1 /* $NetBSD: ath.c,v 1.136 2021/08/09 20:49:10 andvar Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.136 2021/08/09 20:49:10 andvar Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #ifdef _KERNEL_OPT 55 #include "opt_inet.h" 56 #endif 57 58 #include <sys/param.h> 59 #include <sys/reboot.h> 60 #include <sys/systm.h> 61 #include <sys/types.h> 62 #include <sys/sysctl.h> 63 #include <sys/mbuf.h> 64 #include <sys/malloc.h> 65 #include <sys/kernel.h> 66 #include <sys/socket.h> 67 #include <sys/sockio.h> 68 #include <sys/errno.h> 69 #include <sys/callout.h> 70 #include <sys/bus.h> 71 #include <sys/endian.h> 72 #include <sys/kauth.h> 73 74 #include <net/if.h> 75 #include <net/if_dl.h> 76 #include <net/if_media.h> 77 #include <net/if_types.h> 78 #include <net/if_arp.h> 79 #include <net/if_ether.h> 80 #include <net/if_llc.h> 81 82 #include <net80211/ieee80211_netbsd.h> 83 #include <net80211/ieee80211_var.h> 84 85 #include <net/bpf.h> 86 87 #ifdef INET 88 #include <netinet/in.h> 89 #endif 90 91 #include <sys/device.h> 92 #include <dev/ic/ath_netbsd.h> 93 94 #define AR_DEBUG 95 #include <dev/ic/athvar.h> 96 #include "ah_desc.h" 97 #include "ah_devid.h" /* XXX for softled */ 98 #include "opt_ah.h" 99 100 #ifdef ATH_TX99_DIAG 101 #include <dev/ath/ath_tx99/ath_tx99.h> 102 #endif 103 104 /* unaligned little endian access */ 105 #define LE_READ_2(p) \ 106 ((u_int16_t) \ 107 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 108 #define LE_READ_4(p) \ 109 ((u_int32_t) \ 110 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 111 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 112 113 enum { 114 ATH_LED_TX, 115 ATH_LED_RX, 116 ATH_LED_POLL, 117 }; 118 119 #ifdef AH_NEED_DESC_SWAP 120 #define HTOAH32(x) htole32(x) 121 #else 122 #define HTOAH32(x) (x) 123 #endif 124 125 static int ath_ifinit(struct ifnet *); 126 static int ath_init(struct ath_softc *); 127 static void ath_stop_locked(struct ifnet *, int); 128 static void ath_stop(struct ifnet *, int); 129 static void ath_start(struct ifnet *); 130 static int ath_media_change(struct ifnet *); 131 static void ath_watchdog(struct ifnet *); 132 static int ath_ioctl(struct ifnet *, u_long, void *); 133 static void ath_fatal_proc(void *, int); 134 static void ath_rxorn_proc(void *, int); 135 static void ath_bmiss_proc(void *, int); 136 static void ath_radar_proc(void *, int); 137 static int ath_key_alloc(struct ieee80211com *, 138 const struct ieee80211_key *, 139 ieee80211_keyix *, ieee80211_keyix *); 140 static int ath_key_delete(struct ieee80211com *, 141 const struct ieee80211_key *); 142 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 143 const u_int8_t mac[IEEE80211_ADDR_LEN]); 144 static void ath_key_update_begin(struct ieee80211com *); 145 static void ath_key_update_end(struct ieee80211com *); 146 static void ath_mode_init(struct ath_softc *); 147 static void ath_setslottime(struct ath_softc *); 148 static void ath_updateslot(struct ifnet *); 149 static int ath_beaconq_setup(struct ath_hal *); 150 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 151 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 152 static void ath_beacon_proc(void *, int); 153 static void ath_bstuck_proc(void *, int); 154 static void ath_beacon_free(struct ath_softc *); 155 static void ath_beacon_config(struct ath_softc *); 156 static void ath_descdma_cleanup(struct ath_softc *sc, 157 struct ath_descdma *, ath_bufhead *); 158 static int ath_desc_alloc(struct ath_softc *); 159 static void ath_desc_free(struct ath_softc *); 160 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 161 static void ath_node_free(struct ieee80211_node *); 162 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 163 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 164 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 165 struct ieee80211_node *ni, 166 int subtype, int rssi, u_int32_t rstamp); 167 static void ath_setdefantenna(struct ath_softc *, u_int); 168 static void ath_rx_proc(void *, int); 169 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 170 static int ath_tx_setup(struct ath_softc *, int, int); 171 static int ath_wme_update(struct ieee80211com *); 172 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 173 static void ath_tx_cleanup(struct ath_softc *); 174 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 175 struct ath_buf *, struct mbuf *); 176 static void ath_tx_proc_q0(void *, int); 177 static void ath_tx_proc_q0123(void *, int); 178 static void ath_tx_proc(void *, int); 179 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 180 static void ath_draintxq(struct ath_softc *); 181 static void ath_stoprecv(struct ath_softc *); 182 static int ath_startrecv(struct ath_softc *); 183 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 184 static void ath_next_scan(void *); 185 static void ath_calibrate(void *); 186 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 187 static void ath_setup_stationkey(struct ieee80211_node *); 188 static void ath_newassoc(struct ieee80211_node *, int); 189 static int ath_getchannels(struct ath_softc *, u_int cc, 190 HAL_BOOL outdoor, HAL_BOOL xchanmode); 191 static void ath_led_event(struct ath_softc *, int); 192 static void ath_update_txpow(struct ath_softc *); 193 static void ath_freetx(struct mbuf *); 194 static void ath_restore_diversity(struct ath_softc *); 195 196 static int ath_rate_setup(struct ath_softc *, u_int mode); 197 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 198 199 static void ath_bpfattach(struct ath_softc *); 200 static void ath_announce(struct ath_softc *); 201 202 #ifdef __NetBSD__ 203 #define ATH_TASK_FUNC(__func) \ 204 static void __CONCAT(__func, _si)(void *arg) \ 205 { \ 206 __func(arg, 1); \ 207 } 208 ATH_TASK_FUNC(ath_rx_proc); 209 ATH_TASK_FUNC(ath_rxorn_proc); 210 ATH_TASK_FUNC(ath_fatal_proc); 211 ATH_TASK_FUNC(ath_bmiss_proc); 212 ATH_TASK_FUNC(ath_bstuck_proc); 213 ATH_TASK_FUNC(ath_radar_proc); 214 ATH_TASK_FUNC(ath_tx_proc_q0); 215 ATH_TASK_FUNC(ath_tx_proc_q0123); 216 ATH_TASK_FUNC(ath_tx_proc); 217 #endif 218 219 int ath_dwelltime = 200; /* 5 channels/second */ 220 int ath_calinterval = 30; /* calibrate every 30 secs */ 221 int ath_outdoor = AH_TRUE; /* outdoor operation */ 222 int ath_xchanmode = AH_TRUE; /* enable extended channels */ 223 int ath_countrycode = CTRY_DEFAULT; /* country code */ 224 int ath_regdomain = 0; /* regulatory domain */ 225 int ath_debug = 0; 226 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 227 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 228 229 #ifdef AR_DEBUG 230 enum { 231 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 232 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 233 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 234 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 235 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 236 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 237 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 238 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 239 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 240 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 241 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 242 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 243 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 244 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 245 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 246 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 247 ATH_DEBUG_NODE = 0x00080000, /* node management */ 248 ATH_DEBUG_LED = 0x00100000, /* led management */ 249 ATH_DEBUG_FF = 0x00200000, /* fast frames */ 250 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */ 251 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 252 ATH_DEBUG_ANY = 0xffffffff 253 }; 254 #define IFF_DUMPPKTS(sc, m) \ 255 ((sc->sc_debug & (m)) || \ 256 (sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2)) \ 257 == (IFF_DEBUG | IFF_LINK2)) 258 #define DPRINTF(sc, m, fmt, ...) do { \ 259 if (sc->sc_debug & (m)) \ 260 printf(fmt, __VA_ARGS__); \ 261 } while (0) 262 #define KEYPRINTF(sc, ix, hk, mac) do { \ 263 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 264 ath_keyprint(__func__, ix, hk, mac); \ 265 } while (0) 266 static void ath_printrxbuf(struct ath_buf *bf, int); 267 static void ath_printtxbuf(struct ath_buf *bf, int); 268 #else 269 #define IFF_DUMPPKTS(sc, m) \ 270 ((sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2)) \ 271 == (IFF_DEBUG | IFF_LINK2)) 272 #define DPRINTF(m, fmt, ...) 273 #define KEYPRINTF(sc, k, ix, mac) 274 #endif 275 276 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 277 278 int 279 ath_attach(u_int16_t devid, struct ath_softc *sc) 280 { 281 struct ifnet *ifp = &sc->sc_if; 282 struct ieee80211com *ic = &sc->sc_ic; 283 struct ath_hal *ah = NULL; 284 HAL_STATUS status; 285 int error = 0, i; 286 287 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 288 289 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual); 290 291 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 292 293 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 294 if (ah == NULL) { 295 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 296 status); 297 error = ENXIO; 298 goto bad; 299 } 300 if (ah->ah_abi != HAL_ABI_VERSION) { 301 if_printf(ifp, "HAL ABI mismatch detected " 302 "(HAL:0x%x != driver:0x%x)\n", 303 ah->ah_abi, HAL_ABI_VERSION); 304 error = ENXIO; 305 goto bad; 306 } 307 sc->sc_ah = ah; 308 309 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev), 310 "pmf-no-powerdown", true)) 311 goto bad; 312 313 /* 314 * Check if the MAC has multi-rate retry support. 315 * We do this by trying to setup a fake extended 316 * descriptor. MAC's that don't have support will 317 * return false w/o doing anything. MAC's that do 318 * support it will return true w/o doing anything. 319 */ 320 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 321 322 /* 323 * Check if the device has hardware counters for PHY 324 * errors. If so we need to enable the MIB interrupt 325 * so we can act on stat triggers. 326 */ 327 if (ath_hal_hwphycounters(ah)) 328 sc->sc_needmib = 1; 329 330 /* 331 * Get the hardware key cache size. 332 */ 333 sc->sc_keymax = ath_hal_keycachesize(ah); 334 if (sc->sc_keymax > ATH_KEYMAX) { 335 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 336 ATH_KEYMAX, sc->sc_keymax); 337 sc->sc_keymax = ATH_KEYMAX; 338 } 339 /* 340 * Reset the key cache since some parts do not 341 * reset the contents on initial power up. 342 */ 343 for (i = 0; i < sc->sc_keymax; i++) 344 ath_hal_keyreset(ah, i); 345 /* 346 * Mark key cache slots associated with global keys 347 * as in use. If we knew TKIP was not to be used we 348 * could leave the +32, +64, and +32+64 slots free. 349 * XXX only for splitmic. 350 */ 351 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 352 setbit(sc->sc_keymap, i); 353 setbit(sc->sc_keymap, i+32); 354 setbit(sc->sc_keymap, i+64); 355 setbit(sc->sc_keymap, i+32+64); 356 } 357 358 /* 359 * Collect the channel list using the default country 360 * code and including outdoor channels. The 802.11 layer 361 * is resposible for filtering this list based on settings 362 * like the phy mode. 363 */ 364 error = ath_getchannels(sc, ath_countrycode, 365 ath_outdoor, ath_xchanmode); 366 if (error != 0) 367 goto bad; 368 369 /* 370 * Setup rate tables for all potential media types. 371 */ 372 ath_rate_setup(sc, IEEE80211_MODE_11A); 373 ath_rate_setup(sc, IEEE80211_MODE_11B); 374 ath_rate_setup(sc, IEEE80211_MODE_11G); 375 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 376 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 377 /* NB: setup here so ath_rate_update is happy */ 378 ath_setcurmode(sc, IEEE80211_MODE_11A); 379 380 /* 381 * Allocate tx+rx descriptors and populate the lists. 382 */ 383 error = ath_desc_alloc(sc); 384 if (error != 0) { 385 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 386 goto bad; 387 } 388 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 389 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE); 390 #if 0 391 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE); 392 #endif 393 394 ATH_TXBUF_LOCK_INIT(sc); 395 396 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 397 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 398 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 399 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 400 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 401 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc); 402 403 /* 404 * Allocate hardware transmit queues: one queue for 405 * beacon frames and one data queue for each QoS 406 * priority. Note that the hal handles resetting 407 * these queues at the needed time. 408 * 409 * XXX PS-Poll 410 */ 411 sc->sc_bhalq = ath_beaconq_setup(ah); 412 if (sc->sc_bhalq == (u_int) -1) { 413 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 414 error = EIO; 415 goto bad2; 416 } 417 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 418 if (sc->sc_cabq == NULL) { 419 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 420 error = EIO; 421 goto bad2; 422 } 423 /* NB: insure BK queue is the lowest priority h/w queue */ 424 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 425 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 426 ieee80211_wme_acnames[WME_AC_BK]); 427 error = EIO; 428 goto bad2; 429 } 430 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 431 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 432 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 433 /* 434 * Not enough hardware tx queues to properly do WME; 435 * just punt and assign them all to the same h/w queue. 436 * We could do a better job of this if, for example, 437 * we allocate queues when we switch from station to 438 * AP mode. 439 */ 440 if (sc->sc_ac2q[WME_AC_VI] != NULL) 441 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 442 if (sc->sc_ac2q[WME_AC_BE] != NULL) 443 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 444 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 445 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 446 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 447 } 448 449 /* 450 * Special case certain configurations. Note the 451 * CAB queue is handled by these specially so don't 452 * include them when checking the txq setup mask. 453 */ 454 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 455 case 0x01: 456 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 457 break; 458 case 0x0f: 459 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 460 break; 461 default: 462 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 463 break; 464 } 465 466 /* 467 * Setup rate control. Some rate control modules 468 * call back to change the anntena state so expose 469 * the necessary entry points. 470 * XXX maybe belongs in struct ath_ratectrl? 471 */ 472 sc->sc_setdefantenna = ath_setdefantenna; 473 sc->sc_rc = ath_rate_attach(sc); 474 if (sc->sc_rc == NULL) { 475 error = EIO; 476 goto bad2; 477 } 478 479 sc->sc_blinking = 0; 480 sc->sc_ledstate = 1; 481 sc->sc_ledon = 0; /* low true */ 482 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 483 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE); 484 /* 485 * Auto-enable soft led processing for IBM cards and for 486 * 5211 minipci cards. Users can also manually enable/disable 487 * support with a sysctl. 488 */ 489 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 490 if (sc->sc_softled) { 491 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 492 HAL_GPIO_MUX_MAC_NETWORK_LED); 493 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 494 } 495 496 ifp->if_softc = sc; 497 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 498 ifp->if_start = ath_start; 499 ifp->if_stop = ath_stop; 500 ifp->if_watchdog = ath_watchdog; 501 ifp->if_ioctl = ath_ioctl; 502 ifp->if_init = ath_ifinit; 503 IFQ_SET_READY(&ifp->if_snd); 504 505 ic->ic_ifp = ifp; 506 ic->ic_reset = ath_reset; 507 ic->ic_newassoc = ath_newassoc; 508 ic->ic_updateslot = ath_updateslot; 509 ic->ic_wme.wme_update = ath_wme_update; 510 /* XXX not right but it's not used anywhere important */ 511 ic->ic_phytype = IEEE80211_T_OFDM; 512 ic->ic_opmode = IEEE80211_M_STA; 513 ic->ic_caps = 514 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 515 | IEEE80211_C_HOSTAP /* hostap mode */ 516 | IEEE80211_C_MONITOR /* monitor mode */ 517 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 518 | IEEE80211_C_SHSLOT /* short slot time supported */ 519 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 520 | IEEE80211_C_TXFRAG /* handle tx frags */ 521 ; 522 /* 523 * Query the hal to figure out h/w crypto support. 524 */ 525 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 526 ic->ic_caps |= IEEE80211_C_WEP; 527 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 528 ic->ic_caps |= IEEE80211_C_AES; 529 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 530 ic->ic_caps |= IEEE80211_C_AES_CCM; 531 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 532 ic->ic_caps |= IEEE80211_C_CKIP; 533 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 534 ic->ic_caps |= IEEE80211_C_TKIP; 535 /* 536 * Check if h/w does the MIC and/or whether the 537 * separate key cache entries are required to 538 * handle both tx+rx MIC keys. 539 */ 540 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 541 ic->ic_caps |= IEEE80211_C_TKIPMIC; 542 543 /* 544 * If the h/w supports storing tx+rx MIC keys 545 * in one cache slot automatically enable use. 546 */ 547 if (ath_hal_hastkipsplit(ah) || 548 !ath_hal_settkipsplit(ah, AH_FALSE)) 549 sc->sc_splitmic = 1; 550 551 /* 552 * If the h/w can do TKIP MIC together with WME then 553 * we use it; otherwise we force the MIC to be done 554 * in software by the net80211 layer. 555 */ 556 if (ath_hal_haswmetkipmic(ah)) 557 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC; 558 } 559 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 560 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 561 /* 562 * Mark key cache slots associated with global keys 563 * as in use. If we knew TKIP was not to be used we 564 * could leave the +32, +64, and +32+64 slots free. 565 */ 566 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 567 setbit(sc->sc_keymap, i); 568 setbit(sc->sc_keymap, i+64); 569 if (sc->sc_splitmic) { 570 setbit(sc->sc_keymap, i+32); 571 setbit(sc->sc_keymap, i+32+64); 572 } 573 } 574 /* 575 * TPC support can be done either with a global cap or 576 * per-packet support. The latter is not available on 577 * all parts. We're a bit pedantic here as all parts 578 * support a global cap. 579 */ 580 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 581 ic->ic_caps |= IEEE80211_C_TXPMGT; 582 583 /* 584 * Mark WME capability only if we have sufficient 585 * hardware queues to do proper priority scheduling. 586 */ 587 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 588 ic->ic_caps |= IEEE80211_C_WME; 589 /* 590 * Check for misc other capabilities. 591 */ 592 if (ath_hal_hasbursting(ah)) 593 ic->ic_caps |= IEEE80211_C_BURST; 594 595 /* 596 * Indicate we need the 802.11 header padded to a 597 * 32-bit boundary for 4-address and QoS frames. 598 */ 599 ic->ic_flags |= IEEE80211_F_DATAPAD; 600 601 /* 602 * Query the hal about antenna support. 603 */ 604 sc->sc_defant = ath_hal_getdefantenna(ah); 605 606 /* 607 * Not all chips have the VEOL support we want to 608 * use with IBSS beacons; check here for it. 609 */ 610 sc->sc_hasveol = ath_hal_hasveol(ah); 611 612 /* get mac address from hardware */ 613 ath_hal_getmac(ah, ic->ic_myaddr); 614 615 if_attach(ifp); 616 /* call MI attach routine. */ 617 ieee80211_ifattach(ic); 618 /* override default methods */ 619 ic->ic_node_alloc = ath_node_alloc; 620 sc->sc_node_free = ic->ic_node_free; 621 ic->ic_node_free = ath_node_free; 622 ic->ic_node_getrssi = ath_node_getrssi; 623 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 624 ic->ic_recv_mgmt = ath_recv_mgmt; 625 sc->sc_newstate = ic->ic_newstate; 626 ic->ic_newstate = ath_newstate; 627 ic->ic_crypto.cs_max_keyix = sc->sc_keymax; 628 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 629 ic->ic_crypto.cs_key_delete = ath_key_delete; 630 ic->ic_crypto.cs_key_set = ath_key_set; 631 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 632 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 633 /* complete initialization */ 634 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 635 636 ath_bpfattach(sc); 637 638 sc->sc_flags |= ATH_ATTACHED; 639 640 /* 641 * Setup dynamic sysctl's now that country code and 642 * regdomain are available from the hal. 643 */ 644 ath_sysctlattach(sc); 645 646 ieee80211_announce(ic); 647 ath_announce(sc); 648 return 0; 649 bad2: 650 ath_tx_cleanup(sc); 651 ath_desc_free(sc); 652 bad: 653 if (ah) 654 ath_hal_detach(ah); 655 (void)config_deactivate(sc->sc_dev); 656 return error; 657 } 658 659 int 660 ath_detach(struct ath_softc *sc) 661 { 662 struct ifnet *ifp = &sc->sc_if; 663 int s; 664 665 if ((sc->sc_flags & ATH_ATTACHED) == 0) 666 return (0); 667 668 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 669 __func__, ifp->if_flags); 670 671 s = splnet(); 672 ath_stop(ifp, 1); 673 bpf_detach(ifp); 674 /* 675 * NB: the order of these is important: 676 * o call the 802.11 layer before detaching the hal to 677 * insure callbacks into the driver to delete global 678 * key cache entries can be handled 679 * o reclaim the tx queue data structures after calling 680 * the 802.11 layer as we'll get called back to reclaim 681 * node state and potentially want to use them 682 * o to cleanup the tx queues the hal is called, so detach 683 * it last 684 * Other than that, it's straightforward... 685 */ 686 ieee80211_ifdetach(&sc->sc_ic); 687 #ifdef ATH_TX99_DIAG 688 if (sc->sc_tx99 != NULL) 689 sc->sc_tx99->detach(sc->sc_tx99); 690 #endif 691 ath_rate_detach(sc->sc_rc); 692 ath_desc_free(sc); 693 ath_tx_cleanup(sc); 694 sysctl_teardown(&sc->sc_sysctllog); 695 ath_hal_detach(sc->sc_ah); 696 if_detach(ifp); 697 splx(s); 698 699 return 0; 700 } 701 702 void 703 ath_suspend(struct ath_softc *sc) 704 { 705 #if notyet 706 /* 707 * Set the chip in full sleep mode. Note that we are 708 * careful to do this only when bringing the interface 709 * completely to a stop. When the chip is in this state 710 * it must be carefully woken up or references to 711 * registers in the PCI clock domain may freeze the bus 712 * (and system). This varies by chip and is mostly an 713 * issue with newer parts that go to sleep more quickly. 714 */ 715 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 716 #endif 717 } 718 719 bool 720 ath_resume(struct ath_softc *sc) 721 { 722 struct ath_hal *ah = sc->sc_ah; 723 struct ieee80211com *ic = &sc->sc_ic; 724 HAL_STATUS status; 725 int i; 726 727 #if notyet 728 ath_hal_setpower(ah, HAL_PM_AWAKE); 729 #else 730 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, HAL_M_IBSS, &status); 731 #endif 732 733 /* 734 * Reset the key cache since some parts do not 735 * reset the contents on initial power up. 736 */ 737 for (i = 0; i < sc->sc_keymax; i++) 738 ath_hal_keyreset(ah, i); 739 740 ath_hal_resettxqueue(ah, sc->sc_bhalq); 741 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 742 if (ATH_TXQ_SETUP(sc, i)) 743 ath_hal_resettxqueue(ah, i); 744 745 if (sc->sc_softled) { 746 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin, 747 HAL_GPIO_MUX_MAC_NETWORK_LED); 748 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 749 } 750 return true; 751 } 752 753 /* 754 * Interrupt handler. Most of the actual processing is deferred. 755 */ 756 int 757 ath_intr(void *arg) 758 { 759 struct ath_softc *sc = arg; 760 struct ifnet *ifp = &sc->sc_if; 761 struct ath_hal *ah = sc->sc_ah; 762 HAL_INT status = 0; 763 764 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) { 765 /* 766 * The hardware is not ready/present, don't touch anything. 767 * Note this can happen early on if the IRQ is shared. 768 */ 769 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 770 return 0; 771 } 772 773 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 774 return 0; 775 776 if ((ifp->if_flags & (IFF_RUNNING |IFF_UP)) != (IFF_RUNNING |IFF_UP)) { 777 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 778 __func__, ifp->if_flags); 779 ath_hal_getisr(ah, &status); /* clear ISR */ 780 ath_hal_intrset(ah, 0); /* disable further intr's */ 781 return 1; /* XXX */ 782 } 783 /* 784 * Figure out the reason(s) for the interrupt. Note 785 * that the hal returns a pseudo-ISR that may include 786 * bits we haven't explicitly enabled so we mask the 787 * value to insure we only process bits we requested. 788 */ 789 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 790 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 791 status &= sc->sc_imask; /* discard unasked for bits */ 792 if (status & HAL_INT_FATAL) { 793 /* 794 * Fatal errors are unrecoverable. Typically 795 * these are caused by DMA errors. Unfortunately 796 * the exact reason is not (presently) returned 797 * by the hal. 798 */ 799 sc->sc_stats.ast_hardware++; 800 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 801 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 802 } else if (status & HAL_INT_RXORN) { 803 sc->sc_stats.ast_rxorn++; 804 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 805 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 806 } else { 807 if (status & HAL_INT_SWBA) { 808 /* 809 * Software beacon alert--time to send a beacon. 810 * Handle beacon transmission directly; deferring 811 * this is too slow to meet timing constraints 812 * under load. 813 */ 814 ath_beacon_proc(sc, 0); 815 } 816 if (status & HAL_INT_RXEOL) { 817 /* 818 * NB: the hardware should re-read the link when 819 * RXE bit is written, but it doesn't work at 820 * least on older hardware revs. 821 */ 822 sc->sc_stats.ast_rxeol++; 823 sc->sc_rxlink = NULL; 824 } 825 if (status & HAL_INT_TXURN) { 826 sc->sc_stats.ast_txurn++; 827 /* bump tx trigger level */ 828 ath_hal_updatetxtriglevel(ah, AH_TRUE); 829 } 830 if (status & HAL_INT_RX) 831 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 832 if (status & HAL_INT_TX) 833 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 834 if (status & HAL_INT_BMISS) { 835 sc->sc_stats.ast_bmiss++; 836 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 837 } 838 if (status & HAL_INT_MIB) { 839 sc->sc_stats.ast_mib++; 840 /* 841 * Disable interrupts until we service the MIB 842 * interrupt; otherwise it will continue to fire. 843 */ 844 ath_hal_intrset(ah, 0); 845 /* 846 * Let the hal handle the event. We assume it will 847 * clear whatever condition caused the interrupt. 848 */ 849 ath_hal_mibevent(ah, &sc->sc_halstats); 850 ath_hal_intrset(ah, sc->sc_imask); 851 } 852 } 853 return 1; 854 } 855 856 /* Swap transmit descriptor. 857 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null" 858 * function. 859 */ 860 static inline void 861 ath_desc_swap(struct ath_desc *ds) 862 { 863 #ifdef AH_NEED_DESC_SWAP 864 ds->ds_link = htole32(ds->ds_link); 865 ds->ds_data = htole32(ds->ds_data); 866 ds->ds_ctl0 = htole32(ds->ds_ctl0); 867 ds->ds_ctl1 = htole32(ds->ds_ctl1); 868 ds->ds_hw[0] = htole32(ds->ds_hw[0]); 869 ds->ds_hw[1] = htole32(ds->ds_hw[1]); 870 #endif 871 } 872 873 static void 874 ath_fatal_proc(void *arg, int pending) 875 { 876 struct ath_softc *sc = arg; 877 struct ifnet *ifp = &sc->sc_if; 878 #ifdef __NetBSD__ 879 int s; 880 #endif 881 882 if_printf(ifp, "hardware error; resetting\n"); 883 #ifdef __NetBSD__ 884 s = splnet(); 885 #endif 886 ath_reset(ifp); 887 #ifdef __NetBSD__ 888 splx(s); 889 #endif 890 } 891 892 static void 893 ath_rxorn_proc(void *arg, int pending) 894 { 895 struct ath_softc *sc = arg; 896 struct ifnet *ifp = &sc->sc_if; 897 #ifdef __NetBSD__ 898 int s; 899 #endif 900 901 if_printf(ifp, "rx FIFO overrun; resetting\n"); 902 #ifdef __NetBSD__ 903 s = splnet(); 904 #endif 905 ath_reset(ifp); 906 #ifdef __NetBSD__ 907 splx(s); 908 #endif 909 } 910 911 static void 912 ath_bmiss_proc(void *arg, int pending) 913 { 914 struct ath_softc *sc = arg; 915 struct ieee80211com *ic = &sc->sc_ic; 916 NET_LOCK_GIANT_FUNC_INIT(); 917 918 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 919 KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA, 920 "unexpect operating mode %u", ic->ic_opmode); 921 if (ic->ic_state == IEEE80211_S_RUN) { 922 u_int64_t lastrx = sc->sc_lastrx; 923 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 924 925 DPRINTF(sc, ATH_DEBUG_BEACON, 926 "%s: tsf %" PRIu64 " lastrx %" PRId64 927 " (%" PRIu64 ") bmiss %u\n", 928 __func__, tsf, tsf - lastrx, lastrx, 929 ic->ic_bmisstimeout*1024); 930 /* 931 * Workaround phantom bmiss interrupts by sanity-checking 932 * the time of our last rx'd frame. If it is within the 933 * beacon miss interval then ignore the interrupt. If it's 934 * truly a bmiss we'll get another interrupt soon and that'll 935 * be dispatched up for processing. 936 */ 937 if (tsf - lastrx > ic->ic_bmisstimeout*1024) { 938 NET_LOCK_GIANT(); 939 ieee80211_beacon_miss(ic); 940 NET_UNLOCK_GIANT(); 941 } else 942 sc->sc_stats.ast_bmiss_phantom++; 943 } 944 } 945 946 static void 947 ath_radar_proc(void *arg, int pending) 948 { 949 #if 0 950 struct ath_softc *sc = arg; 951 struct ifnet *ifp = &sc->sc_if; 952 struct ath_hal *ah = sc->sc_ah; 953 HAL_CHANNEL hchan; 954 955 if (ath_hal_procdfs(ah, &hchan)) { 956 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n", 957 hchan.channel, hchan.channelFlags, hchan.privFlags); 958 /* 959 * Initiate channel change. 960 */ 961 /* XXX not yet */ 962 } 963 #endif 964 } 965 966 static u_int 967 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 968 { 969 #define N(a) (sizeof(a) / sizeof(a[0])) 970 static const u_int modeflags[] = { 971 0, /* IEEE80211_MODE_AUTO */ 972 CHANNEL_A, /* IEEE80211_MODE_11A */ 973 CHANNEL_B, /* IEEE80211_MODE_11B */ 974 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 975 0, /* IEEE80211_MODE_FH */ 976 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */ 977 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 978 }; 979 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 980 981 KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode); 982 KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode); 983 return modeflags[mode]; 984 #undef N 985 } 986 987 static int 988 ath_ifinit(struct ifnet *ifp) 989 { 990 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc; 991 992 return ath_init(sc); 993 } 994 995 static void 996 ath_settkipmic(struct ath_softc *sc) 997 { 998 struct ieee80211com *ic = &sc->sc_ic; 999 struct ath_hal *ah = sc->sc_ah; 1000 1001 if ((ic->ic_caps & IEEE80211_C_TKIP) && 1002 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) { 1003 if (ic->ic_flags & IEEE80211_F_WME) { 1004 (void)ath_hal_settkipmic(ah, AH_FALSE); 1005 ic->ic_caps &= ~IEEE80211_C_TKIPMIC; 1006 } else { 1007 (void)ath_hal_settkipmic(ah, AH_TRUE); 1008 ic->ic_caps |= IEEE80211_C_TKIPMIC; 1009 } 1010 } 1011 } 1012 1013 static int 1014 ath_init(struct ath_softc *sc) 1015 { 1016 struct ifnet *ifp = &sc->sc_if; 1017 struct ieee80211com *ic = &sc->sc_ic; 1018 struct ath_hal *ah = sc->sc_ah; 1019 HAL_STATUS status; 1020 int error = 0, s; 1021 1022 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1023 __func__, ifp->if_flags); 1024 1025 if (device_is_active(sc->sc_dev)) { 1026 s = splnet(); 1027 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || 1028 !device_is_active(sc->sc_dev)) 1029 return 0; 1030 else 1031 s = splnet(); 1032 1033 /* 1034 * Stop anything previously setup. This is safe 1035 * whether this is the first time through or not. 1036 */ 1037 ath_stop_locked(ifp, 0); 1038 1039 /* 1040 * The basic interface to setting the hardware in a good 1041 * state is ``reset''. On return the hardware is known to 1042 * be powered up and with interrupts disabled. This must 1043 * be followed by initialization of the appropriate bits 1044 * and then setup of the interrupt mask. 1045 */ 1046 ath_settkipmic(sc); 1047 sc->sc_curchan.channel = ic->ic_curchan->ic_freq; 1048 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan); 1049 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 1050 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1051 status); 1052 error = EIO; 1053 goto done; 1054 } 1055 1056 /* 1057 * This is needed only to setup initial state 1058 * but it's best done after a reset. 1059 */ 1060 ath_update_txpow(sc); 1061 /* 1062 * Likewise this is set during reset so update 1063 * state cached in the driver. 1064 */ 1065 ath_restore_diversity(sc); 1066 sc->sc_calinterval = 1; 1067 sc->sc_caltries = 0; 1068 1069 /* 1070 * Setup the hardware after reset: the key cache 1071 * is filled as needed and the receive engine is 1072 * set going. Frame transmit is handled entirely 1073 * in the frame output path; there's nothing to do 1074 * here except setup the interrupt mask. 1075 */ 1076 if ((error = ath_startrecv(sc)) != 0) { 1077 if_printf(ifp, "unable to start recv logic\n"); 1078 goto done; 1079 } 1080 1081 /* 1082 * Enable interrupts. 1083 */ 1084 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1085 | HAL_INT_RXEOL | HAL_INT_RXORN 1086 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1087 /* 1088 * Enable MIB interrupts when there are hardware phy counters. 1089 * Note we only do this (at the moment) for station mode. 1090 */ 1091 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1092 sc->sc_imask |= HAL_INT_MIB; 1093 ath_hal_intrset(ah, sc->sc_imask); 1094 1095 ifp->if_flags |= IFF_RUNNING; 1096 ic->ic_state = IEEE80211_S_INIT; 1097 1098 /* 1099 * The hardware should be ready to go now so it's safe 1100 * to kick the 802.11 state machine as it's likely to 1101 * immediately call back to us to send mgmt frames. 1102 */ 1103 ath_chan_change(sc, ic->ic_curchan); 1104 #ifdef ATH_TX99_DIAG 1105 if (sc->sc_tx99 != NULL) 1106 sc->sc_tx99->start(sc->sc_tx99); 1107 else 1108 #endif 1109 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1110 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 1111 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1112 } else 1113 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1114 done: 1115 splx(s); 1116 return error; 1117 } 1118 1119 static void 1120 ath_stop_locked(struct ifnet *ifp, int disable) 1121 { 1122 struct ath_softc *sc = ifp->if_softc; 1123 struct ieee80211com *ic = &sc->sc_ic; 1124 struct ath_hal *ah = sc->sc_ah; 1125 1126 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n", 1127 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags); 1128 1129 /* KASSERT() IPL_NET */ 1130 if (ifp->if_flags & IFF_RUNNING) { 1131 /* 1132 * Shutdown the hardware and driver: 1133 * reset 802.11 state machine 1134 * turn off timers 1135 * disable interrupts 1136 * turn off the radio 1137 * clear transmit machinery 1138 * clear receive machinery 1139 * drain and release tx queues 1140 * reclaim beacon resources 1141 * power down hardware 1142 * 1143 * Note that some of this work is not possible if the 1144 * hardware is gone (invalid). 1145 */ 1146 #ifdef ATH_TX99_DIAG 1147 if (sc->sc_tx99 != NULL) 1148 sc->sc_tx99->stop(sc->sc_tx99); 1149 #endif 1150 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1151 ifp->if_flags &= ~IFF_RUNNING; 1152 ifp->if_timer = 0; 1153 if (device_is_enabled(sc->sc_dev)) { 1154 if (sc->sc_softled) { 1155 callout_stop(&sc->sc_ledtimer); 1156 ath_hal_gpioset(ah, sc->sc_ledpin, 1157 !sc->sc_ledon); 1158 sc->sc_blinking = 0; 1159 } 1160 ath_hal_intrset(ah, 0); 1161 } 1162 ath_draintxq(sc); 1163 if (device_is_enabled(sc->sc_dev)) { 1164 ath_stoprecv(sc); 1165 ath_hal_phydisable(ah); 1166 } else 1167 sc->sc_rxlink = NULL; 1168 IF_PURGE(&ifp->if_snd); 1169 ath_beacon_free(sc); 1170 } 1171 if (disable) 1172 pmf_device_suspend(sc->sc_dev, &sc->sc_qual); 1173 } 1174 1175 static void 1176 ath_stop(struct ifnet *ifp, int disable) 1177 { 1178 int s; 1179 1180 s = splnet(); 1181 ath_stop_locked(ifp, disable); 1182 splx(s); 1183 } 1184 1185 static void 1186 ath_restore_diversity(struct ath_softc *sc) 1187 { 1188 struct ifnet *ifp = &sc->sc_if; 1189 struct ath_hal *ah = sc->sc_ah; 1190 1191 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) || 1192 sc->sc_diversity != ath_hal_getdiversity(ah)) { 1193 if_printf(ifp, "could not restore diversity setting %d\n", 1194 sc->sc_diversity); 1195 sc->sc_diversity = ath_hal_getdiversity(ah); 1196 } 1197 } 1198 1199 /* 1200 * Reset the hardware w/o losing operational state. This is 1201 * basically a more efficient way of doing ath_stop, ath_init, 1202 * followed by state transitions to the current 802.11 1203 * operational state. Used to recover from various errors and 1204 * to reset or reload hardware state. 1205 */ 1206 int 1207 ath_reset(struct ifnet *ifp) 1208 { 1209 struct ath_softc *sc = ifp->if_softc; 1210 struct ieee80211com *ic = &sc->sc_ic; 1211 struct ath_hal *ah = sc->sc_ah; 1212 struct ieee80211_channel *c; 1213 HAL_STATUS status; 1214 1215 /* 1216 * Convert to a HAL channel description with the flags 1217 * constrained to reflect the current operating mode. 1218 */ 1219 c = ic->ic_curchan; 1220 sc->sc_curchan.channel = c->ic_freq; 1221 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1222 1223 ath_hal_intrset(ah, 0); /* disable interrupts */ 1224 ath_draintxq(sc); /* stop xmit side */ 1225 ath_stoprecv(sc); /* stop recv side */ 1226 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1227 /* NB: indicate channel change so we do a full reset */ 1228 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1229 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1230 __func__, status); 1231 ath_update_txpow(sc); /* update tx power state */ 1232 ath_restore_diversity(sc); 1233 sc->sc_calinterval = 1; 1234 sc->sc_caltries = 0; 1235 if (ath_startrecv(sc) != 0) /* restart recv */ 1236 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1237 /* 1238 * We may be doing a reset in response to an ioctl 1239 * that changes the channel so update any state that 1240 * might change as a result. 1241 */ 1242 ath_chan_change(sc, c); 1243 if (ic->ic_state == IEEE80211_S_RUN) 1244 ath_beacon_config(sc); /* restart beacons */ 1245 ath_hal_intrset(ah, sc->sc_imask); 1246 1247 ath_start(ifp); /* restart xmit */ 1248 return 0; 1249 } 1250 1251 /* 1252 * Cleanup driver resources when we run out of buffers 1253 * while processing fragments; return the tx buffers 1254 * allocated and drop node references. 1255 */ 1256 static void 1257 ath_txfrag_cleanup(struct ath_softc *sc, 1258 ath_bufhead *frags, struct ieee80211_node *ni) 1259 { 1260 struct ath_buf *bf; 1261 1262 ATH_TXBUF_LOCK_ASSERT(sc); 1263 1264 while ((bf = STAILQ_FIRST(frags)) != NULL) { 1265 STAILQ_REMOVE_HEAD(frags, bf_list); 1266 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1267 sc->sc_if.if_flags &= ~IFF_OACTIVE; 1268 ieee80211_node_decref(ni); 1269 } 1270 } 1271 1272 /* 1273 * Setup xmit of a fragmented frame. Allocate a buffer 1274 * for each frag and bump the node reference count to 1275 * reflect the held reference to be setup by ath_tx_start. 1276 */ 1277 static int 1278 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 1279 struct mbuf *m0, struct ieee80211_node *ni) 1280 { 1281 struct mbuf *m; 1282 struct ath_buf *bf; 1283 1284 ATH_TXBUF_LOCK(sc); 1285 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1286 bf = STAILQ_FIRST(&sc->sc_txbuf); 1287 if (bf == NULL) { /* out of buffers, cleanup */ 1288 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1289 __func__); 1290 sc->sc_if.if_flags |= IFF_OACTIVE; 1291 ath_txfrag_cleanup(sc, frags, ni); 1292 break; 1293 } 1294 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1295 ieee80211_node_incref(ni); 1296 STAILQ_INSERT_TAIL(frags, bf, bf_list); 1297 } 1298 ATH_TXBUF_UNLOCK(sc); 1299 1300 return !STAILQ_EMPTY(frags); 1301 } 1302 1303 static void 1304 ath_start(struct ifnet *ifp) 1305 { 1306 struct ath_softc *sc = ifp->if_softc; 1307 struct ath_hal *ah = sc->sc_ah; 1308 struct ieee80211com *ic = &sc->sc_ic; 1309 struct ieee80211_node *ni; 1310 struct ath_buf *bf; 1311 struct mbuf *m, *next; 1312 struct ieee80211_frame *wh; 1313 struct ether_header *eh; 1314 ath_bufhead frags; 1315 1316 if ((ifp->if_flags & IFF_RUNNING) == 0 || 1317 !device_is_active(sc->sc_dev)) 1318 return; 1319 1320 if (sc->sc_flags & ATH_KEY_UPDATING) 1321 return; 1322 1323 for (;;) { 1324 /* 1325 * Grab a TX buffer and associated resources. 1326 */ 1327 ATH_TXBUF_LOCK(sc); 1328 bf = STAILQ_FIRST(&sc->sc_txbuf); 1329 if (bf != NULL) 1330 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1331 ATH_TXBUF_UNLOCK(sc); 1332 if (bf == NULL) { 1333 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1334 __func__); 1335 sc->sc_stats.ast_tx_qstop++; 1336 ifp->if_flags |= IFF_OACTIVE; 1337 break; 1338 } 1339 /* 1340 * Poll the management queue for frames; they 1341 * have priority over normal data frames. 1342 */ 1343 IF_DEQUEUE(&ic->ic_mgtq, m); 1344 if (m == NULL) { 1345 /* 1346 * No data frames go out unless we're associated. 1347 */ 1348 if (ic->ic_state != IEEE80211_S_RUN) { 1349 DPRINTF(sc, ATH_DEBUG_XMIT, 1350 "%s: discard data packet, state %s\n", 1351 __func__, 1352 ieee80211_state_name[ic->ic_state]); 1353 sc->sc_stats.ast_tx_discard++; 1354 ATH_TXBUF_LOCK(sc); 1355 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1356 ATH_TXBUF_UNLOCK(sc); 1357 break; 1358 } 1359 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1360 if (m == NULL) { 1361 ATH_TXBUF_LOCK(sc); 1362 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1363 ATH_TXBUF_UNLOCK(sc); 1364 break; 1365 } 1366 STAILQ_INIT(&frags); 1367 /* 1368 * Find the node for the destination so we can do 1369 * things like power save and fast frames aggregation. 1370 */ 1371 if (m->m_len < sizeof(struct ether_header) && 1372 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1373 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1374 ni = NULL; 1375 goto bad; 1376 } 1377 eh = mtod(m, struct ether_header *); 1378 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1379 if (ni == NULL) { 1380 /* NB: ieee80211_find_txnode does stat+msg */ 1381 m_freem(m); 1382 goto bad; 1383 } 1384 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1385 (m->m_flags & M_PWR_SAV) == 0) { 1386 /* 1387 * Station in power save mode; pass the frame 1388 * to the 802.11 layer and continue. We'll get 1389 * the frame back when the time is right. 1390 */ 1391 ieee80211_pwrsave(ic, ni, m); 1392 goto reclaim; 1393 } 1394 /* calculate priority so we can find the tx queue */ 1395 if (ieee80211_classify(ic, m, ni)) { 1396 DPRINTF(sc, ATH_DEBUG_XMIT, 1397 "%s: discard, classification failure\n", 1398 __func__); 1399 m_freem(m); 1400 goto bad; 1401 } 1402 if_statinc(ifp, if_opackets); 1403 1404 bpf_mtap(ifp, m, BPF_D_OUT); 1405 /* 1406 * Encapsulate the packet in prep for transmission. 1407 */ 1408 m = ieee80211_encap(ic, m, ni); 1409 if (m == NULL) { 1410 DPRINTF(sc, ATH_DEBUG_XMIT, 1411 "%s: encapsulation failure\n", 1412 __func__); 1413 sc->sc_stats.ast_tx_encap++; 1414 goto bad; 1415 } 1416 /* 1417 * Check for fragmentation. If this has frame 1418 * has been broken up verify we have enough 1419 * buffers to send all the fragments so all 1420 * go out or none... 1421 */ 1422 if ((m->m_flags & M_FRAG) && 1423 !ath_txfrag_setup(sc, &frags, m, ni)) { 1424 DPRINTF(sc, ATH_DEBUG_ANY, 1425 "%s: out of txfrag buffers\n", __func__); 1426 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1427 ath_freetx(m); 1428 goto bad; 1429 } 1430 } else { 1431 /* 1432 * Hack! The referenced node pointer is in the 1433 * rcvif field of the packet header. This is 1434 * placed there by ieee80211_mgmt_output because 1435 * we need to hold the reference with the frame 1436 * and there's no other way (other than packet 1437 * tags which we consider too expensive to use) 1438 * to pass it along. 1439 */ 1440 ni = M_GETCTX(m, struct ieee80211_node *); 1441 M_CLEARCTX(m); 1442 1443 wh = mtod(m, struct ieee80211_frame *); 1444 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1445 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1446 /* fill time stamp */ 1447 u_int64_t tsf; 1448 u_int32_t *tstamp; 1449 1450 tsf = ath_hal_gettsf64(ah); 1451 /* XXX: adjust 100us delay to xmit */ 1452 tsf += 100; 1453 tstamp = (u_int32_t *)&wh[1]; 1454 tstamp[0] = htole32(tsf & 0xffffffff); 1455 tstamp[1] = htole32(tsf >> 32); 1456 } 1457 sc->sc_stats.ast_tx_mgmt++; 1458 } 1459 1460 nextfrag: 1461 next = m->m_nextpkt; 1462 if (ath_tx_start(sc, ni, bf, m)) { 1463 bad: 1464 if_statinc(ifp, if_oerrors); 1465 reclaim: 1466 ATH_TXBUF_LOCK(sc); 1467 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1468 ath_txfrag_cleanup(sc, &frags, ni); 1469 ATH_TXBUF_UNLOCK(sc); 1470 if (ni != NULL) 1471 ieee80211_free_node(ni); 1472 continue; 1473 } 1474 if (next != NULL) { 1475 m = next; 1476 bf = STAILQ_FIRST(&frags); 1477 KASSERTMSG(bf != NULL, "no buf for txfrag"); 1478 STAILQ_REMOVE_HEAD(&frags, bf_list); 1479 goto nextfrag; 1480 } 1481 1482 ifp->if_timer = 1; 1483 } 1484 } 1485 1486 static int 1487 ath_media_change(struct ifnet *ifp) 1488 { 1489 #define IS_UP(ifp) \ 1490 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 1491 int error; 1492 1493 error = ieee80211_media_change(ifp); 1494 if (error == ENETRESET) { 1495 if (IS_UP(ifp)) 1496 ath_init(ifp->if_softc); /* XXX lose error */ 1497 error = 0; 1498 } 1499 return error; 1500 #undef IS_UP 1501 } 1502 1503 #ifdef AR_DEBUG 1504 static void 1505 ath_keyprint(const char *tag, u_int ix, 1506 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1507 { 1508 static const char *ciphers[] = { 1509 "WEP", 1510 "AES-OCB", 1511 "AES-CCM", 1512 "CKIP", 1513 "TKIP", 1514 "CLR", 1515 }; 1516 int i, n; 1517 1518 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1519 for (i = 0, n = hk->kv_len; i < n; i++) 1520 printf("%02x", hk->kv_val[i]); 1521 printf(" mac %s", ether_sprintf(mac)); 1522 if (hk->kv_type == HAL_CIPHER_TKIP) { 1523 printf(" mic "); 1524 for (i = 0; i < sizeof(hk->kv_mic); i++) 1525 printf("%02x", hk->kv_mic[i]); 1526 } 1527 printf("\n"); 1528 } 1529 #endif 1530 1531 /* 1532 * Set a TKIP key into the hardware. This handles the 1533 * potential distribution of key state to multiple key 1534 * cache slots for TKIP. 1535 */ 1536 static int 1537 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1538 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1539 { 1540 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1541 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1542 struct ath_hal *ah = sc->sc_ah; 1543 1544 KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1545 "got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher); 1546 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1547 if (sc->sc_splitmic) { 1548 /* 1549 * TX key goes at first index, RX key at the rx index. 1550 * The hal handles the MIC keys at index+64. 1551 */ 1552 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1553 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1554 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, 1555 zerobssid)) 1556 return 0; 1557 1558 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1559 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1560 /* XXX delete tx key on failure? */ 1561 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32), 1562 hk, mac); 1563 } else { 1564 /* 1565 * Room for both TX+RX MIC keys in one key cache 1566 * slot, just set key at the first index; the HAL 1567 * will handle the reset. 1568 */ 1569 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1570 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1571 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1572 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1573 } 1574 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 1575 if (sc->sc_splitmic) { 1576 /* 1577 * NB: must pass MIC key in expected location when 1578 * the keycache only holds one MIC key per entry. 1579 */ 1580 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); 1581 } else 1582 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1583 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1584 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1585 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 1586 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1587 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1588 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1589 } 1590 return 0; 1591 #undef IEEE80211_KEY_XR 1592 } 1593 1594 /* 1595 * Set a net80211 key into the hardware. This handles the 1596 * potential distribution of key state to multiple key 1597 * cache slots for TKIP with hardware MIC support. 1598 */ 1599 static int 1600 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1601 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1602 struct ieee80211_node *bss) 1603 { 1604 #define N(a) (sizeof(a)/sizeof(a[0])) 1605 static const u_int8_t ciphermap[] = { 1606 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1607 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1608 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1609 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1610 (u_int8_t) -1, /* 4 is not allocated */ 1611 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1612 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1613 }; 1614 struct ath_hal *ah = sc->sc_ah; 1615 const struct ieee80211_cipher *cip = k->wk_cipher; 1616 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1617 const u_int8_t *mac; 1618 HAL_KEYVAL hk; 1619 1620 memset(&hk, 0, sizeof(hk)); 1621 /* 1622 * Software crypto uses a "clear key" so non-crypto 1623 * state kept in the key cache are maintained and 1624 * so that rx frames have an entry to match. 1625 */ 1626 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1627 KASSERTMSG(cip->ic_cipher < N(ciphermap), 1628 "invalid cipher type %u", cip->ic_cipher); 1629 hk.kv_type = ciphermap[cip->ic_cipher]; 1630 hk.kv_len = k->wk_keylen; 1631 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1632 } else 1633 hk.kv_type = HAL_CIPHER_CLR; 1634 1635 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1636 /* 1637 * Group keys on hardware that supports multicast frame 1638 * key search use a mac that is the sender's address with 1639 * the high bit set instead of the app-specified address. 1640 */ 1641 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1642 gmac[0] |= 0x80; 1643 mac = gmac; 1644 } else 1645 mac = mac0; 1646 1647 if ((hk.kv_type == HAL_CIPHER_TKIP && 1648 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) { 1649 return ath_keyset_tkip(sc, k, &hk, mac); 1650 } else { 1651 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1652 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac); 1653 } 1654 #undef N 1655 } 1656 1657 /* 1658 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1659 * each key, one for decrypt/encrypt and the other for the MIC. 1660 */ 1661 static u_int16_t 1662 key_alloc_2pair(struct ath_softc *sc, 1663 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1664 { 1665 #define N(a) (sizeof(a)/sizeof(a[0])) 1666 u_int i, keyix; 1667 1668 KASSERTMSG(sc->sc_splitmic, "key cache !split"); 1669 /* XXX could optimize */ 1670 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1671 u_int8_t b = sc->sc_keymap[i]; 1672 if (b != 0xff) { 1673 /* 1674 * One or more slots in this byte are free. 1675 */ 1676 keyix = i*NBBY; 1677 while (b & 1) { 1678 again: 1679 keyix++; 1680 b >>= 1; 1681 } 1682 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1683 if (isset(sc->sc_keymap, keyix+32) || 1684 isset(sc->sc_keymap, keyix+64) || 1685 isset(sc->sc_keymap, keyix+32+64)) { 1686 /* full pair unavailable */ 1687 /* XXX statistic */ 1688 if (keyix == (i+1)*NBBY) { 1689 /* no slots were appropriate, advance */ 1690 continue; 1691 } 1692 goto again; 1693 } 1694 setbit(sc->sc_keymap, keyix); 1695 setbit(sc->sc_keymap, keyix+64); 1696 setbit(sc->sc_keymap, keyix+32); 1697 setbit(sc->sc_keymap, keyix+32+64); 1698 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1699 "%s: key pair %u,%u %u,%u\n", 1700 __func__, keyix, keyix+64, 1701 keyix+32, keyix+32+64); 1702 *txkeyix = keyix; 1703 *rxkeyix = keyix+32; 1704 return keyix; 1705 } 1706 } 1707 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1708 return IEEE80211_KEYIX_NONE; 1709 #undef N 1710 } 1711 1712 /* 1713 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1714 * each key, one for decrypt/encrypt and the other for the MIC. 1715 */ 1716 static int 1717 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix, 1718 ieee80211_keyix *rxkeyix) 1719 { 1720 #define N(a) (sizeof(a)/sizeof(a[0])) 1721 u_int i, keyix; 1722 1723 KASSERTMSG(!sc->sc_splitmic, "key cache split"); 1724 /* XXX could optimize */ 1725 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1726 uint8_t b = sc->sc_keymap[i]; 1727 if (b != 0xff) { 1728 /* 1729 * One or more slots in this byte are free. 1730 */ 1731 keyix = i*NBBY; 1732 while (b & 1) { 1733 again: 1734 keyix++; 1735 b >>= 1; 1736 } 1737 if (isset(sc->sc_keymap, keyix+64)) { 1738 /* full pair unavailable */ 1739 /* XXX statistic */ 1740 if (keyix == (i+1)*NBBY) { 1741 /* no slots were appropriate, advance */ 1742 continue; 1743 } 1744 goto again; 1745 } 1746 setbit(sc->sc_keymap, keyix); 1747 setbit(sc->sc_keymap, keyix+64); 1748 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1749 "%s: key pair %u,%u\n", 1750 __func__, keyix, keyix+64); 1751 *txkeyix = *rxkeyix = keyix; 1752 return 1; 1753 } 1754 } 1755 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1756 return 0; 1757 #undef N 1758 } 1759 1760 /* 1761 * Allocate a single key cache slot. 1762 */ 1763 static int 1764 key_alloc_single(struct ath_softc *sc, 1765 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1766 { 1767 #define N(a) (sizeof(a)/sizeof(a[0])) 1768 u_int i, keyix; 1769 1770 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1771 for (i = 0; i < N(sc->sc_keymap); i++) { 1772 u_int8_t b = sc->sc_keymap[i]; 1773 if (b != 0xff) { 1774 /* 1775 * One or more slots are free. 1776 */ 1777 keyix = i*NBBY; 1778 while (b & 1) 1779 keyix++, b >>= 1; 1780 setbit(sc->sc_keymap, keyix); 1781 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1782 __func__, keyix); 1783 *txkeyix = *rxkeyix = keyix; 1784 return 1; 1785 } 1786 } 1787 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1788 return 0; 1789 #undef N 1790 } 1791 1792 /* 1793 * Allocate one or more key cache slots for a uniacst key. The 1794 * key itself is needed only to identify the cipher. For hardware 1795 * TKIP with split cipher+MIC keys we allocate two key cache slot 1796 * pairs so that we can setup separate TX and RX MIC keys. Note 1797 * that the MIC key for a TKIP key at slot i is assumed by the 1798 * hardware to be at slot i+64. This limits TKIP keys to the first 1799 * 64 entries. 1800 */ 1801 static int 1802 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k, 1803 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 1804 { 1805 struct ath_softc *sc = ic->ic_ifp->if_softc; 1806 1807 /* 1808 * Group key allocation must be handled specially for 1809 * parts that do not support multicast key cache search 1810 * functionality. For those parts the key id must match 1811 * the h/w key index so lookups find the right key. On 1812 * parts w/ the key search facility we install the sender's 1813 * mac address (with the high bit set) and let the hardware 1814 * find the key w/o using the key id. This is preferred as 1815 * it permits us to support multiple users for adhoc and/or 1816 * multi-station operation. 1817 */ 1818 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1819 if (!(&ic->ic_nw_keys[0] <= k && 1820 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1821 /* should not happen */ 1822 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1823 "%s: bogus group key\n", __func__); 1824 return 0; 1825 } 1826 /* 1827 * XXX we pre-allocate the global keys so 1828 * have no way to check if they've already been allocated. 1829 */ 1830 *keyix = *rxkeyix = k - ic->ic_nw_keys; 1831 return 1; 1832 } 1833 1834 /* 1835 * We allocate two pair for TKIP when using the h/w to do 1836 * the MIC. For everything else, including software crypto, 1837 * we allocate a single entry. Note that s/w crypto requires 1838 * a pass-through slot on the 5211 and 5212. The 5210 does 1839 * not support pass-through cache entries and we map all 1840 * those requests to slot 0. 1841 */ 1842 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1843 return key_alloc_single(sc, keyix, rxkeyix); 1844 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1845 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1846 if (sc->sc_splitmic) 1847 return key_alloc_2pair(sc, keyix, rxkeyix); 1848 else 1849 return key_alloc_pair(sc, keyix, rxkeyix); 1850 } else { 1851 return key_alloc_single(sc, keyix, rxkeyix); 1852 } 1853 } 1854 1855 /* 1856 * Delete an entry in the key cache allocated by ath_key_alloc. 1857 */ 1858 static int 1859 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1860 { 1861 struct ath_softc *sc = ic->ic_ifp->if_softc; 1862 struct ath_hal *ah = sc->sc_ah; 1863 const struct ieee80211_cipher *cip = k->wk_cipher; 1864 u_int keyix = k->wk_keyix; 1865 1866 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1867 1868 if (!device_has_power(sc->sc_dev)) { 1869 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n", 1870 k->wk_keyix); 1871 } 1872 1873 ath_hal_keyreset(ah, keyix); 1874 /* 1875 * Handle split tx/rx keying required for TKIP with h/w MIC. 1876 */ 1877 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1878 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1879 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1880 if (keyix >= IEEE80211_WEP_NKID) { 1881 /* 1882 * Don't touch keymap entries for global keys so 1883 * they are never considered for dynamic allocation. 1884 */ 1885 clrbit(sc->sc_keymap, keyix); 1886 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1887 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1888 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1889 if (sc->sc_splitmic) { 1890 /* +32 for RX key, +32+64 for RX key MIC */ 1891 clrbit(sc->sc_keymap, keyix+32); 1892 clrbit(sc->sc_keymap, keyix+32+64); 1893 } 1894 } 1895 } 1896 return 1; 1897 } 1898 1899 /* 1900 * Set the key cache contents for the specified key. Key cache 1901 * slot(s) must already have been allocated by ath_key_alloc. 1902 */ 1903 static int 1904 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1905 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1906 { 1907 struct ath_softc *sc = ic->ic_ifp->if_softc; 1908 1909 if (!device_has_power(sc->sc_dev)) { 1910 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n", 1911 k->wk_keyix); 1912 } 1913 return ath_keyset(sc, k, mac, ic->ic_bss); 1914 } 1915 1916 /* 1917 * Block/unblock tx+rx processing while a key change is done. 1918 * We assume the caller serializes key management operations 1919 * so we only need to worry about synchronization with other 1920 * uses that originate in the driver. 1921 */ 1922 static void 1923 ath_key_update_begin(struct ieee80211com *ic) 1924 { 1925 struct ifnet *ifp = ic->ic_ifp; 1926 struct ath_softc *sc = ifp->if_softc; 1927 1928 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1929 #if 0 1930 tasklet_disable(&sc->sc_rxtq); 1931 #endif 1932 sc->sc_flags |= ATH_KEY_UPDATING; 1933 } 1934 1935 static void 1936 ath_key_update_end(struct ieee80211com *ic) 1937 { 1938 struct ifnet *ifp = ic->ic_ifp; 1939 struct ath_softc *sc = ifp->if_softc; 1940 1941 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1942 sc->sc_flags &= ~ATH_KEY_UPDATING; 1943 #if 0 1944 tasklet_enable(&sc->sc_rxtq); 1945 #endif 1946 } 1947 1948 /* 1949 * Calculate the receive filter according to the 1950 * operating mode and state: 1951 * 1952 * o always accept unicast, broadcast, and multicast traffic 1953 * o maintain current state of phy error reception (the hal 1954 * may enable phy error frames for noise immunity work) 1955 * o probe request frames are accepted only when operating in 1956 * hostap, adhoc, or monitor modes 1957 * o enable promiscuous mode according to the interface state 1958 * o accept beacons: 1959 * - when operating in adhoc mode so the 802.11 layer creates 1960 * node table entries for peers, 1961 * - when operating in station mode for collecting rssi data when 1962 * the station is otherwise quiet, or 1963 * - when scanning 1964 */ 1965 static u_int32_t 1966 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1967 { 1968 struct ieee80211com *ic = &sc->sc_ic; 1969 struct ath_hal *ah = sc->sc_ah; 1970 struct ifnet *ifp = &sc->sc_if; 1971 u_int32_t rfilt; 1972 1973 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1974 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1975 if (ic->ic_opmode != IEEE80211_M_STA) 1976 rfilt |= HAL_RX_FILTER_PROBEREQ; 1977 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1978 (ifp->if_flags & IFF_PROMISC)) 1979 rfilt |= HAL_RX_FILTER_PROM; 1980 if (ifp->if_flags & IFF_PROMISC) 1981 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ; 1982 if (ic->ic_opmode == IEEE80211_M_STA || 1983 ic->ic_opmode == IEEE80211_M_IBSS || 1984 state == IEEE80211_S_SCAN) 1985 rfilt |= HAL_RX_FILTER_BEACON; 1986 return rfilt; 1987 } 1988 1989 static void 1990 ath_mode_init(struct ath_softc *sc) 1991 { 1992 struct ethercom *ec = &sc->sc_ec; 1993 struct ifnet *ifp = &sc->sc_if; 1994 struct ieee80211com *ic = &sc->sc_ic; 1995 struct ath_hal *ah = sc->sc_ah; 1996 struct ether_multi *enm; 1997 struct ether_multistep estep; 1998 u_int32_t rfilt, mfilt[2], val; 1999 int i; 2000 uint8_t pos; 2001 2002 /* configure rx filter */ 2003 rfilt = ath_calcrxfilter(sc, ic->ic_state); 2004 ath_hal_setrxfilter(ah, rfilt); 2005 2006 /* configure operational mode */ 2007 ath_hal_setopmode(ah); 2008 2009 /* Write keys to hardware; it may have been powered down. */ 2010 ath_key_update_begin(ic); 2011 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2012 ath_key_set(ic, 2013 &ic->ic_crypto.cs_nw_keys[i], 2014 ic->ic_myaddr); 2015 } 2016 ath_key_update_end(ic); 2017 2018 /* 2019 * Handle any link-level address change. Note that we only 2020 * need to force ic_myaddr; any other addresses are handled 2021 * as a byproduct of the ifnet code marking the interface 2022 * down then up. 2023 * 2024 * XXX should get from lladdr instead of arpcom but that's more work 2025 */ 2026 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl)); 2027 ath_hal_setmac(ah, ic->ic_myaddr); 2028 2029 /* calculate and install multicast filter */ 2030 ifp->if_flags &= ~IFF_ALLMULTI; 2031 mfilt[0] = mfilt[1] = 0; 2032 ETHER_LOCK(ec); 2033 ETHER_FIRST_MULTI(estep, ec, enm); 2034 while (enm != NULL) { 2035 void *dl; 2036 /* XXX Punt on ranges. */ 2037 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 2038 mfilt[0] = mfilt[1] = 0xffffffff; 2039 ifp->if_flags |= IFF_ALLMULTI; 2040 break; 2041 } 2042 dl = enm->enm_addrlo; 2043 val = LE_READ_4((char *)dl + 0); 2044 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2045 val = LE_READ_4((char *)dl + 3); 2046 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2047 pos &= 0x3f; 2048 mfilt[pos / 32] |= (1 << (pos % 32)); 2049 2050 ETHER_NEXT_MULTI(estep, enm); 2051 } 2052 ETHER_UNLOCK(ec); 2053 2054 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 2055 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 2056 __func__, rfilt, mfilt[0], mfilt[1]); 2057 } 2058 2059 /* 2060 * Set the slot time based on the current setting. 2061 */ 2062 static void 2063 ath_setslottime(struct ath_softc *sc) 2064 { 2065 struct ieee80211com *ic = &sc->sc_ic; 2066 struct ath_hal *ah = sc->sc_ah; 2067 2068 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2069 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 2070 else 2071 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 2072 sc->sc_updateslot = OK; 2073 } 2074 2075 /* 2076 * Callback from the 802.11 layer to update the 2077 * slot time based on the current setting. 2078 */ 2079 static void 2080 ath_updateslot(struct ifnet *ifp) 2081 { 2082 struct ath_softc *sc = ifp->if_softc; 2083 struct ieee80211com *ic = &sc->sc_ic; 2084 2085 /* 2086 * When not coordinating the BSS, change the hardware 2087 * immediately. For other operation we defer the change 2088 * until beacon updates have propagated to the stations. 2089 */ 2090 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2091 sc->sc_updateslot = UPDATE; 2092 else 2093 ath_setslottime(sc); 2094 } 2095 2096 /* 2097 * Setup a h/w transmit queue for beacons. 2098 */ 2099 static int 2100 ath_beaconq_setup(struct ath_hal *ah) 2101 { 2102 HAL_TXQ_INFO qi; 2103 2104 memset(&qi, 0, sizeof(qi)); 2105 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2106 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2107 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2108 /* NB: for dynamic turbo, don't enable any other interrupts */ 2109 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2110 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2111 } 2112 2113 /* 2114 * Setup the transmit queue parameters for the beacon queue. 2115 */ 2116 static int 2117 ath_beaconq_config(struct ath_softc *sc) 2118 { 2119 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2120 struct ieee80211com *ic = &sc->sc_ic; 2121 struct ath_hal *ah = sc->sc_ah; 2122 HAL_TXQ_INFO qi; 2123 2124 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2125 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2126 /* 2127 * Always burst out beacon and CAB traffic. 2128 */ 2129 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2130 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2131 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2132 } else { 2133 struct wmeParams *wmep = 2134 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2135 /* 2136 * Adhoc mode; important thing is to use 2x cwmin. 2137 */ 2138 qi.tqi_aifs = wmep->wmep_aifsn; 2139 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2140 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2141 } 2142 2143 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2144 device_printf(sc->sc_dev, "unable to update parameters for " 2145 "beacon hardware queue!\n"); 2146 return 0; 2147 } else { 2148 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2149 return 1; 2150 } 2151 #undef ATH_EXPONENT_TO_VALUE 2152 } 2153 2154 /* 2155 * Allocate and setup an initial beacon frame. 2156 */ 2157 static int 2158 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2159 { 2160 struct ieee80211com *ic = ni->ni_ic; 2161 struct ath_buf *bf; 2162 struct mbuf *m; 2163 int error; 2164 2165 bf = STAILQ_FIRST(&sc->sc_bbuf); 2166 if (bf == NULL) { 2167 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 2168 sc->sc_stats.ast_be_nombuf++; /* XXX */ 2169 return ENOMEM; /* XXX */ 2170 } 2171 /* 2172 * NB: the beacon data buffer must be 32-bit aligned; 2173 * we assume the mbuf routines will return us something 2174 * with this alignment (perhaps should assert). 2175 */ 2176 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 2177 if (m == NULL) { 2178 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 2179 __func__); 2180 sc->sc_stats.ast_be_nombuf++; 2181 return ENOMEM; 2182 } 2183 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2184 BUS_DMA_NOWAIT); 2185 if (error == 0) { 2186 bf->bf_m = m; 2187 bf->bf_node = ieee80211_ref_node(ni); 2188 } else { 2189 m_freem(m); 2190 } 2191 return error; 2192 } 2193 2194 /* 2195 * Setup the beacon frame for transmit. 2196 */ 2197 static void 2198 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2199 { 2200 #define USE_SHPREAMBLE(_ic) \ 2201 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2202 == IEEE80211_F_SHPREAMBLE) 2203 struct ieee80211_node *ni = bf->bf_node; 2204 struct ieee80211com *ic = ni->ni_ic; 2205 struct mbuf *m = bf->bf_m; 2206 struct ath_hal *ah = sc->sc_ah; 2207 struct ath_desc *ds; 2208 int flags, antenna; 2209 const HAL_RATE_TABLE *rt; 2210 u_int8_t rix, rate; 2211 2212 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 2213 __func__, m, m->m_len); 2214 2215 /* setup descriptors */ 2216 ds = bf->bf_desc; 2217 2218 flags = HAL_TXDESC_NOACK; 2219 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2220 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */ 2221 flags |= HAL_TXDESC_VEOL; 2222 /* 2223 * Let hardware handle antenna switching unless 2224 * the user has selected a transmit antenna 2225 * (sc_txantenna is not 0). 2226 */ 2227 antenna = sc->sc_txantenna; 2228 } else { 2229 ds->ds_link = 0; 2230 /* 2231 * Switch antenna every 4 beacons, unless the user 2232 * has selected a transmit antenna (sc_txantenna 2233 * is not 0). 2234 * 2235 * XXX assumes two antenna 2236 */ 2237 if (sc->sc_txantenna == 0) 2238 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2239 else 2240 antenna = sc->sc_txantenna; 2241 } 2242 2243 KASSERTMSG(bf->bf_nseg == 1, 2244 "multi-segment beacon frame; nseg %u", bf->bf_nseg); 2245 ds->ds_data = bf->bf_segs[0].ds_addr; 2246 /* 2247 * Calculate rate code. 2248 * XXX everything at min xmit rate 2249 */ 2250 rix = sc->sc_minrateix; 2251 rt = sc->sc_currates; 2252 rate = rt->info[rix].rateCode; 2253 if (USE_SHPREAMBLE(ic)) 2254 rate |= rt->info[rix].shortPreamble; 2255 ath_hal_setuptxdesc(ah, ds 2256 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2257 , sizeof(struct ieee80211_frame)/* header length */ 2258 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2259 , ni->ni_txpower /* txpower XXX */ 2260 , rate, 1 /* series 0 rate/tries */ 2261 , HAL_TXKEYIX_INVALID /* no encryption */ 2262 , antenna /* antenna mode */ 2263 , flags /* no ack, veol for beacons */ 2264 , 0 /* rts/cts rate */ 2265 , 0 /* rts/cts duration */ 2266 ); 2267 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2268 ath_hal_filltxdesc(ah, ds 2269 , roundup(m->m_len, 4) /* buffer length */ 2270 , AH_TRUE /* first segment */ 2271 , AH_TRUE /* last segment */ 2272 , ds /* first descriptor */ 2273 ); 2274 2275 /* NB: The desc swap function becomes void, if descriptor swapping 2276 * is not enabled 2277 */ 2278 ath_desc_swap(ds); 2279 2280 #undef USE_SHPREAMBLE 2281 } 2282 2283 /* 2284 * Transmit a beacon frame at SWBA. Dynamic updates to the 2285 * frame contents are done as needed and the slot time is 2286 * also adjusted based on current state. 2287 */ 2288 static void 2289 ath_beacon_proc(void *arg, int pending) 2290 { 2291 struct ath_softc *sc = arg; 2292 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 2293 struct ieee80211_node *ni = bf->bf_node; 2294 struct ieee80211com *ic = ni->ni_ic; 2295 struct ath_hal *ah = sc->sc_ah; 2296 struct mbuf *m; 2297 int ncabq, error, otherant; 2298 2299 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2300 __func__, pending); 2301 2302 if (ic->ic_opmode == IEEE80211_M_STA || 2303 ic->ic_opmode == IEEE80211_M_MONITOR || 2304 bf == NULL || bf->bf_m == NULL) { 2305 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 2306 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 2307 return; 2308 } 2309 /* 2310 * Check if the previous beacon has gone out. If 2311 * not don't try to post another, skip this period 2312 * and wait for the next. Missed beacons indicate 2313 * a problem and should not occur. If we miss too 2314 * many consecutive beacons reset the device. 2315 */ 2316 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2317 sc->sc_bmisscount++; 2318 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2319 "%s: missed %u consecutive beacons\n", 2320 __func__, sc->sc_bmisscount); 2321 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2322 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask); 2323 return; 2324 } 2325 if (sc->sc_bmisscount != 0) { 2326 DPRINTF(sc, ATH_DEBUG_BEACON, 2327 "%s: resume beacon xmit after %u misses\n", 2328 __func__, sc->sc_bmisscount); 2329 sc->sc_bmisscount = 0; 2330 } 2331 2332 /* 2333 * Update dynamic beacon contents. If this returns 2334 * non-zero then we need to remap the memory because 2335 * the beacon frame changed size (probably because 2336 * of the TIM bitmap). 2337 */ 2338 m = bf->bf_m; 2339 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 2340 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 2341 /* XXX too conservative? */ 2342 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2343 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2344 BUS_DMA_NOWAIT); 2345 if (error != 0) { 2346 if_printf(&sc->sc_if, 2347 "%s: bus_dmamap_load_mbuf failed, error %u\n", 2348 __func__, error); 2349 return; 2350 } 2351 } 2352 2353 /* 2354 * Handle slot time change when a non-ERP station joins/leaves 2355 * an 11g network. The 802.11 layer notifies us via callback, 2356 * we mark updateslot, then wait one beacon before effecting 2357 * the change. This gives associated stations at least one 2358 * beacon interval to note the state change. 2359 */ 2360 /* XXX locking */ 2361 if (sc->sc_updateslot == UPDATE) 2362 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2363 else if (sc->sc_updateslot == COMMIT) 2364 ath_setslottime(sc); /* commit change to h/w */ 2365 2366 /* 2367 * Check recent per-antenna transmit statistics and flip 2368 * the default antenna if noticeably more frames went out 2369 * on the non-default antenna. 2370 * XXX assumes 2 anntenae 2371 */ 2372 otherant = sc->sc_defant & 1 ? 2 : 1; 2373 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2374 ath_setdefantenna(sc, otherant); 2375 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2376 2377 /* 2378 * Construct tx descriptor. 2379 */ 2380 ath_beacon_setup(sc, bf); 2381 2382 /* 2383 * Stop any current dma and put the new frame on the queue. 2384 * This should never fail since we check above that no frames 2385 * are still pending on the queue. 2386 */ 2387 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2388 DPRINTF(sc, ATH_DEBUG_ANY, 2389 "%s: beacon queue %u did not stop?\n", 2390 __func__, sc->sc_bhalq); 2391 } 2392 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2393 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 2394 2395 /* 2396 * Enable the CAB queue before the beacon queue to 2397 * insure cab frames are triggered by this beacon. 2398 */ 2399 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */ 2400 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 2401 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2402 ath_hal_txstart(ah, sc->sc_bhalq); 2403 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2404 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__, 2405 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc); 2406 2407 sc->sc_stats.ast_be_xmit++; 2408 } 2409 2410 /* 2411 * Reset the hardware after detecting beacons have stopped. 2412 */ 2413 static void 2414 ath_bstuck_proc(void *arg, int pending) 2415 { 2416 struct ath_softc *sc = arg; 2417 struct ifnet *ifp = &sc->sc_if; 2418 #ifdef __NetBSD__ 2419 int s; 2420 #endif 2421 2422 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2423 sc->sc_bmisscount); 2424 #ifdef __NetBSD__ 2425 s = splnet(); 2426 #endif 2427 ath_reset(ifp); 2428 #ifdef __NetBSD__ 2429 splx(s); 2430 #endif 2431 } 2432 2433 /* 2434 * Reclaim beacon resources. 2435 */ 2436 static void 2437 ath_beacon_free(struct ath_softc *sc) 2438 { 2439 struct ath_buf *bf; 2440 2441 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2442 if (bf->bf_m != NULL) { 2443 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2444 m_freem(bf->bf_m); 2445 bf->bf_m = NULL; 2446 } 2447 if (bf->bf_node != NULL) { 2448 ieee80211_free_node(bf->bf_node); 2449 bf->bf_node = NULL; 2450 } 2451 } 2452 } 2453 2454 /* 2455 * Configure the beacon and sleep timers. 2456 * 2457 * When operating as an AP this resets the TSF and sets 2458 * up the hardware to notify us when we need to issue beacons. 2459 * 2460 * When operating in station mode this sets up the beacon 2461 * timers according to the timestamp of the last received 2462 * beacon and the current TSF, configures PCF and DTIM 2463 * handling, programs the sleep registers so the hardware 2464 * will wakeup in time to receive beacons, and configures 2465 * the beacon miss handling so we'll receive a BMISS 2466 * interrupt when we stop seeing beacons from the AP 2467 * we've associated with. 2468 */ 2469 static void 2470 ath_beacon_config(struct ath_softc *sc) 2471 { 2472 #define TSF_TO_TU(_h,_l) \ 2473 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 2474 #define FUDGE 2 2475 struct ath_hal *ah = sc->sc_ah; 2476 struct ieee80211com *ic = &sc->sc_ic; 2477 struct ieee80211_node *ni = ic->ic_bss; 2478 u_int32_t nexttbtt, intval, tsftu; 2479 u_int64_t tsf; 2480 2481 /* extract tstamp from last beacon and convert to TU */ 2482 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2483 LE_READ_4(ni->ni_tstamp.data)); 2484 /* NB: the beacon interval is kept internally in TU's */ 2485 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2486 if (nexttbtt == 0) /* e.g. for ap mode */ 2487 nexttbtt = intval; 2488 else if (intval) /* NB: can be 0 for monitor mode */ 2489 nexttbtt = roundup(nexttbtt, intval); 2490 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2491 __func__, nexttbtt, intval, ni->ni_intval); 2492 if (ic->ic_opmode == IEEE80211_M_STA) { 2493 HAL_BEACON_STATE bs; 2494 int dtimperiod, dtimcount; 2495 int cfpperiod, cfpcount; 2496 2497 /* 2498 * Setup dtim and cfp parameters according to 2499 * last beacon we received (which may be none). 2500 */ 2501 dtimperiod = ni->ni_dtim_period; 2502 if (dtimperiod <= 0) /* NB: 0 if not known */ 2503 dtimperiod = 1; 2504 dtimcount = ni->ni_dtim_count; 2505 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2506 dtimcount = 0; /* XXX? */ 2507 cfpperiod = 1; /* NB: no PCF support yet */ 2508 cfpcount = 0; 2509 /* 2510 * Pull nexttbtt forward to reflect the current 2511 * TSF and calculate dtim+cfp state for the result. 2512 */ 2513 tsf = ath_hal_gettsf64(ah); 2514 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2515 do { 2516 nexttbtt += intval; 2517 if (--dtimcount < 0) { 2518 dtimcount = dtimperiod - 1; 2519 if (--cfpcount < 0) 2520 cfpcount = cfpperiod - 1; 2521 } 2522 } while (nexttbtt < tsftu); 2523 memset(&bs, 0, sizeof(bs)); 2524 bs.bs_intval = intval; 2525 bs.bs_nexttbtt = nexttbtt; 2526 bs.bs_dtimperiod = dtimperiod*intval; 2527 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2528 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2529 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2530 bs.bs_cfpmaxduration = 0; 2531 #if 0 2532 /* 2533 * The 802.11 layer records the offset to the DTIM 2534 * bitmap while receiving beacons; use it here to 2535 * enable h/w detection of our AID being marked in 2536 * the bitmap vector (to indicate frames for us are 2537 * pending at the AP). 2538 * XXX do DTIM handling in s/w to WAR old h/w bugs 2539 * XXX enable based on h/w rev for newer chips 2540 */ 2541 bs.bs_timoffset = ni->ni_timoff; 2542 #endif 2543 /* 2544 * Calculate the number of consecutive beacons to miss 2545 * before taking a BMISS interrupt. The configuration 2546 * is specified in ms, so we need to convert that to 2547 * TU's and then calculate based on the beacon interval. 2548 * Note that we clamp the result to at most 10 beacons. 2549 */ 2550 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2551 if (bs.bs_bmissthreshold > 10) 2552 bs.bs_bmissthreshold = 10; 2553 else if (bs.bs_bmissthreshold <= 0) 2554 bs.bs_bmissthreshold = 1; 2555 2556 /* 2557 * Calculate sleep duration. The configuration is 2558 * given in ms. We insure a multiple of the beacon 2559 * period is used. Also, if the sleep duration is 2560 * greater than the DTIM period then it makes senses 2561 * to make it a multiple of that. 2562 * 2563 * XXX fixed at 100ms 2564 */ 2565 bs.bs_sleepduration = 2566 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2567 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2568 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2569 2570 DPRINTF(sc, ATH_DEBUG_BEACON, 2571 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2572 , __func__ 2573 , tsf, tsftu 2574 , bs.bs_intval 2575 , bs.bs_nexttbtt 2576 , bs.bs_dtimperiod 2577 , bs.bs_nextdtim 2578 , bs.bs_bmissthreshold 2579 , bs.bs_sleepduration 2580 , bs.bs_cfpperiod 2581 , bs.bs_cfpmaxduration 2582 , bs.bs_cfpnext 2583 , bs.bs_timoffset 2584 ); 2585 ath_hal_intrset(ah, 0); 2586 ath_hal_beacontimers(ah, &bs); 2587 sc->sc_imask |= HAL_INT_BMISS; 2588 ath_hal_intrset(ah, sc->sc_imask); 2589 } else { 2590 ath_hal_intrset(ah, 0); 2591 if (nexttbtt == intval) 2592 intval |= HAL_BEACON_RESET_TSF; 2593 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2594 /* 2595 * In IBSS mode enable the beacon timers but only 2596 * enable SWBA interrupts if we need to manually 2597 * prepare beacon frames. Otherwise we use a 2598 * self-linked tx descriptor and let the hardware 2599 * deal with things. 2600 */ 2601 intval |= HAL_BEACON_ENA; 2602 if (!sc->sc_hasveol) 2603 sc->sc_imask |= HAL_INT_SWBA; 2604 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 2605 /* 2606 * Pull nexttbtt forward to reflect 2607 * the current TSF. 2608 */ 2609 tsf = ath_hal_gettsf64(ah); 2610 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2611 do { 2612 nexttbtt += intval; 2613 } while (nexttbtt < tsftu); 2614 } 2615 ath_beaconq_config(sc); 2616 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2617 /* 2618 * In AP mode we enable the beacon timers and 2619 * SWBA interrupts to prepare beacon frames. 2620 */ 2621 intval |= HAL_BEACON_ENA; 2622 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2623 ath_beaconq_config(sc); 2624 } 2625 ath_hal_beaconinit(ah, nexttbtt, intval); 2626 sc->sc_bmisscount = 0; 2627 ath_hal_intrset(ah, sc->sc_imask); 2628 /* 2629 * When using a self-linked beacon descriptor in 2630 * ibss mode load it once here. 2631 */ 2632 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2633 ath_beacon_proc(sc, 0); 2634 } 2635 sc->sc_syncbeacon = 0; 2636 #undef UNDEF 2637 #undef TSF_TO_TU 2638 } 2639 2640 static int 2641 ath_descdma_setup(struct ath_softc *sc, 2642 struct ath_descdma *dd, ath_bufhead *head, 2643 const char *name, int nbuf, int ndesc) 2644 { 2645 #define DS2PHYS(_dd, _ds) \ 2646 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc)) 2647 struct ifnet *ifp = &sc->sc_if; 2648 struct ath_desc *ds; 2649 struct ath_buf *bf; 2650 int i, bsize, error; 2651 2652 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2653 __func__, name, nbuf, ndesc); 2654 2655 dd->dd_name = name; 2656 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2657 2658 /* 2659 * Setup DMA descriptor area. 2660 */ 2661 dd->dd_dmat = sc->sc_dmat; 2662 2663 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE, 2664 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0); 2665 2666 if (error != 0) { 2667 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2668 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2669 goto fail0; 2670 } 2671 2672 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg, 2673 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT); 2674 if (error != 0) { 2675 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n", 2676 nbuf * ndesc, dd->dd_name, error); 2677 goto fail1; 2678 } 2679 2680 /* allocate descriptors */ 2681 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1, 2682 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2683 if (error != 0) { 2684 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2685 "error %u\n", dd->dd_name, error); 2686 goto fail2; 2687 } 2688 2689 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, 2690 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT); 2691 if (error != 0) { 2692 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2693 dd->dd_name, error); 2694 goto fail3; 2695 } 2696 2697 ds = dd->dd_desc; 2698 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr; 2699 DPRINTF(sc, ATH_DEBUG_RESET, 2700 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n", 2701 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2702 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2703 2704 /* allocate rx buffers */ 2705 bsize = sizeof(struct ath_buf) * nbuf; 2706 bf = malloc(bsize, M_ATHDEV, M_WAITOK | M_ZERO); 2707 dd->dd_bufptr = bf; 2708 2709 STAILQ_INIT(head); 2710 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2711 bf->bf_desc = ds; 2712 bf->bf_daddr = DS2PHYS(dd, ds); 2713 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc, 2714 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap); 2715 if (error != 0) { 2716 if_printf(ifp, "unable to create dmamap for %s " 2717 "buffer %u, error %u\n", dd->dd_name, i, error); 2718 ath_descdma_cleanup(sc, dd, head); 2719 return error; 2720 } 2721 STAILQ_INSERT_TAIL(head, bf, bf_list); 2722 } 2723 return 0; 2724 fail3: 2725 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2726 fail2: 2727 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2728 fail1: 2729 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2730 fail0: 2731 memset(dd, 0, sizeof(*dd)); 2732 return error; 2733 #undef DS2PHYS 2734 } 2735 2736 static void 2737 ath_descdma_cleanup(struct ath_softc *sc, 2738 struct ath_descdma *dd, ath_bufhead *head) 2739 { 2740 struct ath_buf *bf; 2741 struct ieee80211_node *ni; 2742 2743 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2744 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2745 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2746 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2747 2748 STAILQ_FOREACH(bf, head, bf_list) { 2749 if (bf->bf_m) { 2750 m_freem(bf->bf_m); 2751 bf->bf_m = NULL; 2752 } 2753 if (bf->bf_dmamap != NULL) { 2754 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2755 bf->bf_dmamap = NULL; 2756 } 2757 ni = bf->bf_node; 2758 bf->bf_node = NULL; 2759 if (ni != NULL) { 2760 /* 2761 * Reclaim node reference. 2762 */ 2763 ieee80211_free_node(ni); 2764 } 2765 } 2766 2767 STAILQ_INIT(head); 2768 free(dd->dd_bufptr, M_ATHDEV); 2769 memset(dd, 0, sizeof(*dd)); 2770 } 2771 2772 static int 2773 ath_desc_alloc(struct ath_softc *sc) 2774 { 2775 int error; 2776 2777 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2778 "rx", ath_rxbuf, 1); 2779 if (error != 0) 2780 return error; 2781 2782 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2783 "tx", ath_txbuf, ATH_TXDESC); 2784 if (error != 0) { 2785 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2786 return error; 2787 } 2788 2789 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2790 "beacon", 1, 1); 2791 if (error != 0) { 2792 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2793 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2794 return error; 2795 } 2796 return 0; 2797 } 2798 2799 static void 2800 ath_desc_free(struct ath_softc *sc) 2801 { 2802 2803 if (sc->sc_bdma.dd_desc_len != 0) 2804 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2805 if (sc->sc_txdma.dd_desc_len != 0) 2806 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2807 if (sc->sc_rxdma.dd_desc_len != 0) 2808 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2809 } 2810 2811 static struct ieee80211_node * 2812 ath_node_alloc(struct ieee80211_node_table *nt) 2813 { 2814 struct ieee80211com *ic = nt->nt_ic; 2815 struct ath_softc *sc = ic->ic_ifp->if_softc; 2816 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2817 struct ath_node *an; 2818 2819 an = malloc(space, M_80211_NODE, M_NOWAIT | M_ZERO); 2820 if (an == NULL) { 2821 /* XXX stat+msg */ 2822 return NULL; 2823 } 2824 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2825 ath_rate_node_init(sc, an); 2826 2827 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2828 return &an->an_node; 2829 } 2830 2831 static void 2832 ath_node_free(struct ieee80211_node *ni) 2833 { 2834 struct ieee80211com *ic = ni->ni_ic; 2835 struct ath_softc *sc = ic->ic_ifp->if_softc; 2836 2837 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2838 2839 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2840 sc->sc_node_free(ni); 2841 } 2842 2843 static u_int8_t 2844 ath_node_getrssi(const struct ieee80211_node *ni) 2845 { 2846 #define HAL_EP_RND(x, mul) \ 2847 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2848 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2849 int32_t rssi; 2850 2851 /* 2852 * When only one frame is received there will be no state in 2853 * avgrssi so fallback on the value recorded by the 802.11 layer. 2854 */ 2855 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2856 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2857 else 2858 rssi = ni->ni_rssi; 2859 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2860 #undef HAL_EP_RND 2861 } 2862 2863 static int 2864 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2865 { 2866 struct ath_hal *ah = sc->sc_ah; 2867 int error; 2868 struct mbuf *m; 2869 struct ath_desc *ds; 2870 2871 m = bf->bf_m; 2872 if (m == NULL) { 2873 /* 2874 * NB: by assigning a page to the rx dma buffer we 2875 * implicitly satisfy the Atheros requirement that 2876 * this buffer be cache-line-aligned and sized to be 2877 * multiple of the cache line size. Not doing this 2878 * causes weird stuff to happen (for the 5210 at least). 2879 */ 2880 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2881 if (m == NULL) { 2882 DPRINTF(sc, ATH_DEBUG_ANY, 2883 "%s: no mbuf/cluster\n", __func__); 2884 sc->sc_stats.ast_rx_nombuf++; 2885 return ENOMEM; 2886 } 2887 bf->bf_m = m; 2888 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2889 2890 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2891 bf->bf_dmamap, m, 2892 BUS_DMA_NOWAIT); 2893 if (error != 0) { 2894 DPRINTF(sc, ATH_DEBUG_ANY, 2895 "%s: bus_dmamap_load_mbuf failed; error %d\n", 2896 __func__, error); 2897 sc->sc_stats.ast_rx_busdma++; 2898 return error; 2899 } 2900 KASSERTMSG(bf->bf_nseg == 1, 2901 "multi-segment packet; nseg %u", bf->bf_nseg); 2902 } 2903 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2904 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2905 2906 /* 2907 * Setup descriptors. For receive we always terminate 2908 * the descriptor list with a self-linked entry so we'll 2909 * not get overrun under high load (as can happen with a 2910 * 5212 when ANI processing enables PHY error frames). 2911 * 2912 * To insure the last descriptor is self-linked we create 2913 * each descriptor as self-linked and add it to the end. As 2914 * each additional descriptor is added the previous self-linked 2915 * entry is ``fixed'' naturally. This should be safe even 2916 * if DMA is happening. When processing RX interrupts we 2917 * never remove/process the last, self-linked, entry on the 2918 * descriptor list. This insures the hardware always has 2919 * someplace to write a new frame. 2920 */ 2921 ds = bf->bf_desc; 2922 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */ 2923 ds->ds_data = bf->bf_segs[0].ds_addr; 2924 /* ds->ds_vdata = mtod(m, void *); for radar */ 2925 ath_hal_setuprxdesc(ah, ds 2926 , m->m_len /* buffer size */ 2927 , 0 2928 ); 2929 2930 if (sc->sc_rxlink != NULL) 2931 *sc->sc_rxlink = bf->bf_daddr; 2932 sc->sc_rxlink = &ds->ds_link; 2933 return 0; 2934 } 2935 2936 /* 2937 * Extend 15-bit time stamp from rx descriptor to 2938 * a full 64-bit TSF using the specified TSF. 2939 */ 2940 static inline u_int64_t 2941 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 2942 { 2943 if ((tsf & 0x7fff) < rstamp) 2944 tsf -= 0x8000; 2945 return ((tsf &~ 0x7fff) | rstamp); 2946 } 2947 2948 /* 2949 * Intercept management frames to collect beacon rssi data 2950 * and to do ibss merges. 2951 */ 2952 static void 2953 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2954 struct ieee80211_node *ni, 2955 int subtype, int rssi, u_int32_t rstamp) 2956 { 2957 struct ath_softc *sc = ic->ic_ifp->if_softc; 2958 2959 /* 2960 * Call up first so subsequent work can use information 2961 * potentially stored in the node (e.g. for ibss merge). 2962 */ 2963 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2964 switch (subtype) { 2965 case IEEE80211_FC0_SUBTYPE_BEACON: 2966 /* update rssi statistics for use by the hal */ 2967 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 2968 if (sc->sc_syncbeacon && 2969 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) { 2970 /* 2971 * Resync beacon timers using the tsf of the beacon 2972 * frame we just received. 2973 */ 2974 ath_beacon_config(sc); 2975 } 2976 /* fall thru... */ 2977 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2978 if (ic->ic_opmode == IEEE80211_M_IBSS && 2979 ic->ic_state == IEEE80211_S_RUN) { 2980 u_int64_t tsf = ath_extend_tsf(rstamp, 2981 ath_hal_gettsf64(sc->sc_ah)); 2982 2983 /* 2984 * Handle ibss merge as needed; check the tsf on the 2985 * frame before attempting the merge. The 802.11 spec 2986 * says the station should change its bssid to match 2987 * the oldest station with the same ssid, where oldest 2988 * is determined by the tsf. Note that hardware 2989 * reconfiguration happens through callback to 2990 * ath_newstate as the state machine will go from 2991 * RUN -> RUN when this happens. 2992 */ 2993 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2994 DPRINTF(sc, ATH_DEBUG_STATE, 2995 "ibss merge, rstamp %u tsf %ju " 2996 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2997 (uintmax_t)ni->ni_tstamp.tsf); 2998 (void) ieee80211_ibss_merge(ni); 2999 } 3000 } 3001 break; 3002 } 3003 } 3004 3005 /* 3006 * Set the default antenna. 3007 */ 3008 static void 3009 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3010 { 3011 struct ath_hal *ah = sc->sc_ah; 3012 3013 /* XXX block beacon interrupts */ 3014 ath_hal_setdefantenna(ah, antenna); 3015 if (sc->sc_defant != antenna) 3016 sc->sc_stats.ast_ant_defswitch++; 3017 sc->sc_defant = antenna; 3018 sc->sc_rxotherant = 0; 3019 } 3020 3021 static void 3022 ath_handle_micerror(struct ieee80211com *ic, 3023 struct ieee80211_frame *wh, int keyix) 3024 { 3025 struct ieee80211_node *ni; 3026 3027 /* XXX recheck MIC to deal w/ chips that lie */ 3028 /* XXX discard MIC errors on !data frames */ 3029 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix); 3030 if (ni != NULL) { 3031 ieee80211_notify_michael_failure(ic, wh, keyix); 3032 ieee80211_free_node(ni); 3033 } 3034 } 3035 3036 static void 3037 ath_rx_proc(void *arg, int npending) 3038 { 3039 #define PA2DESC(_sc, _pa) \ 3040 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 3041 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3042 struct ath_softc *sc = arg; 3043 struct ath_buf *bf; 3044 struct ieee80211com *ic = &sc->sc_ic; 3045 struct ifnet *ifp = &sc->sc_if; 3046 struct ath_hal *ah = sc->sc_ah; 3047 struct ath_desc *ds; 3048 struct mbuf *m; 3049 struct ieee80211_node *ni; 3050 struct ath_node *an; 3051 int len, ngood, type; 3052 u_int phyerr; 3053 HAL_STATUS status; 3054 int16_t nf; 3055 u_int64_t tsf; 3056 uint8_t rxerr_tap, rxerr_mon; 3057 NET_LOCK_GIANT_FUNC_INIT(); 3058 3059 NET_LOCK_GIANT(); /* XXX */ 3060 3061 rxerr_tap = 3062 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0; 3063 3064 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR) 3065 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3066 else if (ifp->if_flags & IFF_PROMISC) 3067 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3068 3069 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3070 ngood = 0; 3071 nf = ath_hal_getchannoise(ah, &sc->sc_curchan); 3072 tsf = ath_hal_gettsf64(ah); 3073 do { 3074 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3075 if (bf == NULL) { /* NB: shouldn't happen */ 3076 if_printf(ifp, "%s: no buffer!\n", __func__); 3077 break; 3078 } 3079 ds = bf->bf_desc; 3080 if (ds->ds_link == bf->bf_daddr) { 3081 /* NB: never process the self-linked entry at the end */ 3082 break; 3083 } 3084 m = bf->bf_m; 3085 if (m == NULL) { /* NB: shouldn't happen */ 3086 if_printf(ifp, "%s: no mbuf!\n", __func__); 3087 break; 3088 } 3089 /* XXX sync descriptor memory */ 3090 /* 3091 * Must provide the virtual address of the current 3092 * descriptor, the physical address, and the virtual 3093 * address of the next descriptor in the h/w chain. 3094 * This allows the HAL to look ahead to see if the 3095 * hardware is done with a descriptor by checking the 3096 * done bit in the following descriptor and the address 3097 * of the current descriptor the DMA engine is working 3098 * on. All this is necessary because of our use of 3099 * a self-linked list to avoid rx overruns. 3100 */ 3101 status = ath_hal_rxprocdesc(ah, ds, 3102 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 3103 &ds->ds_rxstat); 3104 #ifdef AR_DEBUG 3105 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 3106 ath_printrxbuf(bf, status == HAL_OK); 3107 #endif 3108 if (status == HAL_EINPROGRESS) 3109 break; 3110 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 3111 if (ds->ds_rxstat.rs_more) { 3112 /* 3113 * Frame spans multiple descriptors; this 3114 * cannot happen yet as we don't support 3115 * jumbograms. If not in monitor mode, 3116 * discard the frame. 3117 */ 3118 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3119 sc->sc_stats.ast_rx_toobig++; 3120 goto rx_next; 3121 } 3122 /* fall thru for monitor mode handling... */ 3123 } else if (ds->ds_rxstat.rs_status != 0) { 3124 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 3125 sc->sc_stats.ast_rx_crcerr++; 3126 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 3127 sc->sc_stats.ast_rx_fifoerr++; 3128 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 3129 sc->sc_stats.ast_rx_phyerr++; 3130 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 3131 sc->sc_stats.ast_rx_phy[phyerr]++; 3132 goto rx_next; 3133 } 3134 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 3135 /* 3136 * Decrypt error. If the error occurred 3137 * because there was no hardware key, then 3138 * let the frame through so the upper layers 3139 * can process it. This is necessary for 5210 3140 * parts which have no way to setup a ``clear'' 3141 * key cache entry. 3142 * 3143 * XXX do key cache faulting 3144 */ 3145 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 3146 goto rx_accept; 3147 sc->sc_stats.ast_rx_badcrypt++; 3148 } 3149 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 3150 sc->sc_stats.ast_rx_badmic++; 3151 /* 3152 * Do minimal work required to hand off 3153 * the 802.11 header for notifcation. 3154 */ 3155 /* XXX frag's and qos frames */ 3156 len = ds->ds_rxstat.rs_datalen; 3157 if (len >= sizeof (struct ieee80211_frame)) { 3158 bus_dmamap_sync(sc->sc_dmat, 3159 bf->bf_dmamap, 3160 0, bf->bf_dmamap->dm_mapsize, 3161 BUS_DMASYNC_POSTREAD); 3162 ath_handle_micerror(ic, 3163 mtod(m, struct ieee80211_frame *), 3164 sc->sc_splitmic ? 3165 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix); 3166 } 3167 } 3168 if_statinc(ifp, if_ierrors); 3169 /* 3170 * Reject error frames, we normally don't want 3171 * to see them in monitor mode (in monitor mode 3172 * allow through packets that have crypto problems). 3173 */ 3174 3175 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon)) 3176 goto rx_next; 3177 } 3178 rx_accept: 3179 /* 3180 * Sync and unmap the frame. At this point we're 3181 * committed to passing the mbuf somewhere so clear 3182 * bf_m; this means a new sk_buff must be allocated 3183 * when the rx descriptor is setup again to receive 3184 * another frame. 3185 */ 3186 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3187 0, bf->bf_dmamap->dm_mapsize, 3188 BUS_DMASYNC_POSTREAD); 3189 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3190 bf->bf_m = NULL; 3191 3192 m_set_rcvif(m, ifp); 3193 len = ds->ds_rxstat.rs_datalen; 3194 m->m_pkthdr.len = m->m_len = len; 3195 3196 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 3197 3198 if (sc->sc_drvbpf) { 3199 u_int8_t rix; 3200 3201 /* 3202 * Discard anything shorter than an ack or cts. 3203 */ 3204 if (len < IEEE80211_ACK_LEN) { 3205 DPRINTF(sc, ATH_DEBUG_RECV, 3206 "%s: runt packet %d\n", 3207 __func__, len); 3208 sc->sc_stats.ast_rx_tooshort++; 3209 m_freem(m); 3210 goto rx_next; 3211 } 3212 rix = ds->ds_rxstat.rs_rate; 3213 sc->sc_rx_th.wr_tsf = htole64( 3214 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf)); 3215 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3216 if (ds->ds_rxstat.rs_status & 3217 (HAL_RXERR_CRC|HAL_RXERR_PHY)) { 3218 sc->sc_rx_th.wr_flags |= 3219 IEEE80211_RADIOTAP_F_BADFCS; 3220 } 3221 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3222 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf; 3223 sc->sc_rx_th.wr_antnoise = nf; 3224 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 3225 3226 bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, 3227 sc->sc_rx_th_len, m, BPF_D_IN); 3228 } 3229 3230 if (ds->ds_rxstat.rs_status & rxerr_tap) { 3231 m_freem(m); 3232 goto rx_next; 3233 } 3234 /* 3235 * From this point on we assume the frame is at least 3236 * as large as ieee80211_frame_min; verify that. 3237 */ 3238 if (len < IEEE80211_MIN_LEN) { 3239 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 3240 __func__, len); 3241 sc->sc_stats.ast_rx_tooshort++; 3242 m_freem(m); 3243 goto rx_next; 3244 } 3245 3246 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 3247 ieee80211_dump_pkt(mtod(m, void *), len, 3248 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 3249 ds->ds_rxstat.rs_rssi); 3250 } 3251 3252 m_adj(m, -IEEE80211_CRC_LEN); 3253 3254 /* 3255 * Locate the node for sender, track state, and then 3256 * pass the (referenced) node up to the 802.11 layer 3257 * for its use. 3258 */ 3259 ni = ieee80211_find_rxnode_withkey(ic, 3260 mtod(m, const struct ieee80211_frame_min *), 3261 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ? 3262 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix); 3263 /* 3264 * Track rx rssi and do any rx antenna management. 3265 */ 3266 an = ATH_NODE(ni); 3267 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 3268 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi); 3269 /* 3270 * Send frame up for processing. 3271 */ 3272 type = ieee80211_input(ic, m, ni, 3273 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 3274 ieee80211_free_node(ni); 3275 if (sc->sc_diversity) { 3276 /* 3277 * When using fast diversity, change the default rx 3278 * antenna if diversity chooses the other antenna 3 3279 * times in a row. 3280 */ 3281 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 3282 if (++sc->sc_rxotherant >= 3) 3283 ath_setdefantenna(sc, 3284 ds->ds_rxstat.rs_antenna); 3285 } else 3286 sc->sc_rxotherant = 0; 3287 } 3288 if (sc->sc_softled) { 3289 /* 3290 * Blink for any data frame. Otherwise do a 3291 * heartbeat-style blink when idle. The latter 3292 * is mainly for station mode where we depend on 3293 * periodic beacon frames to trigger the poll event. 3294 */ 3295 if (type == IEEE80211_FC0_TYPE_DATA) { 3296 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 3297 ath_led_event(sc, ATH_LED_RX); 3298 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3299 ath_led_event(sc, ATH_LED_POLL); 3300 } 3301 /* 3302 * Arrange to update the last rx timestamp only for 3303 * frames from our ap when operating in station mode. 3304 * This assumes the rx key is always setup when associated. 3305 */ 3306 if (ic->ic_opmode == IEEE80211_M_STA && 3307 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID) 3308 ngood++; 3309 rx_next: 3310 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3311 } while (ath_rxbuf_init(sc, bf) == 0); 3312 3313 /* rx signal state monitoring */ 3314 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan); 3315 #if 0 3316 if (ath_hal_radar_event(ah)) 3317 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask); 3318 #endif 3319 if (ngood) 3320 sc->sc_lastrx = tsf; 3321 3322 #ifdef __NetBSD__ 3323 /* XXX Why isn't this necessary in FreeBSD? */ 3324 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 3325 ath_start(ifp); 3326 #endif /* __NetBSD__ */ 3327 3328 NET_UNLOCK_GIANT(); /* XXX */ 3329 #undef PA2DESC 3330 } 3331 3332 /* 3333 * Setup a h/w transmit queue. 3334 */ 3335 static struct ath_txq * 3336 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3337 { 3338 #define N(a) (sizeof(a)/sizeof(a[0])) 3339 struct ath_hal *ah = sc->sc_ah; 3340 HAL_TXQ_INFO qi; 3341 int qnum; 3342 3343 memset(&qi, 0, sizeof(qi)); 3344 qi.tqi_subtype = subtype; 3345 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3346 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3347 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3348 /* 3349 * Enable interrupts only for EOL and DESC conditions. 3350 * We mark tx descriptors to receive a DESC interrupt 3351 * when a tx queue gets deep; otherwise waiting for the 3352 * EOL to reap descriptors. Note that this is done to 3353 * reduce interrupt load and this only defers reaping 3354 * descriptors, never transmitting frames. Aside from 3355 * reducing interrupts this also permits more concurrency. 3356 * The only potential downside is if the tx queue backs 3357 * up in which case the top half of the kernel may backup 3358 * due to a lack of tx descriptors. 3359 */ 3360 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3361 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3362 if (qnum == -1) { 3363 /* 3364 * NB: don't print a message, this happens 3365 * normally on parts with too few tx queues 3366 */ 3367 return NULL; 3368 } 3369 if (qnum >= N(sc->sc_txq)) { 3370 device_printf(sc->sc_dev, 3371 "hal qnum %u out of range, max %zu!\n", 3372 qnum, N(sc->sc_txq)); 3373 ath_hal_releasetxqueue(ah, qnum); 3374 return NULL; 3375 } 3376 if (!ATH_TXQ_SETUP(sc, qnum)) { 3377 struct ath_txq *txq = &sc->sc_txq[qnum]; 3378 3379 txq->axq_qnum = qnum; 3380 txq->axq_depth = 0; 3381 txq->axq_intrcnt = 0; 3382 txq->axq_link = NULL; 3383 STAILQ_INIT(&txq->axq_q); 3384 ATH_TXQ_LOCK_INIT(sc, txq); 3385 sc->sc_txqsetup |= 1<<qnum; 3386 } 3387 return &sc->sc_txq[qnum]; 3388 #undef N 3389 } 3390 3391 /* 3392 * Setup a hardware data transmit queue for the specified 3393 * access control. The hal may not support all requested 3394 * queues in which case it will return a reference to a 3395 * previously setup queue. We record the mapping from ac's 3396 * to h/w queues for use by ath_tx_start and also track 3397 * the set of h/w queues being used to optimize work in the 3398 * transmit interrupt handler and related routines. 3399 */ 3400 static int 3401 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3402 { 3403 #define N(a) (sizeof(a)/sizeof(a[0])) 3404 struct ath_txq *txq; 3405 3406 if (ac >= N(sc->sc_ac2q)) { 3407 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3408 ac, N(sc->sc_ac2q)); 3409 return 0; 3410 } 3411 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3412 if (txq != NULL) { 3413 sc->sc_ac2q[ac] = txq; 3414 return 1; 3415 } else 3416 return 0; 3417 #undef N 3418 } 3419 3420 /* 3421 * Update WME parameters for a transmit queue. 3422 */ 3423 static int 3424 ath_txq_update(struct ath_softc *sc, int ac) 3425 { 3426 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3427 #define ATH_TXOP_TO_US(v) (v<<5) 3428 struct ieee80211com *ic = &sc->sc_ic; 3429 struct ath_txq *txq = sc->sc_ac2q[ac]; 3430 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3431 struct ath_hal *ah = sc->sc_ah; 3432 HAL_TXQ_INFO qi; 3433 3434 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3435 qi.tqi_aifs = wmep->wmep_aifsn; 3436 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3437 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3438 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3439 3440 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3441 device_printf(sc->sc_dev, "unable to update hardware queue " 3442 "parameters for %s traffic!\n", 3443 ieee80211_wme_acnames[ac]); 3444 return 0; 3445 } else { 3446 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3447 return 1; 3448 } 3449 #undef ATH_TXOP_TO_US 3450 #undef ATH_EXPONENT_TO_VALUE 3451 } 3452 3453 /* 3454 * Callback from the 802.11 layer to update WME parameters. 3455 */ 3456 static int 3457 ath_wme_update(struct ieee80211com *ic) 3458 { 3459 struct ath_softc *sc = ic->ic_ifp->if_softc; 3460 3461 return !ath_txq_update(sc, WME_AC_BE) || 3462 !ath_txq_update(sc, WME_AC_BK) || 3463 !ath_txq_update(sc, WME_AC_VI) || 3464 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3465 } 3466 3467 /* 3468 * Reclaim resources for a setup queue. 3469 */ 3470 static void 3471 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3472 { 3473 3474 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3475 ATH_TXQ_LOCK_DESTROY(txq); 3476 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3477 } 3478 3479 /* 3480 * Reclaim all tx queue resources. 3481 */ 3482 static void 3483 ath_tx_cleanup(struct ath_softc *sc) 3484 { 3485 int i; 3486 3487 ATH_TXBUF_LOCK_DESTROY(sc); 3488 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3489 if (ATH_TXQ_SETUP(sc, i)) 3490 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3491 } 3492 3493 /* 3494 * Defragment an mbuf chain, returning at most maxfrags separate 3495 * mbufs+clusters. If this is not possible NULL is returned and 3496 * the original mbuf chain is left in its present (potentially 3497 * modified) state. We use two techniques: collapsing consecutive 3498 * mbufs and replacing consecutive mbufs by a cluster. 3499 */ 3500 static struct mbuf * 3501 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3502 { 3503 struct mbuf *m, *n, *n2, **prev; 3504 u_int curfrags; 3505 3506 /* 3507 * Calculate the current number of frags. 3508 */ 3509 curfrags = 0; 3510 for (m = m0; m != NULL; m = m->m_next) 3511 curfrags++; 3512 /* 3513 * First, try to collapse mbufs. Note that we always collapse 3514 * towards the front so we don't need to deal with moving the 3515 * pkthdr. This may be suboptimal if the first mbuf has much 3516 * less data than the following. 3517 */ 3518 m = m0; 3519 again: 3520 for (;;) { 3521 n = m->m_next; 3522 if (n == NULL) 3523 break; 3524 if (n->m_len < M_TRAILINGSPACE(m)) { 3525 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *), 3526 n->m_len); 3527 m->m_len += n->m_len; 3528 m->m_next = n->m_next; 3529 m_free(n); 3530 if (--curfrags <= maxfrags) 3531 return m0; 3532 } else 3533 m = n; 3534 } 3535 KASSERTMSG(maxfrags > 1, 3536 "maxfrags %u, but normal collapse failed", maxfrags); 3537 /* 3538 * Collapse consecutive mbufs to a cluster. 3539 */ 3540 prev = &m0->m_next; /* NB: not the first mbuf */ 3541 while ((n = *prev) != NULL) { 3542 if ((n2 = n->m_next) != NULL && 3543 n->m_len + n2->m_len < MCLBYTES) { 3544 m = m_getcl(how, MT_DATA, 0); 3545 if (m == NULL) 3546 goto bad; 3547 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3548 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3549 n2->m_len); 3550 m->m_len = n->m_len + n2->m_len; 3551 m->m_next = n2->m_next; 3552 *prev = m; 3553 m_free(n); 3554 m_free(n2); 3555 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3556 return m0; 3557 /* 3558 * Still not there, try the normal collapse 3559 * again before we allocate another cluster. 3560 */ 3561 goto again; 3562 } 3563 prev = &n->m_next; 3564 } 3565 /* 3566 * No place where we can collapse to a cluster; punt. 3567 * This can occur if, for example, you request 2 frags 3568 * but the packet requires that both be clusters (we 3569 * never reallocate the first mbuf to avoid moving the 3570 * packet header). 3571 */ 3572 bad: 3573 return NULL; 3574 } 3575 3576 /* 3577 * Return h/w rate index for an IEEE rate (w/o basic rate bit). 3578 */ 3579 static int 3580 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate) 3581 { 3582 int i; 3583 3584 for (i = 0; i < rt->rateCount; i++) 3585 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate) 3586 return i; 3587 return 0; /* NB: lowest rate */ 3588 } 3589 3590 static void 3591 ath_freetx(struct mbuf *m) 3592 { 3593 struct mbuf *next; 3594 3595 do { 3596 next = m->m_nextpkt; 3597 m->m_nextpkt = NULL; 3598 m_freem(m); 3599 } while ((m = next) != NULL); 3600 } 3601 3602 static int 3603 deduct_pad_bytes(int len, int hdrlen) 3604 { 3605 /* XXX I am suspicious that this code, which I extracted 3606 * XXX from ath_tx_start() for reuse, does the right thing. 3607 */ 3608 return len - (hdrlen & 3); 3609 } 3610 3611 static int 3612 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3613 struct mbuf *m0) 3614 { 3615 struct ieee80211com *ic = &sc->sc_ic; 3616 struct ath_hal *ah = sc->sc_ah; 3617 struct ifnet *ifp = &sc->sc_if; 3618 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3619 int i, error, iswep, ismcast, isfrag, ismrr; 3620 int keyix, hdrlen, pktlen, try0; 3621 u_int8_t rix, txrate, ctsrate; 3622 u_int8_t cix = 0xff; /* NB: silence compiler */ 3623 struct ath_desc *ds, *ds0; 3624 struct ath_txq *txq; 3625 struct ieee80211_frame *wh; 3626 u_int subtype, flags, ctsduration; 3627 HAL_PKT_TYPE atype; 3628 const HAL_RATE_TABLE *rt; 3629 HAL_BOOL shortPreamble; 3630 struct ath_node *an; 3631 struct mbuf *m; 3632 u_int pri; 3633 3634 wh = mtod(m0, struct ieee80211_frame *); 3635 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3636 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3637 isfrag = m0->m_flags & M_FRAG; 3638 hdrlen = ieee80211_anyhdrsize(wh); 3639 /* 3640 * Packet length must not include any 3641 * pad bytes; deduct them here. 3642 */ 3643 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen); 3644 3645 if (iswep) { 3646 const struct ieee80211_cipher *cip; 3647 struct ieee80211_key *k; 3648 3649 /* 3650 * Construct the 802.11 header+trailer for an encrypted 3651 * frame. The only reason this can fail is because of an 3652 * unknown or unsupported cipher/key type. 3653 */ 3654 k = ieee80211_crypto_encap(ic, ni, m0); 3655 if (k == NULL) { 3656 /* 3657 * This can happen when the key is yanked after the 3658 * frame was queued. Just discard the frame; the 3659 * 802.11 layer counts failures and provides 3660 * debugging/diagnostics. 3661 */ 3662 ath_freetx(m0); 3663 return EIO; 3664 } 3665 /* 3666 * Adjust the packet + header lengths for the crypto 3667 * additions and calculate the h/w key index. When 3668 * a s/w mic is done the frame will have had any mic 3669 * added to it prior to entry so m0->m_pkthdr.len above will 3670 * account for it. Otherwise we need to add it to the 3671 * packet length. 3672 */ 3673 cip = k->wk_cipher; 3674 hdrlen += cip->ic_header; 3675 pktlen += cip->ic_header + cip->ic_trailer; 3676 /* NB: frags always have any TKIP MIC done in s/w */ 3677 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 3678 pktlen += cip->ic_miclen; 3679 keyix = k->wk_keyix; 3680 3681 /* packet header may have moved, reset our local pointer */ 3682 wh = mtod(m0, struct ieee80211_frame *); 3683 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3684 /* 3685 * Use station key cache slot, if assigned. 3686 */ 3687 keyix = ni->ni_ucastkey.wk_keyix; 3688 if (keyix == IEEE80211_KEYIX_NONE) 3689 keyix = HAL_TXKEYIX_INVALID; 3690 } else 3691 keyix = HAL_TXKEYIX_INVALID; 3692 3693 pktlen += IEEE80211_CRC_LEN; 3694 3695 /* 3696 * Load the DMA map so any coalescing is done. This 3697 * also calculates the number of descriptors we need. 3698 */ 3699 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3700 BUS_DMA_NOWAIT); 3701 if (error == EFBIG) { 3702 /* XXX packet requires too many descriptors */ 3703 bf->bf_nseg = ATH_TXDESC+1; 3704 } else if (error != 0) { 3705 sc->sc_stats.ast_tx_busdma++; 3706 ath_freetx(m0); 3707 return error; 3708 } 3709 /* 3710 * Discard null packets and check for packets that 3711 * require too many TX descriptors. We try to convert 3712 * the latter to a cluster. 3713 */ 3714 if (error == EFBIG) { /* too many desc's, linearize */ 3715 sc->sc_stats.ast_tx_linear++; 3716 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3717 if (m == NULL) { 3718 ath_freetx(m0); 3719 sc->sc_stats.ast_tx_nombuf++; 3720 return ENOMEM; 3721 } 3722 m0 = m; 3723 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3724 BUS_DMA_NOWAIT); 3725 if (error != 0) { 3726 sc->sc_stats.ast_tx_busdma++; 3727 ath_freetx(m0); 3728 return error; 3729 } 3730 KASSERTMSG(bf->bf_nseg <= ATH_TXDESC, 3731 "too many segments after defrag; nseg %u", bf->bf_nseg); 3732 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3733 sc->sc_stats.ast_tx_nodata++; 3734 ath_freetx(m0); 3735 return EIO; 3736 } 3737 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3738 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3739 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 3740 bf->bf_m = m0; 3741 bf->bf_node = ni; /* NB: held reference */ 3742 3743 /* setup descriptors */ 3744 ds = bf->bf_desc; 3745 rt = sc->sc_currates; 3746 KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode); 3747 3748 /* 3749 * NB: the 802.11 layer marks whether or not we should 3750 * use short preamble based on the current mode and 3751 * negotiated parameters. 3752 */ 3753 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3754 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) { 3755 shortPreamble = AH_TRUE; 3756 sc->sc_stats.ast_tx_shortpre++; 3757 } else { 3758 shortPreamble = AH_FALSE; 3759 } 3760 3761 an = ATH_NODE(ni); 3762 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3763 ismrr = 0; /* default no multi-rate retry*/ 3764 /* 3765 * Calculate Atheros packet type from IEEE80211 packet header, 3766 * setup for rate calculations, and select h/w transmit queue. 3767 */ 3768 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3769 case IEEE80211_FC0_TYPE_MGT: 3770 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3771 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3772 atype = HAL_PKT_TYPE_BEACON; 3773 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3774 atype = HAL_PKT_TYPE_PROBE_RESP; 3775 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3776 atype = HAL_PKT_TYPE_ATIM; 3777 else 3778 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3779 rix = sc->sc_minrateix; 3780 txrate = rt->info[rix].rateCode; 3781 if (shortPreamble) 3782 txrate |= rt->info[rix].shortPreamble; 3783 try0 = ATH_TXMGTTRY; 3784 /* NB: force all management frames to highest queue */ 3785 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3786 /* NB: force all management frames to highest queue */ 3787 pri = WME_AC_VO; 3788 } else 3789 pri = WME_AC_BE; 3790 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3791 break; 3792 case IEEE80211_FC0_TYPE_CTL: 3793 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3794 rix = sc->sc_minrateix; 3795 txrate = rt->info[rix].rateCode; 3796 if (shortPreamble) 3797 txrate |= rt->info[rix].shortPreamble; 3798 try0 = ATH_TXMGTTRY; 3799 /* NB: force all ctl frames to highest queue */ 3800 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3801 /* NB: force all ctl frames to highest queue */ 3802 pri = WME_AC_VO; 3803 } else 3804 pri = WME_AC_BE; 3805 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3806 break; 3807 case IEEE80211_FC0_TYPE_DATA: 3808 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3809 /* 3810 * Data frames: multicast frames go out at a fixed rate, 3811 * otherwise consult the rate control module for the 3812 * rate to use. 3813 */ 3814 if (ismcast) { 3815 /* 3816 * Check mcast rate setting in case it's changed. 3817 * XXX move out of fastpath 3818 */ 3819 if (ic->ic_mcast_rate != sc->sc_mcastrate) { 3820 sc->sc_mcastrix = 3821 ath_tx_findrix(rt, ic->ic_mcast_rate); 3822 sc->sc_mcastrate = ic->ic_mcast_rate; 3823 } 3824 rix = sc->sc_mcastrix; 3825 txrate = rt->info[rix].rateCode; 3826 try0 = 1; 3827 } else { 3828 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3829 &rix, &try0, &txrate); 3830 sc->sc_txrate = txrate; /* for LED blinking */ 3831 if (try0 != ATH_TXMAXTRY) 3832 ismrr = 1; 3833 } 3834 pri = M_WME_GETAC(m0); 3835 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 3836 flags |= HAL_TXDESC_NOACK; 3837 break; 3838 default: 3839 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3840 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3841 /* XXX statistic */ 3842 ath_freetx(m0); 3843 return EIO; 3844 } 3845 txq = sc->sc_ac2q[pri]; 3846 3847 /* 3848 * When servicing one or more stations in power-save mode 3849 * multicast frames must be buffered until after the beacon. 3850 * We use the CAB queue for that. 3851 */ 3852 if (ismcast && ic->ic_ps_sta) { 3853 txq = sc->sc_cabq; 3854 /* XXX? more bit in 802.11 frame header */ 3855 } 3856 3857 /* 3858 * Calculate miscellaneous flags. 3859 */ 3860 if (ismcast) { 3861 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3862 } else if (pktlen > ic->ic_rtsthreshold) { 3863 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3864 cix = rt->info[rix].controlRate; 3865 sc->sc_stats.ast_tx_rts++; 3866 } 3867 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 3868 sc->sc_stats.ast_tx_noack++; 3869 3870 /* 3871 * If 802.11g protection is enabled, determine whether 3872 * to use RTS/CTS or just CTS. Note that this is only 3873 * done for OFDM unicast frames. 3874 */ 3875 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3876 rt->info[rix].phy == IEEE80211_T_OFDM && 3877 (flags & HAL_TXDESC_NOACK) == 0) { 3878 /* XXX fragments must use CCK rates w/ protection */ 3879 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3880 flags |= HAL_TXDESC_RTSENA; 3881 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3882 flags |= HAL_TXDESC_CTSENA; 3883 if (isfrag) { 3884 /* 3885 * For frags it would be desirable to use the 3886 * highest CCK rate for RTS/CTS. But stations 3887 * farther away may detect it at a lower CCK rate 3888 * so use the configured protection rate instead 3889 * (for now). 3890 */ 3891 cix = rt->info[sc->sc_protrix].controlRate; 3892 } else 3893 cix = rt->info[sc->sc_protrix].controlRate; 3894 sc->sc_stats.ast_tx_protect++; 3895 } 3896 3897 /* 3898 * Calculate duration. This logically belongs in the 802.11 3899 * layer but it lacks sufficient information to calculate it. 3900 */ 3901 if ((flags & HAL_TXDESC_NOACK) == 0 && 3902 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3903 u_int16_t dur; 3904 /* 3905 * XXX not right with fragmentation. 3906 */ 3907 if (shortPreamble) 3908 dur = rt->info[rix].spAckDuration; 3909 else 3910 dur = rt->info[rix].lpAckDuration; 3911 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 3912 dur += dur; /* additional SIFS+ACK */ 3913 KASSERTMSG(m0->m_nextpkt != NULL, "no fragment"); 3914 /* 3915 * Include the size of next fragment so NAV is 3916 * updated properly. The last fragment uses only 3917 * the ACK duration 3918 */ 3919 dur += ath_hal_computetxtime(ah, rt, 3920 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len, 3921 hdrlen) - 3922 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen, 3923 rix, shortPreamble); 3924 } 3925 if (isfrag) { 3926 /* 3927 * Force hardware to use computed duration for next 3928 * fragment by disabling multi-rate retry which updates 3929 * duration based on the multi-rate duration table. 3930 */ 3931 try0 = ATH_TXMAXTRY; 3932 } 3933 *(u_int16_t *)wh->i_dur = htole16(dur); 3934 } 3935 3936 /* 3937 * Calculate RTS/CTS rate and duration if needed. 3938 */ 3939 ctsduration = 0; 3940 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3941 /* 3942 * CTS transmit rate is derived from the transmit rate 3943 * by looking in the h/w rate table. We must also factor 3944 * in whether or not a short preamble is to be used. 3945 */ 3946 /* NB: cix is set above where RTS/CTS is enabled */ 3947 KASSERTMSG(cix != 0xff, "cix not setup"); 3948 ctsrate = rt->info[cix].rateCode; 3949 /* 3950 * Compute the transmit duration based on the frame 3951 * size and the size of an ACK frame. We call into the 3952 * HAL to do the computation since it depends on the 3953 * characteristics of the actual PHY being used. 3954 * 3955 * NB: CTS is assumed the same size as an ACK so we can 3956 * use the precalculated ACK durations. 3957 */ 3958 if (shortPreamble) { 3959 ctsrate |= rt->info[cix].shortPreamble; 3960 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3961 ctsduration += rt->info[cix].spAckDuration; 3962 ctsduration += ath_hal_computetxtime(ah, 3963 rt, pktlen, rix, AH_TRUE); 3964 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3965 ctsduration += rt->info[rix].spAckDuration; 3966 } else { 3967 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3968 ctsduration += rt->info[cix].lpAckDuration; 3969 ctsduration += ath_hal_computetxtime(ah, 3970 rt, pktlen, rix, AH_FALSE); 3971 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3972 ctsduration += rt->info[rix].lpAckDuration; 3973 } 3974 /* 3975 * Must disable multi-rate retry when using RTS/CTS. 3976 */ 3977 ismrr = 0; 3978 try0 = ATH_TXMGTTRY; /* XXX */ 3979 } else 3980 ctsrate = 0; 3981 3982 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3983 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len, 3984 sc->sc_hwmap[txrate].ieeerate, -1); 3985 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 3986 if (sc->sc_drvbpf) { 3987 u_int64_t tsf = ath_hal_gettsf64(ah); 3988 3989 sc->sc_tx_th.wt_tsf = htole64(tsf); 3990 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3991 if (iswep) 3992 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3993 if (isfrag) 3994 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 3995 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3996 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3997 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3998 3999 bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0, 4000 BPF_D_OUT); 4001 } 4002 4003 /* 4004 * Determine if a tx interrupt should be generated for 4005 * this descriptor. We take a tx interrupt to reap 4006 * descriptors when the h/w hits an EOL condition or 4007 * when the descriptor is specifically marked to generate 4008 * an interrupt. We periodically mark descriptors in this 4009 * way to insure timely replenishing of the supply needed 4010 * for sending frames. Defering interrupts reduces system 4011 * load and potentially allows more concurrent work to be 4012 * done but if done to aggressively can cause senders to 4013 * backup. 4014 * 4015 * NB: use >= to deal with sc_txintrperiod changing 4016 * dynamically through sysctl. 4017 */ 4018 if (flags & HAL_TXDESC_INTREQ) { 4019 txq->axq_intrcnt = 0; 4020 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 4021 flags |= HAL_TXDESC_INTREQ; 4022 txq->axq_intrcnt = 0; 4023 } 4024 4025 /* 4026 * Formulate first tx descriptor with tx controls. 4027 */ 4028 /* XXX check return value? */ 4029 ath_hal_setuptxdesc(ah, ds 4030 , pktlen /* packet length */ 4031 , hdrlen /* header length */ 4032 , atype /* Atheros packet type */ 4033 , ni->ni_txpower /* txpower */ 4034 , txrate, try0 /* series 0 rate/tries */ 4035 , keyix /* key cache index */ 4036 , sc->sc_txantenna /* antenna mode */ 4037 , flags /* flags */ 4038 , ctsrate /* rts/cts rate */ 4039 , ctsduration /* rts/cts duration */ 4040 ); 4041 bf->bf_flags = flags; 4042 /* 4043 * Setup the multi-rate retry state only when we're 4044 * going to use it. This assumes ath_hal_setuptxdesc 4045 * initializes the descriptors (so we don't have to) 4046 * when the hardware supports multi-rate retry and 4047 * we don't use it. 4048 */ 4049 if (ismrr) 4050 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 4051 4052 /* 4053 * Fillin the remainder of the descriptor info. 4054 */ 4055 ds0 = ds; 4056 for (i = 0; i < bf->bf_nseg; i++, ds++) { 4057 ds->ds_data = bf->bf_segs[i].ds_addr; 4058 if (i == bf->bf_nseg - 1) 4059 ds->ds_link = 0; 4060 else 4061 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 4062 ath_hal_filltxdesc(ah, ds 4063 , bf->bf_segs[i].ds_len /* segment length */ 4064 , i == 0 /* first segment */ 4065 , i == bf->bf_nseg - 1 /* last segment */ 4066 , ds0 /* first descriptor */ 4067 ); 4068 4069 /* NB: The desc swap function becomes void, 4070 * if descriptor swapping is not enabled 4071 */ 4072 ath_desc_swap(ds); 4073 4074 DPRINTF(sc, ATH_DEBUG_XMIT, 4075 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 4076 __func__, i, ds->ds_link, ds->ds_data, 4077 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 4078 } 4079 /* 4080 * Insert the frame on the outbound list and 4081 * pass it on to the hardware. 4082 */ 4083 ATH_TXQ_LOCK(txq); 4084 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4085 if (txq->axq_link == NULL) { 4086 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 4087 DPRINTF(sc, ATH_DEBUG_XMIT, 4088 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__, 4089 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc, 4090 txq->axq_depth); 4091 } else { 4092 *txq->axq_link = HTOAH32(bf->bf_daddr); 4093 DPRINTF(sc, ATH_DEBUG_XMIT, 4094 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n", 4095 __func__, txq->axq_qnum, txq->axq_link, 4096 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 4097 } 4098 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 4099 /* 4100 * The CAB queue is started from the SWBA handler since 4101 * frames only go out on DTIM and to avoid possible races. 4102 */ 4103 if (txq != sc->sc_cabq) 4104 ath_hal_txstart(ah, txq->axq_qnum); 4105 ATH_TXQ_UNLOCK(txq); 4106 4107 return 0; 4108 } 4109 4110 /* 4111 * Process completed xmit descriptors from the specified queue. 4112 */ 4113 static int 4114 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 4115 { 4116 struct ath_hal *ah = sc->sc_ah; 4117 struct ieee80211com *ic = &sc->sc_ic; 4118 struct ath_buf *bf; 4119 struct ath_desc *ds, *ds0; 4120 struct ieee80211_node *ni; 4121 struct ath_node *an; 4122 int sr, lr, pri, nacked; 4123 HAL_STATUS status; 4124 4125 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4126 __func__, txq->axq_qnum, 4127 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4128 txq->axq_link); 4129 nacked = 0; 4130 for (;;) { 4131 ATH_TXQ_LOCK(txq); 4132 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4133 bf = STAILQ_FIRST(&txq->axq_q); 4134 if (bf == NULL) { 4135 txq->axq_link = NULL; 4136 ATH_TXQ_UNLOCK(txq); 4137 break; 4138 } 4139 ds0 = &bf->bf_desc[0]; 4140 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4141 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat); 4142 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4143 ath_printtxbuf(bf, status == HAL_OK); 4144 if (status == HAL_EINPROGRESS) { 4145 ATH_TXQ_UNLOCK(txq); 4146 break; 4147 } 4148 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4149 ATH_TXQ_UNLOCK(txq); 4150 4151 ni = bf->bf_node; 4152 if (ni != NULL) { 4153 an = ATH_NODE(ni); 4154 if (ds->ds_txstat.ts_status == 0) { 4155 u_int8_t txant = ds->ds_txstat.ts_antenna; 4156 sc->sc_stats.ast_ant_tx[txant]++; 4157 sc->sc_ant_tx[txant]++; 4158 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 4159 sc->sc_stats.ast_tx_altrate++; 4160 sc->sc_stats.ast_tx_rssi = 4161 ds->ds_txstat.ts_rssi; 4162 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4163 ds->ds_txstat.ts_rssi); 4164 pri = M_WME_GETAC(bf->bf_m); 4165 if (pri >= WME_AC_VO) 4166 ic->ic_wme.wme_hipri_traffic++; 4167 ni->ni_inact = ni->ni_inact_reload; 4168 } else { 4169 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 4170 sc->sc_stats.ast_tx_xretries++; 4171 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 4172 sc->sc_stats.ast_tx_fifoerr++; 4173 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 4174 sc->sc_stats.ast_tx_filtered++; 4175 } 4176 sr = ds->ds_txstat.ts_shortretry; 4177 lr = ds->ds_txstat.ts_longretry; 4178 sc->sc_stats.ast_tx_shortretry += sr; 4179 sc->sc_stats.ast_tx_longretry += lr; 4180 /* 4181 * Hand the descriptor to the rate control algorithm. 4182 */ 4183 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 && 4184 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) { 4185 /* 4186 * If frame was ack'd update the last rx time 4187 * used to workaround phantom bmiss interrupts. 4188 */ 4189 if (ds->ds_txstat.ts_status == 0) 4190 nacked++; 4191 ath_rate_tx_complete(sc, an, ds, ds0); 4192 } 4193 /* 4194 * Reclaim reference to node. 4195 * 4196 * NB: the node may be reclaimed here if, for example 4197 * this is a DEAUTH message that was sent and the 4198 * node was timed out due to inactivity. 4199 */ 4200 ieee80211_free_node(ni); 4201 } 4202 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 4203 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4204 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4205 m_freem(bf->bf_m); 4206 bf->bf_m = NULL; 4207 bf->bf_node = NULL; 4208 4209 ATH_TXBUF_LOCK(sc); 4210 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4211 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4212 ATH_TXBUF_UNLOCK(sc); 4213 } 4214 return nacked; 4215 } 4216 4217 static inline int 4218 txqactive(struct ath_hal *ah, int qnum) 4219 { 4220 u_int32_t txqs = 1<<qnum; 4221 ath_hal_gettxintrtxqs(ah, &txqs); 4222 return (txqs & (1<<qnum)); 4223 } 4224 4225 /* 4226 * Deferred processing of transmit interrupt; special-cased 4227 * for a single hardware transmit queue (e.g. 5210 and 5211). 4228 */ 4229 static void 4230 ath_tx_proc_q0(void *arg, int npending) 4231 { 4232 struct ath_softc *sc = arg; 4233 struct ifnet *ifp = &sc->sc_if; 4234 #ifdef __NetBSD__ 4235 int s; 4236 #endif 4237 4238 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0) 4239 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4240 4241 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4242 ath_tx_processq(sc, sc->sc_cabq); 4243 4244 if (sc->sc_softled) 4245 ath_led_event(sc, ATH_LED_TX); 4246 4247 #ifdef __NetBSD__ 4248 s = splnet(); 4249 #endif 4250 ath_start(ifp); 4251 #ifdef __NetBSD__ 4252 splx(s); 4253 #endif 4254 } 4255 4256 /* 4257 * Deferred processing of transmit interrupt; special-cased 4258 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4259 */ 4260 static void 4261 ath_tx_proc_q0123(void *arg, int npending) 4262 { 4263 struct ath_softc *sc = arg; 4264 struct ifnet *ifp = &sc->sc_if; 4265 int nacked; 4266 #ifdef __NetBSD__ 4267 int s; 4268 #endif 4269 4270 /* 4271 * Process each active queue. 4272 */ 4273 nacked = 0; 4274 if (txqactive(sc->sc_ah, 0)) 4275 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 4276 if (txqactive(sc->sc_ah, 1)) 4277 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 4278 if (txqactive(sc->sc_ah, 2)) 4279 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 4280 if (txqactive(sc->sc_ah, 3)) 4281 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 4282 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4283 ath_tx_processq(sc, sc->sc_cabq); 4284 if (nacked) { 4285 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4286 } 4287 4288 if (sc->sc_softled) 4289 ath_led_event(sc, ATH_LED_TX); 4290 4291 #ifdef __NetBSD__ 4292 s = splnet(); 4293 #endif 4294 ath_start(ifp); 4295 #ifdef __NetBSD__ 4296 splx(s); 4297 #endif 4298 } 4299 4300 /* 4301 * Deferred processing of transmit interrupt. 4302 */ 4303 static void 4304 ath_tx_proc(void *arg, int npending) 4305 { 4306 struct ath_softc *sc = arg; 4307 struct ifnet *ifp = &sc->sc_if; 4308 int i, nacked; 4309 #ifdef __NetBSD__ 4310 int s; 4311 #endif 4312 4313 /* 4314 * Process each active queue. 4315 */ 4316 nacked = 0; 4317 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4318 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 4319 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 4320 if (nacked) { 4321 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4322 } 4323 4324 if (sc->sc_softled) 4325 ath_led_event(sc, ATH_LED_TX); 4326 4327 #ifdef __NetBSD__ 4328 s = splnet(); 4329 #endif 4330 ath_start(ifp); 4331 #ifdef __NetBSD__ 4332 splx(s); 4333 #endif 4334 } 4335 4336 static void 4337 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4338 { 4339 struct ath_hal *ah = sc->sc_ah; 4340 struct ieee80211_node *ni; 4341 struct ath_buf *bf; 4342 struct ath_desc *ds; 4343 4344 /* 4345 * NB: this assumes output has been stopped and 4346 * we do not need to block ath_tx_tasklet 4347 */ 4348 for (;;) { 4349 ATH_TXQ_LOCK(txq); 4350 bf = STAILQ_FIRST(&txq->axq_q); 4351 if (bf == NULL) { 4352 txq->axq_link = NULL; 4353 ATH_TXQ_UNLOCK(txq); 4354 break; 4355 } 4356 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4357 ATH_TXQ_UNLOCK(txq); 4358 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4359 if (sc->sc_debug & ATH_DEBUG_RESET) 4360 ath_printtxbuf(bf, 4361 ath_hal_txprocdesc(ah, bf->bf_desc, 4362 &ds->ds_txstat) == HAL_OK); 4363 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4364 m_freem(bf->bf_m); 4365 bf->bf_m = NULL; 4366 ni = bf->bf_node; 4367 bf->bf_node = NULL; 4368 if (ni != NULL) { 4369 /* 4370 * Reclaim node reference. 4371 */ 4372 ieee80211_free_node(ni); 4373 } 4374 ATH_TXBUF_LOCK(sc); 4375 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4376 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4377 ATH_TXBUF_UNLOCK(sc); 4378 } 4379 } 4380 4381 static void 4382 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4383 { 4384 struct ath_hal *ah = sc->sc_ah; 4385 4386 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4387 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4388 __func__, txq->axq_qnum, 4389 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4390 txq->axq_link); 4391 } 4392 4393 /* 4394 * Drain the transmit queues and reclaim resources. 4395 */ 4396 static void 4397 ath_draintxq(struct ath_softc *sc) 4398 { 4399 struct ath_hal *ah = sc->sc_ah; 4400 int i; 4401 4402 /* XXX return value */ 4403 if (device_is_active(sc->sc_dev)) { 4404 /* don't touch the hardware if marked invalid */ 4405 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4406 DPRINTF(sc, ATH_DEBUG_RESET, 4407 "%s: beacon queue %p\n", __func__, 4408 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 4409 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4410 if (ATH_TXQ_SETUP(sc, i)) 4411 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4412 } 4413 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4414 if (ATH_TXQ_SETUP(sc, i)) 4415 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4416 } 4417 4418 /* 4419 * Disable the receive h/w in preparation for a reset. 4420 */ 4421 static void 4422 ath_stoprecv(struct ath_softc *sc) 4423 { 4424 #define PA2DESC(_sc, _pa) \ 4425 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 4426 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4427 struct ath_hal *ah = sc->sc_ah; 4428 4429 ath_hal_stoppcurecv(ah); /* disable PCU */ 4430 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4431 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4432 DELAY(3000); /* 3ms is long enough for 1 frame */ 4433 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4434 struct ath_buf *bf; 4435 4436 printf("%s: rx queue %p, link %p\n", __func__, 4437 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4438 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4439 struct ath_desc *ds = bf->bf_desc; 4440 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4441 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 4442 &ds->ds_rxstat); 4443 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4444 ath_printrxbuf(bf, status == HAL_OK); 4445 } 4446 } 4447 sc->sc_rxlink = NULL; /* just in case */ 4448 #undef PA2DESC 4449 } 4450 4451 /* 4452 * Enable the receive h/w following a reset. 4453 */ 4454 static int 4455 ath_startrecv(struct ath_softc *sc) 4456 { 4457 struct ath_hal *ah = sc->sc_ah; 4458 struct ath_buf *bf; 4459 4460 sc->sc_rxlink = NULL; 4461 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4462 int error = ath_rxbuf_init(sc, bf); 4463 if (error != 0) { 4464 DPRINTF(sc, ATH_DEBUG_RECV, 4465 "%s: ath_rxbuf_init failed %d\n", 4466 __func__, error); 4467 return error; 4468 } 4469 } 4470 4471 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4472 ath_hal_putrxbuf(ah, bf->bf_daddr); 4473 ath_hal_rxena(ah); /* enable recv descriptors */ 4474 ath_mode_init(sc); /* set filters, etc. */ 4475 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4476 return 0; 4477 } 4478 4479 /* 4480 * Update internal state after a channel change. 4481 */ 4482 static void 4483 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4484 { 4485 struct ieee80211com *ic = &sc->sc_ic; 4486 enum ieee80211_phymode mode; 4487 u_int16_t flags; 4488 4489 /* 4490 * Change channels and update the h/w rate map 4491 * if we're switching; e.g. 11a to 11b/g. 4492 */ 4493 mode = ieee80211_chan2mode(ic, chan); 4494 if (mode != sc->sc_curmode) 4495 ath_setcurmode(sc, mode); 4496 /* 4497 * Update BPF state. NB: ethereal et. al. don't handle 4498 * merged flags well so pick a unique mode for their use. 4499 */ 4500 if (IEEE80211_IS_CHAN_A(chan)) 4501 flags = IEEE80211_CHAN_A; 4502 /* XXX 11g schizophrenia */ 4503 else if (IEEE80211_IS_CHAN_G(chan) || 4504 IEEE80211_IS_CHAN_PUREG(chan)) 4505 flags = IEEE80211_CHAN_G; 4506 else 4507 flags = IEEE80211_CHAN_B; 4508 if (IEEE80211_IS_CHAN_T(chan)) 4509 flags |= IEEE80211_CHAN_TURBO; 4510 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 4511 htole16(chan->ic_freq); 4512 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 4513 htole16(flags); 4514 } 4515 4516 #if 0 4517 /* 4518 * Poll for a channel clear indication; this is required 4519 * for channels requiring DFS and not previously visited 4520 * and/or with a recent radar detection. 4521 */ 4522 static void 4523 ath_dfswait(void *arg) 4524 { 4525 struct ath_softc *sc = arg; 4526 struct ath_hal *ah = sc->sc_ah; 4527 HAL_CHANNEL hchan; 4528 4529 ath_hal_radar_wait(ah, &hchan); 4530 if (hchan.privFlags & CHANNEL_INTERFERENCE) { 4531 if_printf(&sc->sc_if, 4532 "channel %u/0x%x/0x%x has interference\n", 4533 hchan.channel, hchan.channelFlags, hchan.privFlags); 4534 return; 4535 } 4536 if ((hchan.privFlags & CHANNEL_DFS) == 0) { 4537 /* XXX should not happen */ 4538 return; 4539 } 4540 if (hchan.privFlags & CHANNEL_DFS_CLEAR) { 4541 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR; 4542 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4543 if_printf(&sc->sc_if, 4544 "channel %u/0x%x/0x%x marked clear\n", 4545 hchan.channel, hchan.channelFlags, hchan.privFlags); 4546 } else 4547 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc); 4548 } 4549 #endif 4550 4551 /* 4552 * Set/change channels. If the channel is really being changed, 4553 * it's done by resetting the chip. To accomplish this we must 4554 * first cleanup any pending DMA, then restart stuff after a la 4555 * ath_init. 4556 */ 4557 static int 4558 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4559 { 4560 struct ath_hal *ah = sc->sc_ah; 4561 struct ieee80211com *ic = &sc->sc_ic; 4562 HAL_CHANNEL hchan; 4563 4564 /* 4565 * Convert to a HAL channel description with 4566 * the flags constrained to reflect the current 4567 * operating mode. 4568 */ 4569 hchan.channel = chan->ic_freq; 4570 hchan.channelFlags = ath_chan2flags(ic, chan); 4571 4572 DPRINTF(sc, ATH_DEBUG_RESET, 4573 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n", 4574 __func__, 4575 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel, 4576 sc->sc_curchan.channelFlags), 4577 sc->sc_curchan.channel, sc->sc_curchan.channelFlags, 4578 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags), 4579 hchan.channel, hchan.channelFlags); 4580 if (hchan.channel != sc->sc_curchan.channel || 4581 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4582 HAL_STATUS status; 4583 4584 /* 4585 * To switch channels clear any pending DMA operations; 4586 * wait long enough for the RX fifo to drain, reset the 4587 * hardware at the new frequency, and then re-enable 4588 * the relevant bits of the h/w. 4589 */ 4590 ath_hal_intrset(ah, 0); /* disable interrupts */ 4591 ath_draintxq(sc); /* clear pending tx frames */ 4592 ath_stoprecv(sc); /* turn off frame recv */ 4593 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 4594 if_printf(ic->ic_ifp, "%s: unable to reset " 4595 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n", 4596 __func__, ieee80211_chan2ieee(ic, chan), 4597 chan->ic_freq, chan->ic_flags, hchan.channelFlags); 4598 return EIO; 4599 } 4600 sc->sc_curchan = hchan; 4601 ath_update_txpow(sc); /* update tx power state */ 4602 ath_restore_diversity(sc); 4603 sc->sc_calinterval = 1; 4604 sc->sc_caltries = 0; 4605 4606 /* 4607 * Re-enable rx framework. 4608 */ 4609 if (ath_startrecv(sc) != 0) { 4610 if_printf(&sc->sc_if, 4611 "%s: unable to restart recv logic\n", __func__); 4612 return EIO; 4613 } 4614 4615 /* 4616 * Change channels and update the h/w rate map 4617 * if we're switching; e.g. 11a to 11b/g. 4618 */ 4619 ic->ic_ibss_chan = chan; 4620 ath_chan_change(sc, chan); 4621 4622 #if 0 4623 /* 4624 * Handle DFS required waiting period to determine 4625 * if channel is clear of radar traffic. 4626 */ 4627 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 4628 #define DFS_AND_NOT_CLEAR(_c) \ 4629 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS) 4630 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) { 4631 if_printf(&sc->sc_if, 4632 "wait for DFS clear channel signal\n"); 4633 /* XXX stop sndq */ 4634 sc->sc_if.if_flags |= IFF_OACTIVE; 4635 callout_reset(&sc->sc_dfs_ch, 4636 2 * hz, ath_dfswait, sc); 4637 } else 4638 callout_stop(&sc->sc_dfs_ch); 4639 #undef DFS_NOT_CLEAR 4640 } 4641 #endif 4642 4643 /* 4644 * Re-enable interrupts. 4645 */ 4646 ath_hal_intrset(ah, sc->sc_imask); 4647 } 4648 return 0; 4649 } 4650 4651 static void 4652 ath_next_scan(void *arg) 4653 { 4654 struct ath_softc *sc = arg; 4655 struct ieee80211com *ic = &sc->sc_ic; 4656 int s; 4657 4658 /* don't call ath_start w/o network interrupts blocked */ 4659 s = splnet(); 4660 4661 if (ic->ic_state == IEEE80211_S_SCAN) 4662 ieee80211_next_scan(ic); 4663 splx(s); 4664 } 4665 4666 /* 4667 * Periodically recalibrate the PHY to account 4668 * for temperature/environment changes. 4669 */ 4670 static void 4671 ath_calibrate(void *arg) 4672 { 4673 struct ath_softc *sc = arg; 4674 struct ath_hal *ah = sc->sc_ah; 4675 HAL_BOOL iqCalDone; 4676 int s; 4677 4678 sc->sc_stats.ast_per_cal++; 4679 4680 s = splnet(); 4681 4682 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4683 /* 4684 * Rfgain is out of bounds, reset the chip 4685 * to load new gain values. 4686 */ 4687 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4688 "%s: rfgain change\n", __func__); 4689 sc->sc_stats.ast_per_rfgain++; 4690 ath_reset(&sc->sc_if); 4691 } 4692 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) { 4693 DPRINTF(sc, ATH_DEBUG_ANY, 4694 "%s: calibration of channel %u failed\n", 4695 __func__, sc->sc_curchan.channel); 4696 sc->sc_stats.ast_per_calfail++; 4697 } 4698 /* 4699 * Calibrate noise floor data again in case of change. 4700 */ 4701 ath_hal_process_noisefloor(ah); 4702 /* 4703 * Poll more frequently when the IQ calibration is in 4704 * progress to speedup loading the final settings. 4705 * We temper this aggressive polling with an exponential 4706 * back off after 4 tries up to ath_calinterval. 4707 */ 4708 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) { 4709 sc->sc_caltries = 0; 4710 sc->sc_calinterval = ath_calinterval; 4711 } else if (sc->sc_caltries > 4) { 4712 sc->sc_caltries = 0; 4713 sc->sc_calinterval <<= 1; 4714 if (sc->sc_calinterval > ath_calinterval) 4715 sc->sc_calinterval = ath_calinterval; 4716 } 4717 KASSERTMSG(0 < sc->sc_calinterval && 4718 sc->sc_calinterval <= ath_calinterval, 4719 "bad calibration interval %u", sc->sc_calinterval); 4720 4721 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4722 "%s: next +%u (%siqCalDone tries %u)\n", __func__, 4723 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries); 4724 sc->sc_caltries++; 4725 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4726 ath_calibrate, sc); 4727 splx(s); 4728 } 4729 4730 static int 4731 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4732 { 4733 struct ifnet *ifp = ic->ic_ifp; 4734 struct ath_softc *sc = ifp->if_softc; 4735 struct ath_hal *ah = sc->sc_ah; 4736 struct ieee80211_node *ni; 4737 int i, error; 4738 const u_int8_t *bssid; 4739 u_int32_t rfilt; 4740 static const HAL_LED_STATE leds[] = { 4741 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4742 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4743 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4744 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4745 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4746 }; 4747 4748 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4749 ieee80211_state_name[ic->ic_state], 4750 ieee80211_state_name[nstate]); 4751 4752 callout_stop(&sc->sc_scan_ch); 4753 callout_stop(&sc->sc_cal_ch); 4754 #if 0 4755 callout_stop(&sc->sc_dfs_ch); 4756 #endif 4757 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4758 4759 if (nstate == IEEE80211_S_INIT) { 4760 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4761 /* 4762 * NB: disable interrupts so we don't rx frames. 4763 */ 4764 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4765 /* 4766 * Notify the rate control algorithm. 4767 */ 4768 ath_rate_newstate(sc, nstate); 4769 goto done; 4770 } 4771 ni = ic->ic_bss; 4772 error = ath_chan_set(sc, ic->ic_curchan); 4773 if (error != 0) 4774 goto bad; 4775 rfilt = ath_calcrxfilter(sc, nstate); 4776 if (nstate == IEEE80211_S_SCAN) 4777 bssid = ifp->if_broadcastaddr; 4778 else 4779 bssid = ni->ni_bssid; 4780 ath_hal_setrxfilter(ah, rfilt); 4781 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4782 __func__, rfilt, ether_sprintf(bssid)); 4783 4784 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4785 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4786 else 4787 ath_hal_setassocid(ah, bssid, 0); 4788 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4789 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4790 if (ath_hal_keyisvalid(ah, i)) 4791 ath_hal_keysetmac(ah, i, bssid); 4792 } 4793 4794 /* 4795 * Notify the rate control algorithm so rates 4796 * are setup should ath_beacon_alloc be called. 4797 */ 4798 ath_rate_newstate(sc, nstate); 4799 4800 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4801 /* nothing to do */; 4802 } else if (nstate == IEEE80211_S_RUN) { 4803 DPRINTF(sc, ATH_DEBUG_STATE, 4804 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4805 "capinfo=0x%04x chan=%d\n" 4806 , __func__ 4807 , ic->ic_flags 4808 , ni->ni_intval 4809 , ether_sprintf(ni->ni_bssid) 4810 , ni->ni_capinfo 4811 , ieee80211_chan2ieee(ic, ic->ic_curchan)); 4812 4813 switch (ic->ic_opmode) { 4814 case IEEE80211_M_HOSTAP: 4815 case IEEE80211_M_IBSS: 4816 /* 4817 * Allocate and setup the beacon frame. 4818 * 4819 * Stop any previous beacon DMA. This may be 4820 * necessary, for example, when an ibss merge 4821 * causes reconfiguration; there will be a state 4822 * transition from RUN->RUN that means we may 4823 * be called with beacon transmission active. 4824 */ 4825 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4826 ath_beacon_free(sc); 4827 error = ath_beacon_alloc(sc, ni); 4828 if (error != 0) 4829 goto bad; 4830 /* 4831 * If joining an adhoc network defer beacon timer 4832 * configuration to the next beacon frame so we 4833 * have a current TSF to use. Otherwise we're 4834 * starting an ibss/bss so there's no need to delay. 4835 */ 4836 if (ic->ic_opmode == IEEE80211_M_IBSS && 4837 ic->ic_bss->ni_tstamp.tsf != 0) 4838 sc->sc_syncbeacon = 1; 4839 else 4840 ath_beacon_config(sc); 4841 break; 4842 case IEEE80211_M_STA: 4843 /* 4844 * Allocate a key cache slot to the station. 4845 */ 4846 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4847 sc->sc_hasclrkey && 4848 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4849 ath_setup_stationkey(ni); 4850 /* 4851 * Defer beacon timer configuration to the next 4852 * beacon frame so we have a current TSF to use 4853 * (any TSF collected when scanning is likely old). 4854 */ 4855 sc->sc_syncbeacon = 1; 4856 break; 4857 default: 4858 break; 4859 } 4860 /* 4861 * Let the hal process statistics collected during a 4862 * scan so it can provide calibrated noise floor data. 4863 */ 4864 ath_hal_process_noisefloor(ah); 4865 /* 4866 * Reset rssi stats; maybe not the best place... 4867 */ 4868 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4869 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4870 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4871 } else { 4872 ath_hal_intrset(ah, 4873 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4874 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4875 } 4876 done: 4877 /* 4878 * Invoke the parent method to complete the work. 4879 */ 4880 error = sc->sc_newstate(ic, nstate, arg); 4881 /* 4882 * Finally, start any timers. 4883 */ 4884 if (nstate == IEEE80211_S_RUN) { 4885 /* start periodic recalibration timer */ 4886 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4887 ath_calibrate, sc); 4888 } else if (nstate == IEEE80211_S_SCAN) { 4889 /* start ap/neighbor scan timer */ 4890 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4891 ath_next_scan, sc); 4892 } 4893 bad: 4894 return error; 4895 } 4896 4897 /* 4898 * Allocate a key cache slot to the station so we can 4899 * setup a mapping from key index to node. The key cache 4900 * slot is needed for managing antenna state and for 4901 * compression when stations do not use crypto. We do 4902 * it uniliaterally here; if crypto is employed this slot 4903 * will be reassigned. 4904 */ 4905 static void 4906 ath_setup_stationkey(struct ieee80211_node *ni) 4907 { 4908 struct ieee80211com *ic = ni->ni_ic; 4909 struct ath_softc *sc = ic->ic_ifp->if_softc; 4910 ieee80211_keyix keyix, rxkeyix; 4911 4912 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4913 /* 4914 * Key cache is full; we'll fall back to doing 4915 * the more expensive lookup in software. Note 4916 * this also means no h/w compression. 4917 */ 4918 /* XXX msg+statistic */ 4919 } else { 4920 /* XXX locking? */ 4921 ni->ni_ucastkey.wk_keyix = keyix; 4922 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4923 /* NB: this will create a pass-thru key entry */ 4924 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4925 } 4926 } 4927 4928 /* 4929 * Setup driver-specific state for a newly associated node. 4930 * Note that we're called also on a re-associate, the isnew 4931 * param tells us if this is the first time or not. 4932 */ 4933 static void 4934 ath_newassoc(struct ieee80211_node *ni, int isnew) 4935 { 4936 struct ieee80211com *ic = ni->ni_ic; 4937 struct ath_softc *sc = ic->ic_ifp->if_softc; 4938 4939 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4940 if (isnew && 4941 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4942 KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4943 "new assoc with a unicast key already setup (keyix %u)", 4944 ni->ni_ucastkey.wk_keyix); 4945 ath_setup_stationkey(ni); 4946 } 4947 } 4948 4949 static int 4950 ath_getchannels(struct ath_softc *sc, u_int cc, 4951 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4952 { 4953 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 4954 struct ieee80211com *ic = &sc->sc_ic; 4955 struct ifnet *ifp = &sc->sc_if; 4956 struct ath_hal *ah = sc->sc_ah; 4957 HAL_CHANNEL *chans; 4958 int i, ix, nchan; 4959 4960 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4961 M_TEMP, M_WAITOK); 4962 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4963 NULL, 0, NULL, 4964 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4965 u_int32_t rd; 4966 4967 (void)ath_hal_getregdomain(ah, &rd); 4968 if_printf(ifp, "unable to collect channel list from hal; " 4969 "regdomain likely %u country code %u\n", rd, cc); 4970 free(chans, M_TEMP); 4971 return EINVAL; 4972 } 4973 4974 /* 4975 * Convert HAL channels to ieee80211 ones and insert 4976 * them in the table according to their channel number. 4977 */ 4978 for (i = 0; i < nchan; i++) { 4979 HAL_CHANNEL *c = &chans[i]; 4980 u_int16_t flags; 4981 4982 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags); 4983 if (ix > IEEE80211_CHAN_MAX) { 4984 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n", 4985 ix, c->channel, c->channelFlags); 4986 continue; 4987 } 4988 if (ix < 0) { 4989 /* XXX can't handle stuff <2400 right now */ 4990 if (bootverbose) 4991 if_printf(ifp, "hal channel %d (%u/%x) " 4992 "cannot be handled; ignored\n", 4993 ix, c->channel, c->channelFlags); 4994 continue; 4995 } 4996 /* 4997 * Calculate net80211 flags; most are compatible 4998 * but some need massaging. Note the static turbo 4999 * conversion can be removed once net80211 is updated 5000 * to understand static vs. dynamic turbo. 5001 */ 5002 flags = c->channelFlags & COMPAT; 5003 if (c->channelFlags & CHANNEL_STURBO) 5004 flags |= IEEE80211_CHAN_TURBO; 5005 if (ic->ic_channels[ix].ic_freq == 0) { 5006 ic->ic_channels[ix].ic_freq = c->channel; 5007 ic->ic_channels[ix].ic_flags = flags; 5008 } else { 5009 /* channels overlap; e.g. 11g and 11b */ 5010 ic->ic_channels[ix].ic_flags |= flags; 5011 } 5012 } 5013 free(chans, M_TEMP); 5014 return 0; 5015 #undef COMPAT 5016 } 5017 5018 static void 5019 ath_led_done(void *arg) 5020 { 5021 struct ath_softc *sc = arg; 5022 5023 sc->sc_blinking = 0; 5024 } 5025 5026 /* 5027 * Turn the LED off: flip the pin and then set a timer so no 5028 * update will happen for the specified duration. 5029 */ 5030 static void 5031 ath_led_off(void *arg) 5032 { 5033 struct ath_softc *sc = arg; 5034 5035 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 5036 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 5037 } 5038 5039 /* 5040 * Blink the LED according to the specified on/off times. 5041 */ 5042 static void 5043 ath_led_blink(struct ath_softc *sc, int on, int off) 5044 { 5045 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 5046 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 5047 sc->sc_blinking = 1; 5048 sc->sc_ledoff = off; 5049 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 5050 } 5051 5052 static void 5053 ath_led_event(struct ath_softc *sc, int event) 5054 { 5055 5056 sc->sc_ledevent = ticks; /* time of last event */ 5057 if (sc->sc_blinking) /* don't interrupt active blink */ 5058 return; 5059 switch (event) { 5060 case ATH_LED_POLL: 5061 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 5062 sc->sc_hwmap[0].ledoff); 5063 break; 5064 case ATH_LED_TX: 5065 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 5066 sc->sc_hwmap[sc->sc_txrate].ledoff); 5067 break; 5068 case ATH_LED_RX: 5069 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 5070 sc->sc_hwmap[sc->sc_rxrate].ledoff); 5071 break; 5072 } 5073 } 5074 5075 static void 5076 ath_update_txpow(struct ath_softc *sc) 5077 { 5078 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 5079 struct ieee80211com *ic = &sc->sc_ic; 5080 struct ath_hal *ah = sc->sc_ah; 5081 u_int32_t txpow; 5082 5083 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 5084 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 5085 /* read back in case value is clamped */ 5086 (void)ath_hal_gettxpowlimit(ah, &txpow); 5087 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 5088 } 5089 /* 5090 * Fetch max tx power level for status requests. 5091 */ 5092 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 5093 ic->ic_bss->ni_txpower = txpow; 5094 } 5095 5096 static void 5097 rate_setup(struct ath_softc *sc, 5098 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs) 5099 { 5100 int i, maxrates; 5101 5102 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 5103 DPRINTF(sc, ATH_DEBUG_ANY, 5104 "%s: rate table too small (%u > %u)\n", 5105 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 5106 maxrates = IEEE80211_RATE_MAXSIZE; 5107 } else 5108 maxrates = rt->rateCount; 5109 for (i = 0; i < maxrates; i++) 5110 rs->rs_rates[i] = rt->info[i].dot11Rate; 5111 rs->rs_nrates = maxrates; 5112 } 5113 5114 static int 5115 ath_rate_setup(struct ath_softc *sc, u_int mode) 5116 { 5117 struct ath_hal *ah = sc->sc_ah; 5118 struct ieee80211com *ic = &sc->sc_ic; 5119 const HAL_RATE_TABLE *rt; 5120 5121 switch (mode) { 5122 case IEEE80211_MODE_11A: 5123 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5124 break; 5125 case IEEE80211_MODE_11B: 5126 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5127 break; 5128 case IEEE80211_MODE_11G: 5129 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5130 break; 5131 case IEEE80211_MODE_TURBO_A: 5132 /* XXX until static/dynamic turbo is fixed */ 5133 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5134 break; 5135 case IEEE80211_MODE_TURBO_G: 5136 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5137 break; 5138 default: 5139 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5140 __func__, mode); 5141 return 0; 5142 } 5143 sc->sc_rates[mode] = rt; 5144 if (rt != NULL) { 5145 rate_setup(sc, rt, &ic->ic_sup_rates[mode]); 5146 return 1; 5147 } else 5148 return 0; 5149 } 5150 5151 static void 5152 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5153 { 5154 #define N(a) (sizeof(a)/sizeof(a[0])) 5155 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5156 static const struct { 5157 u_int rate; /* tx/rx 802.11 rate */ 5158 u_int16_t timeOn; /* LED on time (ms) */ 5159 u_int16_t timeOff; /* LED off time (ms) */ 5160 } blinkrates[] = { 5161 { 108, 40, 10 }, 5162 { 96, 44, 11 }, 5163 { 72, 50, 13 }, 5164 { 48, 57, 14 }, 5165 { 36, 67, 16 }, 5166 { 24, 80, 20 }, 5167 { 22, 100, 25 }, 5168 { 18, 133, 34 }, 5169 { 12, 160, 40 }, 5170 { 10, 200, 50 }, 5171 { 6, 240, 58 }, 5172 { 4, 267, 66 }, 5173 { 2, 400, 100 }, 5174 { 0, 500, 130 }, 5175 }; 5176 const HAL_RATE_TABLE *rt; 5177 int i, j; 5178 5179 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5180 rt = sc->sc_rates[mode]; 5181 KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode); 5182 for (i = 0; i < rt->rateCount; i++) 5183 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 5184 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5185 for (i = 0; i < 32; i++) { 5186 u_int8_t ix = rt->rateCodeToIndex[i]; 5187 if (ix == 0xff) { 5188 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5189 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5190 continue; 5191 } 5192 sc->sc_hwmap[i].ieeerate = 5193 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 5194 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5195 if (rt->info[ix].shortPreamble || 5196 rt->info[ix].phy == IEEE80211_T_OFDM) 5197 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5198 /* NB: receive frames include FCS */ 5199 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 5200 IEEE80211_RADIOTAP_F_FCS; 5201 /* setup blink rate table to avoid per-packet lookup */ 5202 for (j = 0; j < N(blinkrates)-1; j++) 5203 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5204 break; 5205 /* NB: this uses the last entry if the rate isn't found */ 5206 /* XXX beware of overlow */ 5207 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5208 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5209 } 5210 sc->sc_currates = rt; 5211 sc->sc_curmode = mode; 5212 /* 5213 * All protection frames are transmited at 2Mb/s for 5214 * 11g, otherwise at 1Mb/s. 5215 */ 5216 if (mode == IEEE80211_MODE_11G) 5217 sc->sc_protrix = ath_tx_findrix(rt, 2*2); 5218 else 5219 sc->sc_protrix = ath_tx_findrix(rt, 2*1); 5220 /* rate index used to send management frames */ 5221 sc->sc_minrateix = 0; 5222 /* 5223 * Setup multicast rate state. 5224 */ 5225 /* XXX layering violation */ 5226 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate); 5227 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate; 5228 /* NB: caller is responsible for resetting rate control state */ 5229 #undef N 5230 } 5231 5232 #ifdef AR_DEBUG 5233 static void 5234 ath_printrxbuf(struct ath_buf *bf, int done) 5235 { 5236 struct ath_desc *ds; 5237 int i; 5238 5239 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5240 printf("R%d (%p %" PRIx64 5241 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds, 5242 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5243 ds->ds_link, ds->ds_data, 5244 ds->ds_ctl0, ds->ds_ctl1, 5245 ds->ds_hw[0], ds->ds_hw[1], 5246 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix, 5247 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 5248 } 5249 } 5250 5251 static void 5252 ath_printtxbuf(struct ath_buf *bf, int done) 5253 { 5254 struct ath_desc *ds; 5255 int i; 5256 5257 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5258 printf("T%d (%p %" PRIx64 5259 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 5260 i, ds, 5261 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5262 ds->ds_link, ds->ds_data, 5263 ds->ds_ctl0, ds->ds_ctl1, 5264 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 5265 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 5266 } 5267 } 5268 #endif /* AR_DEBUG */ 5269 5270 static void 5271 ath_watchdog(struct ifnet *ifp) 5272 { 5273 struct ath_softc *sc = ifp->if_softc; 5274 struct ieee80211com *ic = &sc->sc_ic; 5275 struct ath_txq *axq; 5276 int i; 5277 5278 ifp->if_timer = 0; 5279 if ((ifp->if_flags & IFF_RUNNING) == 0 || 5280 !device_is_active(sc->sc_dev)) 5281 return; 5282 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5283 if (!ATH_TXQ_SETUP(sc, i)) 5284 continue; 5285 axq = &sc->sc_txq[i]; 5286 ATH_TXQ_LOCK(axq); 5287 if (axq->axq_timer == 0) 5288 ; 5289 else if (--axq->axq_timer == 0) { 5290 ATH_TXQ_UNLOCK(axq); 5291 if_printf(ifp, "device timeout (txq %d, " 5292 "txintrperiod %d)\n", i, sc->sc_txintrperiod); 5293 if (sc->sc_txintrperiod > 1) 5294 sc->sc_txintrperiod--; 5295 ath_reset(ifp); 5296 if_statinc(ifp, if_oerrors); 5297 sc->sc_stats.ast_watchdog++; 5298 break; 5299 } else 5300 ifp->if_timer = 1; 5301 ATH_TXQ_UNLOCK(axq); 5302 } 5303 ieee80211_watchdog(ic); 5304 } 5305 5306 /* 5307 * Diagnostic interface to the HAL. This is used by various 5308 * tools to do things like retrieve register contents for 5309 * debugging. The mechanism is intentionally opaque so that 5310 * it can change frequently w/o concern for compatibility. 5311 */ 5312 static int 5313 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5314 { 5315 struct ath_hal *ah = sc->sc_ah; 5316 u_int id = ad->ad_id & ATH_DIAG_ID; 5317 void *indata = NULL; 5318 void *outdata = NULL; 5319 u_int32_t insize = ad->ad_in_size; 5320 u_int32_t outsize = ad->ad_out_size; 5321 int error = 0; 5322 5323 if (ad->ad_id & ATH_DIAG_IN) { 5324 /* 5325 * Copy in data. 5326 */ 5327 indata = malloc(insize, M_TEMP, M_WAITOK); 5328 error = copyin(ad->ad_in_data, indata, insize); 5329 if (error) 5330 goto bad; 5331 } 5332 if (ad->ad_id & ATH_DIAG_DYN) { 5333 /* 5334 * Allocate a buffer for the results (otherwise the HAL 5335 * returns a pointer to a buffer where we can read the 5336 * results). Note that we depend on the HAL leaving this 5337 * pointer for us to use below in reclaiming the buffer; 5338 * may want to be more defensive. 5339 */ 5340 outdata = malloc(outsize, M_TEMP, M_WAITOK); 5341 } 5342 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5343 if (outsize < ad->ad_out_size) 5344 ad->ad_out_size = outsize; 5345 if (outdata != NULL) 5346 error = copyout(outdata, ad->ad_out_data, 5347 ad->ad_out_size); 5348 } else { 5349 error = EINVAL; 5350 } 5351 bad: 5352 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5353 free(indata, M_TEMP); 5354 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5355 free(outdata, M_TEMP); 5356 return error; 5357 } 5358 5359 static int 5360 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data) 5361 { 5362 #define IS_RUNNING(ifp) \ 5363 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 5364 struct ath_softc *sc = ifp->if_softc; 5365 struct ieee80211com *ic = &sc->sc_ic; 5366 struct ifreq *ifr = (struct ifreq *)data; 5367 int error = 0, s; 5368 5369 s = splnet(); 5370 switch (cmd) { 5371 case SIOCSIFFLAGS: 5372 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 5373 break; 5374 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 5375 case IFF_UP | IFF_RUNNING: 5376 /* 5377 * To avoid rescanning another access point, 5378 * do not call ath_init() here. Instead, 5379 * only reflect promisc mode settings. 5380 */ 5381 ath_mode_init(sc); 5382 break; 5383 case IFF_UP: 5384 /* 5385 * Beware of being called during attach/detach 5386 * to reset promiscuous mode. In that case we 5387 * will still be marked UP but not RUNNING. 5388 * However trying to re-init the interface 5389 * is the wrong thing to do as we've already 5390 * torn down much of our state. There's 5391 * probably a better way to deal with this. 5392 */ 5393 error = ath_init(sc); 5394 break; 5395 case IFF_RUNNING: 5396 ath_stop_locked(ifp, 1); 5397 break; 5398 case 0: 5399 break; 5400 } 5401 break; 5402 case SIOCADDMULTI: 5403 case SIOCDELMULTI: 5404 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 5405 if (ifp->if_flags & IFF_RUNNING) 5406 ath_mode_init(sc); 5407 error = 0; 5408 } 5409 break; 5410 case SIOCGATHSTATS: { 5411 struct ath_stats stats_out; 5412 struct if_data ifi; 5413 5414 /* NB: embed these numbers to get a consistent view */ 5415 5416 stats_out = sc->sc_stats; 5417 stats_out.ast_rx_rssi = ieee80211_getrssi(ic); 5418 splx(s); 5419 5420 if_export_if_data(ifp, &ifi, false); 5421 stats_out.ast_tx_packets = ifi.ifi_opackets; 5422 stats_out.ast_rx_packets = ifi.ifi_ipackets; 5423 5424 return copyout(&stats_out, 5425 ifr->ifr_data, sizeof (stats_out)); 5426 } 5427 5428 case SIOCGATHDIAG: 5429 error = kauth_authorize_network(curlwp->l_cred, 5430 KAUTH_NETWORK_INTERFACE, 5431 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 5432 NULL); 5433 if (error) 5434 break; 5435 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5436 break; 5437 default: 5438 error = ieee80211_ioctl(ic, cmd, data); 5439 if (error != ENETRESET) 5440 ; 5441 else if (IS_RUNNING(ifp) && 5442 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 5443 error = ath_init(sc); 5444 else 5445 error = 0; 5446 break; 5447 } 5448 splx(s); 5449 return error; 5450 #undef IS_RUNNING 5451 } 5452 5453 static void 5454 ath_bpfattach(struct ath_softc *sc) 5455 { 5456 struct ifnet *ifp = &sc->sc_if; 5457 5458 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 5459 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 5460 &sc->sc_drvbpf); 5461 5462 /* 5463 * Initialize constant fields. 5464 * XXX make header lengths a multiple of 32-bits so subsequent 5465 * headers are properly aligned; this is a kludge to keep 5466 * certain applications happy. 5467 * 5468 * NB: the channel is setup each time we transition to the 5469 * RUN state to avoid filling it in for each frame. 5470 */ 5471 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 5472 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 5473 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 5474 5475 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 5476 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 5477 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 5478 } 5479 5480 /* 5481 * Announce various information on device/driver attach. 5482 */ 5483 static void 5484 ath_announce(struct ath_softc *sc) 5485 { 5486 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 5487 struct ifnet *ifp = &sc->sc_if; 5488 struct ath_hal *ah = sc->sc_ah; 5489 u_int modes, cc; 5490 5491 if_printf(ifp, "mac %d.%d phy %d.%d", 5492 ah->ah_macVersion, ah->ah_macRev, 5493 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5494 /* 5495 * Print radio revision(s). We check the wireless modes 5496 * to avoid falsely printing revs for inoperable parts. 5497 * Dual-band radio revs are returned in the 5 GHz rev number. 5498 */ 5499 ath_hal_getcountrycode(ah, &cc); 5500 modes = ath_hal_getwirelessmodes(ah, cc); 5501 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 5502 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 5503 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d", 5504 ah->ah_analog5GhzRev >> 4, 5505 ah->ah_analog5GhzRev & 0xf, 5506 ah->ah_analog2GhzRev >> 4, 5507 ah->ah_analog2GhzRev & 0xf); 5508 else 5509 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5510 ah->ah_analog5GhzRev & 0xf); 5511 } else 5512 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5513 ah->ah_analog5GhzRev & 0xf); 5514 printf("\n"); 5515 if (bootverbose) { 5516 int i; 5517 for (i = 0; i <= WME_AC_VO; i++) { 5518 struct ath_txq *txq = sc->sc_ac2q[i]; 5519 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5520 txq->axq_qnum, ieee80211_wme_acnames[i]); 5521 } 5522 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5523 sc->sc_cabq->axq_qnum); 5524 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5525 } 5526 if (ath_rxbuf != ATH_RXBUF) 5527 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5528 if (ath_txbuf != ATH_TXBUF) 5529 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5530 #undef HAL_MODE_DUALBAND 5531 } 5532