1 /* $NetBSD: ath.c,v 1.120 2016/05/26 05:01:11 ozaki-r Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.120 2016/05/26 05:01:11 ozaki-r Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #ifdef _KERNEL_OPT 55 #include "opt_inet.h" 56 #endif 57 58 #include <sys/param.h> 59 #include <sys/reboot.h> 60 #include <sys/systm.h> 61 #include <sys/types.h> 62 #include <sys/sysctl.h> 63 #include <sys/mbuf.h> 64 #include <sys/malloc.h> 65 #include <sys/kernel.h> 66 #include <sys/socket.h> 67 #include <sys/sockio.h> 68 #include <sys/errno.h> 69 #include <sys/callout.h> 70 #include <sys/bus.h> 71 #include <sys/endian.h> 72 73 #include <net/if.h> 74 #include <net/if_dl.h> 75 #include <net/if_media.h> 76 #include <net/if_types.h> 77 #include <net/if_arp.h> 78 #include <net/if_ether.h> 79 #include <net/if_llc.h> 80 81 #include <net80211/ieee80211_netbsd.h> 82 #include <net80211/ieee80211_var.h> 83 84 #include <net/bpf.h> 85 86 #ifdef INET 87 #include <netinet/in.h> 88 #endif 89 90 #include <sys/device.h> 91 #include <dev/ic/ath_netbsd.h> 92 93 #define AR_DEBUG 94 #include <dev/ic/athvar.h> 95 #include "ah_desc.h" 96 #include "ah_devid.h" /* XXX for softled */ 97 #include "opt_ah.h" 98 99 #ifdef ATH_TX99_DIAG 100 #include <dev/ath/ath_tx99/ath_tx99.h> 101 #endif 102 103 /* unaligned little endian access */ 104 #define LE_READ_2(p) \ 105 ((u_int16_t) \ 106 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 107 #define LE_READ_4(p) \ 108 ((u_int32_t) \ 109 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 110 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 111 112 enum { 113 ATH_LED_TX, 114 ATH_LED_RX, 115 ATH_LED_POLL, 116 }; 117 118 #ifdef AH_NEED_DESC_SWAP 119 #define HTOAH32(x) htole32(x) 120 #else 121 #define HTOAH32(x) (x) 122 #endif 123 124 static int ath_ifinit(struct ifnet *); 125 static int ath_init(struct ath_softc *); 126 static void ath_stop_locked(struct ifnet *, int); 127 static void ath_stop(struct ifnet *, int); 128 static void ath_start(struct ifnet *); 129 static int ath_media_change(struct ifnet *); 130 static void ath_watchdog(struct ifnet *); 131 static int ath_ioctl(struct ifnet *, u_long, void *); 132 static void ath_fatal_proc(void *, int); 133 static void ath_rxorn_proc(void *, int); 134 static void ath_bmiss_proc(void *, int); 135 static void ath_radar_proc(void *, int); 136 static int ath_key_alloc(struct ieee80211com *, 137 const struct ieee80211_key *, 138 ieee80211_keyix *, ieee80211_keyix *); 139 static int ath_key_delete(struct ieee80211com *, 140 const struct ieee80211_key *); 141 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 142 const u_int8_t mac[IEEE80211_ADDR_LEN]); 143 static void ath_key_update_begin(struct ieee80211com *); 144 static void ath_key_update_end(struct ieee80211com *); 145 static void ath_mode_init(struct ath_softc *); 146 static void ath_setslottime(struct ath_softc *); 147 static void ath_updateslot(struct ifnet *); 148 static int ath_beaconq_setup(struct ath_hal *); 149 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 150 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 151 static void ath_beacon_proc(void *, int); 152 static void ath_bstuck_proc(void *, int); 153 static void ath_beacon_free(struct ath_softc *); 154 static void ath_beacon_config(struct ath_softc *); 155 static void ath_descdma_cleanup(struct ath_softc *sc, 156 struct ath_descdma *, ath_bufhead *); 157 static int ath_desc_alloc(struct ath_softc *); 158 static void ath_desc_free(struct ath_softc *); 159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 160 static void ath_node_free(struct ieee80211_node *); 161 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 162 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 163 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 164 struct ieee80211_node *ni, 165 int subtype, int rssi, u_int32_t rstamp); 166 static void ath_setdefantenna(struct ath_softc *, u_int); 167 static void ath_rx_proc(void *, int); 168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 169 static int ath_tx_setup(struct ath_softc *, int, int); 170 static int ath_wme_update(struct ieee80211com *); 171 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 172 static void ath_tx_cleanup(struct ath_softc *); 173 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 174 struct ath_buf *, struct mbuf *); 175 static void ath_tx_proc_q0(void *, int); 176 static void ath_tx_proc_q0123(void *, int); 177 static void ath_tx_proc(void *, int); 178 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 179 static void ath_draintxq(struct ath_softc *); 180 static void ath_stoprecv(struct ath_softc *); 181 static int ath_startrecv(struct ath_softc *); 182 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 183 static void ath_next_scan(void *); 184 static void ath_calibrate(void *); 185 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 186 static void ath_setup_stationkey(struct ieee80211_node *); 187 static void ath_newassoc(struct ieee80211_node *, int); 188 static int ath_getchannels(struct ath_softc *, u_int cc, 189 HAL_BOOL outdoor, HAL_BOOL xchanmode); 190 static void ath_led_event(struct ath_softc *, int); 191 static void ath_update_txpow(struct ath_softc *); 192 static void ath_freetx(struct mbuf *); 193 static void ath_restore_diversity(struct ath_softc *); 194 195 static int ath_rate_setup(struct ath_softc *, u_int mode); 196 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 197 198 static void ath_bpfattach(struct ath_softc *); 199 static void ath_announce(struct ath_softc *); 200 201 int ath_dwelltime = 200; /* 5 channels/second */ 202 int ath_calinterval = 30; /* calibrate every 30 secs */ 203 int ath_outdoor = AH_TRUE; /* outdoor operation */ 204 int ath_xchanmode = AH_TRUE; /* enable extended channels */ 205 int ath_countrycode = CTRY_DEFAULT; /* country code */ 206 int ath_regdomain = 0; /* regulatory domain */ 207 int ath_debug = 0; 208 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 209 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 210 211 #ifdef AR_DEBUG 212 enum { 213 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 214 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 215 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 216 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 217 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 218 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 219 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 220 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 221 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 222 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 223 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 224 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 225 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 226 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 227 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 228 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 229 ATH_DEBUG_NODE = 0x00080000, /* node management */ 230 ATH_DEBUG_LED = 0x00100000, /* led management */ 231 ATH_DEBUG_FF = 0x00200000, /* fast frames */ 232 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */ 233 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 234 ATH_DEBUG_ANY = 0xffffffff 235 }; 236 #define IFF_DUMPPKTS(sc, m) \ 237 ((sc->sc_debug & (m)) || \ 238 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 239 #define DPRINTF(sc, m, fmt, ...) do { \ 240 if (sc->sc_debug & (m)) \ 241 printf(fmt, __VA_ARGS__); \ 242 } while (0) 243 #define KEYPRINTF(sc, ix, hk, mac) do { \ 244 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 245 ath_keyprint(__func__, ix, hk, mac); \ 246 } while (0) 247 static void ath_printrxbuf(struct ath_buf *bf, int); 248 static void ath_printtxbuf(struct ath_buf *bf, int); 249 #else 250 #define IFF_DUMPPKTS(sc, m) \ 251 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 252 #define DPRINTF(m, fmt, ...) 253 #define KEYPRINTF(sc, k, ix, mac) 254 #endif 255 256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 257 258 int 259 ath_attach(u_int16_t devid, struct ath_softc *sc) 260 { 261 struct ifnet *ifp = &sc->sc_if; 262 struct ieee80211com *ic = &sc->sc_ic; 263 struct ath_hal *ah = NULL; 264 HAL_STATUS status; 265 int error = 0, i; 266 267 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 268 269 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual); 270 271 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 272 273 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 274 if (ah == NULL) { 275 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 276 status); 277 error = ENXIO; 278 goto bad; 279 } 280 if (ah->ah_abi != HAL_ABI_VERSION) { 281 if_printf(ifp, "HAL ABI mismatch detected " 282 "(HAL:0x%x != driver:0x%x)\n", 283 ah->ah_abi, HAL_ABI_VERSION); 284 error = ENXIO; 285 goto bad; 286 } 287 sc->sc_ah = ah; 288 289 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev), 290 "pmf-powerdown", false)) 291 goto bad; 292 293 /* 294 * Check if the MAC has multi-rate retry support. 295 * We do this by trying to setup a fake extended 296 * descriptor. MAC's that don't have support will 297 * return false w/o doing anything. MAC's that do 298 * support it will return true w/o doing anything. 299 */ 300 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 301 302 /* 303 * Check if the device has hardware counters for PHY 304 * errors. If so we need to enable the MIB interrupt 305 * so we can act on stat triggers. 306 */ 307 if (ath_hal_hwphycounters(ah)) 308 sc->sc_needmib = 1; 309 310 /* 311 * Get the hardware key cache size. 312 */ 313 sc->sc_keymax = ath_hal_keycachesize(ah); 314 if (sc->sc_keymax > ATH_KEYMAX) { 315 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 316 ATH_KEYMAX, sc->sc_keymax); 317 sc->sc_keymax = ATH_KEYMAX; 318 } 319 /* 320 * Reset the key cache since some parts do not 321 * reset the contents on initial power up. 322 */ 323 for (i = 0; i < sc->sc_keymax; i++) 324 ath_hal_keyreset(ah, i); 325 /* 326 * Mark key cache slots associated with global keys 327 * as in use. If we knew TKIP was not to be used we 328 * could leave the +32, +64, and +32+64 slots free. 329 * XXX only for splitmic. 330 */ 331 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 332 setbit(sc->sc_keymap, i); 333 setbit(sc->sc_keymap, i+32); 334 setbit(sc->sc_keymap, i+64); 335 setbit(sc->sc_keymap, i+32+64); 336 } 337 338 /* 339 * Collect the channel list using the default country 340 * code and including outdoor channels. The 802.11 layer 341 * is resposible for filtering this list based on settings 342 * like the phy mode. 343 */ 344 error = ath_getchannels(sc, ath_countrycode, 345 ath_outdoor, ath_xchanmode); 346 if (error != 0) 347 goto bad; 348 349 /* 350 * Setup rate tables for all potential media types. 351 */ 352 ath_rate_setup(sc, IEEE80211_MODE_11A); 353 ath_rate_setup(sc, IEEE80211_MODE_11B); 354 ath_rate_setup(sc, IEEE80211_MODE_11G); 355 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 356 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 357 /* NB: setup here so ath_rate_update is happy */ 358 ath_setcurmode(sc, IEEE80211_MODE_11A); 359 360 /* 361 * Allocate tx+rx descriptors and populate the lists. 362 */ 363 error = ath_desc_alloc(sc); 364 if (error != 0) { 365 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 366 goto bad; 367 } 368 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 369 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE); 370 #if 0 371 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE); 372 #endif 373 374 ATH_TXBUF_LOCK_INIT(sc); 375 376 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 377 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 378 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 379 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 380 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 381 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc); 382 383 /* 384 * Allocate hardware transmit queues: one queue for 385 * beacon frames and one data queue for each QoS 386 * priority. Note that the hal handles reseting 387 * these queues at the needed time. 388 * 389 * XXX PS-Poll 390 */ 391 sc->sc_bhalq = ath_beaconq_setup(ah); 392 if (sc->sc_bhalq == (u_int) -1) { 393 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 394 error = EIO; 395 goto bad2; 396 } 397 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 398 if (sc->sc_cabq == NULL) { 399 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 400 error = EIO; 401 goto bad2; 402 } 403 /* NB: insure BK queue is the lowest priority h/w queue */ 404 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 405 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 406 ieee80211_wme_acnames[WME_AC_BK]); 407 error = EIO; 408 goto bad2; 409 } 410 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 411 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 412 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 413 /* 414 * Not enough hardware tx queues to properly do WME; 415 * just punt and assign them all to the same h/w queue. 416 * We could do a better job of this if, for example, 417 * we allocate queues when we switch from station to 418 * AP mode. 419 */ 420 if (sc->sc_ac2q[WME_AC_VI] != NULL) 421 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 422 if (sc->sc_ac2q[WME_AC_BE] != NULL) 423 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 424 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 425 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 426 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 427 } 428 429 /* 430 * Special case certain configurations. Note the 431 * CAB queue is handled by these specially so don't 432 * include them when checking the txq setup mask. 433 */ 434 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 435 case 0x01: 436 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 437 break; 438 case 0x0f: 439 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 440 break; 441 default: 442 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 443 break; 444 } 445 446 /* 447 * Setup rate control. Some rate control modules 448 * call back to change the anntena state so expose 449 * the necessary entry points. 450 * XXX maybe belongs in struct ath_ratectrl? 451 */ 452 sc->sc_setdefantenna = ath_setdefantenna; 453 sc->sc_rc = ath_rate_attach(sc); 454 if (sc->sc_rc == NULL) { 455 error = EIO; 456 goto bad2; 457 } 458 459 sc->sc_blinking = 0; 460 sc->sc_ledstate = 1; 461 sc->sc_ledon = 0; /* low true */ 462 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 463 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE); 464 /* 465 * Auto-enable soft led processing for IBM cards and for 466 * 5211 minipci cards. Users can also manually enable/disable 467 * support with a sysctl. 468 */ 469 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 470 if (sc->sc_softled) { 471 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 472 HAL_GPIO_MUX_MAC_NETWORK_LED); 473 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 474 } 475 476 ifp->if_softc = sc; 477 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 478 ifp->if_start = ath_start; 479 ifp->if_stop = ath_stop; 480 ifp->if_watchdog = ath_watchdog; 481 ifp->if_ioctl = ath_ioctl; 482 ifp->if_init = ath_ifinit; 483 IFQ_SET_READY(&ifp->if_snd); 484 485 ic->ic_ifp = ifp; 486 ic->ic_reset = ath_reset; 487 ic->ic_newassoc = ath_newassoc; 488 ic->ic_updateslot = ath_updateslot; 489 ic->ic_wme.wme_update = ath_wme_update; 490 /* XXX not right but it's not used anywhere important */ 491 ic->ic_phytype = IEEE80211_T_OFDM; 492 ic->ic_opmode = IEEE80211_M_STA; 493 ic->ic_caps = 494 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 495 | IEEE80211_C_HOSTAP /* hostap mode */ 496 | IEEE80211_C_MONITOR /* monitor mode */ 497 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 498 | IEEE80211_C_SHSLOT /* short slot time supported */ 499 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 500 | IEEE80211_C_TXFRAG /* handle tx frags */ 501 ; 502 /* 503 * Query the hal to figure out h/w crypto support. 504 */ 505 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 506 ic->ic_caps |= IEEE80211_C_WEP; 507 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 508 ic->ic_caps |= IEEE80211_C_AES; 509 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 510 ic->ic_caps |= IEEE80211_C_AES_CCM; 511 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 512 ic->ic_caps |= IEEE80211_C_CKIP; 513 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 514 ic->ic_caps |= IEEE80211_C_TKIP; 515 /* 516 * Check if h/w does the MIC and/or whether the 517 * separate key cache entries are required to 518 * handle both tx+rx MIC keys. 519 */ 520 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 521 ic->ic_caps |= IEEE80211_C_TKIPMIC; 522 523 /* 524 * If the h/w supports storing tx+rx MIC keys 525 * in one cache slot automatically enable use. 526 */ 527 if (ath_hal_hastkipsplit(ah) || 528 !ath_hal_settkipsplit(ah, AH_FALSE)) 529 sc->sc_splitmic = 1; 530 531 /* 532 * If the h/w can do TKIP MIC together with WME then 533 * we use it; otherwise we force the MIC to be done 534 * in software by the net80211 layer. 535 */ 536 if (ath_hal_haswmetkipmic(ah)) 537 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC; 538 } 539 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 540 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 541 /* 542 * Mark key cache slots associated with global keys 543 * as in use. If we knew TKIP was not to be used we 544 * could leave the +32, +64, and +32+64 slots free. 545 */ 546 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 547 setbit(sc->sc_keymap, i); 548 setbit(sc->sc_keymap, i+64); 549 if (sc->sc_splitmic) { 550 setbit(sc->sc_keymap, i+32); 551 setbit(sc->sc_keymap, i+32+64); 552 } 553 } 554 /* 555 * TPC support can be done either with a global cap or 556 * per-packet support. The latter is not available on 557 * all parts. We're a bit pedantic here as all parts 558 * support a global cap. 559 */ 560 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 561 ic->ic_caps |= IEEE80211_C_TXPMGT; 562 563 /* 564 * Mark WME capability only if we have sufficient 565 * hardware queues to do proper priority scheduling. 566 */ 567 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 568 ic->ic_caps |= IEEE80211_C_WME; 569 /* 570 * Check for misc other capabilities. 571 */ 572 if (ath_hal_hasbursting(ah)) 573 ic->ic_caps |= IEEE80211_C_BURST; 574 575 /* 576 * Indicate we need the 802.11 header padded to a 577 * 32-bit boundary for 4-address and QoS frames. 578 */ 579 ic->ic_flags |= IEEE80211_F_DATAPAD; 580 581 /* 582 * Query the hal about antenna support. 583 */ 584 sc->sc_defant = ath_hal_getdefantenna(ah); 585 586 /* 587 * Not all chips have the VEOL support we want to 588 * use with IBSS beacons; check here for it. 589 */ 590 sc->sc_hasveol = ath_hal_hasveol(ah); 591 592 /* get mac address from hardware */ 593 ath_hal_getmac(ah, ic->ic_myaddr); 594 595 if_attach(ifp); 596 /* call MI attach routine. */ 597 ieee80211_ifattach(ic); 598 /* override default methods */ 599 ic->ic_node_alloc = ath_node_alloc; 600 sc->sc_node_free = ic->ic_node_free; 601 ic->ic_node_free = ath_node_free; 602 ic->ic_node_getrssi = ath_node_getrssi; 603 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 604 ic->ic_recv_mgmt = ath_recv_mgmt; 605 sc->sc_newstate = ic->ic_newstate; 606 ic->ic_newstate = ath_newstate; 607 ic->ic_crypto.cs_max_keyix = sc->sc_keymax; 608 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 609 ic->ic_crypto.cs_key_delete = ath_key_delete; 610 ic->ic_crypto.cs_key_set = ath_key_set; 611 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 612 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 613 /* complete initialization */ 614 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 615 616 ath_bpfattach(sc); 617 618 sc->sc_flags |= ATH_ATTACHED; 619 620 /* 621 * Setup dynamic sysctl's now that country code and 622 * regdomain are available from the hal. 623 */ 624 ath_sysctlattach(sc); 625 626 ieee80211_announce(ic); 627 ath_announce(sc); 628 return 0; 629 bad2: 630 ath_tx_cleanup(sc); 631 ath_desc_free(sc); 632 bad: 633 if (ah) 634 ath_hal_detach(ah); 635 /* XXX don't get under the abstraction like this */ 636 sc->sc_dev->dv_flags &= ~DVF_ACTIVE; 637 return error; 638 } 639 640 int 641 ath_detach(struct ath_softc *sc) 642 { 643 struct ifnet *ifp = &sc->sc_if; 644 int s; 645 646 if ((sc->sc_flags & ATH_ATTACHED) == 0) 647 return (0); 648 649 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 650 __func__, ifp->if_flags); 651 652 s = splnet(); 653 ath_stop(ifp, 1); 654 bpf_detach(ifp); 655 /* 656 * NB: the order of these is important: 657 * o call the 802.11 layer before detaching the hal to 658 * insure callbacks into the driver to delete global 659 * key cache entries can be handled 660 * o reclaim the tx queue data structures after calling 661 * the 802.11 layer as we'll get called back to reclaim 662 * node state and potentially want to use them 663 * o to cleanup the tx queues the hal is called, so detach 664 * it last 665 * Other than that, it's straightforward... 666 */ 667 ieee80211_ifdetach(&sc->sc_ic); 668 #ifdef ATH_TX99_DIAG 669 if (sc->sc_tx99 != NULL) 670 sc->sc_tx99->detach(sc->sc_tx99); 671 #endif 672 ath_rate_detach(sc->sc_rc); 673 ath_desc_free(sc); 674 ath_tx_cleanup(sc); 675 sysctl_teardown(&sc->sc_sysctllog); 676 ath_hal_detach(sc->sc_ah); 677 if_detach(ifp); 678 splx(s); 679 680 return 0; 681 } 682 683 void 684 ath_suspend(struct ath_softc *sc) 685 { 686 #if notyet 687 /* 688 * Set the chip in full sleep mode. Note that we are 689 * careful to do this only when bringing the interface 690 * completely to a stop. When the chip is in this state 691 * it must be carefully woken up or references to 692 * registers in the PCI clock domain may freeze the bus 693 * (and system). This varies by chip and is mostly an 694 * issue with newer parts that go to sleep more quickly. 695 */ 696 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 697 #endif 698 } 699 700 bool 701 ath_resume(struct ath_softc *sc) 702 { 703 struct ath_hal *ah = sc->sc_ah; 704 struct ieee80211com *ic = &sc->sc_ic; 705 HAL_STATUS status; 706 int i; 707 708 #if notyet 709 ath_hal_setpower(ah, HAL_PM_AWAKE); 710 #else 711 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status); 712 #endif 713 714 /* 715 * Reset the key cache since some parts do not 716 * reset the contents on initial power up. 717 */ 718 for (i = 0; i < sc->sc_keymax; i++) 719 ath_hal_keyreset(ah, i); 720 721 ath_hal_resettxqueue(ah, sc->sc_bhalq); 722 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 723 if (ATH_TXQ_SETUP(sc, i)) 724 ath_hal_resettxqueue(ah, i); 725 726 if (sc->sc_softled) { 727 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin, 728 HAL_GPIO_MUX_MAC_NETWORK_LED); 729 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 730 } 731 return true; 732 } 733 734 /* 735 * Interrupt handler. Most of the actual processing is deferred. 736 */ 737 int 738 ath_intr(void *arg) 739 { 740 struct ath_softc *sc = arg; 741 struct ifnet *ifp = &sc->sc_if; 742 struct ath_hal *ah = sc->sc_ah; 743 HAL_INT status = 0; 744 745 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) { 746 /* 747 * The hardware is not ready/present, don't touch anything. 748 * Note this can happen early on if the IRQ is shared. 749 */ 750 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 751 return 0; 752 } 753 754 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 755 return 0; 756 757 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 758 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 759 __func__, ifp->if_flags); 760 ath_hal_getisr(ah, &status); /* clear ISR */ 761 ath_hal_intrset(ah, 0); /* disable further intr's */ 762 return 1; /* XXX */ 763 } 764 /* 765 * Figure out the reason(s) for the interrupt. Note 766 * that the hal returns a pseudo-ISR that may include 767 * bits we haven't explicitly enabled so we mask the 768 * value to insure we only process bits we requested. 769 */ 770 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 771 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 772 status &= sc->sc_imask; /* discard unasked for bits */ 773 if (status & HAL_INT_FATAL) { 774 /* 775 * Fatal errors are unrecoverable. Typically 776 * these are caused by DMA errors. Unfortunately 777 * the exact reason is not (presently) returned 778 * by the hal. 779 */ 780 sc->sc_stats.ast_hardware++; 781 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 782 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 783 } else if (status & HAL_INT_RXORN) { 784 sc->sc_stats.ast_rxorn++; 785 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 786 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 787 } else { 788 if (status & HAL_INT_SWBA) { 789 /* 790 * Software beacon alert--time to send a beacon. 791 * Handle beacon transmission directly; deferring 792 * this is too slow to meet timing constraints 793 * under load. 794 */ 795 ath_beacon_proc(sc, 0); 796 } 797 if (status & HAL_INT_RXEOL) { 798 /* 799 * NB: the hardware should re-read the link when 800 * RXE bit is written, but it doesn't work at 801 * least on older hardware revs. 802 */ 803 sc->sc_stats.ast_rxeol++; 804 sc->sc_rxlink = NULL; 805 } 806 if (status & HAL_INT_TXURN) { 807 sc->sc_stats.ast_txurn++; 808 /* bump tx trigger level */ 809 ath_hal_updatetxtriglevel(ah, AH_TRUE); 810 } 811 if (status & HAL_INT_RX) 812 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 813 if (status & HAL_INT_TX) 814 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 815 if (status & HAL_INT_BMISS) { 816 sc->sc_stats.ast_bmiss++; 817 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 818 } 819 if (status & HAL_INT_MIB) { 820 sc->sc_stats.ast_mib++; 821 /* 822 * Disable interrupts until we service the MIB 823 * interrupt; otherwise it will continue to fire. 824 */ 825 ath_hal_intrset(ah, 0); 826 /* 827 * Let the hal handle the event. We assume it will 828 * clear whatever condition caused the interrupt. 829 */ 830 ath_hal_mibevent(ah, &sc->sc_halstats); 831 ath_hal_intrset(ah, sc->sc_imask); 832 } 833 } 834 return 1; 835 } 836 837 /* Swap transmit descriptor. 838 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null" 839 * function. 840 */ 841 static inline void 842 ath_desc_swap(struct ath_desc *ds) 843 { 844 #ifdef AH_NEED_DESC_SWAP 845 ds->ds_link = htole32(ds->ds_link); 846 ds->ds_data = htole32(ds->ds_data); 847 ds->ds_ctl0 = htole32(ds->ds_ctl0); 848 ds->ds_ctl1 = htole32(ds->ds_ctl1); 849 ds->ds_hw[0] = htole32(ds->ds_hw[0]); 850 ds->ds_hw[1] = htole32(ds->ds_hw[1]); 851 #endif 852 } 853 854 static void 855 ath_fatal_proc(void *arg, int pending) 856 { 857 struct ath_softc *sc = arg; 858 struct ifnet *ifp = &sc->sc_if; 859 860 if_printf(ifp, "hardware error; resetting\n"); 861 ath_reset(ifp); 862 } 863 864 static void 865 ath_rxorn_proc(void *arg, int pending) 866 { 867 struct ath_softc *sc = arg; 868 struct ifnet *ifp = &sc->sc_if; 869 870 if_printf(ifp, "rx FIFO overrun; resetting\n"); 871 ath_reset(ifp); 872 } 873 874 static void 875 ath_bmiss_proc(void *arg, int pending) 876 { 877 struct ath_softc *sc = arg; 878 struct ieee80211com *ic = &sc->sc_ic; 879 880 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 881 KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA, 882 "unexpect operating mode %u", ic->ic_opmode); 883 if (ic->ic_state == IEEE80211_S_RUN) { 884 u_int64_t lastrx = sc->sc_lastrx; 885 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 886 887 DPRINTF(sc, ATH_DEBUG_BEACON, 888 "%s: tsf %" PRIu64 " lastrx %" PRId64 889 " (%" PRIu64 ") bmiss %u\n", 890 __func__, tsf, tsf - lastrx, lastrx, 891 ic->ic_bmisstimeout*1024); 892 /* 893 * Workaround phantom bmiss interrupts by sanity-checking 894 * the time of our last rx'd frame. If it is within the 895 * beacon miss interval then ignore the interrupt. If it's 896 * truly a bmiss we'll get another interrupt soon and that'll 897 * be dispatched up for processing. 898 */ 899 if (tsf - lastrx > ic->ic_bmisstimeout*1024) { 900 NET_LOCK_GIANT(); 901 ieee80211_beacon_miss(ic); 902 NET_UNLOCK_GIANT(); 903 } else 904 sc->sc_stats.ast_bmiss_phantom++; 905 } 906 } 907 908 static void 909 ath_radar_proc(void *arg, int pending) 910 { 911 #if 0 912 struct ath_softc *sc = arg; 913 struct ifnet *ifp = &sc->sc_if; 914 struct ath_hal *ah = sc->sc_ah; 915 HAL_CHANNEL hchan; 916 917 if (ath_hal_procdfs(ah, &hchan)) { 918 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n", 919 hchan.channel, hchan.channelFlags, hchan.privFlags); 920 /* 921 * Initiate channel change. 922 */ 923 /* XXX not yet */ 924 } 925 #endif 926 } 927 928 static u_int 929 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 930 { 931 #define N(a) (sizeof(a) / sizeof(a[0])) 932 static const u_int modeflags[] = { 933 0, /* IEEE80211_MODE_AUTO */ 934 CHANNEL_A, /* IEEE80211_MODE_11A */ 935 CHANNEL_B, /* IEEE80211_MODE_11B */ 936 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 937 0, /* IEEE80211_MODE_FH */ 938 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */ 939 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 940 }; 941 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 942 943 KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode); 944 KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode); 945 return modeflags[mode]; 946 #undef N 947 } 948 949 static int 950 ath_ifinit(struct ifnet *ifp) 951 { 952 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc; 953 954 return ath_init(sc); 955 } 956 957 static void 958 ath_settkipmic(struct ath_softc *sc) 959 { 960 struct ieee80211com *ic = &sc->sc_ic; 961 struct ath_hal *ah = sc->sc_ah; 962 963 if ((ic->ic_caps & IEEE80211_C_TKIP) && 964 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) { 965 if (ic->ic_flags & IEEE80211_F_WME) { 966 (void)ath_hal_settkipmic(ah, AH_FALSE); 967 ic->ic_caps &= ~IEEE80211_C_TKIPMIC; 968 } else { 969 (void)ath_hal_settkipmic(ah, AH_TRUE); 970 ic->ic_caps |= IEEE80211_C_TKIPMIC; 971 } 972 } 973 } 974 975 static int 976 ath_init(struct ath_softc *sc) 977 { 978 struct ifnet *ifp = &sc->sc_if; 979 struct ieee80211com *ic = &sc->sc_ic; 980 struct ath_hal *ah = sc->sc_ah; 981 HAL_STATUS status; 982 int error = 0, s; 983 984 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 985 __func__, ifp->if_flags); 986 987 if (device_is_active(sc->sc_dev)) { 988 s = splnet(); 989 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || 990 !device_is_active(sc->sc_dev)) 991 return 0; 992 else 993 s = splnet(); 994 995 /* 996 * Stop anything previously setup. This is safe 997 * whether this is the first time through or not. 998 */ 999 ath_stop_locked(ifp, 0); 1000 1001 /* 1002 * The basic interface to setting the hardware in a good 1003 * state is ``reset''. On return the hardware is known to 1004 * be powered up and with interrupts disabled. This must 1005 * be followed by initialization of the appropriate bits 1006 * and then setup of the interrupt mask. 1007 */ 1008 ath_settkipmic(sc); 1009 sc->sc_curchan.channel = ic->ic_curchan->ic_freq; 1010 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan); 1011 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 1012 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1013 status); 1014 error = EIO; 1015 goto done; 1016 } 1017 1018 /* 1019 * This is needed only to setup initial state 1020 * but it's best done after a reset. 1021 */ 1022 ath_update_txpow(sc); 1023 /* 1024 * Likewise this is set during reset so update 1025 * state cached in the driver. 1026 */ 1027 ath_restore_diversity(sc); 1028 sc->sc_calinterval = 1; 1029 sc->sc_caltries = 0; 1030 1031 /* 1032 * Setup the hardware after reset: the key cache 1033 * is filled as needed and the receive engine is 1034 * set going. Frame transmit is handled entirely 1035 * in the frame output path; there's nothing to do 1036 * here except setup the interrupt mask. 1037 */ 1038 if ((error = ath_startrecv(sc)) != 0) { 1039 if_printf(ifp, "unable to start recv logic\n"); 1040 goto done; 1041 } 1042 1043 /* 1044 * Enable interrupts. 1045 */ 1046 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1047 | HAL_INT_RXEOL | HAL_INT_RXORN 1048 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1049 /* 1050 * Enable MIB interrupts when there are hardware phy counters. 1051 * Note we only do this (at the moment) for station mode. 1052 */ 1053 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1054 sc->sc_imask |= HAL_INT_MIB; 1055 ath_hal_intrset(ah, sc->sc_imask); 1056 1057 ifp->if_flags |= IFF_RUNNING; 1058 ic->ic_state = IEEE80211_S_INIT; 1059 1060 /* 1061 * The hardware should be ready to go now so it's safe 1062 * to kick the 802.11 state machine as it's likely to 1063 * immediately call back to us to send mgmt frames. 1064 */ 1065 ath_chan_change(sc, ic->ic_curchan); 1066 #ifdef ATH_TX99_DIAG 1067 if (sc->sc_tx99 != NULL) 1068 sc->sc_tx99->start(sc->sc_tx99); 1069 else 1070 #endif 1071 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1072 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 1073 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1074 } else 1075 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1076 done: 1077 splx(s); 1078 return error; 1079 } 1080 1081 static void 1082 ath_stop_locked(struct ifnet *ifp, int disable) 1083 { 1084 struct ath_softc *sc = ifp->if_softc; 1085 struct ieee80211com *ic = &sc->sc_ic; 1086 struct ath_hal *ah = sc->sc_ah; 1087 1088 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n", 1089 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags); 1090 1091 /* KASSERT() IPL_NET */ 1092 if (ifp->if_flags & IFF_RUNNING) { 1093 /* 1094 * Shutdown the hardware and driver: 1095 * reset 802.11 state machine 1096 * turn off timers 1097 * disable interrupts 1098 * turn off the radio 1099 * clear transmit machinery 1100 * clear receive machinery 1101 * drain and release tx queues 1102 * reclaim beacon resources 1103 * power down hardware 1104 * 1105 * Note that some of this work is not possible if the 1106 * hardware is gone (invalid). 1107 */ 1108 #ifdef ATH_TX99_DIAG 1109 if (sc->sc_tx99 != NULL) 1110 sc->sc_tx99->stop(sc->sc_tx99); 1111 #endif 1112 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1113 ifp->if_flags &= ~IFF_RUNNING; 1114 ifp->if_timer = 0; 1115 if (device_is_enabled(sc->sc_dev)) { 1116 if (sc->sc_softled) { 1117 callout_stop(&sc->sc_ledtimer); 1118 ath_hal_gpioset(ah, sc->sc_ledpin, 1119 !sc->sc_ledon); 1120 sc->sc_blinking = 0; 1121 } 1122 ath_hal_intrset(ah, 0); 1123 } 1124 ath_draintxq(sc); 1125 if (device_is_enabled(sc->sc_dev)) { 1126 ath_stoprecv(sc); 1127 ath_hal_phydisable(ah); 1128 } else 1129 sc->sc_rxlink = NULL; 1130 IF_PURGE(&ifp->if_snd); 1131 ath_beacon_free(sc); 1132 } 1133 if (disable) 1134 pmf_device_suspend(sc->sc_dev, &sc->sc_qual); 1135 } 1136 1137 static void 1138 ath_stop(struct ifnet *ifp, int disable) 1139 { 1140 int s; 1141 1142 s = splnet(); 1143 ath_stop_locked(ifp, disable); 1144 splx(s); 1145 } 1146 1147 static void 1148 ath_restore_diversity(struct ath_softc *sc) 1149 { 1150 struct ifnet *ifp = &sc->sc_if; 1151 struct ath_hal *ah = sc->sc_ah; 1152 1153 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) || 1154 sc->sc_diversity != ath_hal_getdiversity(ah)) { 1155 if_printf(ifp, "could not restore diversity setting %d\n", 1156 sc->sc_diversity); 1157 sc->sc_diversity = ath_hal_getdiversity(ah); 1158 } 1159 } 1160 1161 /* 1162 * Reset the hardware w/o losing operational state. This is 1163 * basically a more efficient way of doing ath_stop, ath_init, 1164 * followed by state transitions to the current 802.11 1165 * operational state. Used to recover from various errors and 1166 * to reset or reload hardware state. 1167 */ 1168 int 1169 ath_reset(struct ifnet *ifp) 1170 { 1171 struct ath_softc *sc = ifp->if_softc; 1172 struct ieee80211com *ic = &sc->sc_ic; 1173 struct ath_hal *ah = sc->sc_ah; 1174 struct ieee80211_channel *c; 1175 HAL_STATUS status; 1176 1177 /* 1178 * Convert to a HAL channel description with the flags 1179 * constrained to reflect the current operating mode. 1180 */ 1181 c = ic->ic_curchan; 1182 sc->sc_curchan.channel = c->ic_freq; 1183 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1184 1185 ath_hal_intrset(ah, 0); /* disable interrupts */ 1186 ath_draintxq(sc); /* stop xmit side */ 1187 ath_stoprecv(sc); /* stop recv side */ 1188 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1189 /* NB: indicate channel change so we do a full reset */ 1190 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1191 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1192 __func__, status); 1193 ath_update_txpow(sc); /* update tx power state */ 1194 ath_restore_diversity(sc); 1195 sc->sc_calinterval = 1; 1196 sc->sc_caltries = 0; 1197 if (ath_startrecv(sc) != 0) /* restart recv */ 1198 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1199 /* 1200 * We may be doing a reset in response to an ioctl 1201 * that changes the channel so update any state that 1202 * might change as a result. 1203 */ 1204 ath_chan_change(sc, c); 1205 if (ic->ic_state == IEEE80211_S_RUN) 1206 ath_beacon_config(sc); /* restart beacons */ 1207 ath_hal_intrset(ah, sc->sc_imask); 1208 1209 ath_start(ifp); /* restart xmit */ 1210 return 0; 1211 } 1212 1213 /* 1214 * Cleanup driver resources when we run out of buffers 1215 * while processing fragments; return the tx buffers 1216 * allocated and drop node references. 1217 */ 1218 static void 1219 ath_txfrag_cleanup(struct ath_softc *sc, 1220 ath_bufhead *frags, struct ieee80211_node *ni) 1221 { 1222 struct ath_buf *bf; 1223 1224 ATH_TXBUF_LOCK_ASSERT(sc); 1225 1226 while ((bf = STAILQ_FIRST(frags)) != NULL) { 1227 STAILQ_REMOVE_HEAD(frags, bf_list); 1228 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1229 sc->sc_if.if_flags &= ~IFF_OACTIVE; 1230 ieee80211_node_decref(ni); 1231 } 1232 } 1233 1234 /* 1235 * Setup xmit of a fragmented frame. Allocate a buffer 1236 * for each frag and bump the node reference count to 1237 * reflect the held reference to be setup by ath_tx_start. 1238 */ 1239 static int 1240 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 1241 struct mbuf *m0, struct ieee80211_node *ni) 1242 { 1243 struct mbuf *m; 1244 struct ath_buf *bf; 1245 1246 ATH_TXBUF_LOCK(sc); 1247 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1248 bf = STAILQ_FIRST(&sc->sc_txbuf); 1249 if (bf == NULL) { /* out of buffers, cleanup */ 1250 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1251 __func__); 1252 sc->sc_if.if_flags |= IFF_OACTIVE; 1253 ath_txfrag_cleanup(sc, frags, ni); 1254 break; 1255 } 1256 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1257 ieee80211_node_incref(ni); 1258 STAILQ_INSERT_TAIL(frags, bf, bf_list); 1259 } 1260 ATH_TXBUF_UNLOCK(sc); 1261 1262 return !STAILQ_EMPTY(frags); 1263 } 1264 1265 static void 1266 ath_start(struct ifnet *ifp) 1267 { 1268 struct ath_softc *sc = ifp->if_softc; 1269 struct ath_hal *ah = sc->sc_ah; 1270 struct ieee80211com *ic = &sc->sc_ic; 1271 struct ieee80211_node *ni; 1272 struct ath_buf *bf; 1273 struct mbuf *m, *next; 1274 struct ieee80211_frame *wh; 1275 struct ether_header *eh; 1276 ath_bufhead frags; 1277 1278 if ((ifp->if_flags & IFF_RUNNING) == 0 || 1279 !device_is_active(sc->sc_dev)) 1280 return; 1281 1282 if (sc->sc_flags & ATH_KEY_UPDATING) 1283 return; 1284 1285 for (;;) { 1286 /* 1287 * Grab a TX buffer and associated resources. 1288 */ 1289 ATH_TXBUF_LOCK(sc); 1290 bf = STAILQ_FIRST(&sc->sc_txbuf); 1291 if (bf != NULL) 1292 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1293 ATH_TXBUF_UNLOCK(sc); 1294 if (bf == NULL) { 1295 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1296 __func__); 1297 sc->sc_stats.ast_tx_qstop++; 1298 ifp->if_flags |= IFF_OACTIVE; 1299 break; 1300 } 1301 /* 1302 * Poll the management queue for frames; they 1303 * have priority over normal data frames. 1304 */ 1305 IF_DEQUEUE(&ic->ic_mgtq, m); 1306 if (m == NULL) { 1307 /* 1308 * No data frames go out unless we're associated. 1309 */ 1310 if (ic->ic_state != IEEE80211_S_RUN) { 1311 DPRINTF(sc, ATH_DEBUG_XMIT, 1312 "%s: discard data packet, state %s\n", 1313 __func__, 1314 ieee80211_state_name[ic->ic_state]); 1315 sc->sc_stats.ast_tx_discard++; 1316 ATH_TXBUF_LOCK(sc); 1317 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1318 ATH_TXBUF_UNLOCK(sc); 1319 break; 1320 } 1321 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1322 if (m == NULL) { 1323 ATH_TXBUF_LOCK(sc); 1324 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1325 ATH_TXBUF_UNLOCK(sc); 1326 break; 1327 } 1328 STAILQ_INIT(&frags); 1329 /* 1330 * Find the node for the destination so we can do 1331 * things like power save and fast frames aggregation. 1332 */ 1333 if (m->m_len < sizeof(struct ether_header) && 1334 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1335 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1336 ni = NULL; 1337 goto bad; 1338 } 1339 eh = mtod(m, struct ether_header *); 1340 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1341 if (ni == NULL) { 1342 /* NB: ieee80211_find_txnode does stat+msg */ 1343 m_freem(m); 1344 goto bad; 1345 } 1346 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1347 (m->m_flags & M_PWR_SAV) == 0) { 1348 /* 1349 * Station in power save mode; pass the frame 1350 * to the 802.11 layer and continue. We'll get 1351 * the frame back when the time is right. 1352 */ 1353 ieee80211_pwrsave(ic, ni, m); 1354 goto reclaim; 1355 } 1356 /* calculate priority so we can find the tx queue */ 1357 if (ieee80211_classify(ic, m, ni)) { 1358 DPRINTF(sc, ATH_DEBUG_XMIT, 1359 "%s: discard, classification failure\n", 1360 __func__); 1361 m_freem(m); 1362 goto bad; 1363 } 1364 ifp->if_opackets++; 1365 1366 bpf_mtap(ifp, m); 1367 /* 1368 * Encapsulate the packet in prep for transmission. 1369 */ 1370 m = ieee80211_encap(ic, m, ni); 1371 if (m == NULL) { 1372 DPRINTF(sc, ATH_DEBUG_XMIT, 1373 "%s: encapsulation failure\n", 1374 __func__); 1375 sc->sc_stats.ast_tx_encap++; 1376 goto bad; 1377 } 1378 /* 1379 * Check for fragmentation. If this has frame 1380 * has been broken up verify we have enough 1381 * buffers to send all the fragments so all 1382 * go out or none... 1383 */ 1384 if ((m->m_flags & M_FRAG) && 1385 !ath_txfrag_setup(sc, &frags, m, ni)) { 1386 DPRINTF(sc, ATH_DEBUG_ANY, 1387 "%s: out of txfrag buffers\n", __func__); 1388 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1389 ath_freetx(m); 1390 goto bad; 1391 } 1392 } else { 1393 /* 1394 * Hack! The referenced node pointer is in the 1395 * rcvif field of the packet header. This is 1396 * placed there by ieee80211_mgmt_output because 1397 * we need to hold the reference with the frame 1398 * and there's no other way (other than packet 1399 * tags which we consider too expensive to use) 1400 * to pass it along. 1401 */ 1402 ni = M_GETCTX(m, struct ieee80211_node *); 1403 m->m_pkthdr.rcvif = NULL; 1404 1405 wh = mtod(m, struct ieee80211_frame *); 1406 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1407 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1408 /* fill time stamp */ 1409 u_int64_t tsf; 1410 u_int32_t *tstamp; 1411 1412 tsf = ath_hal_gettsf64(ah); 1413 /* XXX: adjust 100us delay to xmit */ 1414 tsf += 100; 1415 tstamp = (u_int32_t *)&wh[1]; 1416 tstamp[0] = htole32(tsf & 0xffffffff); 1417 tstamp[1] = htole32(tsf >> 32); 1418 } 1419 sc->sc_stats.ast_tx_mgmt++; 1420 } 1421 1422 nextfrag: 1423 next = m->m_nextpkt; 1424 if (ath_tx_start(sc, ni, bf, m)) { 1425 bad: 1426 ifp->if_oerrors++; 1427 reclaim: 1428 ATH_TXBUF_LOCK(sc); 1429 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1430 ath_txfrag_cleanup(sc, &frags, ni); 1431 ATH_TXBUF_UNLOCK(sc); 1432 if (ni != NULL) 1433 ieee80211_free_node(ni); 1434 continue; 1435 } 1436 if (next != NULL) { 1437 m = next; 1438 bf = STAILQ_FIRST(&frags); 1439 KASSERTMSG(bf != NULL, "no buf for txfrag"); 1440 STAILQ_REMOVE_HEAD(&frags, bf_list); 1441 goto nextfrag; 1442 } 1443 1444 ifp->if_timer = 1; 1445 } 1446 } 1447 1448 static int 1449 ath_media_change(struct ifnet *ifp) 1450 { 1451 #define IS_UP(ifp) \ 1452 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 1453 int error; 1454 1455 error = ieee80211_media_change(ifp); 1456 if (error == ENETRESET) { 1457 if (IS_UP(ifp)) 1458 ath_init(ifp->if_softc); /* XXX lose error */ 1459 error = 0; 1460 } 1461 return error; 1462 #undef IS_UP 1463 } 1464 1465 #ifdef AR_DEBUG 1466 static void 1467 ath_keyprint(const char *tag, u_int ix, 1468 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1469 { 1470 static const char *ciphers[] = { 1471 "WEP", 1472 "AES-OCB", 1473 "AES-CCM", 1474 "CKIP", 1475 "TKIP", 1476 "CLR", 1477 }; 1478 int i, n; 1479 1480 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1481 for (i = 0, n = hk->kv_len; i < n; i++) 1482 printf("%02x", hk->kv_val[i]); 1483 printf(" mac %s", ether_sprintf(mac)); 1484 if (hk->kv_type == HAL_CIPHER_TKIP) { 1485 printf(" mic "); 1486 for (i = 0; i < sizeof(hk->kv_mic); i++) 1487 printf("%02x", hk->kv_mic[i]); 1488 } 1489 printf("\n"); 1490 } 1491 #endif 1492 1493 /* 1494 * Set a TKIP key into the hardware. This handles the 1495 * potential distribution of key state to multiple key 1496 * cache slots for TKIP. 1497 */ 1498 static int 1499 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1500 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1501 { 1502 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1503 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1504 struct ath_hal *ah = sc->sc_ah; 1505 1506 KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1507 "got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher); 1508 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1509 if (sc->sc_splitmic) { 1510 /* 1511 * TX key goes at first index, RX key at the rx index. 1512 * The hal handles the MIC keys at index+64. 1513 */ 1514 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1515 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1516 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, 1517 zerobssid)) 1518 return 0; 1519 1520 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1521 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1522 /* XXX delete tx key on failure? */ 1523 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32), 1524 hk, mac); 1525 } else { 1526 /* 1527 * Room for both TX+RX MIC keys in one key cache 1528 * slot, just set key at the first index; the HAL 1529 * will handle the reset. 1530 */ 1531 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1532 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1533 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1534 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1535 } 1536 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 1537 if (sc->sc_splitmic) { 1538 /* 1539 * NB: must pass MIC key in expected location when 1540 * the keycache only holds one MIC key per entry. 1541 */ 1542 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); 1543 } else 1544 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1545 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1546 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1547 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 1548 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1549 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1550 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1551 } 1552 return 0; 1553 #undef IEEE80211_KEY_XR 1554 } 1555 1556 /* 1557 * Set a net80211 key into the hardware. This handles the 1558 * potential distribution of key state to multiple key 1559 * cache slots for TKIP with hardware MIC support. 1560 */ 1561 static int 1562 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1563 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1564 struct ieee80211_node *bss) 1565 { 1566 #define N(a) (sizeof(a)/sizeof(a[0])) 1567 static const u_int8_t ciphermap[] = { 1568 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1569 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1570 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1571 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1572 (u_int8_t) -1, /* 4 is not allocated */ 1573 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1574 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1575 }; 1576 struct ath_hal *ah = sc->sc_ah; 1577 const struct ieee80211_cipher *cip = k->wk_cipher; 1578 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1579 const u_int8_t *mac; 1580 HAL_KEYVAL hk; 1581 1582 memset(&hk, 0, sizeof(hk)); 1583 /* 1584 * Software crypto uses a "clear key" so non-crypto 1585 * state kept in the key cache are maintained and 1586 * so that rx frames have an entry to match. 1587 */ 1588 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1589 KASSERTMSG(cip->ic_cipher < N(ciphermap), 1590 "invalid cipher type %u", cip->ic_cipher); 1591 hk.kv_type = ciphermap[cip->ic_cipher]; 1592 hk.kv_len = k->wk_keylen; 1593 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1594 } else 1595 hk.kv_type = HAL_CIPHER_CLR; 1596 1597 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1598 /* 1599 * Group keys on hardware that supports multicast frame 1600 * key search use a mac that is the sender's address with 1601 * the high bit set instead of the app-specified address. 1602 */ 1603 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1604 gmac[0] |= 0x80; 1605 mac = gmac; 1606 } else 1607 mac = mac0; 1608 1609 if ((hk.kv_type == HAL_CIPHER_TKIP && 1610 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) { 1611 return ath_keyset_tkip(sc, k, &hk, mac); 1612 } else { 1613 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1614 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac); 1615 } 1616 #undef N 1617 } 1618 1619 /* 1620 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1621 * each key, one for decrypt/encrypt and the other for the MIC. 1622 */ 1623 static u_int16_t 1624 key_alloc_2pair(struct ath_softc *sc, 1625 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1626 { 1627 #define N(a) (sizeof(a)/sizeof(a[0])) 1628 u_int i, keyix; 1629 1630 KASSERTMSG(sc->sc_splitmic, "key cache !split"); 1631 /* XXX could optimize */ 1632 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1633 u_int8_t b = sc->sc_keymap[i]; 1634 if (b != 0xff) { 1635 /* 1636 * One or more slots in this byte are free. 1637 */ 1638 keyix = i*NBBY; 1639 while (b & 1) { 1640 again: 1641 keyix++; 1642 b >>= 1; 1643 } 1644 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1645 if (isset(sc->sc_keymap, keyix+32) || 1646 isset(sc->sc_keymap, keyix+64) || 1647 isset(sc->sc_keymap, keyix+32+64)) { 1648 /* full pair unavailable */ 1649 /* XXX statistic */ 1650 if (keyix == (i+1)*NBBY) { 1651 /* no slots were appropriate, advance */ 1652 continue; 1653 } 1654 goto again; 1655 } 1656 setbit(sc->sc_keymap, keyix); 1657 setbit(sc->sc_keymap, keyix+64); 1658 setbit(sc->sc_keymap, keyix+32); 1659 setbit(sc->sc_keymap, keyix+32+64); 1660 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1661 "%s: key pair %u,%u %u,%u\n", 1662 __func__, keyix, keyix+64, 1663 keyix+32, keyix+32+64); 1664 *txkeyix = keyix; 1665 *rxkeyix = keyix+32; 1666 return keyix; 1667 } 1668 } 1669 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1670 return IEEE80211_KEYIX_NONE; 1671 #undef N 1672 } 1673 1674 /* 1675 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1676 * each key, one for decrypt/encrypt and the other for the MIC. 1677 */ 1678 static int 1679 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix, 1680 ieee80211_keyix *rxkeyix) 1681 { 1682 #define N(a) (sizeof(a)/sizeof(a[0])) 1683 u_int i, keyix; 1684 1685 KASSERTMSG(!sc->sc_splitmic, "key cache split"); 1686 /* XXX could optimize */ 1687 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1688 uint8_t b = sc->sc_keymap[i]; 1689 if (b != 0xff) { 1690 /* 1691 * One or more slots in this byte are free. 1692 */ 1693 keyix = i*NBBY; 1694 while (b & 1) { 1695 again: 1696 keyix++; 1697 b >>= 1; 1698 } 1699 if (isset(sc->sc_keymap, keyix+64)) { 1700 /* full pair unavailable */ 1701 /* XXX statistic */ 1702 if (keyix == (i+1)*NBBY) { 1703 /* no slots were appropriate, advance */ 1704 continue; 1705 } 1706 goto again; 1707 } 1708 setbit(sc->sc_keymap, keyix); 1709 setbit(sc->sc_keymap, keyix+64); 1710 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1711 "%s: key pair %u,%u\n", 1712 __func__, keyix, keyix+64); 1713 *txkeyix = *rxkeyix = keyix; 1714 return 1; 1715 } 1716 } 1717 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1718 return 0; 1719 #undef N 1720 } 1721 1722 /* 1723 * Allocate a single key cache slot. 1724 */ 1725 static int 1726 key_alloc_single(struct ath_softc *sc, 1727 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1728 { 1729 #define N(a) (sizeof(a)/sizeof(a[0])) 1730 u_int i, keyix; 1731 1732 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1733 for (i = 0; i < N(sc->sc_keymap); i++) { 1734 u_int8_t b = sc->sc_keymap[i]; 1735 if (b != 0xff) { 1736 /* 1737 * One or more slots are free. 1738 */ 1739 keyix = i*NBBY; 1740 while (b & 1) 1741 keyix++, b >>= 1; 1742 setbit(sc->sc_keymap, keyix); 1743 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1744 __func__, keyix); 1745 *txkeyix = *rxkeyix = keyix; 1746 return 1; 1747 } 1748 } 1749 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1750 return 0; 1751 #undef N 1752 } 1753 1754 /* 1755 * Allocate one or more key cache slots for a uniacst key. The 1756 * key itself is needed only to identify the cipher. For hardware 1757 * TKIP with split cipher+MIC keys we allocate two key cache slot 1758 * pairs so that we can setup separate TX and RX MIC keys. Note 1759 * that the MIC key for a TKIP key at slot i is assumed by the 1760 * hardware to be at slot i+64. This limits TKIP keys to the first 1761 * 64 entries. 1762 */ 1763 static int 1764 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k, 1765 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 1766 { 1767 struct ath_softc *sc = ic->ic_ifp->if_softc; 1768 1769 /* 1770 * Group key allocation must be handled specially for 1771 * parts that do not support multicast key cache search 1772 * functionality. For those parts the key id must match 1773 * the h/w key index so lookups find the right key. On 1774 * parts w/ the key search facility we install the sender's 1775 * mac address (with the high bit set) and let the hardware 1776 * find the key w/o using the key id. This is preferred as 1777 * it permits us to support multiple users for adhoc and/or 1778 * multi-station operation. 1779 */ 1780 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1781 if (!(&ic->ic_nw_keys[0] <= k && 1782 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1783 /* should not happen */ 1784 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1785 "%s: bogus group key\n", __func__); 1786 return 0; 1787 } 1788 /* 1789 * XXX we pre-allocate the global keys so 1790 * have no way to check if they've already been allocated. 1791 */ 1792 *keyix = *rxkeyix = k - ic->ic_nw_keys; 1793 return 1; 1794 } 1795 1796 /* 1797 * We allocate two pair for TKIP when using the h/w to do 1798 * the MIC. For everything else, including software crypto, 1799 * we allocate a single entry. Note that s/w crypto requires 1800 * a pass-through slot on the 5211 and 5212. The 5210 does 1801 * not support pass-through cache entries and we map all 1802 * those requests to slot 0. 1803 */ 1804 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1805 return key_alloc_single(sc, keyix, rxkeyix); 1806 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1807 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1808 if (sc->sc_splitmic) 1809 return key_alloc_2pair(sc, keyix, rxkeyix); 1810 else 1811 return key_alloc_pair(sc, keyix, rxkeyix); 1812 } else { 1813 return key_alloc_single(sc, keyix, rxkeyix); 1814 } 1815 } 1816 1817 /* 1818 * Delete an entry in the key cache allocated by ath_key_alloc. 1819 */ 1820 static int 1821 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1822 { 1823 struct ath_softc *sc = ic->ic_ifp->if_softc; 1824 struct ath_hal *ah = sc->sc_ah; 1825 const struct ieee80211_cipher *cip = k->wk_cipher; 1826 u_int keyix = k->wk_keyix; 1827 1828 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1829 1830 if (!device_has_power(sc->sc_dev)) { 1831 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n", 1832 k->wk_keyix); 1833 } 1834 1835 ath_hal_keyreset(ah, keyix); 1836 /* 1837 * Handle split tx/rx keying required for TKIP with h/w MIC. 1838 */ 1839 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1840 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1841 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1842 if (keyix >= IEEE80211_WEP_NKID) { 1843 /* 1844 * Don't touch keymap entries for global keys so 1845 * they are never considered for dynamic allocation. 1846 */ 1847 clrbit(sc->sc_keymap, keyix); 1848 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1849 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1850 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1851 if (sc->sc_splitmic) { 1852 /* +32 for RX key, +32+64 for RX key MIC */ 1853 clrbit(sc->sc_keymap, keyix+32); 1854 clrbit(sc->sc_keymap, keyix+32+64); 1855 } 1856 } 1857 } 1858 return 1; 1859 } 1860 1861 /* 1862 * Set the key cache contents for the specified key. Key cache 1863 * slot(s) must already have been allocated by ath_key_alloc. 1864 */ 1865 static int 1866 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1867 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1868 { 1869 struct ath_softc *sc = ic->ic_ifp->if_softc; 1870 1871 if (!device_has_power(sc->sc_dev)) { 1872 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n", 1873 k->wk_keyix); 1874 } 1875 return ath_keyset(sc, k, mac, ic->ic_bss); 1876 } 1877 1878 /* 1879 * Block/unblock tx+rx processing while a key change is done. 1880 * We assume the caller serializes key management operations 1881 * so we only need to worry about synchronization with other 1882 * uses that originate in the driver. 1883 */ 1884 static void 1885 ath_key_update_begin(struct ieee80211com *ic) 1886 { 1887 struct ifnet *ifp = ic->ic_ifp; 1888 struct ath_softc *sc = ifp->if_softc; 1889 1890 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1891 #if 0 1892 tasklet_disable(&sc->sc_rxtq); 1893 #endif 1894 sc->sc_flags |= ATH_KEY_UPDATING; 1895 } 1896 1897 static void 1898 ath_key_update_end(struct ieee80211com *ic) 1899 { 1900 struct ifnet *ifp = ic->ic_ifp; 1901 struct ath_softc *sc = ifp->if_softc; 1902 1903 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1904 sc->sc_flags &= ~ATH_KEY_UPDATING; 1905 #if 0 1906 tasklet_enable(&sc->sc_rxtq); 1907 #endif 1908 } 1909 1910 /* 1911 * Calculate the receive filter according to the 1912 * operating mode and state: 1913 * 1914 * o always accept unicast, broadcast, and multicast traffic 1915 * o maintain current state of phy error reception (the hal 1916 * may enable phy error frames for noise immunity work) 1917 * o probe request frames are accepted only when operating in 1918 * hostap, adhoc, or monitor modes 1919 * o enable promiscuous mode according to the interface state 1920 * o accept beacons: 1921 * - when operating in adhoc mode so the 802.11 layer creates 1922 * node table entries for peers, 1923 * - when operating in station mode for collecting rssi data when 1924 * the station is otherwise quiet, or 1925 * - when scanning 1926 */ 1927 static u_int32_t 1928 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1929 { 1930 struct ieee80211com *ic = &sc->sc_ic; 1931 struct ath_hal *ah = sc->sc_ah; 1932 struct ifnet *ifp = &sc->sc_if; 1933 u_int32_t rfilt; 1934 1935 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1936 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1937 if (ic->ic_opmode != IEEE80211_M_STA) 1938 rfilt |= HAL_RX_FILTER_PROBEREQ; 1939 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1940 (ifp->if_flags & IFF_PROMISC)) 1941 rfilt |= HAL_RX_FILTER_PROM; 1942 if (ifp->if_flags & IFF_PROMISC) 1943 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ; 1944 if (ic->ic_opmode == IEEE80211_M_STA || 1945 ic->ic_opmode == IEEE80211_M_IBSS || 1946 state == IEEE80211_S_SCAN) 1947 rfilt |= HAL_RX_FILTER_BEACON; 1948 return rfilt; 1949 } 1950 1951 static void 1952 ath_mode_init(struct ath_softc *sc) 1953 { 1954 struct ifnet *ifp = &sc->sc_if; 1955 struct ieee80211com *ic = &sc->sc_ic; 1956 struct ath_hal *ah = sc->sc_ah; 1957 struct ether_multi *enm; 1958 struct ether_multistep estep; 1959 u_int32_t rfilt, mfilt[2], val; 1960 int i; 1961 uint8_t pos; 1962 1963 /* configure rx filter */ 1964 rfilt = ath_calcrxfilter(sc, ic->ic_state); 1965 ath_hal_setrxfilter(ah, rfilt); 1966 1967 /* configure operational mode */ 1968 ath_hal_setopmode(ah); 1969 1970 /* Write keys to hardware; it may have been powered down. */ 1971 ath_key_update_begin(ic); 1972 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1973 ath_key_set(ic, 1974 &ic->ic_crypto.cs_nw_keys[i], 1975 ic->ic_myaddr); 1976 } 1977 ath_key_update_end(ic); 1978 1979 /* 1980 * Handle any link-level address change. Note that we only 1981 * need to force ic_myaddr; any other addresses are handled 1982 * as a byproduct of the ifnet code marking the interface 1983 * down then up. 1984 * 1985 * XXX should get from lladdr instead of arpcom but that's more work 1986 */ 1987 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl)); 1988 ath_hal_setmac(ah, ic->ic_myaddr); 1989 1990 /* calculate and install multicast filter */ 1991 ifp->if_flags &= ~IFF_ALLMULTI; 1992 mfilt[0] = mfilt[1] = 0; 1993 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 1994 while (enm != NULL) { 1995 void *dl; 1996 /* XXX Punt on ranges. */ 1997 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 1998 mfilt[0] = mfilt[1] = 0xffffffff; 1999 ifp->if_flags |= IFF_ALLMULTI; 2000 break; 2001 } 2002 dl = enm->enm_addrlo; 2003 val = LE_READ_4((char *)dl + 0); 2004 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2005 val = LE_READ_4((char *)dl + 3); 2006 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2007 pos &= 0x3f; 2008 mfilt[pos / 32] |= (1 << (pos % 32)); 2009 2010 ETHER_NEXT_MULTI(estep, enm); 2011 } 2012 2013 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 2014 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 2015 __func__, rfilt, mfilt[0], mfilt[1]); 2016 } 2017 2018 /* 2019 * Set the slot time based on the current setting. 2020 */ 2021 static void 2022 ath_setslottime(struct ath_softc *sc) 2023 { 2024 struct ieee80211com *ic = &sc->sc_ic; 2025 struct ath_hal *ah = sc->sc_ah; 2026 2027 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2028 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 2029 else 2030 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 2031 sc->sc_updateslot = OK; 2032 } 2033 2034 /* 2035 * Callback from the 802.11 layer to update the 2036 * slot time based on the current setting. 2037 */ 2038 static void 2039 ath_updateslot(struct ifnet *ifp) 2040 { 2041 struct ath_softc *sc = ifp->if_softc; 2042 struct ieee80211com *ic = &sc->sc_ic; 2043 2044 /* 2045 * When not coordinating the BSS, change the hardware 2046 * immediately. For other operation we defer the change 2047 * until beacon updates have propagated to the stations. 2048 */ 2049 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2050 sc->sc_updateslot = UPDATE; 2051 else 2052 ath_setslottime(sc); 2053 } 2054 2055 /* 2056 * Setup a h/w transmit queue for beacons. 2057 */ 2058 static int 2059 ath_beaconq_setup(struct ath_hal *ah) 2060 { 2061 HAL_TXQ_INFO qi; 2062 2063 memset(&qi, 0, sizeof(qi)); 2064 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2065 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2066 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2067 /* NB: for dynamic turbo, don't enable any other interrupts */ 2068 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2069 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2070 } 2071 2072 /* 2073 * Setup the transmit queue parameters for the beacon queue. 2074 */ 2075 static int 2076 ath_beaconq_config(struct ath_softc *sc) 2077 { 2078 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2079 struct ieee80211com *ic = &sc->sc_ic; 2080 struct ath_hal *ah = sc->sc_ah; 2081 HAL_TXQ_INFO qi; 2082 2083 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2084 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2085 /* 2086 * Always burst out beacon and CAB traffic. 2087 */ 2088 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2089 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2090 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2091 } else { 2092 struct wmeParams *wmep = 2093 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2094 /* 2095 * Adhoc mode; important thing is to use 2x cwmin. 2096 */ 2097 qi.tqi_aifs = wmep->wmep_aifsn; 2098 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2099 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2100 } 2101 2102 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2103 device_printf(sc->sc_dev, "unable to update parameters for " 2104 "beacon hardware queue!\n"); 2105 return 0; 2106 } else { 2107 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2108 return 1; 2109 } 2110 #undef ATH_EXPONENT_TO_VALUE 2111 } 2112 2113 /* 2114 * Allocate and setup an initial beacon frame. 2115 */ 2116 static int 2117 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2118 { 2119 struct ieee80211com *ic = ni->ni_ic; 2120 struct ath_buf *bf; 2121 struct mbuf *m; 2122 int error; 2123 2124 bf = STAILQ_FIRST(&sc->sc_bbuf); 2125 if (bf == NULL) { 2126 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 2127 sc->sc_stats.ast_be_nombuf++; /* XXX */ 2128 return ENOMEM; /* XXX */ 2129 } 2130 /* 2131 * NB: the beacon data buffer must be 32-bit aligned; 2132 * we assume the mbuf routines will return us something 2133 * with this alignment (perhaps should assert). 2134 */ 2135 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 2136 if (m == NULL) { 2137 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 2138 __func__); 2139 sc->sc_stats.ast_be_nombuf++; 2140 return ENOMEM; 2141 } 2142 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2143 BUS_DMA_NOWAIT); 2144 if (error == 0) { 2145 bf->bf_m = m; 2146 bf->bf_node = ieee80211_ref_node(ni); 2147 } else { 2148 m_freem(m); 2149 } 2150 return error; 2151 } 2152 2153 /* 2154 * Setup the beacon frame for transmit. 2155 */ 2156 static void 2157 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2158 { 2159 #define USE_SHPREAMBLE(_ic) \ 2160 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2161 == IEEE80211_F_SHPREAMBLE) 2162 struct ieee80211_node *ni = bf->bf_node; 2163 struct ieee80211com *ic = ni->ni_ic; 2164 struct mbuf *m = bf->bf_m; 2165 struct ath_hal *ah = sc->sc_ah; 2166 struct ath_desc *ds; 2167 int flags, antenna; 2168 const HAL_RATE_TABLE *rt; 2169 u_int8_t rix, rate; 2170 2171 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 2172 __func__, m, m->m_len); 2173 2174 /* setup descriptors */ 2175 ds = bf->bf_desc; 2176 2177 flags = HAL_TXDESC_NOACK; 2178 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2179 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */ 2180 flags |= HAL_TXDESC_VEOL; 2181 /* 2182 * Let hardware handle antenna switching unless 2183 * the user has selected a transmit antenna 2184 * (sc_txantenna is not 0). 2185 */ 2186 antenna = sc->sc_txantenna; 2187 } else { 2188 ds->ds_link = 0; 2189 /* 2190 * Switch antenna every 4 beacons, unless the user 2191 * has selected a transmit antenna (sc_txantenna 2192 * is not 0). 2193 * 2194 * XXX assumes two antenna 2195 */ 2196 if (sc->sc_txantenna == 0) 2197 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2198 else 2199 antenna = sc->sc_txantenna; 2200 } 2201 2202 KASSERTMSG(bf->bf_nseg == 1, 2203 "multi-segment beacon frame; nseg %u", bf->bf_nseg); 2204 ds->ds_data = bf->bf_segs[0].ds_addr; 2205 /* 2206 * Calculate rate code. 2207 * XXX everything at min xmit rate 2208 */ 2209 rix = sc->sc_minrateix; 2210 rt = sc->sc_currates; 2211 rate = rt->info[rix].rateCode; 2212 if (USE_SHPREAMBLE(ic)) 2213 rate |= rt->info[rix].shortPreamble; 2214 ath_hal_setuptxdesc(ah, ds 2215 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2216 , sizeof(struct ieee80211_frame)/* header length */ 2217 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2218 , ni->ni_txpower /* txpower XXX */ 2219 , rate, 1 /* series 0 rate/tries */ 2220 , HAL_TXKEYIX_INVALID /* no encryption */ 2221 , antenna /* antenna mode */ 2222 , flags /* no ack, veol for beacons */ 2223 , 0 /* rts/cts rate */ 2224 , 0 /* rts/cts duration */ 2225 ); 2226 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2227 ath_hal_filltxdesc(ah, ds 2228 , roundup(m->m_len, 4) /* buffer length */ 2229 , AH_TRUE /* first segment */ 2230 , AH_TRUE /* last segment */ 2231 , ds /* first descriptor */ 2232 ); 2233 2234 /* NB: The desc swap function becomes void, if descriptor swapping 2235 * is not enabled 2236 */ 2237 ath_desc_swap(ds); 2238 2239 #undef USE_SHPREAMBLE 2240 } 2241 2242 /* 2243 * Transmit a beacon frame at SWBA. Dynamic updates to the 2244 * frame contents are done as needed and the slot time is 2245 * also adjusted based on current state. 2246 */ 2247 static void 2248 ath_beacon_proc(void *arg, int pending) 2249 { 2250 struct ath_softc *sc = arg; 2251 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 2252 struct ieee80211_node *ni = bf->bf_node; 2253 struct ieee80211com *ic = ni->ni_ic; 2254 struct ath_hal *ah = sc->sc_ah; 2255 struct mbuf *m; 2256 int ncabq, error, otherant; 2257 2258 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2259 __func__, pending); 2260 2261 if (ic->ic_opmode == IEEE80211_M_STA || 2262 ic->ic_opmode == IEEE80211_M_MONITOR || 2263 bf == NULL || bf->bf_m == NULL) { 2264 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 2265 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 2266 return; 2267 } 2268 /* 2269 * Check if the previous beacon has gone out. If 2270 * not don't try to post another, skip this period 2271 * and wait for the next. Missed beacons indicate 2272 * a problem and should not occur. If we miss too 2273 * many consecutive beacons reset the device. 2274 */ 2275 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2276 sc->sc_bmisscount++; 2277 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2278 "%s: missed %u consecutive beacons\n", 2279 __func__, sc->sc_bmisscount); 2280 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2281 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask); 2282 return; 2283 } 2284 if (sc->sc_bmisscount != 0) { 2285 DPRINTF(sc, ATH_DEBUG_BEACON, 2286 "%s: resume beacon xmit after %u misses\n", 2287 __func__, sc->sc_bmisscount); 2288 sc->sc_bmisscount = 0; 2289 } 2290 2291 /* 2292 * Update dynamic beacon contents. If this returns 2293 * non-zero then we need to remap the memory because 2294 * the beacon frame changed size (probably because 2295 * of the TIM bitmap). 2296 */ 2297 m = bf->bf_m; 2298 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 2299 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 2300 /* XXX too conservative? */ 2301 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2302 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2303 BUS_DMA_NOWAIT); 2304 if (error != 0) { 2305 if_printf(&sc->sc_if, 2306 "%s: bus_dmamap_load_mbuf failed, error %u\n", 2307 __func__, error); 2308 return; 2309 } 2310 } 2311 2312 /* 2313 * Handle slot time change when a non-ERP station joins/leaves 2314 * an 11g network. The 802.11 layer notifies us via callback, 2315 * we mark updateslot, then wait one beacon before effecting 2316 * the change. This gives associated stations at least one 2317 * beacon interval to note the state change. 2318 */ 2319 /* XXX locking */ 2320 if (sc->sc_updateslot == UPDATE) 2321 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2322 else if (sc->sc_updateslot == COMMIT) 2323 ath_setslottime(sc); /* commit change to h/w */ 2324 2325 /* 2326 * Check recent per-antenna transmit statistics and flip 2327 * the default antenna if noticeably more frames went out 2328 * on the non-default antenna. 2329 * XXX assumes 2 anntenae 2330 */ 2331 otherant = sc->sc_defant & 1 ? 2 : 1; 2332 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2333 ath_setdefantenna(sc, otherant); 2334 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2335 2336 /* 2337 * Construct tx descriptor. 2338 */ 2339 ath_beacon_setup(sc, bf); 2340 2341 /* 2342 * Stop any current dma and put the new frame on the queue. 2343 * This should never fail since we check above that no frames 2344 * are still pending on the queue. 2345 */ 2346 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2347 DPRINTF(sc, ATH_DEBUG_ANY, 2348 "%s: beacon queue %u did not stop?\n", 2349 __func__, sc->sc_bhalq); 2350 } 2351 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2352 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 2353 2354 /* 2355 * Enable the CAB queue before the beacon queue to 2356 * insure cab frames are triggered by this beacon. 2357 */ 2358 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */ 2359 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 2360 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2361 ath_hal_txstart(ah, sc->sc_bhalq); 2362 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2363 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__, 2364 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc); 2365 2366 sc->sc_stats.ast_be_xmit++; 2367 } 2368 2369 /* 2370 * Reset the hardware after detecting beacons have stopped. 2371 */ 2372 static void 2373 ath_bstuck_proc(void *arg, int pending) 2374 { 2375 struct ath_softc *sc = arg; 2376 struct ifnet *ifp = &sc->sc_if; 2377 2378 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2379 sc->sc_bmisscount); 2380 ath_reset(ifp); 2381 } 2382 2383 /* 2384 * Reclaim beacon resources. 2385 */ 2386 static void 2387 ath_beacon_free(struct ath_softc *sc) 2388 { 2389 struct ath_buf *bf; 2390 2391 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2392 if (bf->bf_m != NULL) { 2393 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2394 m_freem(bf->bf_m); 2395 bf->bf_m = NULL; 2396 } 2397 if (bf->bf_node != NULL) { 2398 ieee80211_free_node(bf->bf_node); 2399 bf->bf_node = NULL; 2400 } 2401 } 2402 } 2403 2404 /* 2405 * Configure the beacon and sleep timers. 2406 * 2407 * When operating as an AP this resets the TSF and sets 2408 * up the hardware to notify us when we need to issue beacons. 2409 * 2410 * When operating in station mode this sets up the beacon 2411 * timers according to the timestamp of the last received 2412 * beacon and the current TSF, configures PCF and DTIM 2413 * handling, programs the sleep registers so the hardware 2414 * will wakeup in time to receive beacons, and configures 2415 * the beacon miss handling so we'll receive a BMISS 2416 * interrupt when we stop seeing beacons from the AP 2417 * we've associated with. 2418 */ 2419 static void 2420 ath_beacon_config(struct ath_softc *sc) 2421 { 2422 #define TSF_TO_TU(_h,_l) \ 2423 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 2424 #define FUDGE 2 2425 struct ath_hal *ah = sc->sc_ah; 2426 struct ieee80211com *ic = &sc->sc_ic; 2427 struct ieee80211_node *ni = ic->ic_bss; 2428 u_int32_t nexttbtt, intval, tsftu; 2429 u_int64_t tsf; 2430 2431 /* extract tstamp from last beacon and convert to TU */ 2432 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2433 LE_READ_4(ni->ni_tstamp.data)); 2434 /* NB: the beacon interval is kept internally in TU's */ 2435 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2436 if (nexttbtt == 0) /* e.g. for ap mode */ 2437 nexttbtt = intval; 2438 else if (intval) /* NB: can be 0 for monitor mode */ 2439 nexttbtt = roundup(nexttbtt, intval); 2440 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2441 __func__, nexttbtt, intval, ni->ni_intval); 2442 if (ic->ic_opmode == IEEE80211_M_STA) { 2443 HAL_BEACON_STATE bs; 2444 int dtimperiod, dtimcount; 2445 int cfpperiod, cfpcount; 2446 2447 /* 2448 * Setup dtim and cfp parameters according to 2449 * last beacon we received (which may be none). 2450 */ 2451 dtimperiod = ni->ni_dtim_period; 2452 if (dtimperiod <= 0) /* NB: 0 if not known */ 2453 dtimperiod = 1; 2454 dtimcount = ni->ni_dtim_count; 2455 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2456 dtimcount = 0; /* XXX? */ 2457 cfpperiod = 1; /* NB: no PCF support yet */ 2458 cfpcount = 0; 2459 /* 2460 * Pull nexttbtt forward to reflect the current 2461 * TSF and calculate dtim+cfp state for the result. 2462 */ 2463 tsf = ath_hal_gettsf64(ah); 2464 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2465 do { 2466 nexttbtt += intval; 2467 if (--dtimcount < 0) { 2468 dtimcount = dtimperiod - 1; 2469 if (--cfpcount < 0) 2470 cfpcount = cfpperiod - 1; 2471 } 2472 } while (nexttbtt < tsftu); 2473 memset(&bs, 0, sizeof(bs)); 2474 bs.bs_intval = intval; 2475 bs.bs_nexttbtt = nexttbtt; 2476 bs.bs_dtimperiod = dtimperiod*intval; 2477 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2478 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2479 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2480 bs.bs_cfpmaxduration = 0; 2481 #if 0 2482 /* 2483 * The 802.11 layer records the offset to the DTIM 2484 * bitmap while receiving beacons; use it here to 2485 * enable h/w detection of our AID being marked in 2486 * the bitmap vector (to indicate frames for us are 2487 * pending at the AP). 2488 * XXX do DTIM handling in s/w to WAR old h/w bugs 2489 * XXX enable based on h/w rev for newer chips 2490 */ 2491 bs.bs_timoffset = ni->ni_timoff; 2492 #endif 2493 /* 2494 * Calculate the number of consecutive beacons to miss 2495 * before taking a BMISS interrupt. The configuration 2496 * is specified in ms, so we need to convert that to 2497 * TU's and then calculate based on the beacon interval. 2498 * Note that we clamp the result to at most 10 beacons. 2499 */ 2500 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2501 if (bs.bs_bmissthreshold > 10) 2502 bs.bs_bmissthreshold = 10; 2503 else if (bs.bs_bmissthreshold <= 0) 2504 bs.bs_bmissthreshold = 1; 2505 2506 /* 2507 * Calculate sleep duration. The configuration is 2508 * given in ms. We insure a multiple of the beacon 2509 * period is used. Also, if the sleep duration is 2510 * greater than the DTIM period then it makes senses 2511 * to make it a multiple of that. 2512 * 2513 * XXX fixed at 100ms 2514 */ 2515 bs.bs_sleepduration = 2516 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2517 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2518 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2519 2520 DPRINTF(sc, ATH_DEBUG_BEACON, 2521 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2522 , __func__ 2523 , tsf, tsftu 2524 , bs.bs_intval 2525 , bs.bs_nexttbtt 2526 , bs.bs_dtimperiod 2527 , bs.bs_nextdtim 2528 , bs.bs_bmissthreshold 2529 , bs.bs_sleepduration 2530 , bs.bs_cfpperiod 2531 , bs.bs_cfpmaxduration 2532 , bs.bs_cfpnext 2533 , bs.bs_timoffset 2534 ); 2535 ath_hal_intrset(ah, 0); 2536 ath_hal_beacontimers(ah, &bs); 2537 sc->sc_imask |= HAL_INT_BMISS; 2538 ath_hal_intrset(ah, sc->sc_imask); 2539 } else { 2540 ath_hal_intrset(ah, 0); 2541 if (nexttbtt == intval) 2542 intval |= HAL_BEACON_RESET_TSF; 2543 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2544 /* 2545 * In IBSS mode enable the beacon timers but only 2546 * enable SWBA interrupts if we need to manually 2547 * prepare beacon frames. Otherwise we use a 2548 * self-linked tx descriptor and let the hardware 2549 * deal with things. 2550 */ 2551 intval |= HAL_BEACON_ENA; 2552 if (!sc->sc_hasveol) 2553 sc->sc_imask |= HAL_INT_SWBA; 2554 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 2555 /* 2556 * Pull nexttbtt forward to reflect 2557 * the current TSF. 2558 */ 2559 tsf = ath_hal_gettsf64(ah); 2560 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2561 do { 2562 nexttbtt += intval; 2563 } while (nexttbtt < tsftu); 2564 } 2565 ath_beaconq_config(sc); 2566 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2567 /* 2568 * In AP mode we enable the beacon timers and 2569 * SWBA interrupts to prepare beacon frames. 2570 */ 2571 intval |= HAL_BEACON_ENA; 2572 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2573 ath_beaconq_config(sc); 2574 } 2575 ath_hal_beaconinit(ah, nexttbtt, intval); 2576 sc->sc_bmisscount = 0; 2577 ath_hal_intrset(ah, sc->sc_imask); 2578 /* 2579 * When using a self-linked beacon descriptor in 2580 * ibss mode load it once here. 2581 */ 2582 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2583 ath_beacon_proc(sc, 0); 2584 } 2585 sc->sc_syncbeacon = 0; 2586 #undef UNDEF 2587 #undef TSF_TO_TU 2588 } 2589 2590 static int 2591 ath_descdma_setup(struct ath_softc *sc, 2592 struct ath_descdma *dd, ath_bufhead *head, 2593 const char *name, int nbuf, int ndesc) 2594 { 2595 #define DS2PHYS(_dd, _ds) \ 2596 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc)) 2597 struct ifnet *ifp = &sc->sc_if; 2598 struct ath_desc *ds; 2599 struct ath_buf *bf; 2600 int i, bsize, error; 2601 2602 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2603 __func__, name, nbuf, ndesc); 2604 2605 dd->dd_name = name; 2606 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2607 2608 /* 2609 * Setup DMA descriptor area. 2610 */ 2611 dd->dd_dmat = sc->sc_dmat; 2612 2613 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE, 2614 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0); 2615 2616 if (error != 0) { 2617 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2618 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2619 goto fail0; 2620 } 2621 2622 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg, 2623 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT); 2624 if (error != 0) { 2625 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n", 2626 nbuf * ndesc, dd->dd_name, error); 2627 goto fail1; 2628 } 2629 2630 /* allocate descriptors */ 2631 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1, 2632 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2633 if (error != 0) { 2634 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2635 "error %u\n", dd->dd_name, error); 2636 goto fail2; 2637 } 2638 2639 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, 2640 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT); 2641 if (error != 0) { 2642 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2643 dd->dd_name, error); 2644 goto fail3; 2645 } 2646 2647 ds = dd->dd_desc; 2648 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr; 2649 DPRINTF(sc, ATH_DEBUG_RESET, 2650 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n", 2651 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2652 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2653 2654 /* allocate rx buffers */ 2655 bsize = sizeof(struct ath_buf) * nbuf; 2656 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2657 if (bf == NULL) { 2658 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2659 dd->dd_name, bsize); 2660 goto fail4; 2661 } 2662 dd->dd_bufptr = bf; 2663 2664 STAILQ_INIT(head); 2665 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2666 bf->bf_desc = ds; 2667 bf->bf_daddr = DS2PHYS(dd, ds); 2668 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc, 2669 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap); 2670 if (error != 0) { 2671 if_printf(ifp, "unable to create dmamap for %s " 2672 "buffer %u, error %u\n", dd->dd_name, i, error); 2673 ath_descdma_cleanup(sc, dd, head); 2674 return error; 2675 } 2676 STAILQ_INSERT_TAIL(head, bf, bf_list); 2677 } 2678 return 0; 2679 fail4: 2680 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2681 fail3: 2682 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2683 fail2: 2684 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2685 fail1: 2686 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2687 fail0: 2688 memset(dd, 0, sizeof(*dd)); 2689 return error; 2690 #undef DS2PHYS 2691 } 2692 2693 static void 2694 ath_descdma_cleanup(struct ath_softc *sc, 2695 struct ath_descdma *dd, ath_bufhead *head) 2696 { 2697 struct ath_buf *bf; 2698 struct ieee80211_node *ni; 2699 2700 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2701 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2702 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2703 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2704 2705 STAILQ_FOREACH(bf, head, bf_list) { 2706 if (bf->bf_m) { 2707 m_freem(bf->bf_m); 2708 bf->bf_m = NULL; 2709 } 2710 if (bf->bf_dmamap != NULL) { 2711 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2712 bf->bf_dmamap = NULL; 2713 } 2714 ni = bf->bf_node; 2715 bf->bf_node = NULL; 2716 if (ni != NULL) { 2717 /* 2718 * Reclaim node reference. 2719 */ 2720 ieee80211_free_node(ni); 2721 } 2722 } 2723 2724 STAILQ_INIT(head); 2725 free(dd->dd_bufptr, M_ATHDEV); 2726 memset(dd, 0, sizeof(*dd)); 2727 } 2728 2729 static int 2730 ath_desc_alloc(struct ath_softc *sc) 2731 { 2732 int error; 2733 2734 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2735 "rx", ath_rxbuf, 1); 2736 if (error != 0) 2737 return error; 2738 2739 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2740 "tx", ath_txbuf, ATH_TXDESC); 2741 if (error != 0) { 2742 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2743 return error; 2744 } 2745 2746 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2747 "beacon", 1, 1); 2748 if (error != 0) { 2749 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2750 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2751 return error; 2752 } 2753 return 0; 2754 } 2755 2756 static void 2757 ath_desc_free(struct ath_softc *sc) 2758 { 2759 2760 if (sc->sc_bdma.dd_desc_len != 0) 2761 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2762 if (sc->sc_txdma.dd_desc_len != 0) 2763 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2764 if (sc->sc_rxdma.dd_desc_len != 0) 2765 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2766 } 2767 2768 static struct ieee80211_node * 2769 ath_node_alloc(struct ieee80211_node_table *nt) 2770 { 2771 struct ieee80211com *ic = nt->nt_ic; 2772 struct ath_softc *sc = ic->ic_ifp->if_softc; 2773 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2774 struct ath_node *an; 2775 2776 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2777 if (an == NULL) { 2778 /* XXX stat+msg */ 2779 return NULL; 2780 } 2781 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2782 ath_rate_node_init(sc, an); 2783 2784 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2785 return &an->an_node; 2786 } 2787 2788 static void 2789 ath_node_free(struct ieee80211_node *ni) 2790 { 2791 struct ieee80211com *ic = ni->ni_ic; 2792 struct ath_softc *sc = ic->ic_ifp->if_softc; 2793 2794 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2795 2796 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2797 sc->sc_node_free(ni); 2798 } 2799 2800 static u_int8_t 2801 ath_node_getrssi(const struct ieee80211_node *ni) 2802 { 2803 #define HAL_EP_RND(x, mul) \ 2804 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2805 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2806 int32_t rssi; 2807 2808 /* 2809 * When only one frame is received there will be no state in 2810 * avgrssi so fallback on the value recorded by the 802.11 layer. 2811 */ 2812 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2813 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2814 else 2815 rssi = ni->ni_rssi; 2816 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2817 #undef HAL_EP_RND 2818 } 2819 2820 static int 2821 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2822 { 2823 struct ath_hal *ah = sc->sc_ah; 2824 int error; 2825 struct mbuf *m; 2826 struct ath_desc *ds; 2827 2828 m = bf->bf_m; 2829 if (m == NULL) { 2830 /* 2831 * NB: by assigning a page to the rx dma buffer we 2832 * implicitly satisfy the Atheros requirement that 2833 * this buffer be cache-line-aligned and sized to be 2834 * multiple of the cache line size. Not doing this 2835 * causes weird stuff to happen (for the 5210 at least). 2836 */ 2837 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2838 if (m == NULL) { 2839 DPRINTF(sc, ATH_DEBUG_ANY, 2840 "%s: no mbuf/cluster\n", __func__); 2841 sc->sc_stats.ast_rx_nombuf++; 2842 return ENOMEM; 2843 } 2844 bf->bf_m = m; 2845 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2846 2847 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2848 bf->bf_dmamap, m, 2849 BUS_DMA_NOWAIT); 2850 if (error != 0) { 2851 DPRINTF(sc, ATH_DEBUG_ANY, 2852 "%s: bus_dmamap_load_mbuf failed; error %d\n", 2853 __func__, error); 2854 sc->sc_stats.ast_rx_busdma++; 2855 return error; 2856 } 2857 KASSERTMSG(bf->bf_nseg == 1, 2858 "multi-segment packet; nseg %u", bf->bf_nseg); 2859 } 2860 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2861 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2862 2863 /* 2864 * Setup descriptors. For receive we always terminate 2865 * the descriptor list with a self-linked entry so we'll 2866 * not get overrun under high load (as can happen with a 2867 * 5212 when ANI processing enables PHY error frames). 2868 * 2869 * To insure the last descriptor is self-linked we create 2870 * each descriptor as self-linked and add it to the end. As 2871 * each additional descriptor is added the previous self-linked 2872 * entry is ``fixed'' naturally. This should be safe even 2873 * if DMA is happening. When processing RX interrupts we 2874 * never remove/process the last, self-linked, entry on the 2875 * descriptor list. This insures the hardware always has 2876 * someplace to write a new frame. 2877 */ 2878 ds = bf->bf_desc; 2879 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */ 2880 ds->ds_data = bf->bf_segs[0].ds_addr; 2881 /* ds->ds_vdata = mtod(m, void *); for radar */ 2882 ath_hal_setuprxdesc(ah, ds 2883 , m->m_len /* buffer size */ 2884 , 0 2885 ); 2886 2887 if (sc->sc_rxlink != NULL) 2888 *sc->sc_rxlink = bf->bf_daddr; 2889 sc->sc_rxlink = &ds->ds_link; 2890 return 0; 2891 } 2892 2893 /* 2894 * Extend 15-bit time stamp from rx descriptor to 2895 * a full 64-bit TSF using the specified TSF. 2896 */ 2897 static inline u_int64_t 2898 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 2899 { 2900 if ((tsf & 0x7fff) < rstamp) 2901 tsf -= 0x8000; 2902 return ((tsf &~ 0x7fff) | rstamp); 2903 } 2904 2905 /* 2906 * Intercept management frames to collect beacon rssi data 2907 * and to do ibss merges. 2908 */ 2909 static void 2910 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2911 struct ieee80211_node *ni, 2912 int subtype, int rssi, u_int32_t rstamp) 2913 { 2914 struct ath_softc *sc = ic->ic_ifp->if_softc; 2915 2916 /* 2917 * Call up first so subsequent work can use information 2918 * potentially stored in the node (e.g. for ibss merge). 2919 */ 2920 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2921 switch (subtype) { 2922 case IEEE80211_FC0_SUBTYPE_BEACON: 2923 /* update rssi statistics for use by the hal */ 2924 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 2925 if (sc->sc_syncbeacon && 2926 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) { 2927 /* 2928 * Resync beacon timers using the tsf of the beacon 2929 * frame we just received. 2930 */ 2931 ath_beacon_config(sc); 2932 } 2933 /* fall thru... */ 2934 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2935 if (ic->ic_opmode == IEEE80211_M_IBSS && 2936 ic->ic_state == IEEE80211_S_RUN) { 2937 u_int64_t tsf = ath_extend_tsf(rstamp, 2938 ath_hal_gettsf64(sc->sc_ah)); 2939 2940 /* 2941 * Handle ibss merge as needed; check the tsf on the 2942 * frame before attempting the merge. The 802.11 spec 2943 * says the station should change its bssid to match 2944 * the oldest station with the same ssid, where oldest 2945 * is determined by the tsf. Note that hardware 2946 * reconfiguration happens through callback to 2947 * ath_newstate as the state machine will go from 2948 * RUN -> RUN when this happens. 2949 */ 2950 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2951 DPRINTF(sc, ATH_DEBUG_STATE, 2952 "ibss merge, rstamp %u tsf %ju " 2953 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2954 (uintmax_t)ni->ni_tstamp.tsf); 2955 (void) ieee80211_ibss_merge(ni); 2956 } 2957 } 2958 break; 2959 } 2960 } 2961 2962 /* 2963 * Set the default antenna. 2964 */ 2965 static void 2966 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2967 { 2968 struct ath_hal *ah = sc->sc_ah; 2969 2970 /* XXX block beacon interrupts */ 2971 ath_hal_setdefantenna(ah, antenna); 2972 if (sc->sc_defant != antenna) 2973 sc->sc_stats.ast_ant_defswitch++; 2974 sc->sc_defant = antenna; 2975 sc->sc_rxotherant = 0; 2976 } 2977 2978 static void 2979 ath_handle_micerror(struct ieee80211com *ic, 2980 struct ieee80211_frame *wh, int keyix) 2981 { 2982 struct ieee80211_node *ni; 2983 2984 /* XXX recheck MIC to deal w/ chips that lie */ 2985 /* XXX discard MIC errors on !data frames */ 2986 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix); 2987 if (ni != NULL) { 2988 ieee80211_notify_michael_failure(ic, wh, keyix); 2989 ieee80211_free_node(ni); 2990 } 2991 } 2992 2993 static void 2994 ath_rx_proc(void *arg, int npending) 2995 { 2996 #define PA2DESC(_sc, _pa) \ 2997 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 2998 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 2999 struct ath_softc *sc = arg; 3000 struct ath_buf *bf; 3001 struct ieee80211com *ic = &sc->sc_ic; 3002 struct ifnet *ifp = &sc->sc_if; 3003 struct ath_hal *ah = sc->sc_ah; 3004 struct ath_desc *ds; 3005 struct mbuf *m; 3006 struct ieee80211_node *ni; 3007 struct ath_node *an; 3008 int len, ngood, type; 3009 u_int phyerr; 3010 HAL_STATUS status; 3011 int16_t nf; 3012 u_int64_t tsf; 3013 uint8_t rxerr_tap, rxerr_mon; 3014 3015 NET_LOCK_GIANT(); /* XXX */ 3016 3017 rxerr_tap = 3018 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0; 3019 3020 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR) 3021 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3022 else if (ifp->if_flags & IFF_PROMISC) 3023 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3024 3025 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3026 ngood = 0; 3027 nf = ath_hal_getchannoise(ah, &sc->sc_curchan); 3028 tsf = ath_hal_gettsf64(ah); 3029 do { 3030 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3031 if (bf == NULL) { /* NB: shouldn't happen */ 3032 if_printf(ifp, "%s: no buffer!\n", __func__); 3033 break; 3034 } 3035 ds = bf->bf_desc; 3036 if (ds->ds_link == bf->bf_daddr) { 3037 /* NB: never process the self-linked entry at the end */ 3038 break; 3039 } 3040 m = bf->bf_m; 3041 if (m == NULL) { /* NB: shouldn't happen */ 3042 if_printf(ifp, "%s: no mbuf!\n", __func__); 3043 break; 3044 } 3045 /* XXX sync descriptor memory */ 3046 /* 3047 * Must provide the virtual address of the current 3048 * descriptor, the physical address, and the virtual 3049 * address of the next descriptor in the h/w chain. 3050 * This allows the HAL to look ahead to see if the 3051 * hardware is done with a descriptor by checking the 3052 * done bit in the following descriptor and the address 3053 * of the current descriptor the DMA engine is working 3054 * on. All this is necessary because of our use of 3055 * a self-linked list to avoid rx overruns. 3056 */ 3057 status = ath_hal_rxprocdesc(ah, ds, 3058 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 3059 &ds->ds_rxstat); 3060 #ifdef AR_DEBUG 3061 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 3062 ath_printrxbuf(bf, status == HAL_OK); 3063 #endif 3064 if (status == HAL_EINPROGRESS) 3065 break; 3066 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 3067 if (ds->ds_rxstat.rs_more) { 3068 /* 3069 * Frame spans multiple descriptors; this 3070 * cannot happen yet as we don't support 3071 * jumbograms. If not in monitor mode, 3072 * discard the frame. 3073 */ 3074 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3075 sc->sc_stats.ast_rx_toobig++; 3076 goto rx_next; 3077 } 3078 /* fall thru for monitor mode handling... */ 3079 } else if (ds->ds_rxstat.rs_status != 0) { 3080 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 3081 sc->sc_stats.ast_rx_crcerr++; 3082 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 3083 sc->sc_stats.ast_rx_fifoerr++; 3084 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 3085 sc->sc_stats.ast_rx_phyerr++; 3086 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 3087 sc->sc_stats.ast_rx_phy[phyerr]++; 3088 goto rx_next; 3089 } 3090 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 3091 /* 3092 * Decrypt error. If the error occurred 3093 * because there was no hardware key, then 3094 * let the frame through so the upper layers 3095 * can process it. This is necessary for 5210 3096 * parts which have no way to setup a ``clear'' 3097 * key cache entry. 3098 * 3099 * XXX do key cache faulting 3100 */ 3101 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 3102 goto rx_accept; 3103 sc->sc_stats.ast_rx_badcrypt++; 3104 } 3105 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 3106 sc->sc_stats.ast_rx_badmic++; 3107 /* 3108 * Do minimal work required to hand off 3109 * the 802.11 header for notifcation. 3110 */ 3111 /* XXX frag's and qos frames */ 3112 len = ds->ds_rxstat.rs_datalen; 3113 if (len >= sizeof (struct ieee80211_frame)) { 3114 bus_dmamap_sync(sc->sc_dmat, 3115 bf->bf_dmamap, 3116 0, bf->bf_dmamap->dm_mapsize, 3117 BUS_DMASYNC_POSTREAD); 3118 ath_handle_micerror(ic, 3119 mtod(m, struct ieee80211_frame *), 3120 sc->sc_splitmic ? 3121 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix); 3122 } 3123 } 3124 ifp->if_ierrors++; 3125 /* 3126 * Reject error frames, we normally don't want 3127 * to see them in monitor mode (in monitor mode 3128 * allow through packets that have crypto problems). 3129 */ 3130 3131 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon)) 3132 goto rx_next; 3133 } 3134 rx_accept: 3135 /* 3136 * Sync and unmap the frame. At this point we're 3137 * committed to passing the mbuf somewhere so clear 3138 * bf_m; this means a new sk_buff must be allocated 3139 * when the rx descriptor is setup again to receive 3140 * another frame. 3141 */ 3142 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3143 0, bf->bf_dmamap->dm_mapsize, 3144 BUS_DMASYNC_POSTREAD); 3145 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3146 bf->bf_m = NULL; 3147 3148 m->m_pkthdr.rcvif = ifp; 3149 len = ds->ds_rxstat.rs_datalen; 3150 m->m_pkthdr.len = m->m_len = len; 3151 3152 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 3153 3154 if (sc->sc_drvbpf) { 3155 u_int8_t rix; 3156 3157 /* 3158 * Discard anything shorter than an ack or cts. 3159 */ 3160 if (len < IEEE80211_ACK_LEN) { 3161 DPRINTF(sc, ATH_DEBUG_RECV, 3162 "%s: runt packet %d\n", 3163 __func__, len); 3164 sc->sc_stats.ast_rx_tooshort++; 3165 m_freem(m); 3166 goto rx_next; 3167 } 3168 rix = ds->ds_rxstat.rs_rate; 3169 sc->sc_rx_th.wr_tsf = htole64( 3170 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf)); 3171 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3172 if (ds->ds_rxstat.rs_status & 3173 (HAL_RXERR_CRC|HAL_RXERR_PHY)) { 3174 sc->sc_rx_th.wr_flags |= 3175 IEEE80211_RADIOTAP_F_BADFCS; 3176 } 3177 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3178 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf; 3179 sc->sc_rx_th.wr_antnoise = nf; 3180 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 3181 3182 bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, 3183 sc->sc_rx_th_len, m); 3184 } 3185 3186 if (ds->ds_rxstat.rs_status & rxerr_tap) { 3187 m_freem(m); 3188 goto rx_next; 3189 } 3190 /* 3191 * From this point on we assume the frame is at least 3192 * as large as ieee80211_frame_min; verify that. 3193 */ 3194 if (len < IEEE80211_MIN_LEN) { 3195 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 3196 __func__, len); 3197 sc->sc_stats.ast_rx_tooshort++; 3198 m_freem(m); 3199 goto rx_next; 3200 } 3201 3202 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 3203 ieee80211_dump_pkt(mtod(m, void *), len, 3204 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 3205 ds->ds_rxstat.rs_rssi); 3206 } 3207 3208 m_adj(m, -IEEE80211_CRC_LEN); 3209 3210 /* 3211 * Locate the node for sender, track state, and then 3212 * pass the (referenced) node up to the 802.11 layer 3213 * for its use. 3214 */ 3215 ni = ieee80211_find_rxnode_withkey(ic, 3216 mtod(m, const struct ieee80211_frame_min *), 3217 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ? 3218 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix); 3219 /* 3220 * Track rx rssi and do any rx antenna management. 3221 */ 3222 an = ATH_NODE(ni); 3223 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 3224 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi); 3225 /* 3226 * Send frame up for processing. 3227 */ 3228 type = ieee80211_input(ic, m, ni, 3229 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 3230 ieee80211_free_node(ni); 3231 if (sc->sc_diversity) { 3232 /* 3233 * When using fast diversity, change the default rx 3234 * antenna if diversity chooses the other antenna 3 3235 * times in a row. 3236 */ 3237 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 3238 if (++sc->sc_rxotherant >= 3) 3239 ath_setdefantenna(sc, 3240 ds->ds_rxstat.rs_antenna); 3241 } else 3242 sc->sc_rxotherant = 0; 3243 } 3244 if (sc->sc_softled) { 3245 /* 3246 * Blink for any data frame. Otherwise do a 3247 * heartbeat-style blink when idle. The latter 3248 * is mainly for station mode where we depend on 3249 * periodic beacon frames to trigger the poll event. 3250 */ 3251 if (type == IEEE80211_FC0_TYPE_DATA) { 3252 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 3253 ath_led_event(sc, ATH_LED_RX); 3254 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3255 ath_led_event(sc, ATH_LED_POLL); 3256 } 3257 /* 3258 * Arrange to update the last rx timestamp only for 3259 * frames from our ap when operating in station mode. 3260 * This assumes the rx key is always setup when associated. 3261 */ 3262 if (ic->ic_opmode == IEEE80211_M_STA && 3263 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID) 3264 ngood++; 3265 rx_next: 3266 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3267 } while (ath_rxbuf_init(sc, bf) == 0); 3268 3269 /* rx signal state monitoring */ 3270 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan); 3271 #if 0 3272 if (ath_hal_radar_event(ah)) 3273 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask); 3274 #endif 3275 if (ngood) 3276 sc->sc_lastrx = tsf; 3277 3278 #ifdef __NetBSD__ 3279 /* XXX Why isn't this necessary in FreeBSD? */ 3280 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 3281 ath_start(ifp); 3282 #endif /* __NetBSD__ */ 3283 3284 NET_UNLOCK_GIANT(); /* XXX */ 3285 #undef PA2DESC 3286 } 3287 3288 /* 3289 * Setup a h/w transmit queue. 3290 */ 3291 static struct ath_txq * 3292 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3293 { 3294 #define N(a) (sizeof(a)/sizeof(a[0])) 3295 struct ath_hal *ah = sc->sc_ah; 3296 HAL_TXQ_INFO qi; 3297 int qnum; 3298 3299 memset(&qi, 0, sizeof(qi)); 3300 qi.tqi_subtype = subtype; 3301 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3302 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3303 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3304 /* 3305 * Enable interrupts only for EOL and DESC conditions. 3306 * We mark tx descriptors to receive a DESC interrupt 3307 * when a tx queue gets deep; otherwise waiting for the 3308 * EOL to reap descriptors. Note that this is done to 3309 * reduce interrupt load and this only defers reaping 3310 * descriptors, never transmitting frames. Aside from 3311 * reducing interrupts this also permits more concurrency. 3312 * The only potential downside is if the tx queue backs 3313 * up in which case the top half of the kernel may backup 3314 * due to a lack of tx descriptors. 3315 */ 3316 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3317 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3318 if (qnum == -1) { 3319 /* 3320 * NB: don't print a message, this happens 3321 * normally on parts with too few tx queues 3322 */ 3323 return NULL; 3324 } 3325 if (qnum >= N(sc->sc_txq)) { 3326 device_printf(sc->sc_dev, 3327 "hal qnum %u out of range, max %zu!\n", 3328 qnum, N(sc->sc_txq)); 3329 ath_hal_releasetxqueue(ah, qnum); 3330 return NULL; 3331 } 3332 if (!ATH_TXQ_SETUP(sc, qnum)) { 3333 struct ath_txq *txq = &sc->sc_txq[qnum]; 3334 3335 txq->axq_qnum = qnum; 3336 txq->axq_depth = 0; 3337 txq->axq_intrcnt = 0; 3338 txq->axq_link = NULL; 3339 STAILQ_INIT(&txq->axq_q); 3340 ATH_TXQ_LOCK_INIT(sc, txq); 3341 sc->sc_txqsetup |= 1<<qnum; 3342 } 3343 return &sc->sc_txq[qnum]; 3344 #undef N 3345 } 3346 3347 /* 3348 * Setup a hardware data transmit queue for the specified 3349 * access control. The hal may not support all requested 3350 * queues in which case it will return a reference to a 3351 * previously setup queue. We record the mapping from ac's 3352 * to h/w queues for use by ath_tx_start and also track 3353 * the set of h/w queues being used to optimize work in the 3354 * transmit interrupt handler and related routines. 3355 */ 3356 static int 3357 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3358 { 3359 #define N(a) (sizeof(a)/sizeof(a[0])) 3360 struct ath_txq *txq; 3361 3362 if (ac >= N(sc->sc_ac2q)) { 3363 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3364 ac, N(sc->sc_ac2q)); 3365 return 0; 3366 } 3367 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3368 if (txq != NULL) { 3369 sc->sc_ac2q[ac] = txq; 3370 return 1; 3371 } else 3372 return 0; 3373 #undef N 3374 } 3375 3376 /* 3377 * Update WME parameters for a transmit queue. 3378 */ 3379 static int 3380 ath_txq_update(struct ath_softc *sc, int ac) 3381 { 3382 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3383 #define ATH_TXOP_TO_US(v) (v<<5) 3384 struct ieee80211com *ic = &sc->sc_ic; 3385 struct ath_txq *txq = sc->sc_ac2q[ac]; 3386 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3387 struct ath_hal *ah = sc->sc_ah; 3388 HAL_TXQ_INFO qi; 3389 3390 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3391 qi.tqi_aifs = wmep->wmep_aifsn; 3392 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3393 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3394 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3395 3396 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3397 device_printf(sc->sc_dev, "unable to update hardware queue " 3398 "parameters for %s traffic!\n", 3399 ieee80211_wme_acnames[ac]); 3400 return 0; 3401 } else { 3402 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3403 return 1; 3404 } 3405 #undef ATH_TXOP_TO_US 3406 #undef ATH_EXPONENT_TO_VALUE 3407 } 3408 3409 /* 3410 * Callback from the 802.11 layer to update WME parameters. 3411 */ 3412 static int 3413 ath_wme_update(struct ieee80211com *ic) 3414 { 3415 struct ath_softc *sc = ic->ic_ifp->if_softc; 3416 3417 return !ath_txq_update(sc, WME_AC_BE) || 3418 !ath_txq_update(sc, WME_AC_BK) || 3419 !ath_txq_update(sc, WME_AC_VI) || 3420 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3421 } 3422 3423 /* 3424 * Reclaim resources for a setup queue. 3425 */ 3426 static void 3427 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3428 { 3429 3430 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3431 ATH_TXQ_LOCK_DESTROY(txq); 3432 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3433 } 3434 3435 /* 3436 * Reclaim all tx queue resources. 3437 */ 3438 static void 3439 ath_tx_cleanup(struct ath_softc *sc) 3440 { 3441 int i; 3442 3443 ATH_TXBUF_LOCK_DESTROY(sc); 3444 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3445 if (ATH_TXQ_SETUP(sc, i)) 3446 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3447 } 3448 3449 /* 3450 * Defragment an mbuf chain, returning at most maxfrags separate 3451 * mbufs+clusters. If this is not possible NULL is returned and 3452 * the original mbuf chain is left in its present (potentially 3453 * modified) state. We use two techniques: collapsing consecutive 3454 * mbufs and replacing consecutive mbufs by a cluster. 3455 */ 3456 static struct mbuf * 3457 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3458 { 3459 struct mbuf *m, *n, *n2, **prev; 3460 u_int curfrags; 3461 3462 /* 3463 * Calculate the current number of frags. 3464 */ 3465 curfrags = 0; 3466 for (m = m0; m != NULL; m = m->m_next) 3467 curfrags++; 3468 /* 3469 * First, try to collapse mbufs. Note that we always collapse 3470 * towards the front so we don't need to deal with moving the 3471 * pkthdr. This may be suboptimal if the first mbuf has much 3472 * less data than the following. 3473 */ 3474 m = m0; 3475 again: 3476 for (;;) { 3477 n = m->m_next; 3478 if (n == NULL) 3479 break; 3480 if (n->m_len < M_TRAILINGSPACE(m)) { 3481 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *), 3482 n->m_len); 3483 m->m_len += n->m_len; 3484 m->m_next = n->m_next; 3485 m_free(n); 3486 if (--curfrags <= maxfrags) 3487 return m0; 3488 } else 3489 m = n; 3490 } 3491 KASSERTMSG(maxfrags > 1, 3492 "maxfrags %u, but normal collapse failed", maxfrags); 3493 /* 3494 * Collapse consecutive mbufs to a cluster. 3495 */ 3496 prev = &m0->m_next; /* NB: not the first mbuf */ 3497 while ((n = *prev) != NULL) { 3498 if ((n2 = n->m_next) != NULL && 3499 n->m_len + n2->m_len < MCLBYTES) { 3500 m = m_getcl(how, MT_DATA, 0); 3501 if (m == NULL) 3502 goto bad; 3503 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3504 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3505 n2->m_len); 3506 m->m_len = n->m_len + n2->m_len; 3507 m->m_next = n2->m_next; 3508 *prev = m; 3509 m_free(n); 3510 m_free(n2); 3511 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3512 return m0; 3513 /* 3514 * Still not there, try the normal collapse 3515 * again before we allocate another cluster. 3516 */ 3517 goto again; 3518 } 3519 prev = &n->m_next; 3520 } 3521 /* 3522 * No place where we can collapse to a cluster; punt. 3523 * This can occur if, for example, you request 2 frags 3524 * but the packet requires that both be clusters (we 3525 * never reallocate the first mbuf to avoid moving the 3526 * packet header). 3527 */ 3528 bad: 3529 return NULL; 3530 } 3531 3532 /* 3533 * Return h/w rate index for an IEEE rate (w/o basic rate bit). 3534 */ 3535 static int 3536 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate) 3537 { 3538 int i; 3539 3540 for (i = 0; i < rt->rateCount; i++) 3541 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate) 3542 return i; 3543 return 0; /* NB: lowest rate */ 3544 } 3545 3546 static void 3547 ath_freetx(struct mbuf *m) 3548 { 3549 struct mbuf *next; 3550 3551 do { 3552 next = m->m_nextpkt; 3553 m->m_nextpkt = NULL; 3554 m_freem(m); 3555 } while ((m = next) != NULL); 3556 } 3557 3558 static int 3559 deduct_pad_bytes(int len, int hdrlen) 3560 { 3561 /* XXX I am suspicious that this code, which I extracted 3562 * XXX from ath_tx_start() for reuse, does the right thing. 3563 */ 3564 return len - (hdrlen & 3); 3565 } 3566 3567 static int 3568 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3569 struct mbuf *m0) 3570 { 3571 struct ieee80211com *ic = &sc->sc_ic; 3572 struct ath_hal *ah = sc->sc_ah; 3573 struct ifnet *ifp = &sc->sc_if; 3574 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3575 int i, error, iswep, ismcast, isfrag, ismrr; 3576 int keyix, hdrlen, pktlen, try0; 3577 u_int8_t rix, txrate, ctsrate; 3578 u_int8_t cix = 0xff; /* NB: silence compiler */ 3579 struct ath_desc *ds, *ds0; 3580 struct ath_txq *txq; 3581 struct ieee80211_frame *wh; 3582 u_int subtype, flags, ctsduration; 3583 HAL_PKT_TYPE atype; 3584 const HAL_RATE_TABLE *rt; 3585 HAL_BOOL shortPreamble; 3586 struct ath_node *an; 3587 struct mbuf *m; 3588 u_int pri; 3589 3590 wh = mtod(m0, struct ieee80211_frame *); 3591 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3592 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3593 isfrag = m0->m_flags & M_FRAG; 3594 hdrlen = ieee80211_anyhdrsize(wh); 3595 /* 3596 * Packet length must not include any 3597 * pad bytes; deduct them here. 3598 */ 3599 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen); 3600 3601 if (iswep) { 3602 const struct ieee80211_cipher *cip; 3603 struct ieee80211_key *k; 3604 3605 /* 3606 * Construct the 802.11 header+trailer for an encrypted 3607 * frame. The only reason this can fail is because of an 3608 * unknown or unsupported cipher/key type. 3609 */ 3610 k = ieee80211_crypto_encap(ic, ni, m0); 3611 if (k == NULL) { 3612 /* 3613 * This can happen when the key is yanked after the 3614 * frame was queued. Just discard the frame; the 3615 * 802.11 layer counts failures and provides 3616 * debugging/diagnostics. 3617 */ 3618 ath_freetx(m0); 3619 return EIO; 3620 } 3621 /* 3622 * Adjust the packet + header lengths for the crypto 3623 * additions and calculate the h/w key index. When 3624 * a s/w mic is done the frame will have had any mic 3625 * added to it prior to entry so m0->m_pkthdr.len above will 3626 * account for it. Otherwise we need to add it to the 3627 * packet length. 3628 */ 3629 cip = k->wk_cipher; 3630 hdrlen += cip->ic_header; 3631 pktlen += cip->ic_header + cip->ic_trailer; 3632 /* NB: frags always have any TKIP MIC done in s/w */ 3633 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 3634 pktlen += cip->ic_miclen; 3635 keyix = k->wk_keyix; 3636 3637 /* packet header may have moved, reset our local pointer */ 3638 wh = mtod(m0, struct ieee80211_frame *); 3639 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3640 /* 3641 * Use station key cache slot, if assigned. 3642 */ 3643 keyix = ni->ni_ucastkey.wk_keyix; 3644 if (keyix == IEEE80211_KEYIX_NONE) 3645 keyix = HAL_TXKEYIX_INVALID; 3646 } else 3647 keyix = HAL_TXKEYIX_INVALID; 3648 3649 pktlen += IEEE80211_CRC_LEN; 3650 3651 /* 3652 * Load the DMA map so any coalescing is done. This 3653 * also calculates the number of descriptors we need. 3654 */ 3655 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3656 BUS_DMA_NOWAIT); 3657 if (error == EFBIG) { 3658 /* XXX packet requires too many descriptors */ 3659 bf->bf_nseg = ATH_TXDESC+1; 3660 } else if (error != 0) { 3661 sc->sc_stats.ast_tx_busdma++; 3662 ath_freetx(m0); 3663 return error; 3664 } 3665 /* 3666 * Discard null packets and check for packets that 3667 * require too many TX descriptors. We try to convert 3668 * the latter to a cluster. 3669 */ 3670 if (error == EFBIG) { /* too many desc's, linearize */ 3671 sc->sc_stats.ast_tx_linear++; 3672 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3673 if (m == NULL) { 3674 ath_freetx(m0); 3675 sc->sc_stats.ast_tx_nombuf++; 3676 return ENOMEM; 3677 } 3678 m0 = m; 3679 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3680 BUS_DMA_NOWAIT); 3681 if (error != 0) { 3682 sc->sc_stats.ast_tx_busdma++; 3683 ath_freetx(m0); 3684 return error; 3685 } 3686 KASSERTMSG(bf->bf_nseg <= ATH_TXDESC, 3687 "too many segments after defrag; nseg %u", bf->bf_nseg); 3688 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3689 sc->sc_stats.ast_tx_nodata++; 3690 ath_freetx(m0); 3691 return EIO; 3692 } 3693 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3694 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3695 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 3696 bf->bf_m = m0; 3697 bf->bf_node = ni; /* NB: held reference */ 3698 3699 /* setup descriptors */ 3700 ds = bf->bf_desc; 3701 rt = sc->sc_currates; 3702 KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode); 3703 3704 /* 3705 * NB: the 802.11 layer marks whether or not we should 3706 * use short preamble based on the current mode and 3707 * negotiated parameters. 3708 */ 3709 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3710 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) { 3711 shortPreamble = AH_TRUE; 3712 sc->sc_stats.ast_tx_shortpre++; 3713 } else { 3714 shortPreamble = AH_FALSE; 3715 } 3716 3717 an = ATH_NODE(ni); 3718 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3719 ismrr = 0; /* default no multi-rate retry*/ 3720 /* 3721 * Calculate Atheros packet type from IEEE80211 packet header, 3722 * setup for rate calculations, and select h/w transmit queue. 3723 */ 3724 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3725 case IEEE80211_FC0_TYPE_MGT: 3726 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3727 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3728 atype = HAL_PKT_TYPE_BEACON; 3729 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3730 atype = HAL_PKT_TYPE_PROBE_RESP; 3731 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3732 atype = HAL_PKT_TYPE_ATIM; 3733 else 3734 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3735 rix = sc->sc_minrateix; 3736 txrate = rt->info[rix].rateCode; 3737 if (shortPreamble) 3738 txrate |= rt->info[rix].shortPreamble; 3739 try0 = ATH_TXMGTTRY; 3740 /* NB: force all management frames to highest queue */ 3741 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3742 /* NB: force all management frames to highest queue */ 3743 pri = WME_AC_VO; 3744 } else 3745 pri = WME_AC_BE; 3746 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3747 break; 3748 case IEEE80211_FC0_TYPE_CTL: 3749 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3750 rix = sc->sc_minrateix; 3751 txrate = rt->info[rix].rateCode; 3752 if (shortPreamble) 3753 txrate |= rt->info[rix].shortPreamble; 3754 try0 = ATH_TXMGTTRY; 3755 /* NB: force all ctl frames to highest queue */ 3756 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3757 /* NB: force all ctl frames to highest queue */ 3758 pri = WME_AC_VO; 3759 } else 3760 pri = WME_AC_BE; 3761 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3762 break; 3763 case IEEE80211_FC0_TYPE_DATA: 3764 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3765 /* 3766 * Data frames: multicast frames go out at a fixed rate, 3767 * otherwise consult the rate control module for the 3768 * rate to use. 3769 */ 3770 if (ismcast) { 3771 /* 3772 * Check mcast rate setting in case it's changed. 3773 * XXX move out of fastpath 3774 */ 3775 if (ic->ic_mcast_rate != sc->sc_mcastrate) { 3776 sc->sc_mcastrix = 3777 ath_tx_findrix(rt, ic->ic_mcast_rate); 3778 sc->sc_mcastrate = ic->ic_mcast_rate; 3779 } 3780 rix = sc->sc_mcastrix; 3781 txrate = rt->info[rix].rateCode; 3782 try0 = 1; 3783 } else { 3784 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3785 &rix, &try0, &txrate); 3786 sc->sc_txrate = txrate; /* for LED blinking */ 3787 if (try0 != ATH_TXMAXTRY) 3788 ismrr = 1; 3789 } 3790 pri = M_WME_GETAC(m0); 3791 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 3792 flags |= HAL_TXDESC_NOACK; 3793 break; 3794 default: 3795 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3796 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3797 /* XXX statistic */ 3798 ath_freetx(m0); 3799 return EIO; 3800 } 3801 txq = sc->sc_ac2q[pri]; 3802 3803 /* 3804 * When servicing one or more stations in power-save mode 3805 * multicast frames must be buffered until after the beacon. 3806 * We use the CAB queue for that. 3807 */ 3808 if (ismcast && ic->ic_ps_sta) { 3809 txq = sc->sc_cabq; 3810 /* XXX? more bit in 802.11 frame header */ 3811 } 3812 3813 /* 3814 * Calculate miscellaneous flags. 3815 */ 3816 if (ismcast) { 3817 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3818 } else if (pktlen > ic->ic_rtsthreshold) { 3819 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3820 cix = rt->info[rix].controlRate; 3821 sc->sc_stats.ast_tx_rts++; 3822 } 3823 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 3824 sc->sc_stats.ast_tx_noack++; 3825 3826 /* 3827 * If 802.11g protection is enabled, determine whether 3828 * to use RTS/CTS or just CTS. Note that this is only 3829 * done for OFDM unicast frames. 3830 */ 3831 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3832 rt->info[rix].phy == IEEE80211_T_OFDM && 3833 (flags & HAL_TXDESC_NOACK) == 0) { 3834 /* XXX fragments must use CCK rates w/ protection */ 3835 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3836 flags |= HAL_TXDESC_RTSENA; 3837 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3838 flags |= HAL_TXDESC_CTSENA; 3839 if (isfrag) { 3840 /* 3841 * For frags it would be desirable to use the 3842 * highest CCK rate for RTS/CTS. But stations 3843 * farther away may detect it at a lower CCK rate 3844 * so use the configured protection rate instead 3845 * (for now). 3846 */ 3847 cix = rt->info[sc->sc_protrix].controlRate; 3848 } else 3849 cix = rt->info[sc->sc_protrix].controlRate; 3850 sc->sc_stats.ast_tx_protect++; 3851 } 3852 3853 /* 3854 * Calculate duration. This logically belongs in the 802.11 3855 * layer but it lacks sufficient information to calculate it. 3856 */ 3857 if ((flags & HAL_TXDESC_NOACK) == 0 && 3858 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3859 u_int16_t dur; 3860 /* 3861 * XXX not right with fragmentation. 3862 */ 3863 if (shortPreamble) 3864 dur = rt->info[rix].spAckDuration; 3865 else 3866 dur = rt->info[rix].lpAckDuration; 3867 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 3868 dur += dur; /* additional SIFS+ACK */ 3869 KASSERTMSG(m0->m_nextpkt != NULL, "no fragment"); 3870 /* 3871 * Include the size of next fragment so NAV is 3872 * updated properly. The last fragment uses only 3873 * the ACK duration 3874 */ 3875 dur += ath_hal_computetxtime(ah, rt, 3876 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len, 3877 hdrlen) - 3878 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen, 3879 rix, shortPreamble); 3880 } 3881 if (isfrag) { 3882 /* 3883 * Force hardware to use computed duration for next 3884 * fragment by disabling multi-rate retry which updates 3885 * duration based on the multi-rate duration table. 3886 */ 3887 try0 = ATH_TXMAXTRY; 3888 } 3889 *(u_int16_t *)wh->i_dur = htole16(dur); 3890 } 3891 3892 /* 3893 * Calculate RTS/CTS rate and duration if needed. 3894 */ 3895 ctsduration = 0; 3896 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3897 /* 3898 * CTS transmit rate is derived from the transmit rate 3899 * by looking in the h/w rate table. We must also factor 3900 * in whether or not a short preamble is to be used. 3901 */ 3902 /* NB: cix is set above where RTS/CTS is enabled */ 3903 KASSERTMSG(cix != 0xff, "cix not setup"); 3904 ctsrate = rt->info[cix].rateCode; 3905 /* 3906 * Compute the transmit duration based on the frame 3907 * size and the size of an ACK frame. We call into the 3908 * HAL to do the computation since it depends on the 3909 * characteristics of the actual PHY being used. 3910 * 3911 * NB: CTS is assumed the same size as an ACK so we can 3912 * use the precalculated ACK durations. 3913 */ 3914 if (shortPreamble) { 3915 ctsrate |= rt->info[cix].shortPreamble; 3916 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3917 ctsduration += rt->info[cix].spAckDuration; 3918 ctsduration += ath_hal_computetxtime(ah, 3919 rt, pktlen, rix, AH_TRUE); 3920 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3921 ctsduration += rt->info[rix].spAckDuration; 3922 } else { 3923 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3924 ctsduration += rt->info[cix].lpAckDuration; 3925 ctsduration += ath_hal_computetxtime(ah, 3926 rt, pktlen, rix, AH_FALSE); 3927 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3928 ctsduration += rt->info[rix].lpAckDuration; 3929 } 3930 /* 3931 * Must disable multi-rate retry when using RTS/CTS. 3932 */ 3933 ismrr = 0; 3934 try0 = ATH_TXMGTTRY; /* XXX */ 3935 } else 3936 ctsrate = 0; 3937 3938 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3939 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len, 3940 sc->sc_hwmap[txrate].ieeerate, -1); 3941 bpf_mtap3(ic->ic_rawbpf, m0); 3942 if (sc->sc_drvbpf) { 3943 u_int64_t tsf = ath_hal_gettsf64(ah); 3944 3945 sc->sc_tx_th.wt_tsf = htole64(tsf); 3946 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3947 if (iswep) 3948 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3949 if (isfrag) 3950 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 3951 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3952 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3953 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3954 3955 bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0); 3956 } 3957 3958 /* 3959 * Determine if a tx interrupt should be generated for 3960 * this descriptor. We take a tx interrupt to reap 3961 * descriptors when the h/w hits an EOL condition or 3962 * when the descriptor is specifically marked to generate 3963 * an interrupt. We periodically mark descriptors in this 3964 * way to insure timely replenishing of the supply needed 3965 * for sending frames. Defering interrupts reduces system 3966 * load and potentially allows more concurrent work to be 3967 * done but if done to aggressively can cause senders to 3968 * backup. 3969 * 3970 * NB: use >= to deal with sc_txintrperiod changing 3971 * dynamically through sysctl. 3972 */ 3973 if (flags & HAL_TXDESC_INTREQ) { 3974 txq->axq_intrcnt = 0; 3975 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 3976 flags |= HAL_TXDESC_INTREQ; 3977 txq->axq_intrcnt = 0; 3978 } 3979 3980 /* 3981 * Formulate first tx descriptor with tx controls. 3982 */ 3983 /* XXX check return value? */ 3984 ath_hal_setuptxdesc(ah, ds 3985 , pktlen /* packet length */ 3986 , hdrlen /* header length */ 3987 , atype /* Atheros packet type */ 3988 , ni->ni_txpower /* txpower */ 3989 , txrate, try0 /* series 0 rate/tries */ 3990 , keyix /* key cache index */ 3991 , sc->sc_txantenna /* antenna mode */ 3992 , flags /* flags */ 3993 , ctsrate /* rts/cts rate */ 3994 , ctsduration /* rts/cts duration */ 3995 ); 3996 bf->bf_flags = flags; 3997 /* 3998 * Setup the multi-rate retry state only when we're 3999 * going to use it. This assumes ath_hal_setuptxdesc 4000 * initializes the descriptors (so we don't have to) 4001 * when the hardware supports multi-rate retry and 4002 * we don't use it. 4003 */ 4004 if (ismrr) 4005 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 4006 4007 /* 4008 * Fillin the remainder of the descriptor info. 4009 */ 4010 ds0 = ds; 4011 for (i = 0; i < bf->bf_nseg; i++, ds++) { 4012 ds->ds_data = bf->bf_segs[i].ds_addr; 4013 if (i == bf->bf_nseg - 1) 4014 ds->ds_link = 0; 4015 else 4016 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 4017 ath_hal_filltxdesc(ah, ds 4018 , bf->bf_segs[i].ds_len /* segment length */ 4019 , i == 0 /* first segment */ 4020 , i == bf->bf_nseg - 1 /* last segment */ 4021 , ds0 /* first descriptor */ 4022 ); 4023 4024 /* NB: The desc swap function becomes void, 4025 * if descriptor swapping is not enabled 4026 */ 4027 ath_desc_swap(ds); 4028 4029 DPRINTF(sc, ATH_DEBUG_XMIT, 4030 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 4031 __func__, i, ds->ds_link, ds->ds_data, 4032 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 4033 } 4034 /* 4035 * Insert the frame on the outbound list and 4036 * pass it on to the hardware. 4037 */ 4038 ATH_TXQ_LOCK(txq); 4039 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4040 if (txq->axq_link == NULL) { 4041 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 4042 DPRINTF(sc, ATH_DEBUG_XMIT, 4043 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__, 4044 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc, 4045 txq->axq_depth); 4046 } else { 4047 *txq->axq_link = HTOAH32(bf->bf_daddr); 4048 DPRINTF(sc, ATH_DEBUG_XMIT, 4049 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n", 4050 __func__, txq->axq_qnum, txq->axq_link, 4051 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 4052 } 4053 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 4054 /* 4055 * The CAB queue is started from the SWBA handler since 4056 * frames only go out on DTIM and to avoid possible races. 4057 */ 4058 if (txq != sc->sc_cabq) 4059 ath_hal_txstart(ah, txq->axq_qnum); 4060 ATH_TXQ_UNLOCK(txq); 4061 4062 return 0; 4063 } 4064 4065 /* 4066 * Process completed xmit descriptors from the specified queue. 4067 */ 4068 static int 4069 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 4070 { 4071 struct ath_hal *ah = sc->sc_ah; 4072 struct ieee80211com *ic = &sc->sc_ic; 4073 struct ath_buf *bf; 4074 struct ath_desc *ds, *ds0; 4075 struct ieee80211_node *ni; 4076 struct ath_node *an; 4077 int sr, lr, pri, nacked; 4078 HAL_STATUS status; 4079 4080 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4081 __func__, txq->axq_qnum, 4082 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4083 txq->axq_link); 4084 nacked = 0; 4085 for (;;) { 4086 ATH_TXQ_LOCK(txq); 4087 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4088 bf = STAILQ_FIRST(&txq->axq_q); 4089 if (bf == NULL) { 4090 txq->axq_link = NULL; 4091 ATH_TXQ_UNLOCK(txq); 4092 break; 4093 } 4094 ds0 = &bf->bf_desc[0]; 4095 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4096 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat); 4097 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4098 ath_printtxbuf(bf, status == HAL_OK); 4099 if (status == HAL_EINPROGRESS) { 4100 ATH_TXQ_UNLOCK(txq); 4101 break; 4102 } 4103 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4104 ATH_TXQ_UNLOCK(txq); 4105 4106 ni = bf->bf_node; 4107 if (ni != NULL) { 4108 an = ATH_NODE(ni); 4109 if (ds->ds_txstat.ts_status == 0) { 4110 u_int8_t txant = ds->ds_txstat.ts_antenna; 4111 sc->sc_stats.ast_ant_tx[txant]++; 4112 sc->sc_ant_tx[txant]++; 4113 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 4114 sc->sc_stats.ast_tx_altrate++; 4115 sc->sc_stats.ast_tx_rssi = 4116 ds->ds_txstat.ts_rssi; 4117 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4118 ds->ds_txstat.ts_rssi); 4119 pri = M_WME_GETAC(bf->bf_m); 4120 if (pri >= WME_AC_VO) 4121 ic->ic_wme.wme_hipri_traffic++; 4122 ni->ni_inact = ni->ni_inact_reload; 4123 } else { 4124 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 4125 sc->sc_stats.ast_tx_xretries++; 4126 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 4127 sc->sc_stats.ast_tx_fifoerr++; 4128 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 4129 sc->sc_stats.ast_tx_filtered++; 4130 } 4131 sr = ds->ds_txstat.ts_shortretry; 4132 lr = ds->ds_txstat.ts_longretry; 4133 sc->sc_stats.ast_tx_shortretry += sr; 4134 sc->sc_stats.ast_tx_longretry += lr; 4135 /* 4136 * Hand the descriptor to the rate control algorithm. 4137 */ 4138 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 && 4139 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) { 4140 /* 4141 * If frame was ack'd update the last rx time 4142 * used to workaround phantom bmiss interrupts. 4143 */ 4144 if (ds->ds_txstat.ts_status == 0) 4145 nacked++; 4146 ath_rate_tx_complete(sc, an, ds, ds0); 4147 } 4148 /* 4149 * Reclaim reference to node. 4150 * 4151 * NB: the node may be reclaimed here if, for example 4152 * this is a DEAUTH message that was sent and the 4153 * node was timed out due to inactivity. 4154 */ 4155 ieee80211_free_node(ni); 4156 } 4157 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 4158 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4159 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4160 m_freem(bf->bf_m); 4161 bf->bf_m = NULL; 4162 bf->bf_node = NULL; 4163 4164 ATH_TXBUF_LOCK(sc); 4165 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4166 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4167 ATH_TXBUF_UNLOCK(sc); 4168 } 4169 return nacked; 4170 } 4171 4172 static inline int 4173 txqactive(struct ath_hal *ah, int qnum) 4174 { 4175 u_int32_t txqs = 1<<qnum; 4176 ath_hal_gettxintrtxqs(ah, &txqs); 4177 return (txqs & (1<<qnum)); 4178 } 4179 4180 /* 4181 * Deferred processing of transmit interrupt; special-cased 4182 * for a single hardware transmit queue (e.g. 5210 and 5211). 4183 */ 4184 static void 4185 ath_tx_proc_q0(void *arg, int npending) 4186 { 4187 struct ath_softc *sc = arg; 4188 struct ifnet *ifp = &sc->sc_if; 4189 4190 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){ 4191 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4192 } 4193 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4194 ath_tx_processq(sc, sc->sc_cabq); 4195 4196 if (sc->sc_softled) 4197 ath_led_event(sc, ATH_LED_TX); 4198 4199 ath_start(ifp); 4200 } 4201 4202 /* 4203 * Deferred processing of transmit interrupt; special-cased 4204 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4205 */ 4206 static void 4207 ath_tx_proc_q0123(void *arg, int npending) 4208 { 4209 struct ath_softc *sc = arg; 4210 struct ifnet *ifp = &sc->sc_if; 4211 int nacked; 4212 4213 /* 4214 * Process each active queue. 4215 */ 4216 nacked = 0; 4217 if (txqactive(sc->sc_ah, 0)) 4218 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 4219 if (txqactive(sc->sc_ah, 1)) 4220 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 4221 if (txqactive(sc->sc_ah, 2)) 4222 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 4223 if (txqactive(sc->sc_ah, 3)) 4224 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 4225 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4226 ath_tx_processq(sc, sc->sc_cabq); 4227 if (nacked) { 4228 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4229 } 4230 4231 if (sc->sc_softled) 4232 ath_led_event(sc, ATH_LED_TX); 4233 4234 ath_start(ifp); 4235 } 4236 4237 /* 4238 * Deferred processing of transmit interrupt. 4239 */ 4240 static void 4241 ath_tx_proc(void *arg, int npending) 4242 { 4243 struct ath_softc *sc = arg; 4244 struct ifnet *ifp = &sc->sc_if; 4245 int i, nacked; 4246 4247 /* 4248 * Process each active queue. 4249 */ 4250 nacked = 0; 4251 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4252 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 4253 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 4254 if (nacked) { 4255 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4256 } 4257 4258 if (sc->sc_softled) 4259 ath_led_event(sc, ATH_LED_TX); 4260 4261 ath_start(ifp); 4262 } 4263 4264 static void 4265 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4266 { 4267 struct ath_hal *ah = sc->sc_ah; 4268 struct ieee80211_node *ni; 4269 struct ath_buf *bf; 4270 struct ath_desc *ds; 4271 4272 /* 4273 * NB: this assumes output has been stopped and 4274 * we do not need to block ath_tx_tasklet 4275 */ 4276 for (;;) { 4277 ATH_TXQ_LOCK(txq); 4278 bf = STAILQ_FIRST(&txq->axq_q); 4279 if (bf == NULL) { 4280 txq->axq_link = NULL; 4281 ATH_TXQ_UNLOCK(txq); 4282 break; 4283 } 4284 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4285 ATH_TXQ_UNLOCK(txq); 4286 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4287 if (sc->sc_debug & ATH_DEBUG_RESET) 4288 ath_printtxbuf(bf, 4289 ath_hal_txprocdesc(ah, bf->bf_desc, 4290 &ds->ds_txstat) == HAL_OK); 4291 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4292 m_freem(bf->bf_m); 4293 bf->bf_m = NULL; 4294 ni = bf->bf_node; 4295 bf->bf_node = NULL; 4296 if (ni != NULL) { 4297 /* 4298 * Reclaim node reference. 4299 */ 4300 ieee80211_free_node(ni); 4301 } 4302 ATH_TXBUF_LOCK(sc); 4303 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4304 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4305 ATH_TXBUF_UNLOCK(sc); 4306 } 4307 } 4308 4309 static void 4310 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4311 { 4312 struct ath_hal *ah = sc->sc_ah; 4313 4314 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4315 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4316 __func__, txq->axq_qnum, 4317 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4318 txq->axq_link); 4319 } 4320 4321 /* 4322 * Drain the transmit queues and reclaim resources. 4323 */ 4324 static void 4325 ath_draintxq(struct ath_softc *sc) 4326 { 4327 struct ath_hal *ah = sc->sc_ah; 4328 int i; 4329 4330 /* XXX return value */ 4331 if (device_is_active(sc->sc_dev)) { 4332 /* don't touch the hardware if marked invalid */ 4333 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4334 DPRINTF(sc, ATH_DEBUG_RESET, 4335 "%s: beacon queue %p\n", __func__, 4336 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 4337 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4338 if (ATH_TXQ_SETUP(sc, i)) 4339 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4340 } 4341 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4342 if (ATH_TXQ_SETUP(sc, i)) 4343 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4344 } 4345 4346 /* 4347 * Disable the receive h/w in preparation for a reset. 4348 */ 4349 static void 4350 ath_stoprecv(struct ath_softc *sc) 4351 { 4352 #define PA2DESC(_sc, _pa) \ 4353 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 4354 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4355 struct ath_hal *ah = sc->sc_ah; 4356 4357 ath_hal_stoppcurecv(ah); /* disable PCU */ 4358 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4359 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4360 DELAY(3000); /* 3ms is long enough for 1 frame */ 4361 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4362 struct ath_buf *bf; 4363 4364 printf("%s: rx queue %p, link %p\n", __func__, 4365 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4366 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4367 struct ath_desc *ds = bf->bf_desc; 4368 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4369 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 4370 &ds->ds_rxstat); 4371 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4372 ath_printrxbuf(bf, status == HAL_OK); 4373 } 4374 } 4375 sc->sc_rxlink = NULL; /* just in case */ 4376 #undef PA2DESC 4377 } 4378 4379 /* 4380 * Enable the receive h/w following a reset. 4381 */ 4382 static int 4383 ath_startrecv(struct ath_softc *sc) 4384 { 4385 struct ath_hal *ah = sc->sc_ah; 4386 struct ath_buf *bf; 4387 4388 sc->sc_rxlink = NULL; 4389 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4390 int error = ath_rxbuf_init(sc, bf); 4391 if (error != 0) { 4392 DPRINTF(sc, ATH_DEBUG_RECV, 4393 "%s: ath_rxbuf_init failed %d\n", 4394 __func__, error); 4395 return error; 4396 } 4397 } 4398 4399 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4400 ath_hal_putrxbuf(ah, bf->bf_daddr); 4401 ath_hal_rxena(ah); /* enable recv descriptors */ 4402 ath_mode_init(sc); /* set filters, etc. */ 4403 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4404 return 0; 4405 } 4406 4407 /* 4408 * Update internal state after a channel change. 4409 */ 4410 static void 4411 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4412 { 4413 struct ieee80211com *ic = &sc->sc_ic; 4414 enum ieee80211_phymode mode; 4415 u_int16_t flags; 4416 4417 /* 4418 * Change channels and update the h/w rate map 4419 * if we're switching; e.g. 11a to 11b/g. 4420 */ 4421 mode = ieee80211_chan2mode(ic, chan); 4422 if (mode != sc->sc_curmode) 4423 ath_setcurmode(sc, mode); 4424 /* 4425 * Update BPF state. NB: ethereal et. al. don't handle 4426 * merged flags well so pick a unique mode for their use. 4427 */ 4428 if (IEEE80211_IS_CHAN_A(chan)) 4429 flags = IEEE80211_CHAN_A; 4430 /* XXX 11g schizophrenia */ 4431 else if (IEEE80211_IS_CHAN_G(chan) || 4432 IEEE80211_IS_CHAN_PUREG(chan)) 4433 flags = IEEE80211_CHAN_G; 4434 else 4435 flags = IEEE80211_CHAN_B; 4436 if (IEEE80211_IS_CHAN_T(chan)) 4437 flags |= IEEE80211_CHAN_TURBO; 4438 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 4439 htole16(chan->ic_freq); 4440 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 4441 htole16(flags); 4442 } 4443 4444 #if 0 4445 /* 4446 * Poll for a channel clear indication; this is required 4447 * for channels requiring DFS and not previously visited 4448 * and/or with a recent radar detection. 4449 */ 4450 static void 4451 ath_dfswait(void *arg) 4452 { 4453 struct ath_softc *sc = arg; 4454 struct ath_hal *ah = sc->sc_ah; 4455 HAL_CHANNEL hchan; 4456 4457 ath_hal_radar_wait(ah, &hchan); 4458 if (hchan.privFlags & CHANNEL_INTERFERENCE) { 4459 if_printf(&sc->sc_if, 4460 "channel %u/0x%x/0x%x has interference\n", 4461 hchan.channel, hchan.channelFlags, hchan.privFlags); 4462 return; 4463 } 4464 if ((hchan.privFlags & CHANNEL_DFS) == 0) { 4465 /* XXX should not happen */ 4466 return; 4467 } 4468 if (hchan.privFlags & CHANNEL_DFS_CLEAR) { 4469 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR; 4470 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4471 if_printf(&sc->sc_if, 4472 "channel %u/0x%x/0x%x marked clear\n", 4473 hchan.channel, hchan.channelFlags, hchan.privFlags); 4474 } else 4475 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc); 4476 } 4477 #endif 4478 4479 /* 4480 * Set/change channels. If the channel is really being changed, 4481 * it's done by reseting the chip. To accomplish this we must 4482 * first cleanup any pending DMA, then restart stuff after a la 4483 * ath_init. 4484 */ 4485 static int 4486 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4487 { 4488 struct ath_hal *ah = sc->sc_ah; 4489 struct ieee80211com *ic = &sc->sc_ic; 4490 HAL_CHANNEL hchan; 4491 4492 /* 4493 * Convert to a HAL channel description with 4494 * the flags constrained to reflect the current 4495 * operating mode. 4496 */ 4497 hchan.channel = chan->ic_freq; 4498 hchan.channelFlags = ath_chan2flags(ic, chan); 4499 4500 DPRINTF(sc, ATH_DEBUG_RESET, 4501 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n", 4502 __func__, 4503 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel, 4504 sc->sc_curchan.channelFlags), 4505 sc->sc_curchan.channel, sc->sc_curchan.channelFlags, 4506 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags), 4507 hchan.channel, hchan.channelFlags); 4508 if (hchan.channel != sc->sc_curchan.channel || 4509 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4510 HAL_STATUS status; 4511 4512 /* 4513 * To switch channels clear any pending DMA operations; 4514 * wait long enough for the RX fifo to drain, reset the 4515 * hardware at the new frequency, and then re-enable 4516 * the relevant bits of the h/w. 4517 */ 4518 ath_hal_intrset(ah, 0); /* disable interrupts */ 4519 ath_draintxq(sc); /* clear pending tx frames */ 4520 ath_stoprecv(sc); /* turn off frame recv */ 4521 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 4522 if_printf(ic->ic_ifp, "%s: unable to reset " 4523 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n", 4524 __func__, ieee80211_chan2ieee(ic, chan), 4525 chan->ic_freq, chan->ic_flags, hchan.channelFlags); 4526 return EIO; 4527 } 4528 sc->sc_curchan = hchan; 4529 ath_update_txpow(sc); /* update tx power state */ 4530 ath_restore_diversity(sc); 4531 sc->sc_calinterval = 1; 4532 sc->sc_caltries = 0; 4533 4534 /* 4535 * Re-enable rx framework. 4536 */ 4537 if (ath_startrecv(sc) != 0) { 4538 if_printf(&sc->sc_if, 4539 "%s: unable to restart recv logic\n", __func__); 4540 return EIO; 4541 } 4542 4543 /* 4544 * Change channels and update the h/w rate map 4545 * if we're switching; e.g. 11a to 11b/g. 4546 */ 4547 ic->ic_ibss_chan = chan; 4548 ath_chan_change(sc, chan); 4549 4550 #if 0 4551 /* 4552 * Handle DFS required waiting period to determine 4553 * if channel is clear of radar traffic. 4554 */ 4555 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 4556 #define DFS_AND_NOT_CLEAR(_c) \ 4557 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS) 4558 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) { 4559 if_printf(&sc->sc_if, 4560 "wait for DFS clear channel signal\n"); 4561 /* XXX stop sndq */ 4562 sc->sc_if.if_flags |= IFF_OACTIVE; 4563 callout_reset(&sc->sc_dfs_ch, 4564 2 * hz, ath_dfswait, sc); 4565 } else 4566 callout_stop(&sc->sc_dfs_ch); 4567 #undef DFS_NOT_CLEAR 4568 } 4569 #endif 4570 4571 /* 4572 * Re-enable interrupts. 4573 */ 4574 ath_hal_intrset(ah, sc->sc_imask); 4575 } 4576 return 0; 4577 } 4578 4579 static void 4580 ath_next_scan(void *arg) 4581 { 4582 struct ath_softc *sc = arg; 4583 struct ieee80211com *ic = &sc->sc_ic; 4584 int s; 4585 4586 /* don't call ath_start w/o network interrupts blocked */ 4587 s = splnet(); 4588 4589 if (ic->ic_state == IEEE80211_S_SCAN) 4590 ieee80211_next_scan(ic); 4591 splx(s); 4592 } 4593 4594 /* 4595 * Periodically recalibrate the PHY to account 4596 * for temperature/environment changes. 4597 */ 4598 static void 4599 ath_calibrate(void *arg) 4600 { 4601 struct ath_softc *sc = arg; 4602 struct ath_hal *ah = sc->sc_ah; 4603 HAL_BOOL iqCalDone; 4604 int s; 4605 4606 sc->sc_stats.ast_per_cal++; 4607 4608 s = splnet(); 4609 4610 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4611 /* 4612 * Rfgain is out of bounds, reset the chip 4613 * to load new gain values. 4614 */ 4615 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4616 "%s: rfgain change\n", __func__); 4617 sc->sc_stats.ast_per_rfgain++; 4618 ath_reset(&sc->sc_if); 4619 } 4620 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) { 4621 DPRINTF(sc, ATH_DEBUG_ANY, 4622 "%s: calibration of channel %u failed\n", 4623 __func__, sc->sc_curchan.channel); 4624 sc->sc_stats.ast_per_calfail++; 4625 } 4626 /* 4627 * Calibrate noise floor data again in case of change. 4628 */ 4629 ath_hal_process_noisefloor(ah); 4630 /* 4631 * Poll more frequently when the IQ calibration is in 4632 * progress to speedup loading the final settings. 4633 * We temper this aggressive polling with an exponential 4634 * back off after 4 tries up to ath_calinterval. 4635 */ 4636 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) { 4637 sc->sc_caltries = 0; 4638 sc->sc_calinterval = ath_calinterval; 4639 } else if (sc->sc_caltries > 4) { 4640 sc->sc_caltries = 0; 4641 sc->sc_calinterval <<= 1; 4642 if (sc->sc_calinterval > ath_calinterval) 4643 sc->sc_calinterval = ath_calinterval; 4644 } 4645 KASSERTMSG(0 < sc->sc_calinterval && 4646 sc->sc_calinterval <= ath_calinterval, 4647 "bad calibration interval %u", sc->sc_calinterval); 4648 4649 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4650 "%s: next +%u (%siqCalDone tries %u)\n", __func__, 4651 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries); 4652 sc->sc_caltries++; 4653 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4654 ath_calibrate, sc); 4655 splx(s); 4656 } 4657 4658 static int 4659 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4660 { 4661 struct ifnet *ifp = ic->ic_ifp; 4662 struct ath_softc *sc = ifp->if_softc; 4663 struct ath_hal *ah = sc->sc_ah; 4664 struct ieee80211_node *ni; 4665 int i, error; 4666 const u_int8_t *bssid; 4667 u_int32_t rfilt; 4668 static const HAL_LED_STATE leds[] = { 4669 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4670 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4671 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4672 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4673 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4674 }; 4675 4676 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4677 ieee80211_state_name[ic->ic_state], 4678 ieee80211_state_name[nstate]); 4679 4680 callout_stop(&sc->sc_scan_ch); 4681 callout_stop(&sc->sc_cal_ch); 4682 #if 0 4683 callout_stop(&sc->sc_dfs_ch); 4684 #endif 4685 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4686 4687 if (nstate == IEEE80211_S_INIT) { 4688 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4689 /* 4690 * NB: disable interrupts so we don't rx frames. 4691 */ 4692 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4693 /* 4694 * Notify the rate control algorithm. 4695 */ 4696 ath_rate_newstate(sc, nstate); 4697 goto done; 4698 } 4699 ni = ic->ic_bss; 4700 error = ath_chan_set(sc, ic->ic_curchan); 4701 if (error != 0) 4702 goto bad; 4703 rfilt = ath_calcrxfilter(sc, nstate); 4704 if (nstate == IEEE80211_S_SCAN) 4705 bssid = ifp->if_broadcastaddr; 4706 else 4707 bssid = ni->ni_bssid; 4708 ath_hal_setrxfilter(ah, rfilt); 4709 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4710 __func__, rfilt, ether_sprintf(bssid)); 4711 4712 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4713 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4714 else 4715 ath_hal_setassocid(ah, bssid, 0); 4716 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4717 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4718 if (ath_hal_keyisvalid(ah, i)) 4719 ath_hal_keysetmac(ah, i, bssid); 4720 } 4721 4722 /* 4723 * Notify the rate control algorithm so rates 4724 * are setup should ath_beacon_alloc be called. 4725 */ 4726 ath_rate_newstate(sc, nstate); 4727 4728 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4729 /* nothing to do */; 4730 } else if (nstate == IEEE80211_S_RUN) { 4731 DPRINTF(sc, ATH_DEBUG_STATE, 4732 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4733 "capinfo=0x%04x chan=%d\n" 4734 , __func__ 4735 , ic->ic_flags 4736 , ni->ni_intval 4737 , ether_sprintf(ni->ni_bssid) 4738 , ni->ni_capinfo 4739 , ieee80211_chan2ieee(ic, ic->ic_curchan)); 4740 4741 switch (ic->ic_opmode) { 4742 case IEEE80211_M_HOSTAP: 4743 case IEEE80211_M_IBSS: 4744 /* 4745 * Allocate and setup the beacon frame. 4746 * 4747 * Stop any previous beacon DMA. This may be 4748 * necessary, for example, when an ibss merge 4749 * causes reconfiguration; there will be a state 4750 * transition from RUN->RUN that means we may 4751 * be called with beacon transmission active. 4752 */ 4753 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4754 ath_beacon_free(sc); 4755 error = ath_beacon_alloc(sc, ni); 4756 if (error != 0) 4757 goto bad; 4758 /* 4759 * If joining an adhoc network defer beacon timer 4760 * configuration to the next beacon frame so we 4761 * have a current TSF to use. Otherwise we're 4762 * starting an ibss/bss so there's no need to delay. 4763 */ 4764 if (ic->ic_opmode == IEEE80211_M_IBSS && 4765 ic->ic_bss->ni_tstamp.tsf != 0) 4766 sc->sc_syncbeacon = 1; 4767 else 4768 ath_beacon_config(sc); 4769 break; 4770 case IEEE80211_M_STA: 4771 /* 4772 * Allocate a key cache slot to the station. 4773 */ 4774 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4775 sc->sc_hasclrkey && 4776 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4777 ath_setup_stationkey(ni); 4778 /* 4779 * Defer beacon timer configuration to the next 4780 * beacon frame so we have a current TSF to use 4781 * (any TSF collected when scanning is likely old). 4782 */ 4783 sc->sc_syncbeacon = 1; 4784 break; 4785 default: 4786 break; 4787 } 4788 /* 4789 * Let the hal process statistics collected during a 4790 * scan so it can provide calibrated noise floor data. 4791 */ 4792 ath_hal_process_noisefloor(ah); 4793 /* 4794 * Reset rssi stats; maybe not the best place... 4795 */ 4796 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4797 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4798 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4799 } else { 4800 ath_hal_intrset(ah, 4801 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4802 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4803 } 4804 done: 4805 /* 4806 * Invoke the parent method to complete the work. 4807 */ 4808 error = sc->sc_newstate(ic, nstate, arg); 4809 /* 4810 * Finally, start any timers. 4811 */ 4812 if (nstate == IEEE80211_S_RUN) { 4813 /* start periodic recalibration timer */ 4814 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4815 ath_calibrate, sc); 4816 } else if (nstate == IEEE80211_S_SCAN) { 4817 /* start ap/neighbor scan timer */ 4818 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4819 ath_next_scan, sc); 4820 } 4821 bad: 4822 return error; 4823 } 4824 4825 /* 4826 * Allocate a key cache slot to the station so we can 4827 * setup a mapping from key index to node. The key cache 4828 * slot is needed for managing antenna state and for 4829 * compression when stations do not use crypto. We do 4830 * it uniliaterally here; if crypto is employed this slot 4831 * will be reassigned. 4832 */ 4833 static void 4834 ath_setup_stationkey(struct ieee80211_node *ni) 4835 { 4836 struct ieee80211com *ic = ni->ni_ic; 4837 struct ath_softc *sc = ic->ic_ifp->if_softc; 4838 ieee80211_keyix keyix, rxkeyix; 4839 4840 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4841 /* 4842 * Key cache is full; we'll fall back to doing 4843 * the more expensive lookup in software. Note 4844 * this also means no h/w compression. 4845 */ 4846 /* XXX msg+statistic */ 4847 } else { 4848 /* XXX locking? */ 4849 ni->ni_ucastkey.wk_keyix = keyix; 4850 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4851 /* NB: this will create a pass-thru key entry */ 4852 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4853 } 4854 } 4855 4856 /* 4857 * Setup driver-specific state for a newly associated node. 4858 * Note that we're called also on a re-associate, the isnew 4859 * param tells us if this is the first time or not. 4860 */ 4861 static void 4862 ath_newassoc(struct ieee80211_node *ni, int isnew) 4863 { 4864 struct ieee80211com *ic = ni->ni_ic; 4865 struct ath_softc *sc = ic->ic_ifp->if_softc; 4866 4867 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4868 if (isnew && 4869 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4870 KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4871 "new assoc with a unicast key already setup (keyix %u)", 4872 ni->ni_ucastkey.wk_keyix); 4873 ath_setup_stationkey(ni); 4874 } 4875 } 4876 4877 static int 4878 ath_getchannels(struct ath_softc *sc, u_int cc, 4879 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4880 { 4881 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 4882 struct ieee80211com *ic = &sc->sc_ic; 4883 struct ifnet *ifp = &sc->sc_if; 4884 struct ath_hal *ah = sc->sc_ah; 4885 HAL_CHANNEL *chans; 4886 int i, ix, nchan; 4887 4888 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4889 M_TEMP, M_NOWAIT); 4890 if (chans == NULL) { 4891 if_printf(ifp, "unable to allocate channel table\n"); 4892 return ENOMEM; 4893 } 4894 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4895 NULL, 0, NULL, 4896 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4897 u_int32_t rd; 4898 4899 (void)ath_hal_getregdomain(ah, &rd); 4900 if_printf(ifp, "unable to collect channel list from hal; " 4901 "regdomain likely %u country code %u\n", rd, cc); 4902 free(chans, M_TEMP); 4903 return EINVAL; 4904 } 4905 4906 /* 4907 * Convert HAL channels to ieee80211 ones and insert 4908 * them in the table according to their channel number. 4909 */ 4910 for (i = 0; i < nchan; i++) { 4911 HAL_CHANNEL *c = &chans[i]; 4912 u_int16_t flags; 4913 4914 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags); 4915 if (ix > IEEE80211_CHAN_MAX) { 4916 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n", 4917 ix, c->channel, c->channelFlags); 4918 continue; 4919 } 4920 if (ix < 0) { 4921 /* XXX can't handle stuff <2400 right now */ 4922 if (bootverbose) 4923 if_printf(ifp, "hal channel %d (%u/%x) " 4924 "cannot be handled; ignored\n", 4925 ix, c->channel, c->channelFlags); 4926 continue; 4927 } 4928 /* 4929 * Calculate net80211 flags; most are compatible 4930 * but some need massaging. Note the static turbo 4931 * conversion can be removed once net80211 is updated 4932 * to understand static vs. dynamic turbo. 4933 */ 4934 flags = c->channelFlags & COMPAT; 4935 if (c->channelFlags & CHANNEL_STURBO) 4936 flags |= IEEE80211_CHAN_TURBO; 4937 if (ic->ic_channels[ix].ic_freq == 0) { 4938 ic->ic_channels[ix].ic_freq = c->channel; 4939 ic->ic_channels[ix].ic_flags = flags; 4940 } else { 4941 /* channels overlap; e.g. 11g and 11b */ 4942 ic->ic_channels[ix].ic_flags |= flags; 4943 } 4944 } 4945 free(chans, M_TEMP); 4946 return 0; 4947 #undef COMPAT 4948 } 4949 4950 static void 4951 ath_led_done(void *arg) 4952 { 4953 struct ath_softc *sc = arg; 4954 4955 sc->sc_blinking = 0; 4956 } 4957 4958 /* 4959 * Turn the LED off: flip the pin and then set a timer so no 4960 * update will happen for the specified duration. 4961 */ 4962 static void 4963 ath_led_off(void *arg) 4964 { 4965 struct ath_softc *sc = arg; 4966 4967 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 4968 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 4969 } 4970 4971 /* 4972 * Blink the LED according to the specified on/off times. 4973 */ 4974 static void 4975 ath_led_blink(struct ath_softc *sc, int on, int off) 4976 { 4977 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 4978 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 4979 sc->sc_blinking = 1; 4980 sc->sc_ledoff = off; 4981 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 4982 } 4983 4984 static void 4985 ath_led_event(struct ath_softc *sc, int event) 4986 { 4987 4988 sc->sc_ledevent = ticks; /* time of last event */ 4989 if (sc->sc_blinking) /* don't interrupt active blink */ 4990 return; 4991 switch (event) { 4992 case ATH_LED_POLL: 4993 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 4994 sc->sc_hwmap[0].ledoff); 4995 break; 4996 case ATH_LED_TX: 4997 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 4998 sc->sc_hwmap[sc->sc_txrate].ledoff); 4999 break; 5000 case ATH_LED_RX: 5001 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 5002 sc->sc_hwmap[sc->sc_rxrate].ledoff); 5003 break; 5004 } 5005 } 5006 5007 static void 5008 ath_update_txpow(struct ath_softc *sc) 5009 { 5010 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 5011 struct ieee80211com *ic = &sc->sc_ic; 5012 struct ath_hal *ah = sc->sc_ah; 5013 u_int32_t txpow; 5014 5015 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 5016 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 5017 /* read back in case value is clamped */ 5018 (void)ath_hal_gettxpowlimit(ah, &txpow); 5019 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 5020 } 5021 /* 5022 * Fetch max tx power level for status requests. 5023 */ 5024 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 5025 ic->ic_bss->ni_txpower = txpow; 5026 } 5027 5028 static void 5029 rate_setup(struct ath_softc *sc, 5030 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs) 5031 { 5032 int i, maxrates; 5033 5034 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 5035 DPRINTF(sc, ATH_DEBUG_ANY, 5036 "%s: rate table too small (%u > %u)\n", 5037 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 5038 maxrates = IEEE80211_RATE_MAXSIZE; 5039 } else 5040 maxrates = rt->rateCount; 5041 for (i = 0; i < maxrates; i++) 5042 rs->rs_rates[i] = rt->info[i].dot11Rate; 5043 rs->rs_nrates = maxrates; 5044 } 5045 5046 static int 5047 ath_rate_setup(struct ath_softc *sc, u_int mode) 5048 { 5049 struct ath_hal *ah = sc->sc_ah; 5050 struct ieee80211com *ic = &sc->sc_ic; 5051 const HAL_RATE_TABLE *rt; 5052 5053 switch (mode) { 5054 case IEEE80211_MODE_11A: 5055 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5056 break; 5057 case IEEE80211_MODE_11B: 5058 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5059 break; 5060 case IEEE80211_MODE_11G: 5061 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5062 break; 5063 case IEEE80211_MODE_TURBO_A: 5064 /* XXX until static/dynamic turbo is fixed */ 5065 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5066 break; 5067 case IEEE80211_MODE_TURBO_G: 5068 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5069 break; 5070 default: 5071 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5072 __func__, mode); 5073 return 0; 5074 } 5075 sc->sc_rates[mode] = rt; 5076 if (rt != NULL) { 5077 rate_setup(sc, rt, &ic->ic_sup_rates[mode]); 5078 return 1; 5079 } else 5080 return 0; 5081 } 5082 5083 static void 5084 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5085 { 5086 #define N(a) (sizeof(a)/sizeof(a[0])) 5087 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5088 static const struct { 5089 u_int rate; /* tx/rx 802.11 rate */ 5090 u_int16_t timeOn; /* LED on time (ms) */ 5091 u_int16_t timeOff; /* LED off time (ms) */ 5092 } blinkrates[] = { 5093 { 108, 40, 10 }, 5094 { 96, 44, 11 }, 5095 { 72, 50, 13 }, 5096 { 48, 57, 14 }, 5097 { 36, 67, 16 }, 5098 { 24, 80, 20 }, 5099 { 22, 100, 25 }, 5100 { 18, 133, 34 }, 5101 { 12, 160, 40 }, 5102 { 10, 200, 50 }, 5103 { 6, 240, 58 }, 5104 { 4, 267, 66 }, 5105 { 2, 400, 100 }, 5106 { 0, 500, 130 }, 5107 }; 5108 const HAL_RATE_TABLE *rt; 5109 int i, j; 5110 5111 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5112 rt = sc->sc_rates[mode]; 5113 KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode); 5114 for (i = 0; i < rt->rateCount; i++) 5115 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 5116 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5117 for (i = 0; i < 32; i++) { 5118 u_int8_t ix = rt->rateCodeToIndex[i]; 5119 if (ix == 0xff) { 5120 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5121 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5122 continue; 5123 } 5124 sc->sc_hwmap[i].ieeerate = 5125 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 5126 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5127 if (rt->info[ix].shortPreamble || 5128 rt->info[ix].phy == IEEE80211_T_OFDM) 5129 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5130 /* NB: receive frames include FCS */ 5131 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 5132 IEEE80211_RADIOTAP_F_FCS; 5133 /* setup blink rate table to avoid per-packet lookup */ 5134 for (j = 0; j < N(blinkrates)-1; j++) 5135 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5136 break; 5137 /* NB: this uses the last entry if the rate isn't found */ 5138 /* XXX beware of overlow */ 5139 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5140 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5141 } 5142 sc->sc_currates = rt; 5143 sc->sc_curmode = mode; 5144 /* 5145 * All protection frames are transmited at 2Mb/s for 5146 * 11g, otherwise at 1Mb/s. 5147 */ 5148 if (mode == IEEE80211_MODE_11G) 5149 sc->sc_protrix = ath_tx_findrix(rt, 2*2); 5150 else 5151 sc->sc_protrix = ath_tx_findrix(rt, 2*1); 5152 /* rate index used to send management frames */ 5153 sc->sc_minrateix = 0; 5154 /* 5155 * Setup multicast rate state. 5156 */ 5157 /* XXX layering violation */ 5158 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate); 5159 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate; 5160 /* NB: caller is responsible for reseting rate control state */ 5161 #undef N 5162 } 5163 5164 #ifdef AR_DEBUG 5165 static void 5166 ath_printrxbuf(struct ath_buf *bf, int done) 5167 { 5168 struct ath_desc *ds; 5169 int i; 5170 5171 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5172 printf("R%d (%p %" PRIx64 5173 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds, 5174 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5175 ds->ds_link, ds->ds_data, 5176 ds->ds_ctl0, ds->ds_ctl1, 5177 ds->ds_hw[0], ds->ds_hw[1], 5178 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix, 5179 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 5180 } 5181 } 5182 5183 static void 5184 ath_printtxbuf(struct ath_buf *bf, int done) 5185 { 5186 struct ath_desc *ds; 5187 int i; 5188 5189 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5190 printf("T%d (%p %" PRIx64 5191 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 5192 i, ds, 5193 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5194 ds->ds_link, ds->ds_data, 5195 ds->ds_ctl0, ds->ds_ctl1, 5196 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 5197 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 5198 } 5199 } 5200 #endif /* AR_DEBUG */ 5201 5202 static void 5203 ath_watchdog(struct ifnet *ifp) 5204 { 5205 struct ath_softc *sc = ifp->if_softc; 5206 struct ieee80211com *ic = &sc->sc_ic; 5207 struct ath_txq *axq; 5208 int i; 5209 5210 ifp->if_timer = 0; 5211 if ((ifp->if_flags & IFF_RUNNING) == 0 || 5212 !device_is_active(sc->sc_dev)) 5213 return; 5214 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5215 if (!ATH_TXQ_SETUP(sc, i)) 5216 continue; 5217 axq = &sc->sc_txq[i]; 5218 ATH_TXQ_LOCK(axq); 5219 if (axq->axq_timer == 0) 5220 ; 5221 else if (--axq->axq_timer == 0) { 5222 ATH_TXQ_UNLOCK(axq); 5223 if_printf(ifp, "device timeout (txq %d, " 5224 "txintrperiod %d)\n", i, sc->sc_txintrperiod); 5225 if (sc->sc_txintrperiod > 1) 5226 sc->sc_txintrperiod--; 5227 ath_reset(ifp); 5228 ifp->if_oerrors++; 5229 sc->sc_stats.ast_watchdog++; 5230 break; 5231 } else 5232 ifp->if_timer = 1; 5233 ATH_TXQ_UNLOCK(axq); 5234 } 5235 ieee80211_watchdog(ic); 5236 } 5237 5238 /* 5239 * Diagnostic interface to the HAL. This is used by various 5240 * tools to do things like retrieve register contents for 5241 * debugging. The mechanism is intentionally opaque so that 5242 * it can change frequently w/o concern for compatiblity. 5243 */ 5244 static int 5245 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5246 { 5247 struct ath_hal *ah = sc->sc_ah; 5248 u_int id = ad->ad_id & ATH_DIAG_ID; 5249 void *indata = NULL; 5250 void *outdata = NULL; 5251 u_int32_t insize = ad->ad_in_size; 5252 u_int32_t outsize = ad->ad_out_size; 5253 int error = 0; 5254 5255 if (ad->ad_id & ATH_DIAG_IN) { 5256 /* 5257 * Copy in data. 5258 */ 5259 indata = malloc(insize, M_TEMP, M_NOWAIT); 5260 if (indata == NULL) { 5261 error = ENOMEM; 5262 goto bad; 5263 } 5264 error = copyin(ad->ad_in_data, indata, insize); 5265 if (error) 5266 goto bad; 5267 } 5268 if (ad->ad_id & ATH_DIAG_DYN) { 5269 /* 5270 * Allocate a buffer for the results (otherwise the HAL 5271 * returns a pointer to a buffer where we can read the 5272 * results). Note that we depend on the HAL leaving this 5273 * pointer for us to use below in reclaiming the buffer; 5274 * may want to be more defensive. 5275 */ 5276 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5277 if (outdata == NULL) { 5278 error = ENOMEM; 5279 goto bad; 5280 } 5281 } 5282 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5283 if (outsize < ad->ad_out_size) 5284 ad->ad_out_size = outsize; 5285 if (outdata != NULL) 5286 error = copyout(outdata, ad->ad_out_data, 5287 ad->ad_out_size); 5288 } else { 5289 error = EINVAL; 5290 } 5291 bad: 5292 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5293 free(indata, M_TEMP); 5294 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5295 free(outdata, M_TEMP); 5296 return error; 5297 } 5298 5299 static int 5300 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data) 5301 { 5302 #define IS_RUNNING(ifp) \ 5303 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 5304 struct ath_softc *sc = ifp->if_softc; 5305 struct ieee80211com *ic = &sc->sc_ic; 5306 struct ifreq *ifr = (struct ifreq *)data; 5307 int error = 0, s; 5308 5309 s = splnet(); 5310 switch (cmd) { 5311 case SIOCSIFFLAGS: 5312 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 5313 break; 5314 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 5315 case IFF_UP|IFF_RUNNING: 5316 /* 5317 * To avoid rescanning another access point, 5318 * do not call ath_init() here. Instead, 5319 * only reflect promisc mode settings. 5320 */ 5321 ath_mode_init(sc); 5322 break; 5323 case IFF_UP: 5324 /* 5325 * Beware of being called during attach/detach 5326 * to reset promiscuous mode. In that case we 5327 * will still be marked UP but not RUNNING. 5328 * However trying to re-init the interface 5329 * is the wrong thing to do as we've already 5330 * torn down much of our state. There's 5331 * probably a better way to deal with this. 5332 */ 5333 error = ath_init(sc); 5334 break; 5335 case IFF_RUNNING: 5336 ath_stop_locked(ifp, 1); 5337 break; 5338 case 0: 5339 break; 5340 } 5341 break; 5342 case SIOCADDMULTI: 5343 case SIOCDELMULTI: 5344 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 5345 if (ifp->if_flags & IFF_RUNNING) 5346 ath_mode_init(sc); 5347 error = 0; 5348 } 5349 break; 5350 case SIOCGATHSTATS: 5351 /* NB: embed these numbers to get a consistent view */ 5352 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5353 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5354 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic); 5355 splx(s); 5356 /* 5357 * NB: Drop the softc lock in case of a page fault; 5358 * we'll accept any potential inconsisentcy in the 5359 * statistics. The alternative is to copy the data 5360 * to a local structure. 5361 */ 5362 return copyout(&sc->sc_stats, 5363 ifr->ifr_data, sizeof (sc->sc_stats)); 5364 case SIOCGATHDIAG: 5365 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5366 break; 5367 default: 5368 error = ieee80211_ioctl(ic, cmd, data); 5369 if (error != ENETRESET) 5370 ; 5371 else if (IS_RUNNING(ifp) && 5372 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 5373 error = ath_init(sc); 5374 else 5375 error = 0; 5376 break; 5377 } 5378 splx(s); 5379 return error; 5380 #undef IS_RUNNING 5381 } 5382 5383 static void 5384 ath_bpfattach(struct ath_softc *sc) 5385 { 5386 struct ifnet *ifp = &sc->sc_if; 5387 5388 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 5389 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 5390 &sc->sc_drvbpf); 5391 5392 /* 5393 * Initialize constant fields. 5394 * XXX make header lengths a multiple of 32-bits so subsequent 5395 * headers are properly aligned; this is a kludge to keep 5396 * certain applications happy. 5397 * 5398 * NB: the channel is setup each time we transition to the 5399 * RUN state to avoid filling it in for each frame. 5400 */ 5401 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 5402 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 5403 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 5404 5405 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 5406 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 5407 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 5408 } 5409 5410 /* 5411 * Announce various information on device/driver attach. 5412 */ 5413 static void 5414 ath_announce(struct ath_softc *sc) 5415 { 5416 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 5417 struct ifnet *ifp = &sc->sc_if; 5418 struct ath_hal *ah = sc->sc_ah; 5419 u_int modes, cc; 5420 5421 if_printf(ifp, "mac %d.%d phy %d.%d", 5422 ah->ah_macVersion, ah->ah_macRev, 5423 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5424 /* 5425 * Print radio revision(s). We check the wireless modes 5426 * to avoid falsely printing revs for inoperable parts. 5427 * Dual-band radio revs are returned in the 5 GHz rev number. 5428 */ 5429 ath_hal_getcountrycode(ah, &cc); 5430 modes = ath_hal_getwirelessmodes(ah, cc); 5431 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 5432 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 5433 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d", 5434 ah->ah_analog5GhzRev >> 4, 5435 ah->ah_analog5GhzRev & 0xf, 5436 ah->ah_analog2GhzRev >> 4, 5437 ah->ah_analog2GhzRev & 0xf); 5438 else 5439 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5440 ah->ah_analog5GhzRev & 0xf); 5441 } else 5442 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5443 ah->ah_analog5GhzRev & 0xf); 5444 printf("\n"); 5445 if (bootverbose) { 5446 int i; 5447 for (i = 0; i <= WME_AC_VO; i++) { 5448 struct ath_txq *txq = sc->sc_ac2q[i]; 5449 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5450 txq->axq_qnum, ieee80211_wme_acnames[i]); 5451 } 5452 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5453 sc->sc_cabq->axq_qnum); 5454 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5455 } 5456 if (ath_rxbuf != ATH_RXBUF) 5457 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5458 if (ath_txbuf != ATH_TXBUF) 5459 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5460 #undef HAL_MODE_DUALBAND 5461 } 5462