(sc->sc_dev))
5281 		return;
5282 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5283 		if (!ATH_TXQ_SETUP(sc, i))
5284 			continue;
5285 		axq = &sc->sc_txq[i];
5286 		ATH_TXQ_LOCK(axq);
5287 		if (axq->axq_timer == 0)
5288 			;
5289 		else if (--axq->axq_timer == 0) {
5290 			ATH_TXQ_UNLOCK(axq);
5291 			if_printf(ifp, "device timeout (txq %d, "
5292 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5293 			if (sc->sc_txintrperiod > 1)
5294 				sc->sc_txintrperiod--;
5295 			ath_reset(ifp);
5296 			if_statinc(ifp, if_oerrors);
5297 			sc->sc_stats.ast_watchdog++;
5298 			break;
5299 		} else
5300 			ifp->if_timer = 1;
5301 		ATH_TXQ_UNLOCK(axq);
5302 	}
5303 	ieee80211_watchdog(ic);
5304 }
5305 
5306 /*
5307  * Diagnostic interface to the HAL.  This is used by various
5308  * tools to do things like retrieve register contents for
5309  * debugging.  The mechanism is intentionally opaque so that
5310  * it can change frequently w/o concern for compatibility.
5311  */
5312 static int
5313 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5314 {
5315 	struct ath_hal *ah = sc->sc_ah;
5316 	u_int id = ad->ad_id & ATH_DIAG_ID;
5317 	void *indata = NULL;
5318 	void *outdata = NULL;
5319 	u_int32_t insize = ad->ad_in_size;
5320 	u_int32_t outsize = ad->ad_out_size;
5321 	int error = 0;
5322 
5323 	if (ad->ad_id & ATH_DIAG_IN) {
5324 		/*
5325 		 * Copy in data.
5326 		 */
5327 		indata = malloc(insize, M_TEMP, M_WAITOK);
5328 		error = copyin(ad->ad_in_data, indata, insize);
5329 		if (error)
5330 			goto bad;
5331 	}
5332 	if (ad->ad_id & ATH_DIAG_DYN) {
5333 		/*
5334 		 * Allocate a buffer for the results (otherwise the HAL
5335 		 * returns a pointer to a buffer where we can read the
5336 		 * results).  Note that we depend on the HAL leaving this
5337 		 * pointer for us to use below in reclaiming the buffer;
5338 		 * may want to be more defensive.
5339 		 */
5340 		outdata = malloc(outsize, M_TEMP, M_WAITOK);
5341 	}
5342 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5343 		if (outsize < ad->ad_out_size)
5344 			ad->ad_out_size = outsize;
5345 		if (outdata != NULL)
5346 			error = copyout(outdata, ad->ad_out_data,
5347 					ad->ad_out_size);
5348 	} else {
5349 		error = EINVAL;
5350 	}
5351 bad:
5352 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5353 		free(indata, M_TEMP);
5354 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5355 		free(outdata, M_TEMP);
5356 	return error;
5357 }
5358 
5359 static int
5360 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5361 {
5362 #define	IS_RUNNING(ifp) \
5363 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5364 	struct ath_softc *sc = ifp->if_softc;
5365 	struct ieee80211com *ic = &sc->sc_ic;
5366 	struct ifreq *ifr = (struct ifreq *)data;
5367 	int error = 0, s;
5368 
5369 	s = splnet();
5370 	switch (cmd) {
5371 	case SIOCSIFFLAGS:
5372 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5373 			break;
5374 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
5375 		case IFF_UP | IFF_RUNNING:
5376 			/*
5377 			 * To avoid rescanning another access point,
5378 			 * do not call ath_init() here.  Instead,
5379 			 * only reflect promisc mode settings.
5380 			 */
5381 			ath_mode_init(sc);
5382 			break;
5383 		case IFF_UP:
5384 			/*
5385 			 * Beware of being called during attach/detach
5386 			 * to reset promiscuous mode.  In that case we
5387 			 * will still be marked UP but not RUNNING.
5388 			 * However trying to re-init the interface
5389 			 * is the wrong thing to do as we've already
5390 			 * torn down much of our state.  There's
5391 			 * probably a better way to deal with this.
5392 			 */
5393 			error = ath_init(sc);
5394 			break;
5395 		case IFF_RUNNING:
5396 			ath_stop_locked(ifp, 1);
5397 			break;
5398 		case 0:
5399 			break;
5400 		}
5401 		break;
5402 	case SIOCADDMULTI:
5403 	case SIOCDELMULTI:
5404 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5405 			if (ifp->if_flags & IFF_RUNNING)
5406 				ath_mode_init(sc);
5407 			error = 0;
5408 		}
5409 		break;
5410 	case SIOCGATHSTATS: {
5411 		struct ath_stats stats_out;
5412 		struct if_data ifi;
5413 
5414 		/* NB: embed these numbers to get a consistent view */
5415 
5416 		stats_out = sc->sc_stats;
5417 		stats_out.ast_rx_rssi = ieee80211_getrssi(ic);
5418 		splx(s);
5419 
5420 		if_export_if_data(ifp, &ifi, false);
5421 		stats_out.ast_tx_packets = ifi.ifi_opackets;
5422 		stats_out.ast_rx_packets = ifi.ifi_ipackets;
5423 
5424 		return copyout(&stats_out,
5425 				ifr->ifr_data, sizeof (stats_out));
5426 	    }
5427 
5428 	case SIOCGATHDIAG:
5429 		error = kauth_authorize_network(curlwp->l_cred,
5430 		    KAUTH_NETWORK_INTERFACE,
5431 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
5432 		    NULL);
5433 		if (error)
5434 			break;
5435 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5436 		break;
5437 	default:
5438 		error = ieee80211_ioctl(ic, cmd, data);
5439 		if (error != ENETRESET)
5440 			;
5441 		else if (IS_RUNNING(ifp) &&
5442 			 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5443 			error = ath_init(sc);
5444 		else
5445 			error = 0;
5446 		break;
5447 	}
5448 	splx(s);
5449 	return error;
5450 #undef IS_RUNNING
5451 }
5452 
5453 static void
5454 ath_bpfattach(struct ath_softc *sc)
5455 {
5456 	struct ifnet *ifp = &sc->sc_if;
5457 
5458 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
5459 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5460 	    &sc->sc_drvbpf);
5461 
5462 	/*
5463 	 * Initialize constant fields.
5464 	 * XXX make header lengths a multiple of 32-bits so subsequent
5465 	 *     headers are properly aligned; this is a kludge to keep
5466 	 *     certain applications happy.
5467 	 *
5468 	 * NB: the channel is setup each time we transition to the
5469 	 *     RUN state to avoid filling it in for each frame.
5470 	 */
5471 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5472 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5473 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5474 
5475 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5476 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5477 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5478 }
5479 
5480 /*
5481  * Announce various information on device/driver attach.
5482  */
5483 static void
5484 ath_announce(struct ath_softc *sc)
5485 {
5486 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5487 	struct ifnet *ifp = &sc->sc_if;
5488 	struct ath_hal *ah = sc->sc_ah;
5489 	u_int modes, cc;
5490 
5491 	if_printf(ifp, "mac %d.%d phy %d.%d",
5492 		ah->ah_macVersion, ah->ah_macRev,
5493 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5494 	/*
5495 	 * Print radio revision(s).  We check the wireless modes
5496 	 * to avoid falsely printing revs for inoperable parts.
5497 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5498 	 */
5499 	ath_hal_getcountrycode(ah, &cc);
5500 	modes = ath_hal_getwirelessmodes(ah, cc);
5501 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5502 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5503 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5504 				ah->ah_analog5GhzRev >> 4,
5505 				ah->ah_analog5GhzRev & 0xf,
5506 				ah->ah_analog2GhzRev >> 4,
5507 				ah->ah_analog2GhzRev & 0xf);
5508 		else
5509 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5510 				ah->ah_analog5GhzRev & 0xf);
5511 	} else
5512 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5513 			ah->ah_analog5GhzRev & 0xf);
5514 	printf("\n");
5515 	if (bootverbose) {
5516 		int i;
5517 		for (i = 0; i <= WME_AC_VO; i++) {
5518 			struct ath_txq *txq = sc->sc_ac2q[i];
5519 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5520 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5521 		}
5522 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5523 			sc->sc_cabq->axq_qnum);
5524 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5525 	}
5526 	if (ath_rxbuf != ATH_RXBUF)
5527 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5528 	if (ath_txbuf != ATH_TXBUF)
5529 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5530 #undef HAL_MODE_DUALBAND
5531 }
5532