xref: /netbsd/sys/dev/ic/ath.c (revision f515fb39)
1 /*	$NetBSD: ath.c,v 1.127 2019/05/28 07:41:48 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.127 2019/05/28 07:41:48 msaitoh Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #ifdef _KERNEL_OPT
55 #include "opt_inet.h"
56 #endif
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/sockio.h>
68 #include <sys/errno.h>
69 #include <sys/callout.h>
70 #include <sys/bus.h>
71 #include <sys/endian.h>
72 
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_types.h>
77 #include <net/if_arp.h>
78 #include <net/if_ether.h>
79 #include <net/if_llc.h>
80 
81 #include <net80211/ieee80211_netbsd.h>
82 #include <net80211/ieee80211_var.h>
83 
84 #include <net/bpf.h>
85 
86 #ifdef INET
87 #include <netinet/in.h>
88 #endif
89 
90 #include <sys/device.h>
91 #include <dev/ic/ath_netbsd.h>
92 
93 #define	AR_DEBUG
94 #include <dev/ic/athvar.h>
95 #include "ah_desc.h"
96 #include "ah_devid.h"	/* XXX for softled */
97 #include "opt_ah.h"
98 
99 #ifdef ATH_TX99_DIAG
100 #include <dev/ath/ath_tx99/ath_tx99.h>
101 #endif
102 
103 /* unaligned little endian access */
104 #define LE_READ_2(p)							\
105 	((u_int16_t)							\
106 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
107 #define LE_READ_4(p)							\
108 	((u_int32_t)							\
109 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
110 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
111 
112 enum {
113 	ATH_LED_TX,
114 	ATH_LED_RX,
115 	ATH_LED_POLL,
116 };
117 
118 #ifdef	AH_NEED_DESC_SWAP
119 #define	HTOAH32(x)	htole32(x)
120 #else
121 #define	HTOAH32(x)	(x)
122 #endif
123 
124 static int	ath_ifinit(struct ifnet *);
125 static int	ath_init(struct ath_softc *);
126 static void	ath_stop_locked(struct ifnet *, int);
127 static void	ath_stop(struct ifnet *, int);
128 static void	ath_start(struct ifnet *);
129 static int	ath_media_change(struct ifnet *);
130 static void	ath_watchdog(struct ifnet *);
131 static int	ath_ioctl(struct ifnet *, u_long, void *);
132 static void	ath_fatal_proc(void *, int);
133 static void	ath_rxorn_proc(void *, int);
134 static void	ath_bmiss_proc(void *, int);
135 static void	ath_radar_proc(void *, int);
136 static int	ath_key_alloc(struct ieee80211com *,
137 			const struct ieee80211_key *,
138 			ieee80211_keyix *, ieee80211_keyix *);
139 static int	ath_key_delete(struct ieee80211com *,
140 			const struct ieee80211_key *);
141 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void	ath_key_update_begin(struct ieee80211com *);
144 static void	ath_key_update_end(struct ieee80211com *);
145 static void	ath_mode_init(struct ath_softc *);
146 static void	ath_setslottime(struct ath_softc *);
147 static void	ath_updateslot(struct ifnet *);
148 static int	ath_beaconq_setup(struct ath_hal *);
149 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
150 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
151 static void	ath_beacon_proc(void *, int);
152 static void	ath_bstuck_proc(void *, int);
153 static void	ath_beacon_free(struct ath_softc *);
154 static void	ath_beacon_config(struct ath_softc *);
155 static void	ath_descdma_cleanup(struct ath_softc *sc,
156 			struct ath_descdma *, ath_bufhead *);
157 static int	ath_desc_alloc(struct ath_softc *);
158 static void	ath_desc_free(struct ath_softc *);
159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
160 static void	ath_node_free(struct ieee80211_node *);
161 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
162 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
163 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
164 			struct ieee80211_node *ni,
165 			int subtype, int rssi, u_int32_t rstamp);
166 static void	ath_setdefantenna(struct ath_softc *, u_int);
167 static void	ath_rx_proc(void *, int);
168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
169 static int	ath_tx_setup(struct ath_softc *, int, int);
170 static int	ath_wme_update(struct ieee80211com *);
171 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
172 static void	ath_tx_cleanup(struct ath_softc *);
173 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
174 			     struct ath_buf *, struct mbuf *);
175 static void	ath_tx_proc_q0(void *, int);
176 static void	ath_tx_proc_q0123(void *, int);
177 static void	ath_tx_proc(void *, int);
178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179 static void	ath_draintxq(struct ath_softc *);
180 static void	ath_stoprecv(struct ath_softc *);
181 static int	ath_startrecv(struct ath_softc *);
182 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
183 static void	ath_next_scan(void *);
184 static void	ath_calibrate(void *);
185 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
186 static void	ath_setup_stationkey(struct ieee80211_node *);
187 static void	ath_newassoc(struct ieee80211_node *, int);
188 static int	ath_getchannels(struct ath_softc *, u_int cc,
189 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
190 static void	ath_led_event(struct ath_softc *, int);
191 static void	ath_update_txpow(struct ath_softc *);
192 static void	ath_freetx(struct mbuf *);
193 static void	ath_restore_diversity(struct ath_softc *);
194 
195 static int	ath_rate_setup(struct ath_softc *, u_int mode);
196 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
197 
198 static void	ath_bpfattach(struct ath_softc *);
199 static void	ath_announce(struct ath_softc *);
200 
201 #ifdef __NetBSD__
202 #define	ATH_TASK_FUNC(__func)						\
203 static void __CONCAT(__func, _si)(void *arg)				\
204 {									\
205 	__func(arg, 1);							\
206 }
207 ATH_TASK_FUNC(ath_rx_proc);
208 ATH_TASK_FUNC(ath_rxorn_proc);
209 ATH_TASK_FUNC(ath_fatal_proc);
210 ATH_TASK_FUNC(ath_bmiss_proc);
211 ATH_TASK_FUNC(ath_bstuck_proc);
212 ATH_TASK_FUNC(ath_radar_proc);
213 ATH_TASK_FUNC(ath_tx_proc_q0);
214 ATH_TASK_FUNC(ath_tx_proc_q0123);
215 ATH_TASK_FUNC(ath_tx_proc);
216 #endif
217 
218 int ath_dwelltime = 200;		/* 5 channels/second */
219 int ath_calinterval = 30;		/* calibrate every 30 secs */
220 int ath_outdoor = AH_TRUE;		/* outdoor operation */
221 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
222 int ath_countrycode = CTRY_DEFAULT;	/* country code */
223 int ath_regdomain = 0;			/* regulatory domain */
224 int ath_debug = 0;
225 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
226 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
227 
228 #ifdef AR_DEBUG
229 enum {
230 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
231 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
232 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
233 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
234 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
235 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
236 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
237 	ATH_DEBUG_BEACON	= 0x00000080,	/* beacon handling */
238 	ATH_DEBUG_WATCHDOG	= 0x00000100,	/* watchdog timeout */
239 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
240 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
241 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
242 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
243 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
244 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
245 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
246 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
247 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
248 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
249 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
250 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
251 	ATH_DEBUG_ANY		= 0xffffffff
252 };
253 #define	IFF_DUMPPKTS(sc, m)					\
254 	((sc->sc_debug & (m)) ||				\
255 	    (sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2))	\
256 	    == (IFF_DEBUG | IFF_LINK2))
257 #define	DPRINTF(sc, m, fmt, ...) do {				\
258 	if (sc->sc_debug & (m))					\
259 		printf(fmt, __VA_ARGS__);			\
260 } while (0)
261 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
262 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
263 		ath_keyprint(__func__, ix, hk, mac);		\
264 } while (0)
265 static	void ath_printrxbuf(struct ath_buf *bf, int);
266 static	void ath_printtxbuf(struct ath_buf *bf, int);
267 #else
268 #define IFF_DUMPPKTS(sc, m)					\
269 	((sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2))		\
270 	    == (IFF_DEBUG | IFF_LINK2))
271 #define DPRINTF(m, fmt, ...)
272 #define KEYPRINTF(sc, k, ix, mac)
273 #endif
274 
275 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
276 
277 int
278 ath_attach(u_int16_t devid, struct ath_softc *sc)
279 {
280 	struct ifnet *ifp = &sc->sc_if;
281 	struct ieee80211com *ic = &sc->sc_ic;
282 	struct ath_hal *ah = NULL;
283 	HAL_STATUS status;
284 	int error = 0, i;
285 
286 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
287 
288 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
289 
290 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
291 
292 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
293 	if (ah == NULL) {
294 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
295 			status);
296 		error = ENXIO;
297 		goto bad;
298 	}
299 	if (ah->ah_abi != HAL_ABI_VERSION) {
300 		if_printf(ifp, "HAL ABI mismatch detected "
301 			"(HAL:0x%x != driver:0x%x)\n",
302 			ah->ah_abi, HAL_ABI_VERSION);
303 		error = ENXIO;
304 		goto bad;
305 	}
306 	sc->sc_ah = ah;
307 
308 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
309 	    "pmf-powerdown", false))
310 		goto bad;
311 
312 	/*
313 	 * Check if the MAC has multi-rate retry support.
314 	 * We do this by trying to setup a fake extended
315 	 * descriptor.  MAC's that don't have support will
316 	 * return false w/o doing anything.  MAC's that do
317 	 * support it will return true w/o doing anything.
318 	 */
319 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
320 
321 	/*
322 	 * Check if the device has hardware counters for PHY
323 	 * errors.  If so we need to enable the MIB interrupt
324 	 * so we can act on stat triggers.
325 	 */
326 	if (ath_hal_hwphycounters(ah))
327 		sc->sc_needmib = 1;
328 
329 	/*
330 	 * Get the hardware key cache size.
331 	 */
332 	sc->sc_keymax = ath_hal_keycachesize(ah);
333 	if (sc->sc_keymax > ATH_KEYMAX) {
334 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
335 			ATH_KEYMAX, sc->sc_keymax);
336 		sc->sc_keymax = ATH_KEYMAX;
337 	}
338 	/*
339 	 * Reset the key cache since some parts do not
340 	 * reset the contents on initial power up.
341 	 */
342 	for (i = 0; i < sc->sc_keymax; i++)
343 		ath_hal_keyreset(ah, i);
344 	/*
345 	 * Mark key cache slots associated with global keys
346 	 * as in use.  If we knew TKIP was not to be used we
347 	 * could leave the +32, +64, and +32+64 slots free.
348 	 * XXX only for splitmic.
349 	 */
350 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
351 		setbit(sc->sc_keymap, i);
352 		setbit(sc->sc_keymap, i+32);
353 		setbit(sc->sc_keymap, i+64);
354 		setbit(sc->sc_keymap, i+32+64);
355 	}
356 
357 	/*
358 	 * Collect the channel list using the default country
359 	 * code and including outdoor channels.  The 802.11 layer
360 	 * is resposible for filtering this list based on settings
361 	 * like the phy mode.
362 	 */
363 	error = ath_getchannels(sc, ath_countrycode,
364 			ath_outdoor, ath_xchanmode);
365 	if (error != 0)
366 		goto bad;
367 
368 	/*
369 	 * Setup rate tables for all potential media types.
370 	 */
371 	ath_rate_setup(sc, IEEE80211_MODE_11A);
372 	ath_rate_setup(sc, IEEE80211_MODE_11B);
373 	ath_rate_setup(sc, IEEE80211_MODE_11G);
374 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
375 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
376 	/* NB: setup here so ath_rate_update is happy */
377 	ath_setcurmode(sc, IEEE80211_MODE_11A);
378 
379 	/*
380 	 * Allocate tx+rx descriptors and populate the lists.
381 	 */
382 	error = ath_desc_alloc(sc);
383 	if (error != 0) {
384 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
385 		goto bad;
386 	}
387 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
388 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
389 #if 0
390 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
391 #endif
392 
393 	ATH_TXBUF_LOCK_INIT(sc);
394 
395 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
396 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
397 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
398 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
399 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
400 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
401 
402 	/*
403 	 * Allocate hardware transmit queues: one queue for
404 	 * beacon frames and one data queue for each QoS
405 	 * priority.  Note that the hal handles reseting
406 	 * these queues at the needed time.
407 	 *
408 	 * XXX PS-Poll
409 	 */
410 	sc->sc_bhalq = ath_beaconq_setup(ah);
411 	if (sc->sc_bhalq == (u_int) -1) {
412 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
413 		error = EIO;
414 		goto bad2;
415 	}
416 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
417 	if (sc->sc_cabq == NULL) {
418 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
419 		error = EIO;
420 		goto bad2;
421 	}
422 	/* NB: insure BK queue is the lowest priority h/w queue */
423 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
424 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
425 			ieee80211_wme_acnames[WME_AC_BK]);
426 		error = EIO;
427 		goto bad2;
428 	}
429 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
430 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
431 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
432 		/*
433 		 * Not enough hardware tx queues to properly do WME;
434 		 * just punt and assign them all to the same h/w queue.
435 		 * We could do a better job of this if, for example,
436 		 * we allocate queues when we switch from station to
437 		 * AP mode.
438 		 */
439 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
440 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
441 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
442 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
443 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
444 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
445 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
446 	}
447 
448 	/*
449 	 * Special case certain configurations.  Note the
450 	 * CAB queue is handled by these specially so don't
451 	 * include them when checking the txq setup mask.
452 	 */
453 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
454 	case 0x01:
455 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
456 		break;
457 	case 0x0f:
458 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
459 		break;
460 	default:
461 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
462 		break;
463 	}
464 
465 	/*
466 	 * Setup rate control.  Some rate control modules
467 	 * call back to change the anntena state so expose
468 	 * the necessary entry points.
469 	 * XXX maybe belongs in struct ath_ratectrl?
470 	 */
471 	sc->sc_setdefantenna = ath_setdefantenna;
472 	sc->sc_rc = ath_rate_attach(sc);
473 	if (sc->sc_rc == NULL) {
474 		error = EIO;
475 		goto bad2;
476 	}
477 
478 	sc->sc_blinking = 0;
479 	sc->sc_ledstate = 1;
480 	sc->sc_ledon = 0;			/* low true */
481 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
482 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
483 	/*
484 	 * Auto-enable soft led processing for IBM cards and for
485 	 * 5211 minipci cards.  Users can also manually enable/disable
486 	 * support with a sysctl.
487 	 */
488 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
489 	if (sc->sc_softled) {
490 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
491 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
492 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
493 	}
494 
495 	ifp->if_softc = sc;
496 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
497 	ifp->if_start = ath_start;
498 	ifp->if_stop = ath_stop;
499 	ifp->if_watchdog = ath_watchdog;
500 	ifp->if_ioctl = ath_ioctl;
501 	ifp->if_init = ath_ifinit;
502 	IFQ_SET_READY(&ifp->if_snd);
503 
504 	ic->ic_ifp = ifp;
505 	ic->ic_reset = ath_reset;
506 	ic->ic_newassoc = ath_newassoc;
507 	ic->ic_updateslot = ath_updateslot;
508 	ic->ic_wme.wme_update = ath_wme_update;
509 	/* XXX not right but it's not used anywhere important */
510 	ic->ic_phytype = IEEE80211_T_OFDM;
511 	ic->ic_opmode = IEEE80211_M_STA;
512 	ic->ic_caps =
513 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
514 		| IEEE80211_C_HOSTAP		/* hostap mode */
515 		| IEEE80211_C_MONITOR		/* monitor mode */
516 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
517 		| IEEE80211_C_SHSLOT		/* short slot time supported */
518 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
519 		| IEEE80211_C_TXFRAG		/* handle tx frags */
520 		;
521 	/*
522 	 * Query the hal to figure out h/w crypto support.
523 	 */
524 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
525 		ic->ic_caps |= IEEE80211_C_WEP;
526 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
527 		ic->ic_caps |= IEEE80211_C_AES;
528 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
529 		ic->ic_caps |= IEEE80211_C_AES_CCM;
530 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
531 		ic->ic_caps |= IEEE80211_C_CKIP;
532 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
533 		ic->ic_caps |= IEEE80211_C_TKIP;
534 		/*
535 		 * Check if h/w does the MIC and/or whether the
536 		 * separate key cache entries are required to
537 		 * handle both tx+rx MIC keys.
538 		 */
539 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
540 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
541 
542 		/*
543 		 * If the h/w supports storing tx+rx MIC keys
544 		 * in one cache slot automatically enable use.
545 		 */
546 		if (ath_hal_hastkipsplit(ah) ||
547 		    !ath_hal_settkipsplit(ah, AH_FALSE))
548 			sc->sc_splitmic = 1;
549 
550 		/*
551 		 * If the h/w can do TKIP MIC together with WME then
552 		 * we use it; otherwise we force the MIC to be done
553 		 * in software by the net80211 layer.
554 		 */
555 		if (ath_hal_haswmetkipmic(ah))
556 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
557 	}
558 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
559 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
560 	/*
561 	 * Mark key cache slots associated with global keys
562 	 * as in use.  If we knew TKIP was not to be used we
563 	 * could leave the +32, +64, and +32+64 slots free.
564 	 */
565 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
566 		setbit(sc->sc_keymap, i);
567 		setbit(sc->sc_keymap, i+64);
568 		if (sc->sc_splitmic) {
569 			setbit(sc->sc_keymap, i+32);
570 			setbit(sc->sc_keymap, i+32+64);
571 		}
572 	}
573 	/*
574 	 * TPC support can be done either with a global cap or
575 	 * per-packet support.  The latter is not available on
576 	 * all parts.  We're a bit pedantic here as all parts
577 	 * support a global cap.
578 	 */
579 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
580 		ic->ic_caps |= IEEE80211_C_TXPMGT;
581 
582 	/*
583 	 * Mark WME capability only if we have sufficient
584 	 * hardware queues to do proper priority scheduling.
585 	 */
586 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
587 		ic->ic_caps |= IEEE80211_C_WME;
588 	/*
589 	 * Check for misc other capabilities.
590 	 */
591 	if (ath_hal_hasbursting(ah))
592 		ic->ic_caps |= IEEE80211_C_BURST;
593 
594 	/*
595 	 * Indicate we need the 802.11 header padded to a
596 	 * 32-bit boundary for 4-address and QoS frames.
597 	 */
598 	ic->ic_flags |= IEEE80211_F_DATAPAD;
599 
600 	/*
601 	 * Query the hal about antenna support.
602 	 */
603 	sc->sc_defant = ath_hal_getdefantenna(ah);
604 
605 	/*
606 	 * Not all chips have the VEOL support we want to
607 	 * use with IBSS beacons; check here for it.
608 	 */
609 	sc->sc_hasveol = ath_hal_hasveol(ah);
610 
611 	/* get mac address from hardware */
612 	ath_hal_getmac(ah, ic->ic_myaddr);
613 
614 	if_attach(ifp);
615 	/* call MI attach routine. */
616 	ieee80211_ifattach(ic);
617 	/* override default methods */
618 	ic->ic_node_alloc = ath_node_alloc;
619 	sc->sc_node_free = ic->ic_node_free;
620 	ic->ic_node_free = ath_node_free;
621 	ic->ic_node_getrssi = ath_node_getrssi;
622 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
623 	ic->ic_recv_mgmt = ath_recv_mgmt;
624 	sc->sc_newstate = ic->ic_newstate;
625 	ic->ic_newstate = ath_newstate;
626 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
627 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
628 	ic->ic_crypto.cs_key_delete = ath_key_delete;
629 	ic->ic_crypto.cs_key_set = ath_key_set;
630 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
631 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
632 	/* complete initialization */
633 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
634 
635 	ath_bpfattach(sc);
636 
637 	sc->sc_flags |= ATH_ATTACHED;
638 
639 	/*
640 	 * Setup dynamic sysctl's now that country code and
641 	 * regdomain are available from the hal.
642 	 */
643 	ath_sysctlattach(sc);
644 
645 	ieee80211_announce(ic);
646 	ath_announce(sc);
647 	return 0;
648 bad2:
649 	ath_tx_cleanup(sc);
650 	ath_desc_free(sc);
651 bad:
652 	if (ah)
653 		ath_hal_detach(ah);
654 	/* XXX don't get under the abstraction like this */
655 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
656 	return error;
657 }
658 
659 int
660 ath_detach(struct ath_softc *sc)
661 {
662 	struct ifnet *ifp = &sc->sc_if;
663 	int s;
664 
665 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
666 		return (0);
667 
668 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
669 		__func__, ifp->if_flags);
670 
671 	s = splnet();
672 	ath_stop(ifp, 1);
673 	bpf_detach(ifp);
674 	/*
675 	 * NB: the order of these is important:
676 	 * o call the 802.11 layer before detaching the hal to
677 	 *   insure callbacks into the driver to delete global
678 	 *   key cache entries can be handled
679 	 * o reclaim the tx queue data structures after calling
680 	 *   the 802.11 layer as we'll get called back to reclaim
681 	 *   node state and potentially want to use them
682 	 * o to cleanup the tx queues the hal is called, so detach
683 	 *   it last
684 	 * Other than that, it's straightforward...
685 	 */
686 	ieee80211_ifdetach(&sc->sc_ic);
687 #ifdef ATH_TX99_DIAG
688 	if (sc->sc_tx99 != NULL)
689 		sc->sc_tx99->detach(sc->sc_tx99);
690 #endif
691 	ath_rate_detach(sc->sc_rc);
692 	ath_desc_free(sc);
693 	ath_tx_cleanup(sc);
694 	sysctl_teardown(&sc->sc_sysctllog);
695 	ath_hal_detach(sc->sc_ah);
696 	if_detach(ifp);
697 	splx(s);
698 
699 	return 0;
700 }
701 
702 void
703 ath_suspend(struct ath_softc *sc)
704 {
705 #if notyet
706 	/*
707 	 * Set the chip in full sleep mode.  Note that we are
708 	 * careful to do this only when bringing the interface
709 	 * completely to a stop.  When the chip is in this state
710 	 * it must be carefully woken up or references to
711 	 * registers in the PCI clock domain may freeze the bus
712 	 * (and system).  This varies by chip and is mostly an
713 	 * issue with newer parts that go to sleep more quickly.
714 	 */
715 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
716 #endif
717 }
718 
719 bool
720 ath_resume(struct ath_softc *sc)
721 {
722 	struct ath_hal *ah = sc->sc_ah;
723 	struct ieee80211com *ic = &sc->sc_ic;
724 	HAL_STATUS status;
725 	int i;
726 
727 #if notyet
728 	ath_hal_setpower(ah, HAL_PM_AWAKE);
729 #else
730 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
731 #endif
732 
733 	/*
734 	 * Reset the key cache since some parts do not
735 	 * reset the contents on initial power up.
736 	 */
737 	for (i = 0; i < sc->sc_keymax; i++)
738 		ath_hal_keyreset(ah, i);
739 
740 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
741 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
742 		if (ATH_TXQ_SETUP(sc, i))
743 			ath_hal_resettxqueue(ah, i);
744 
745 	if (sc->sc_softled) {
746 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
747 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
748 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
749 	}
750 	return true;
751 }
752 
753 /*
754  * Interrupt handler.  Most of the actual processing is deferred.
755  */
756 int
757 ath_intr(void *arg)
758 {
759 	struct ath_softc *sc = arg;
760 	struct ifnet *ifp = &sc->sc_if;
761 	struct ath_hal *ah = sc->sc_ah;
762 	HAL_INT status = 0;
763 
764 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
765 		/*
766 		 * The hardware is not ready/present, don't touch anything.
767 		 * Note this can happen early on if the IRQ is shared.
768 		 */
769 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
770 		return 0;
771 	}
772 
773 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
774 		return 0;
775 
776 	if ((ifp->if_flags & (IFF_RUNNING |IFF_UP)) != (IFF_RUNNING |IFF_UP)) {
777 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
778 			__func__, ifp->if_flags);
779 		ath_hal_getisr(ah, &status);	/* clear ISR */
780 		ath_hal_intrset(ah, 0);		/* disable further intr's */
781 		return 1; /* XXX */
782 	}
783 	/*
784 	 * Figure out the reason(s) for the interrupt.  Note
785 	 * that the hal returns a pseudo-ISR that may include
786 	 * bits we haven't explicitly enabled so we mask the
787 	 * value to insure we only process bits we requested.
788 	 */
789 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
790 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
791 	status &= sc->sc_imask;			/* discard unasked for bits */
792 	if (status & HAL_INT_FATAL) {
793 		/*
794 		 * Fatal errors are unrecoverable.  Typically
795 		 * these are caused by DMA errors.  Unfortunately
796 		 * the exact reason is not (presently) returned
797 		 * by the hal.
798 		 */
799 		sc->sc_stats.ast_hardware++;
800 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
801 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
802 	} else if (status & HAL_INT_RXORN) {
803 		sc->sc_stats.ast_rxorn++;
804 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
805 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
806 	} else {
807 		if (status & HAL_INT_SWBA) {
808 			/*
809 			 * Software beacon alert--time to send a beacon.
810 			 * Handle beacon transmission directly; deferring
811 			 * this is too slow to meet timing constraints
812 			 * under load.
813 			 */
814 			ath_beacon_proc(sc, 0);
815 		}
816 		if (status & HAL_INT_RXEOL) {
817 			/*
818 			 * NB: the hardware should re-read the link when
819 			 *     RXE bit is written, but it doesn't work at
820 			 *     least on older hardware revs.
821 			 */
822 			sc->sc_stats.ast_rxeol++;
823 			sc->sc_rxlink = NULL;
824 		}
825 		if (status & HAL_INT_TXURN) {
826 			sc->sc_stats.ast_txurn++;
827 			/* bump tx trigger level */
828 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
829 		}
830 		if (status & HAL_INT_RX)
831 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
832 		if (status & HAL_INT_TX)
833 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
834 		if (status & HAL_INT_BMISS) {
835 			sc->sc_stats.ast_bmiss++;
836 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
837 		}
838 		if (status & HAL_INT_MIB) {
839 			sc->sc_stats.ast_mib++;
840 			/*
841 			 * Disable interrupts until we service the MIB
842 			 * interrupt; otherwise it will continue to fire.
843 			 */
844 			ath_hal_intrset(ah, 0);
845 			/*
846 			 * Let the hal handle the event.  We assume it will
847 			 * clear whatever condition caused the interrupt.
848 			 */
849 			ath_hal_mibevent(ah, &sc->sc_halstats);
850 			ath_hal_intrset(ah, sc->sc_imask);
851 		}
852 	}
853 	return 1;
854 }
855 
856 /* Swap transmit descriptor.
857  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
858  * function.
859  */
860 static inline void
861 ath_desc_swap(struct ath_desc *ds)
862 {
863 #ifdef AH_NEED_DESC_SWAP
864 	ds->ds_link = htole32(ds->ds_link);
865 	ds->ds_data = htole32(ds->ds_data);
866 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
867 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
868 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
869 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
870 #endif
871 }
872 
873 static void
874 ath_fatal_proc(void *arg, int pending)
875 {
876 	struct ath_softc *sc = arg;
877 	struct ifnet *ifp = &sc->sc_if;
878 #ifdef __NetBSD__
879 	int s;
880 #endif
881 
882 	if_printf(ifp, "hardware error; resetting\n");
883 #ifdef __NetBSD__
884 	s = splnet();
885 #endif
886 	ath_reset(ifp);
887 #ifdef __NetBSD__
888 	splx(s);
889 #endif
890 }
891 
892 static void
893 ath_rxorn_proc(void *arg, int pending)
894 {
895 	struct ath_softc *sc = arg;
896 	struct ifnet *ifp = &sc->sc_if;
897 #ifdef __NetBSD__
898 	int s;
899 #endif
900 
901 	if_printf(ifp, "rx FIFO overrun; resetting\n");
902 #ifdef __NetBSD__
903 	s = splnet();
904 #endif
905 	ath_reset(ifp);
906 #ifdef __NetBSD__
907 	splx(s);
908 #endif
909 }
910 
911 static void
912 ath_bmiss_proc(void *arg, int pending)
913 {
914 	struct ath_softc *sc = arg;
915 	struct ieee80211com *ic = &sc->sc_ic;
916 	NET_LOCK_GIANT_FUNC_INIT();
917 
918 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
919 	KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA,
920 		"unexpect operating mode %u", ic->ic_opmode);
921 	if (ic->ic_state == IEEE80211_S_RUN) {
922 		u_int64_t lastrx = sc->sc_lastrx;
923 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
924 
925 		DPRINTF(sc, ATH_DEBUG_BEACON,
926 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
927 		    " (%" PRIu64 ") bmiss %u\n",
928 		    __func__, tsf, tsf - lastrx, lastrx,
929 		    ic->ic_bmisstimeout*1024);
930 		/*
931 		 * Workaround phantom bmiss interrupts by sanity-checking
932 		 * the time of our last rx'd frame.  If it is within the
933 		 * beacon miss interval then ignore the interrupt.  If it's
934 		 * truly a bmiss we'll get another interrupt soon and that'll
935 		 * be dispatched up for processing.
936 		 */
937 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
938 			NET_LOCK_GIANT();
939 			ieee80211_beacon_miss(ic);
940 			NET_UNLOCK_GIANT();
941 		} else
942 			sc->sc_stats.ast_bmiss_phantom++;
943 	}
944 }
945 
946 static void
947 ath_radar_proc(void *arg, int pending)
948 {
949 #if 0
950 	struct ath_softc *sc = arg;
951 	struct ifnet *ifp = &sc->sc_if;
952 	struct ath_hal *ah = sc->sc_ah;
953 	HAL_CHANNEL hchan;
954 
955 	if (ath_hal_procdfs(ah, &hchan)) {
956 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
957 			hchan.channel, hchan.channelFlags, hchan.privFlags);
958 		/*
959 		 * Initiate channel change.
960 		 */
961 		/* XXX not yet */
962 	}
963 #endif
964 }
965 
966 static u_int
967 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
968 {
969 #define	N(a)	(sizeof(a) / sizeof(a[0]))
970 	static const u_int modeflags[] = {
971 		0,			/* IEEE80211_MODE_AUTO */
972 		CHANNEL_A,		/* IEEE80211_MODE_11A */
973 		CHANNEL_B,		/* IEEE80211_MODE_11B */
974 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
975 		0,			/* IEEE80211_MODE_FH */
976 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
977 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
978 	};
979 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
980 
981 	KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode);
982 	KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode);
983 	return modeflags[mode];
984 #undef N
985 }
986 
987 static int
988 ath_ifinit(struct ifnet *ifp)
989 {
990 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
991 
992 	return ath_init(sc);
993 }
994 
995 static void
996 ath_settkipmic(struct ath_softc *sc)
997 {
998 	struct ieee80211com *ic = &sc->sc_ic;
999 	struct ath_hal *ah = sc->sc_ah;
1000 
1001 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
1002 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
1003 		if (ic->ic_flags & IEEE80211_F_WME) {
1004 			(void)ath_hal_settkipmic(ah, AH_FALSE);
1005 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
1006 		} else {
1007 			(void)ath_hal_settkipmic(ah, AH_TRUE);
1008 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
1009 		}
1010 	}
1011 }
1012 
1013 static int
1014 ath_init(struct ath_softc *sc)
1015 {
1016 	struct ifnet *ifp = &sc->sc_if;
1017 	struct ieee80211com *ic = &sc->sc_ic;
1018 	struct ath_hal *ah = sc->sc_ah;
1019 	HAL_STATUS status;
1020 	int error = 0, s;
1021 
1022 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1023 		__func__, ifp->if_flags);
1024 
1025 	if (device_is_active(sc->sc_dev)) {
1026 		s = splnet();
1027 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1028 		   !device_is_active(sc->sc_dev))
1029 		return 0;
1030 	else
1031 		s = splnet();
1032 
1033 	/*
1034 	 * Stop anything previously setup.  This is safe
1035 	 * whether this is the first time through or not.
1036 	 */
1037 	ath_stop_locked(ifp, 0);
1038 
1039 	/*
1040 	 * The basic interface to setting the hardware in a good
1041 	 * state is ``reset''.  On return the hardware is known to
1042 	 * be powered up and with interrupts disabled.  This must
1043 	 * be followed by initialization of the appropriate bits
1044 	 * and then setup of the interrupt mask.
1045 	 */
1046 	ath_settkipmic(sc);
1047 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1048 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1049 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1050 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1051 			status);
1052 		error = EIO;
1053 		goto done;
1054 	}
1055 
1056 	/*
1057 	 * This is needed only to setup initial state
1058 	 * but it's best done after a reset.
1059 	 */
1060 	ath_update_txpow(sc);
1061 	/*
1062 	 * Likewise this is set during reset so update
1063 	 * state cached in the driver.
1064 	 */
1065 	ath_restore_diversity(sc);
1066 	sc->sc_calinterval = 1;
1067 	sc->sc_caltries = 0;
1068 
1069 	/*
1070 	 * Setup the hardware after reset: the key cache
1071 	 * is filled as needed and the receive engine is
1072 	 * set going.  Frame transmit is handled entirely
1073 	 * in the frame output path; there's nothing to do
1074 	 * here except setup the interrupt mask.
1075 	 */
1076 	if ((error = ath_startrecv(sc)) != 0) {
1077 		if_printf(ifp, "unable to start recv logic\n");
1078 		goto done;
1079 	}
1080 
1081 	/*
1082 	 * Enable interrupts.
1083 	 */
1084 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1085 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1086 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1087 	/*
1088 	 * Enable MIB interrupts when there are hardware phy counters.
1089 	 * Note we only do this (at the moment) for station mode.
1090 	 */
1091 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1092 		sc->sc_imask |= HAL_INT_MIB;
1093 	ath_hal_intrset(ah, sc->sc_imask);
1094 
1095 	ifp->if_flags |= IFF_RUNNING;
1096 	ic->ic_state = IEEE80211_S_INIT;
1097 
1098 	/*
1099 	 * The hardware should be ready to go now so it's safe
1100 	 * to kick the 802.11 state machine as it's likely to
1101 	 * immediately call back to us to send mgmt frames.
1102 	 */
1103 	ath_chan_change(sc, ic->ic_curchan);
1104 #ifdef ATH_TX99_DIAG
1105 	if (sc->sc_tx99 != NULL)
1106 		sc->sc_tx99->start(sc->sc_tx99);
1107 	else
1108 #endif
1109 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1110 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1111 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1112 	} else
1113 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1114 done:
1115 	splx(s);
1116 	return error;
1117 }
1118 
1119 static void
1120 ath_stop_locked(struct ifnet *ifp, int disable)
1121 {
1122 	struct ath_softc *sc = ifp->if_softc;
1123 	struct ieee80211com *ic = &sc->sc_ic;
1124 	struct ath_hal *ah = sc->sc_ah;
1125 
1126 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1127 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1128 
1129 	/* KASSERT() IPL_NET */
1130 	if (ifp->if_flags & IFF_RUNNING) {
1131 		/*
1132 		 * Shutdown the hardware and driver:
1133 		 *    reset 802.11 state machine
1134 		 *    turn off timers
1135 		 *    disable interrupts
1136 		 *    turn off the radio
1137 		 *    clear transmit machinery
1138 		 *    clear receive machinery
1139 		 *    drain and release tx queues
1140 		 *    reclaim beacon resources
1141 		 *    power down hardware
1142 		 *
1143 		 * Note that some of this work is not possible if the
1144 		 * hardware is gone (invalid).
1145 		 */
1146 #ifdef ATH_TX99_DIAG
1147 		if (sc->sc_tx99 != NULL)
1148 			sc->sc_tx99->stop(sc->sc_tx99);
1149 #endif
1150 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1151 		ifp->if_flags &= ~IFF_RUNNING;
1152 		ifp->if_timer = 0;
1153 		if (device_is_enabled(sc->sc_dev)) {
1154 			if (sc->sc_softled) {
1155 				callout_stop(&sc->sc_ledtimer);
1156 				ath_hal_gpioset(ah, sc->sc_ledpin,
1157 					!sc->sc_ledon);
1158 				sc->sc_blinking = 0;
1159 			}
1160 			ath_hal_intrset(ah, 0);
1161 		}
1162 		ath_draintxq(sc);
1163 		if (device_is_enabled(sc->sc_dev)) {
1164 			ath_stoprecv(sc);
1165 			ath_hal_phydisable(ah);
1166 		} else
1167 			sc->sc_rxlink = NULL;
1168 		IF_PURGE(&ifp->if_snd);
1169 		ath_beacon_free(sc);
1170 	}
1171 	if (disable)
1172 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1173 }
1174 
1175 static void
1176 ath_stop(struct ifnet *ifp, int disable)
1177 {
1178 	int s;
1179 
1180 	s = splnet();
1181 	ath_stop_locked(ifp, disable);
1182 	splx(s);
1183 }
1184 
1185 static void
1186 ath_restore_diversity(struct ath_softc *sc)
1187 {
1188 	struct ifnet *ifp = &sc->sc_if;
1189 	struct ath_hal *ah = sc->sc_ah;
1190 
1191 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1192 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1193 		if_printf(ifp, "could not restore diversity setting %d\n",
1194 		    sc->sc_diversity);
1195 		sc->sc_diversity = ath_hal_getdiversity(ah);
1196 	}
1197 }
1198 
1199 /*
1200  * Reset the hardware w/o losing operational state.  This is
1201  * basically a more efficient way of doing ath_stop, ath_init,
1202  * followed by state transitions to the current 802.11
1203  * operational state.  Used to recover from various errors and
1204  * to reset or reload hardware state.
1205  */
1206 int
1207 ath_reset(struct ifnet *ifp)
1208 {
1209 	struct ath_softc *sc = ifp->if_softc;
1210 	struct ieee80211com *ic = &sc->sc_ic;
1211 	struct ath_hal *ah = sc->sc_ah;
1212 	struct ieee80211_channel *c;
1213 	HAL_STATUS status;
1214 
1215 	/*
1216 	 * Convert to a HAL channel description with the flags
1217 	 * constrained to reflect the current operating mode.
1218 	 */
1219 	c = ic->ic_curchan;
1220 	sc->sc_curchan.channel = c->ic_freq;
1221 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1222 
1223 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1224 	ath_draintxq(sc);		/* stop xmit side */
1225 	ath_stoprecv(sc);		/* stop recv side */
1226 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1227 	/* NB: indicate channel change so we do a full reset */
1228 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1229 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1230 			__func__, status);
1231 	ath_update_txpow(sc);		/* update tx power state */
1232 	ath_restore_diversity(sc);
1233 	sc->sc_calinterval = 1;
1234 	sc->sc_caltries = 0;
1235 	if (ath_startrecv(sc) != 0)	/* restart recv */
1236 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1237 	/*
1238 	 * We may be doing a reset in response to an ioctl
1239 	 * that changes the channel so update any state that
1240 	 * might change as a result.
1241 	 */
1242 	ath_chan_change(sc, c);
1243 	if (ic->ic_state == IEEE80211_S_RUN)
1244 		ath_beacon_config(sc);	/* restart beacons */
1245 	ath_hal_intrset(ah, sc->sc_imask);
1246 
1247 	ath_start(ifp);			/* restart xmit */
1248 	return 0;
1249 }
1250 
1251 /*
1252  * Cleanup driver resources when we run out of buffers
1253  * while processing fragments; return the tx buffers
1254  * allocated and drop node references.
1255  */
1256 static void
1257 ath_txfrag_cleanup(struct ath_softc *sc,
1258 	ath_bufhead *frags, struct ieee80211_node *ni)
1259 {
1260 	struct ath_buf *bf;
1261 
1262 	ATH_TXBUF_LOCK_ASSERT(sc);
1263 
1264 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1265 		STAILQ_REMOVE_HEAD(frags, bf_list);
1266 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1267 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1268 		ieee80211_node_decref(ni);
1269 	}
1270 }
1271 
1272 /*
1273  * Setup xmit of a fragmented frame.  Allocate a buffer
1274  * for each frag and bump the node reference count to
1275  * reflect the held reference to be setup by ath_tx_start.
1276  */
1277 static int
1278 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1279 	struct mbuf *m0, struct ieee80211_node *ni)
1280 {
1281 	struct mbuf *m;
1282 	struct ath_buf *bf;
1283 
1284 	ATH_TXBUF_LOCK(sc);
1285 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1286 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1287 		if (bf == NULL) {	/* out of buffers, cleanup */
1288 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1289 				__func__);
1290 			sc->sc_if.if_flags |= IFF_OACTIVE;
1291 			ath_txfrag_cleanup(sc, frags, ni);
1292 			break;
1293 		}
1294 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1295 		ieee80211_node_incref(ni);
1296 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1297 	}
1298 	ATH_TXBUF_UNLOCK(sc);
1299 
1300 	return !STAILQ_EMPTY(frags);
1301 }
1302 
1303 static void
1304 ath_start(struct ifnet *ifp)
1305 {
1306 	struct ath_softc *sc = ifp->if_softc;
1307 	struct ath_hal *ah = sc->sc_ah;
1308 	struct ieee80211com *ic = &sc->sc_ic;
1309 	struct ieee80211_node *ni;
1310 	struct ath_buf *bf;
1311 	struct mbuf *m, *next;
1312 	struct ieee80211_frame *wh;
1313 	struct ether_header *eh;
1314 	ath_bufhead frags;
1315 
1316 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1317 	    !device_is_active(sc->sc_dev))
1318 		return;
1319 
1320 	if (sc->sc_flags & ATH_KEY_UPDATING)
1321 		return;
1322 
1323 	for (;;) {
1324 		/*
1325 		 * Grab a TX buffer and associated resources.
1326 		 */
1327 		ATH_TXBUF_LOCK(sc);
1328 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1329 		if (bf != NULL)
1330 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1331 		ATH_TXBUF_UNLOCK(sc);
1332 		if (bf == NULL) {
1333 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1334 				__func__);
1335 			sc->sc_stats.ast_tx_qstop++;
1336 			ifp->if_flags |= IFF_OACTIVE;
1337 			break;
1338 		}
1339 		/*
1340 		 * Poll the management queue for frames; they
1341 		 * have priority over normal data frames.
1342 		 */
1343 		IF_DEQUEUE(&ic->ic_mgtq, m);
1344 		if (m == NULL) {
1345 			/*
1346 			 * No data frames go out unless we're associated.
1347 			 */
1348 			if (ic->ic_state != IEEE80211_S_RUN) {
1349 				DPRINTF(sc, ATH_DEBUG_XMIT,
1350 				    "%s: discard data packet, state %s\n",
1351 				    __func__,
1352 				    ieee80211_state_name[ic->ic_state]);
1353 				sc->sc_stats.ast_tx_discard++;
1354 				ATH_TXBUF_LOCK(sc);
1355 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1356 				ATH_TXBUF_UNLOCK(sc);
1357 				break;
1358 			}
1359 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1360 			if (m == NULL) {
1361 				ATH_TXBUF_LOCK(sc);
1362 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1363 				ATH_TXBUF_UNLOCK(sc);
1364 				break;
1365 			}
1366 			STAILQ_INIT(&frags);
1367 			/*
1368 			 * Find the node for the destination so we can do
1369 			 * things like power save and fast frames aggregation.
1370 			 */
1371 			if (m->m_len < sizeof(struct ether_header) &&
1372 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1373 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1374 				ni = NULL;
1375 				goto bad;
1376 			}
1377 			eh = mtod(m, struct ether_header *);
1378 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1379 			if (ni == NULL) {
1380 				/* NB: ieee80211_find_txnode does stat+msg */
1381 				m_freem(m);
1382 				goto bad;
1383 			}
1384 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1385 			    (m->m_flags & M_PWR_SAV) == 0) {
1386 				/*
1387 				 * Station in power save mode; pass the frame
1388 				 * to the 802.11 layer and continue.  We'll get
1389 				 * the frame back when the time is right.
1390 				 */
1391 				ieee80211_pwrsave(ic, ni, m);
1392 				goto reclaim;
1393 			}
1394 			/* calculate priority so we can find the tx queue */
1395 			if (ieee80211_classify(ic, m, ni)) {
1396 				DPRINTF(sc, ATH_DEBUG_XMIT,
1397 					"%s: discard, classification failure\n",
1398 					__func__);
1399 				m_freem(m);
1400 				goto bad;
1401 			}
1402 			ifp->if_opackets++;
1403 
1404 			bpf_mtap(ifp, m, BPF_D_OUT);
1405 			/*
1406 			 * Encapsulate the packet in prep for transmission.
1407 			 */
1408 			m = ieee80211_encap(ic, m, ni);
1409 			if (m == NULL) {
1410 				DPRINTF(sc, ATH_DEBUG_XMIT,
1411 					"%s: encapsulation failure\n",
1412 					__func__);
1413 				sc->sc_stats.ast_tx_encap++;
1414 				goto bad;
1415 			}
1416 			/*
1417 			 * Check for fragmentation.  If this has frame
1418 			 * has been broken up verify we have enough
1419 			 * buffers to send all the fragments so all
1420 			 * go out or none...
1421 			 */
1422 			if ((m->m_flags & M_FRAG) &&
1423 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1424 				DPRINTF(sc, ATH_DEBUG_ANY,
1425 				    "%s: out of txfrag buffers\n", __func__);
1426 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1427 				ath_freetx(m);
1428 				goto bad;
1429 			}
1430 		} else {
1431 			/*
1432 			 * Hack!  The referenced node pointer is in the
1433 			 * rcvif field of the packet header.  This is
1434 			 * placed there by ieee80211_mgmt_output because
1435 			 * we need to hold the reference with the frame
1436 			 * and there's no other way (other than packet
1437 			 * tags which we consider too expensive to use)
1438 			 * to pass it along.
1439 			 */
1440 			ni = M_GETCTX(m, struct ieee80211_node *);
1441 			M_CLEARCTX(m);
1442 
1443 			wh = mtod(m, struct ieee80211_frame *);
1444 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1445 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1446 				/* fill time stamp */
1447 				u_int64_t tsf;
1448 				u_int32_t *tstamp;
1449 
1450 				tsf = ath_hal_gettsf64(ah);
1451 				/* XXX: adjust 100us delay to xmit */
1452 				tsf += 100;
1453 				tstamp = (u_int32_t *)&wh[1];
1454 				tstamp[0] = htole32(tsf & 0xffffffff);
1455 				tstamp[1] = htole32(tsf >> 32);
1456 			}
1457 			sc->sc_stats.ast_tx_mgmt++;
1458 		}
1459 
1460 	nextfrag:
1461 		next = m->m_nextpkt;
1462 		if (ath_tx_start(sc, ni, bf, m)) {
1463 	bad:
1464 			ifp->if_oerrors++;
1465 	reclaim:
1466 			ATH_TXBUF_LOCK(sc);
1467 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1468 			ath_txfrag_cleanup(sc, &frags, ni);
1469 			ATH_TXBUF_UNLOCK(sc);
1470 			if (ni != NULL)
1471 				ieee80211_free_node(ni);
1472 			continue;
1473 		}
1474 		if (next != NULL) {
1475 			m = next;
1476 			bf = STAILQ_FIRST(&frags);
1477 			KASSERTMSG(bf != NULL, "no buf for txfrag");
1478 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1479 			goto nextfrag;
1480 		}
1481 
1482 		ifp->if_timer = 1;
1483 	}
1484 }
1485 
1486 static int
1487 ath_media_change(struct ifnet *ifp)
1488 {
1489 #define	IS_UP(ifp) \
1490 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1491 	int error;
1492 
1493 	error = ieee80211_media_change(ifp);
1494 	if (error == ENETRESET) {
1495 		if (IS_UP(ifp))
1496 			ath_init(ifp->if_softc);	/* XXX lose error */
1497 		error = 0;
1498 	}
1499 	return error;
1500 #undef IS_UP
1501 }
1502 
1503 #ifdef AR_DEBUG
1504 static void
1505 ath_keyprint(const char *tag, u_int ix,
1506 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1507 {
1508 	static const char *ciphers[] = {
1509 		"WEP",
1510 		"AES-OCB",
1511 		"AES-CCM",
1512 		"CKIP",
1513 		"TKIP",
1514 		"CLR",
1515 	};
1516 	int i, n;
1517 
1518 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1519 	for (i = 0, n = hk->kv_len; i < n; i++)
1520 		printf("%02x", hk->kv_val[i]);
1521 	printf(" mac %s", ether_sprintf(mac));
1522 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1523 		printf(" mic ");
1524 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1525 			printf("%02x", hk->kv_mic[i]);
1526 	}
1527 	printf("\n");
1528 }
1529 #endif
1530 
1531 /*
1532  * Set a TKIP key into the hardware.  This handles the
1533  * potential distribution of key state to multiple key
1534  * cache slots for TKIP.
1535  */
1536 static int
1537 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1538 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1539 {
1540 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1541 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1542 	struct ath_hal *ah = sc->sc_ah;
1543 
1544 	KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1545 		"got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher);
1546 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1547 		if (sc->sc_splitmic) {
1548 			/*
1549 			 * TX key goes at first index, RX key at the rx index.
1550 			 * The hal handles the MIC keys at index+64.
1551 			 */
1552 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1553 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1554 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1555 						zerobssid))
1556 				return 0;
1557 
1558 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1559 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1560 			/* XXX delete tx key on failure? */
1561 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1562 					hk, mac);
1563 		} else {
1564 			/*
1565 			 * Room for both TX+RX MIC keys in one key cache
1566 			 * slot, just set key at the first index; the HAL
1567 			 * will handle the reset.
1568 			 */
1569 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1570 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1571 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1572 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1573 		}
1574 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1575 		if (sc->sc_splitmic) {
1576 			/*
1577 			 * NB: must pass MIC key in expected location when
1578 			 * the keycache only holds one MIC key per entry.
1579 			 */
1580 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1581 		} else
1582 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1583 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1584 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1585 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1586 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1587 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1588 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1589 	}
1590 	return 0;
1591 #undef IEEE80211_KEY_XR
1592 }
1593 
1594 /*
1595  * Set a net80211 key into the hardware.  This handles the
1596  * potential distribution of key state to multiple key
1597  * cache slots for TKIP with hardware MIC support.
1598  */
1599 static int
1600 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1601 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1602 	struct ieee80211_node *bss)
1603 {
1604 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1605 	static const u_int8_t ciphermap[] = {
1606 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1607 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1608 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1609 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1610 		(u_int8_t) -1,		/* 4 is not allocated */
1611 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1612 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1613 	};
1614 	struct ath_hal *ah = sc->sc_ah;
1615 	const struct ieee80211_cipher *cip = k->wk_cipher;
1616 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1617 	const u_int8_t *mac;
1618 	HAL_KEYVAL hk;
1619 
1620 	memset(&hk, 0, sizeof(hk));
1621 	/*
1622 	 * Software crypto uses a "clear key" so non-crypto
1623 	 * state kept in the key cache are maintained and
1624 	 * so that rx frames have an entry to match.
1625 	 */
1626 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1627 		KASSERTMSG(cip->ic_cipher < N(ciphermap),
1628 			"invalid cipher type %u", cip->ic_cipher);
1629 		hk.kv_type = ciphermap[cip->ic_cipher];
1630 		hk.kv_len = k->wk_keylen;
1631 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1632 	} else
1633 		hk.kv_type = HAL_CIPHER_CLR;
1634 
1635 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1636 		/*
1637 		 * Group keys on hardware that supports multicast frame
1638 		 * key search use a mac that is the sender's address with
1639 		 * the high bit set instead of the app-specified address.
1640 		 */
1641 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1642 		gmac[0] |= 0x80;
1643 		mac = gmac;
1644 	} else
1645 		mac = mac0;
1646 
1647 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
1648 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1649 		return ath_keyset_tkip(sc, k, &hk, mac);
1650 	} else {
1651 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1652 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1653 	}
1654 #undef N
1655 }
1656 
1657 /*
1658  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1659  * each key, one for decrypt/encrypt and the other for the MIC.
1660  */
1661 static u_int16_t
1662 key_alloc_2pair(struct ath_softc *sc,
1663 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1664 {
1665 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1666 	u_int i, keyix;
1667 
1668 	KASSERTMSG(sc->sc_splitmic, "key cache !split");
1669 	/* XXX could optimize */
1670 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1671 		u_int8_t b = sc->sc_keymap[i];
1672 		if (b != 0xff) {
1673 			/*
1674 			 * One or more slots in this byte are free.
1675 			 */
1676 			keyix = i*NBBY;
1677 			while (b & 1) {
1678 		again:
1679 				keyix++;
1680 				b >>= 1;
1681 			}
1682 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1683 			if (isset(sc->sc_keymap, keyix+32) ||
1684 			    isset(sc->sc_keymap, keyix+64) ||
1685 			    isset(sc->sc_keymap, keyix+32+64)) {
1686 				/* full pair unavailable */
1687 				/* XXX statistic */
1688 				if (keyix == (i+1)*NBBY) {
1689 					/* no slots were appropriate, advance */
1690 					continue;
1691 				}
1692 				goto again;
1693 			}
1694 			setbit(sc->sc_keymap, keyix);
1695 			setbit(sc->sc_keymap, keyix+64);
1696 			setbit(sc->sc_keymap, keyix+32);
1697 			setbit(sc->sc_keymap, keyix+32+64);
1698 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1699 				"%s: key pair %u,%u %u,%u\n",
1700 				__func__, keyix, keyix+64,
1701 				keyix+32, keyix+32+64);
1702 			*txkeyix = keyix;
1703 			*rxkeyix = keyix+32;
1704 			return keyix;
1705 		}
1706 	}
1707 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1708 	return IEEE80211_KEYIX_NONE;
1709 #undef N
1710 }
1711 
1712 /*
1713  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1714  * each key, one for decrypt/encrypt and the other for the MIC.
1715  */
1716 static int
1717 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1718     ieee80211_keyix *rxkeyix)
1719 {
1720 #define N(a)	(sizeof(a)/sizeof(a[0]))
1721 	u_int i, keyix;
1722 
1723 	KASSERTMSG(!sc->sc_splitmic, "key cache split");
1724 	/* XXX could optimize */
1725 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1726 		uint8_t b = sc->sc_keymap[i];
1727 		if (b != 0xff) {
1728 			/*
1729 			 * One or more slots in this byte are free.
1730 			 */
1731 			keyix = i*NBBY;
1732 			while (b & 1) {
1733 		again:
1734 				keyix++;
1735 				b >>= 1;
1736 			}
1737 			if (isset(sc->sc_keymap, keyix+64)) {
1738 				/* full pair unavailable */
1739 				/* XXX statistic */
1740 				if (keyix == (i+1)*NBBY) {
1741 					/* no slots were appropriate, advance */
1742 					continue;
1743 				}
1744 				goto again;
1745 			}
1746 			setbit(sc->sc_keymap, keyix);
1747 			setbit(sc->sc_keymap, keyix+64);
1748 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1749 				"%s: key pair %u,%u\n",
1750 				__func__, keyix, keyix+64);
1751 			*txkeyix = *rxkeyix = keyix;
1752 			return 1;
1753 		}
1754 	}
1755 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1756 	return 0;
1757 #undef N
1758 }
1759 
1760 /*
1761  * Allocate a single key cache slot.
1762  */
1763 static int
1764 key_alloc_single(struct ath_softc *sc,
1765 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1766 {
1767 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1768 	u_int i, keyix;
1769 
1770 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1771 	for (i = 0; i < N(sc->sc_keymap); i++) {
1772 		u_int8_t b = sc->sc_keymap[i];
1773 		if (b != 0xff) {
1774 			/*
1775 			 * One or more slots are free.
1776 			 */
1777 			keyix = i*NBBY;
1778 			while (b & 1)
1779 				keyix++, b >>= 1;
1780 			setbit(sc->sc_keymap, keyix);
1781 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1782 				__func__, keyix);
1783 			*txkeyix = *rxkeyix = keyix;
1784 			return 1;
1785 		}
1786 	}
1787 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1788 	return 0;
1789 #undef N
1790 }
1791 
1792 /*
1793  * Allocate one or more key cache slots for a uniacst key.  The
1794  * key itself is needed only to identify the cipher.  For hardware
1795  * TKIP with split cipher+MIC keys we allocate two key cache slot
1796  * pairs so that we can setup separate TX and RX MIC keys.  Note
1797  * that the MIC key for a TKIP key at slot i is assumed by the
1798  * hardware to be at slot i+64.  This limits TKIP keys to the first
1799  * 64 entries.
1800  */
1801 static int
1802 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1803 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1804 {
1805 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1806 
1807 	/*
1808 	 * Group key allocation must be handled specially for
1809 	 * parts that do not support multicast key cache search
1810 	 * functionality.  For those parts the key id must match
1811 	 * the h/w key index so lookups find the right key.  On
1812 	 * parts w/ the key search facility we install the sender's
1813 	 * mac address (with the high bit set) and let the hardware
1814 	 * find the key w/o using the key id.  This is preferred as
1815 	 * it permits us to support multiple users for adhoc and/or
1816 	 * multi-station operation.
1817 	 */
1818 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1819 		if (!(&ic->ic_nw_keys[0] <= k &&
1820 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1821 			/* should not happen */
1822 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1823 				"%s: bogus group key\n", __func__);
1824 			return 0;
1825 		}
1826 		/*
1827 		 * XXX we pre-allocate the global keys so
1828 		 * have no way to check if they've already been allocated.
1829 		 */
1830 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1831 		return 1;
1832 	}
1833 
1834 	/*
1835 	 * We allocate two pair for TKIP when using the h/w to do
1836 	 * the MIC.  For everything else, including software crypto,
1837 	 * we allocate a single entry.  Note that s/w crypto requires
1838 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1839 	 * not support pass-through cache entries and we map all
1840 	 * those requests to slot 0.
1841 	 */
1842 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1843 		return key_alloc_single(sc, keyix, rxkeyix);
1844 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1845 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1846 		if (sc->sc_splitmic)
1847 			return key_alloc_2pair(sc, keyix, rxkeyix);
1848 		else
1849 			return key_alloc_pair(sc, keyix, rxkeyix);
1850 	} else {
1851 		return key_alloc_single(sc, keyix, rxkeyix);
1852 	}
1853 }
1854 
1855 /*
1856  * Delete an entry in the key cache allocated by ath_key_alloc.
1857  */
1858 static int
1859 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1860 {
1861 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1862 	struct ath_hal *ah = sc->sc_ah;
1863 	const struct ieee80211_cipher *cip = k->wk_cipher;
1864 	u_int keyix = k->wk_keyix;
1865 
1866 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1867 
1868 	if (!device_has_power(sc->sc_dev)) {
1869 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1870 		    k->wk_keyix);
1871 	}
1872 
1873 	ath_hal_keyreset(ah, keyix);
1874 	/*
1875 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1876 	 */
1877 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1878 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1879 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1880 	if (keyix >= IEEE80211_WEP_NKID) {
1881 		/*
1882 		 * Don't touch keymap entries for global keys so
1883 		 * they are never considered for dynamic allocation.
1884 		 */
1885 		clrbit(sc->sc_keymap, keyix);
1886 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1887 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1888 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1889 			if (sc->sc_splitmic) {
1890 				/* +32 for RX key, +32+64 for RX key MIC */
1891 				clrbit(sc->sc_keymap, keyix+32);
1892 				clrbit(sc->sc_keymap, keyix+32+64);
1893 			}
1894 		}
1895 	}
1896 	return 1;
1897 }
1898 
1899 /*
1900  * Set the key cache contents for the specified key.  Key cache
1901  * slot(s) must already have been allocated by ath_key_alloc.
1902  */
1903 static int
1904 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1905 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1906 {
1907 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1908 
1909 	if (!device_has_power(sc->sc_dev)) {
1910 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1911 		    k->wk_keyix);
1912 	}
1913 	return ath_keyset(sc, k, mac, ic->ic_bss);
1914 }
1915 
1916 /*
1917  * Block/unblock tx+rx processing while a key change is done.
1918  * We assume the caller serializes key management operations
1919  * so we only need to worry about synchronization with other
1920  * uses that originate in the driver.
1921  */
1922 static void
1923 ath_key_update_begin(struct ieee80211com *ic)
1924 {
1925 	struct ifnet *ifp = ic->ic_ifp;
1926 	struct ath_softc *sc = ifp->if_softc;
1927 
1928 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1929 #if 0
1930 	tasklet_disable(&sc->sc_rxtq);
1931 #endif
1932 	sc->sc_flags |= ATH_KEY_UPDATING;
1933 }
1934 
1935 static void
1936 ath_key_update_end(struct ieee80211com *ic)
1937 {
1938 	struct ifnet *ifp = ic->ic_ifp;
1939 	struct ath_softc *sc = ifp->if_softc;
1940 
1941 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1942 	sc->sc_flags &= ~ATH_KEY_UPDATING;
1943 #if 0
1944 	tasklet_enable(&sc->sc_rxtq);
1945 #endif
1946 }
1947 
1948 /*
1949  * Calculate the receive filter according to the
1950  * operating mode and state:
1951  *
1952  * o always accept unicast, broadcast, and multicast traffic
1953  * o maintain current state of phy error reception (the hal
1954  *   may enable phy error frames for noise immunity work)
1955  * o probe request frames are accepted only when operating in
1956  *   hostap, adhoc, or monitor modes
1957  * o enable promiscuous mode according to the interface state
1958  * o accept beacons:
1959  *   - when operating in adhoc mode so the 802.11 layer creates
1960  *     node table entries for peers,
1961  *   - when operating in station mode for collecting rssi data when
1962  *     the station is otherwise quiet, or
1963  *   - when scanning
1964  */
1965 static u_int32_t
1966 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1967 {
1968 	struct ieee80211com *ic = &sc->sc_ic;
1969 	struct ath_hal *ah = sc->sc_ah;
1970 	struct ifnet *ifp = &sc->sc_if;
1971 	u_int32_t rfilt;
1972 
1973 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1974 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1975 	if (ic->ic_opmode != IEEE80211_M_STA)
1976 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1977 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1978 	    (ifp->if_flags & IFF_PROMISC))
1979 		rfilt |= HAL_RX_FILTER_PROM;
1980 	if (ifp->if_flags & IFF_PROMISC)
1981 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1982 	if (ic->ic_opmode == IEEE80211_M_STA ||
1983 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1984 	    state == IEEE80211_S_SCAN)
1985 		rfilt |= HAL_RX_FILTER_BEACON;
1986 	return rfilt;
1987 }
1988 
1989 static void
1990 ath_mode_init(struct ath_softc *sc)
1991 {
1992 	struct ethercom *ec = &sc->sc_ec;
1993 	struct ifnet *ifp = &sc->sc_if;
1994 	struct ieee80211com *ic = &sc->sc_ic;
1995 	struct ath_hal *ah = sc->sc_ah;
1996 	struct ether_multi *enm;
1997 	struct ether_multistep estep;
1998 	u_int32_t rfilt, mfilt[2], val;
1999 	int i;
2000 	uint8_t pos;
2001 
2002 	/* configure rx filter */
2003 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
2004 	ath_hal_setrxfilter(ah, rfilt);
2005 
2006 	/* configure operational mode */
2007 	ath_hal_setopmode(ah);
2008 
2009 	/* Write keys to hardware; it may have been powered down. */
2010 	ath_key_update_begin(ic);
2011 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2012 		ath_key_set(ic,
2013 			    &ic->ic_crypto.cs_nw_keys[i],
2014 			    ic->ic_myaddr);
2015 	}
2016 	ath_key_update_end(ic);
2017 
2018 	/*
2019 	 * Handle any link-level address change.  Note that we only
2020 	 * need to force ic_myaddr; any other addresses are handled
2021 	 * as a byproduct of the ifnet code marking the interface
2022 	 * down then up.
2023 	 *
2024 	 * XXX should get from lladdr instead of arpcom but that's more work
2025 	 */
2026 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
2027 	ath_hal_setmac(ah, ic->ic_myaddr);
2028 
2029 	/* calculate and install multicast filter */
2030 	ifp->if_flags &= ~IFF_ALLMULTI;
2031 	mfilt[0] = mfilt[1] = 0;
2032 	ETHER_LOCK(ec);
2033 	ETHER_FIRST_MULTI(estep, ec, enm);
2034 	while (enm != NULL) {
2035 		void *dl;
2036 		/* XXX Punt on ranges. */
2037 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
2038 			mfilt[0] = mfilt[1] = 0xffffffff;
2039 			ifp->if_flags |= IFF_ALLMULTI;
2040 			break;
2041 		}
2042 		dl = enm->enm_addrlo;
2043 		val = LE_READ_4((char *)dl + 0);
2044 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2045 		val = LE_READ_4((char *)dl + 3);
2046 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2047 		pos &= 0x3f;
2048 		mfilt[pos / 32] |= (1 << (pos % 32));
2049 
2050 		ETHER_NEXT_MULTI(estep, enm);
2051 	}
2052 	ETHER_UNLOCK(ec);
2053 
2054 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2055 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2056 		__func__, rfilt, mfilt[0], mfilt[1]);
2057 }
2058 
2059 /*
2060  * Set the slot time based on the current setting.
2061  */
2062 static void
2063 ath_setslottime(struct ath_softc *sc)
2064 {
2065 	struct ieee80211com *ic = &sc->sc_ic;
2066 	struct ath_hal *ah = sc->sc_ah;
2067 
2068 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2069 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2070 	else
2071 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2072 	sc->sc_updateslot = OK;
2073 }
2074 
2075 /*
2076  * Callback from the 802.11 layer to update the
2077  * slot time based on the current setting.
2078  */
2079 static void
2080 ath_updateslot(struct ifnet *ifp)
2081 {
2082 	struct ath_softc *sc = ifp->if_softc;
2083 	struct ieee80211com *ic = &sc->sc_ic;
2084 
2085 	/*
2086 	 * When not coordinating the BSS, change the hardware
2087 	 * immediately.  For other operation we defer the change
2088 	 * until beacon updates have propagated to the stations.
2089 	 */
2090 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2091 		sc->sc_updateslot = UPDATE;
2092 	else
2093 		ath_setslottime(sc);
2094 }
2095 
2096 /*
2097  * Setup a h/w transmit queue for beacons.
2098  */
2099 static int
2100 ath_beaconq_setup(struct ath_hal *ah)
2101 {
2102 	HAL_TXQ_INFO qi;
2103 
2104 	memset(&qi, 0, sizeof(qi));
2105 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2106 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2107 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2108 	/* NB: for dynamic turbo, don't enable any other interrupts */
2109 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2110 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2111 }
2112 
2113 /*
2114  * Setup the transmit queue parameters for the beacon queue.
2115  */
2116 static int
2117 ath_beaconq_config(struct ath_softc *sc)
2118 {
2119 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2120 	struct ieee80211com *ic = &sc->sc_ic;
2121 	struct ath_hal *ah = sc->sc_ah;
2122 	HAL_TXQ_INFO qi;
2123 
2124 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2125 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2126 		/*
2127 		 * Always burst out beacon and CAB traffic.
2128 		 */
2129 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2130 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2131 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2132 	} else {
2133 		struct wmeParams *wmep =
2134 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2135 		/*
2136 		 * Adhoc mode; important thing is to use 2x cwmin.
2137 		 */
2138 		qi.tqi_aifs = wmep->wmep_aifsn;
2139 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2140 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2141 	}
2142 
2143 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2144 		device_printf(sc->sc_dev, "unable to update parameters for "
2145 			"beacon hardware queue!\n");
2146 		return 0;
2147 	} else {
2148 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2149 		return 1;
2150 	}
2151 #undef ATH_EXPONENT_TO_VALUE
2152 }
2153 
2154 /*
2155  * Allocate and setup an initial beacon frame.
2156  */
2157 static int
2158 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2159 {
2160 	struct ieee80211com *ic = ni->ni_ic;
2161 	struct ath_buf *bf;
2162 	struct mbuf *m;
2163 	int error;
2164 
2165 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2166 	if (bf == NULL) {
2167 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2168 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2169 		return ENOMEM;			/* XXX */
2170 	}
2171 	/*
2172 	 * NB: the beacon data buffer must be 32-bit aligned;
2173 	 * we assume the mbuf routines will return us something
2174 	 * with this alignment (perhaps should assert).
2175 	 */
2176 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2177 	if (m == NULL) {
2178 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2179 			__func__);
2180 		sc->sc_stats.ast_be_nombuf++;
2181 		return ENOMEM;
2182 	}
2183 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2184 				     BUS_DMA_NOWAIT);
2185 	if (error == 0) {
2186 		bf->bf_m = m;
2187 		bf->bf_node = ieee80211_ref_node(ni);
2188 	} else {
2189 		m_freem(m);
2190 	}
2191 	return error;
2192 }
2193 
2194 /*
2195  * Setup the beacon frame for transmit.
2196  */
2197 static void
2198 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2199 {
2200 #define	USE_SHPREAMBLE(_ic) \
2201 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2202 		== IEEE80211_F_SHPREAMBLE)
2203 	struct ieee80211_node *ni = bf->bf_node;
2204 	struct ieee80211com *ic = ni->ni_ic;
2205 	struct mbuf *m = bf->bf_m;
2206 	struct ath_hal *ah = sc->sc_ah;
2207 	struct ath_desc *ds;
2208 	int flags, antenna;
2209 	const HAL_RATE_TABLE *rt;
2210 	u_int8_t rix, rate;
2211 
2212 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2213 		__func__, m, m->m_len);
2214 
2215 	/* setup descriptors */
2216 	ds = bf->bf_desc;
2217 
2218 	flags = HAL_TXDESC_NOACK;
2219 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2220 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2221 		flags |= HAL_TXDESC_VEOL;
2222 		/*
2223 		 * Let hardware handle antenna switching unless
2224 		 * the user has selected a transmit antenna
2225 		 * (sc_txantenna is not 0).
2226 		 */
2227 		antenna = sc->sc_txantenna;
2228 	} else {
2229 		ds->ds_link = 0;
2230 		/*
2231 		 * Switch antenna every 4 beacons, unless the user
2232 		 * has selected a transmit antenna (sc_txantenna
2233 		 * is not 0).
2234 		 *
2235 		 * XXX assumes two antenna
2236 		 */
2237 		if (sc->sc_txantenna == 0)
2238 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2239 		else
2240 			antenna = sc->sc_txantenna;
2241 	}
2242 
2243 	KASSERTMSG(bf->bf_nseg == 1,
2244 		"multi-segment beacon frame; nseg %u", bf->bf_nseg);
2245 	ds->ds_data = bf->bf_segs[0].ds_addr;
2246 	/*
2247 	 * Calculate rate code.
2248 	 * XXX everything at min xmit rate
2249 	 */
2250 	rix = sc->sc_minrateix;
2251 	rt = sc->sc_currates;
2252 	rate = rt->info[rix].rateCode;
2253 	if (USE_SHPREAMBLE(ic))
2254 		rate |= rt->info[rix].shortPreamble;
2255 	ath_hal_setuptxdesc(ah, ds
2256 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2257 		, sizeof(struct ieee80211_frame)/* header length */
2258 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2259 		, ni->ni_txpower		/* txpower XXX */
2260 		, rate, 1			/* series 0 rate/tries */
2261 		, HAL_TXKEYIX_INVALID		/* no encryption */
2262 		, antenna			/* antenna mode */
2263 		, flags				/* no ack, veol for beacons */
2264 		, 0				/* rts/cts rate */
2265 		, 0				/* rts/cts duration */
2266 	);
2267 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2268 	ath_hal_filltxdesc(ah, ds
2269 		, roundup(m->m_len, 4)		/* buffer length */
2270 		, AH_TRUE			/* first segment */
2271 		, AH_TRUE			/* last segment */
2272 		, ds				/* first descriptor */
2273 	);
2274 
2275 	/* NB: The desc swap function becomes void, if descriptor swapping
2276 	 * is not enabled
2277 	 */
2278 	ath_desc_swap(ds);
2279 
2280 #undef USE_SHPREAMBLE
2281 }
2282 
2283 /*
2284  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2285  * frame contents are done as needed and the slot time is
2286  * also adjusted based on current state.
2287  */
2288 static void
2289 ath_beacon_proc(void *arg, int pending)
2290 {
2291 	struct ath_softc *sc = arg;
2292 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2293 	struct ieee80211_node *ni = bf->bf_node;
2294 	struct ieee80211com *ic = ni->ni_ic;
2295 	struct ath_hal *ah = sc->sc_ah;
2296 	struct mbuf *m;
2297 	int ncabq, error, otherant;
2298 
2299 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2300 		__func__, pending);
2301 
2302 	if (ic->ic_opmode == IEEE80211_M_STA ||
2303 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2304 	    bf == NULL || bf->bf_m == NULL) {
2305 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2306 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2307 		return;
2308 	}
2309 	/*
2310 	 * Check if the previous beacon has gone out.  If
2311 	 * not don't try to post another, skip this period
2312 	 * and wait for the next.  Missed beacons indicate
2313 	 * a problem and should not occur.  If we miss too
2314 	 * many consecutive beacons reset the device.
2315 	 */
2316 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2317 		sc->sc_bmisscount++;
2318 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2319 			"%s: missed %u consecutive beacons\n",
2320 			__func__, sc->sc_bmisscount);
2321 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2322 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2323 		return;
2324 	}
2325 	if (sc->sc_bmisscount != 0) {
2326 		DPRINTF(sc, ATH_DEBUG_BEACON,
2327 			"%s: resume beacon xmit after %u misses\n",
2328 			__func__, sc->sc_bmisscount);
2329 		sc->sc_bmisscount = 0;
2330 	}
2331 
2332 	/*
2333 	 * Update dynamic beacon contents.  If this returns
2334 	 * non-zero then we need to remap the memory because
2335 	 * the beacon frame changed size (probably because
2336 	 * of the TIM bitmap).
2337 	 */
2338 	m = bf->bf_m;
2339 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2340 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2341 		/* XXX too conservative? */
2342 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2343 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2344 					     BUS_DMA_NOWAIT);
2345 		if (error != 0) {
2346 			if_printf(&sc->sc_if,
2347 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2348 			    __func__, error);
2349 			return;
2350 		}
2351 	}
2352 
2353 	/*
2354 	 * Handle slot time change when a non-ERP station joins/leaves
2355 	 * an 11g network.  The 802.11 layer notifies us via callback,
2356 	 * we mark updateslot, then wait one beacon before effecting
2357 	 * the change.  This gives associated stations at least one
2358 	 * beacon interval to note the state change.
2359 	 */
2360 	/* XXX locking */
2361 	if (sc->sc_updateslot == UPDATE)
2362 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2363 	else if (sc->sc_updateslot == COMMIT)
2364 		ath_setslottime(sc);		/* commit change to h/w */
2365 
2366 	/*
2367 	 * Check recent per-antenna transmit statistics and flip
2368 	 * the default antenna if noticeably more frames went out
2369 	 * on the non-default antenna.
2370 	 * XXX assumes 2 anntenae
2371 	 */
2372 	otherant = sc->sc_defant & 1 ? 2 : 1;
2373 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2374 		ath_setdefantenna(sc, otherant);
2375 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2376 
2377 	/*
2378 	 * Construct tx descriptor.
2379 	 */
2380 	ath_beacon_setup(sc, bf);
2381 
2382 	/*
2383 	 * Stop any current dma and put the new frame on the queue.
2384 	 * This should never fail since we check above that no frames
2385 	 * are still pending on the queue.
2386 	 */
2387 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2388 		DPRINTF(sc, ATH_DEBUG_ANY,
2389 			"%s: beacon queue %u did not stop?\n",
2390 			__func__, sc->sc_bhalq);
2391 	}
2392 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2393 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2394 
2395 	/*
2396 	 * Enable the CAB queue before the beacon queue to
2397 	 * insure cab frames are triggered by this beacon.
2398 	 */
2399 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2400 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2401 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2402 	ath_hal_txstart(ah, sc->sc_bhalq);
2403 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2404 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2405 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2406 
2407 	sc->sc_stats.ast_be_xmit++;
2408 }
2409 
2410 /*
2411  * Reset the hardware after detecting beacons have stopped.
2412  */
2413 static void
2414 ath_bstuck_proc(void *arg, int pending)
2415 {
2416 	struct ath_softc *sc = arg;
2417 	struct ifnet *ifp = &sc->sc_if;
2418 #ifdef __NetBSD__
2419 	int s;
2420 #endif
2421 
2422 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2423 		sc->sc_bmisscount);
2424 #ifdef __NetBSD__
2425 	s = splnet();
2426 #endif
2427 	ath_reset(ifp);
2428 #ifdef __NetBSD__
2429 	splx(s);
2430 #endif
2431 }
2432 
2433 /*
2434  * Reclaim beacon resources.
2435  */
2436 static void
2437 ath_beacon_free(struct ath_softc *sc)
2438 {
2439 	struct ath_buf *bf;
2440 
2441 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2442 		if (bf->bf_m != NULL) {
2443 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2444 			m_freem(bf->bf_m);
2445 			bf->bf_m = NULL;
2446 		}
2447 		if (bf->bf_node != NULL) {
2448 			ieee80211_free_node(bf->bf_node);
2449 			bf->bf_node = NULL;
2450 		}
2451 	}
2452 }
2453 
2454 /*
2455  * Configure the beacon and sleep timers.
2456  *
2457  * When operating as an AP this resets the TSF and sets
2458  * up the hardware to notify us when we need to issue beacons.
2459  *
2460  * When operating in station mode this sets up the beacon
2461  * timers according to the timestamp of the last received
2462  * beacon and the current TSF, configures PCF and DTIM
2463  * handling, programs the sleep registers so the hardware
2464  * will wakeup in time to receive beacons, and configures
2465  * the beacon miss handling so we'll receive a BMISS
2466  * interrupt when we stop seeing beacons from the AP
2467  * we've associated with.
2468  */
2469 static void
2470 ath_beacon_config(struct ath_softc *sc)
2471 {
2472 #define	TSF_TO_TU(_h,_l) \
2473 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2474 #define	FUDGE	2
2475 	struct ath_hal *ah = sc->sc_ah;
2476 	struct ieee80211com *ic = &sc->sc_ic;
2477 	struct ieee80211_node *ni = ic->ic_bss;
2478 	u_int32_t nexttbtt, intval, tsftu;
2479 	u_int64_t tsf;
2480 
2481 	/* extract tstamp from last beacon and convert to TU */
2482 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2483 			     LE_READ_4(ni->ni_tstamp.data));
2484 	/* NB: the beacon interval is kept internally in TU's */
2485 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2486 	if (nexttbtt == 0)		/* e.g. for ap mode */
2487 		nexttbtt = intval;
2488 	else if (intval)		/* NB: can be 0 for monitor mode */
2489 		nexttbtt = roundup(nexttbtt, intval);
2490 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2491 		__func__, nexttbtt, intval, ni->ni_intval);
2492 	if (ic->ic_opmode == IEEE80211_M_STA) {
2493 		HAL_BEACON_STATE bs;
2494 		int dtimperiod, dtimcount;
2495 		int cfpperiod, cfpcount;
2496 
2497 		/*
2498 		 * Setup dtim and cfp parameters according to
2499 		 * last beacon we received (which may be none).
2500 		 */
2501 		dtimperiod = ni->ni_dtim_period;
2502 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2503 			dtimperiod = 1;
2504 		dtimcount = ni->ni_dtim_count;
2505 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2506 			dtimcount = 0;		/* XXX? */
2507 		cfpperiod = 1;			/* NB: no PCF support yet */
2508 		cfpcount = 0;
2509 		/*
2510 		 * Pull nexttbtt forward to reflect the current
2511 		 * TSF and calculate dtim+cfp state for the result.
2512 		 */
2513 		tsf = ath_hal_gettsf64(ah);
2514 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2515 		do {
2516 			nexttbtt += intval;
2517 			if (--dtimcount < 0) {
2518 				dtimcount = dtimperiod - 1;
2519 				if (--cfpcount < 0)
2520 					cfpcount = cfpperiod - 1;
2521 			}
2522 		} while (nexttbtt < tsftu);
2523 		memset(&bs, 0, sizeof(bs));
2524 		bs.bs_intval = intval;
2525 		bs.bs_nexttbtt = nexttbtt;
2526 		bs.bs_dtimperiod = dtimperiod*intval;
2527 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2528 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2529 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2530 		bs.bs_cfpmaxduration = 0;
2531 #if 0
2532 		/*
2533 		 * The 802.11 layer records the offset to the DTIM
2534 		 * bitmap while receiving beacons; use it here to
2535 		 * enable h/w detection of our AID being marked in
2536 		 * the bitmap vector (to indicate frames for us are
2537 		 * pending at the AP).
2538 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2539 		 * XXX enable based on h/w rev for newer chips
2540 		 */
2541 		bs.bs_timoffset = ni->ni_timoff;
2542 #endif
2543 		/*
2544 		 * Calculate the number of consecutive beacons to miss
2545 		 * before taking a BMISS interrupt.  The configuration
2546 		 * is specified in ms, so we need to convert that to
2547 		 * TU's and then calculate based on the beacon interval.
2548 		 * Note that we clamp the result to at most 10 beacons.
2549 		 */
2550 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2551 		if (bs.bs_bmissthreshold > 10)
2552 			bs.bs_bmissthreshold = 10;
2553 		else if (bs.bs_bmissthreshold <= 0)
2554 			bs.bs_bmissthreshold = 1;
2555 
2556 		/*
2557 		 * Calculate sleep duration.  The configuration is
2558 		 * given in ms.  We insure a multiple of the beacon
2559 		 * period is used.  Also, if the sleep duration is
2560 		 * greater than the DTIM period then it makes senses
2561 		 * to make it a multiple of that.
2562 		 *
2563 		 * XXX fixed at 100ms
2564 		 */
2565 		bs.bs_sleepduration =
2566 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2567 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2568 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2569 
2570 		DPRINTF(sc, ATH_DEBUG_BEACON,
2571 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2572 			, __func__
2573 			, tsf, tsftu
2574 			, bs.bs_intval
2575 			, bs.bs_nexttbtt
2576 			, bs.bs_dtimperiod
2577 			, bs.bs_nextdtim
2578 			, bs.bs_bmissthreshold
2579 			, bs.bs_sleepduration
2580 			, bs.bs_cfpperiod
2581 			, bs.bs_cfpmaxduration
2582 			, bs.bs_cfpnext
2583 			, bs.bs_timoffset
2584 		);
2585 		ath_hal_intrset(ah, 0);
2586 		ath_hal_beacontimers(ah, &bs);
2587 		sc->sc_imask |= HAL_INT_BMISS;
2588 		ath_hal_intrset(ah, sc->sc_imask);
2589 	} else {
2590 		ath_hal_intrset(ah, 0);
2591 		if (nexttbtt == intval)
2592 			intval |= HAL_BEACON_RESET_TSF;
2593 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2594 			/*
2595 			 * In IBSS mode enable the beacon timers but only
2596 			 * enable SWBA interrupts if we need to manually
2597 			 * prepare beacon frames.  Otherwise we use a
2598 			 * self-linked tx descriptor and let the hardware
2599 			 * deal with things.
2600 			 */
2601 			intval |= HAL_BEACON_ENA;
2602 			if (!sc->sc_hasveol)
2603 				sc->sc_imask |= HAL_INT_SWBA;
2604 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2605 				/*
2606 				 * Pull nexttbtt forward to reflect
2607 				 * the current TSF.
2608 				 */
2609 				tsf = ath_hal_gettsf64(ah);
2610 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2611 				do {
2612 					nexttbtt += intval;
2613 				} while (nexttbtt < tsftu);
2614 			}
2615 			ath_beaconq_config(sc);
2616 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2617 			/*
2618 			 * In AP mode we enable the beacon timers and
2619 			 * SWBA interrupts to prepare beacon frames.
2620 			 */
2621 			intval |= HAL_BEACON_ENA;
2622 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2623 			ath_beaconq_config(sc);
2624 		}
2625 		ath_hal_beaconinit(ah, nexttbtt, intval);
2626 		sc->sc_bmisscount = 0;
2627 		ath_hal_intrset(ah, sc->sc_imask);
2628 		/*
2629 		 * When using a self-linked beacon descriptor in
2630 		 * ibss mode load it once here.
2631 		 */
2632 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2633 			ath_beacon_proc(sc, 0);
2634 	}
2635 	sc->sc_syncbeacon = 0;
2636 #undef UNDEF
2637 #undef TSF_TO_TU
2638 }
2639 
2640 static int
2641 ath_descdma_setup(struct ath_softc *sc,
2642 	struct ath_descdma *dd, ath_bufhead *head,
2643 	const char *name, int nbuf, int ndesc)
2644 {
2645 #define	DS2PHYS(_dd, _ds) \
2646 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2647 	struct ifnet *ifp = &sc->sc_if;
2648 	struct ath_desc *ds;
2649 	struct ath_buf *bf;
2650 	int i, bsize, error;
2651 
2652 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2653 	    __func__, name, nbuf, ndesc);
2654 
2655 	dd->dd_name = name;
2656 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2657 
2658 	/*
2659 	 * Setup DMA descriptor area.
2660 	 */
2661 	dd->dd_dmat = sc->sc_dmat;
2662 
2663 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2664 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2665 
2666 	if (error != 0) {
2667 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2668 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2669 		goto fail0;
2670 	}
2671 
2672 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2673 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2674 	if (error != 0) {
2675 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2676 		    nbuf * ndesc, dd->dd_name, error);
2677 		goto fail1;
2678 	}
2679 
2680 	/* allocate descriptors */
2681 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2682 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2683 	if (error != 0) {
2684 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2685 			"error %u\n", dd->dd_name, error);
2686 		goto fail2;
2687 	}
2688 
2689 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2690 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2691 	if (error != 0) {
2692 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2693 			dd->dd_name, error);
2694 		goto fail3;
2695 	}
2696 
2697 	ds = dd->dd_desc;
2698 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2699 	DPRINTF(sc, ATH_DEBUG_RESET,
2700 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2701 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2702 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2703 
2704 	/* allocate rx buffers */
2705 	bsize = sizeof(struct ath_buf) * nbuf;
2706 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2707 	if (bf == NULL) {
2708 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2709 			dd->dd_name, bsize);
2710 		goto fail4;
2711 	}
2712 	dd->dd_bufptr = bf;
2713 
2714 	STAILQ_INIT(head);
2715 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2716 		bf->bf_desc = ds;
2717 		bf->bf_daddr = DS2PHYS(dd, ds);
2718 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2719 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2720 		if (error != 0) {
2721 			if_printf(ifp, "unable to create dmamap for %s "
2722 				"buffer %u, error %u\n", dd->dd_name, i, error);
2723 			ath_descdma_cleanup(sc, dd, head);
2724 			return error;
2725 		}
2726 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2727 	}
2728 	return 0;
2729 fail4:
2730 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2731 fail3:
2732 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2733 fail2:
2734 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2735 fail1:
2736 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2737 fail0:
2738 	memset(dd, 0, sizeof(*dd));
2739 	return error;
2740 #undef DS2PHYS
2741 }
2742 
2743 static void
2744 ath_descdma_cleanup(struct ath_softc *sc,
2745 	struct ath_descdma *dd, ath_bufhead *head)
2746 {
2747 	struct ath_buf *bf;
2748 	struct ieee80211_node *ni;
2749 
2750 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2751 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2752 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2753 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2754 
2755 	STAILQ_FOREACH(bf, head, bf_list) {
2756 		if (bf->bf_m) {
2757 			m_freem(bf->bf_m);
2758 			bf->bf_m = NULL;
2759 		}
2760 		if (bf->bf_dmamap != NULL) {
2761 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2762 			bf->bf_dmamap = NULL;
2763 		}
2764 		ni = bf->bf_node;
2765 		bf->bf_node = NULL;
2766 		if (ni != NULL) {
2767 			/*
2768 			 * Reclaim node reference.
2769 			 */
2770 			ieee80211_free_node(ni);
2771 		}
2772 	}
2773 
2774 	STAILQ_INIT(head);
2775 	free(dd->dd_bufptr, M_ATHDEV);
2776 	memset(dd, 0, sizeof(*dd));
2777 }
2778 
2779 static int
2780 ath_desc_alloc(struct ath_softc *sc)
2781 {
2782 	int error;
2783 
2784 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2785 			"rx", ath_rxbuf, 1);
2786 	if (error != 0)
2787 		return error;
2788 
2789 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2790 			"tx", ath_txbuf, ATH_TXDESC);
2791 	if (error != 0) {
2792 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2793 		return error;
2794 	}
2795 
2796 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2797 			"beacon", 1, 1);
2798 	if (error != 0) {
2799 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2800 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2801 		return error;
2802 	}
2803 	return 0;
2804 }
2805 
2806 static void
2807 ath_desc_free(struct ath_softc *sc)
2808 {
2809 
2810 	if (sc->sc_bdma.dd_desc_len != 0)
2811 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2812 	if (sc->sc_txdma.dd_desc_len != 0)
2813 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2814 	if (sc->sc_rxdma.dd_desc_len != 0)
2815 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2816 }
2817 
2818 static struct ieee80211_node *
2819 ath_node_alloc(struct ieee80211_node_table *nt)
2820 {
2821 	struct ieee80211com *ic = nt->nt_ic;
2822 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2823 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2824 	struct ath_node *an;
2825 
2826 	an = malloc(space, M_80211_NODE, M_NOWAIT | M_ZERO);
2827 	if (an == NULL) {
2828 		/* XXX stat+msg */
2829 		return NULL;
2830 	}
2831 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2832 	ath_rate_node_init(sc, an);
2833 
2834 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2835 	return &an->an_node;
2836 }
2837 
2838 static void
2839 ath_node_free(struct ieee80211_node *ni)
2840 {
2841 	struct ieee80211com *ic = ni->ni_ic;
2842 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2843 
2844 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2845 
2846 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2847 	sc->sc_node_free(ni);
2848 }
2849 
2850 static u_int8_t
2851 ath_node_getrssi(const struct ieee80211_node *ni)
2852 {
2853 #define	HAL_EP_RND(x, mul) \
2854 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2855 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2856 	int32_t rssi;
2857 
2858 	/*
2859 	 * When only one frame is received there will be no state in
2860 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2861 	 */
2862 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2863 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2864 	else
2865 		rssi = ni->ni_rssi;
2866 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2867 #undef HAL_EP_RND
2868 }
2869 
2870 static int
2871 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2872 {
2873 	struct ath_hal *ah = sc->sc_ah;
2874 	int error;
2875 	struct mbuf *m;
2876 	struct ath_desc *ds;
2877 
2878 	m = bf->bf_m;
2879 	if (m == NULL) {
2880 		/*
2881 		 * NB: by assigning a page to the rx dma buffer we
2882 		 * implicitly satisfy the Atheros requirement that
2883 		 * this buffer be cache-line-aligned and sized to be
2884 		 * multiple of the cache line size.  Not doing this
2885 		 * causes weird stuff to happen (for the 5210 at least).
2886 		 */
2887 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2888 		if (m == NULL) {
2889 			DPRINTF(sc, ATH_DEBUG_ANY,
2890 				"%s: no mbuf/cluster\n", __func__);
2891 			sc->sc_stats.ast_rx_nombuf++;
2892 			return ENOMEM;
2893 		}
2894 		bf->bf_m = m;
2895 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2896 
2897 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2898 					     bf->bf_dmamap, m,
2899 					     BUS_DMA_NOWAIT);
2900 		if (error != 0) {
2901 			DPRINTF(sc, ATH_DEBUG_ANY,
2902 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2903 			    __func__, error);
2904 			sc->sc_stats.ast_rx_busdma++;
2905 			return error;
2906 		}
2907 		KASSERTMSG(bf->bf_nseg == 1,
2908 			"multi-segment packet; nseg %u", bf->bf_nseg);
2909 	}
2910 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2911 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2912 
2913 	/*
2914 	 * Setup descriptors.  For receive we always terminate
2915 	 * the descriptor list with a self-linked entry so we'll
2916 	 * not get overrun under high load (as can happen with a
2917 	 * 5212 when ANI processing enables PHY error frames).
2918 	 *
2919 	 * To insure the last descriptor is self-linked we create
2920 	 * each descriptor as self-linked and add it to the end.  As
2921 	 * each additional descriptor is added the previous self-linked
2922 	 * entry is ``fixed'' naturally.  This should be safe even
2923 	 * if DMA is happening.  When processing RX interrupts we
2924 	 * never remove/process the last, self-linked, entry on the
2925 	 * descriptor list.  This insures the hardware always has
2926 	 * someplace to write a new frame.
2927 	 */
2928 	ds = bf->bf_desc;
2929 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2930 	ds->ds_data = bf->bf_segs[0].ds_addr;
2931 	/* ds->ds_vdata = mtod(m, void *);	for radar */
2932 	ath_hal_setuprxdesc(ah, ds
2933 		, m->m_len		/* buffer size */
2934 		, 0
2935 	);
2936 
2937 	if (sc->sc_rxlink != NULL)
2938 		*sc->sc_rxlink = bf->bf_daddr;
2939 	sc->sc_rxlink = &ds->ds_link;
2940 	return 0;
2941 }
2942 
2943 /*
2944  * Extend 15-bit time stamp from rx descriptor to
2945  * a full 64-bit TSF using the specified TSF.
2946  */
2947 static inline u_int64_t
2948 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2949 {
2950 	if ((tsf & 0x7fff) < rstamp)
2951 		tsf -= 0x8000;
2952 	return ((tsf &~ 0x7fff) | rstamp);
2953 }
2954 
2955 /*
2956  * Intercept management frames to collect beacon rssi data
2957  * and to do ibss merges.
2958  */
2959 static void
2960 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2961 	struct ieee80211_node *ni,
2962 	int subtype, int rssi, u_int32_t rstamp)
2963 {
2964 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2965 
2966 	/*
2967 	 * Call up first so subsequent work can use information
2968 	 * potentially stored in the node (e.g. for ibss merge).
2969 	 */
2970 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2971 	switch (subtype) {
2972 	case IEEE80211_FC0_SUBTYPE_BEACON:
2973 		/* update rssi statistics for use by the hal */
2974 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2975 		if (sc->sc_syncbeacon &&
2976 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2977 			/*
2978 			 * Resync beacon timers using the tsf of the beacon
2979 			 * frame we just received.
2980 			 */
2981 			ath_beacon_config(sc);
2982 		}
2983 		/* fall thru... */
2984 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2985 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2986 		    ic->ic_state == IEEE80211_S_RUN) {
2987 			u_int64_t tsf = ath_extend_tsf(rstamp,
2988 				ath_hal_gettsf64(sc->sc_ah));
2989 
2990 			/*
2991 			 * Handle ibss merge as needed; check the tsf on the
2992 			 * frame before attempting the merge.  The 802.11 spec
2993 			 * says the station should change its bssid to match
2994 			 * the oldest station with the same ssid, where oldest
2995 			 * is determined by the tsf.  Note that hardware
2996 			 * reconfiguration happens through callback to
2997 			 * ath_newstate as the state machine will go from
2998 			 * RUN -> RUN when this happens.
2999 			 */
3000 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3001 				DPRINTF(sc, ATH_DEBUG_STATE,
3002 				    "ibss merge, rstamp %u tsf %ju "
3003 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3004 				    (uintmax_t)ni->ni_tstamp.tsf);
3005 				(void) ieee80211_ibss_merge(ni);
3006 			}
3007 		}
3008 		break;
3009 	}
3010 }
3011 
3012 /*
3013  * Set the default antenna.
3014  */
3015 static void
3016 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3017 {
3018 	struct ath_hal *ah = sc->sc_ah;
3019 
3020 	/* XXX block beacon interrupts */
3021 	ath_hal_setdefantenna(ah, antenna);
3022 	if (sc->sc_defant != antenna)
3023 		sc->sc_stats.ast_ant_defswitch++;
3024 	sc->sc_defant = antenna;
3025 	sc->sc_rxotherant = 0;
3026 }
3027 
3028 static void
3029 ath_handle_micerror(struct ieee80211com *ic,
3030 	struct ieee80211_frame *wh, int keyix)
3031 {
3032 	struct ieee80211_node *ni;
3033 
3034 	/* XXX recheck MIC to deal w/ chips that lie */
3035 	/* XXX discard MIC errors on !data frames */
3036 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
3037 	if (ni != NULL) {
3038 		ieee80211_notify_michael_failure(ic, wh, keyix);
3039 		ieee80211_free_node(ni);
3040 	}
3041 }
3042 
3043 static void
3044 ath_rx_proc(void *arg, int npending)
3045 {
3046 #define	PA2DESC(_sc, _pa) \
3047 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
3048 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3049 	struct ath_softc *sc = arg;
3050 	struct ath_buf *bf;
3051 	struct ieee80211com *ic = &sc->sc_ic;
3052 	struct ifnet *ifp = &sc->sc_if;
3053 	struct ath_hal *ah = sc->sc_ah;
3054 	struct ath_desc *ds;
3055 	struct mbuf *m;
3056 	struct ieee80211_node *ni;
3057 	struct ath_node *an;
3058 	int len, ngood, type;
3059 	u_int phyerr;
3060 	HAL_STATUS status;
3061 	int16_t nf;
3062 	u_int64_t tsf;
3063 	uint8_t rxerr_tap, rxerr_mon;
3064 	NET_LOCK_GIANT_FUNC_INIT();
3065 
3066 	NET_LOCK_GIANT();		/* XXX */
3067 
3068 	rxerr_tap =
3069 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3070 
3071 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3072 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3073 	else if (ifp->if_flags & IFF_PROMISC)
3074 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3075 
3076 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3077 	ngood = 0;
3078 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3079 	tsf = ath_hal_gettsf64(ah);
3080 	do {
3081 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3082 		if (bf == NULL) {		/* NB: shouldn't happen */
3083 			if_printf(ifp, "%s: no buffer!\n", __func__);
3084 			break;
3085 		}
3086 		ds = bf->bf_desc;
3087 		if (ds->ds_link == bf->bf_daddr) {
3088 			/* NB: never process the self-linked entry at the end */
3089 			break;
3090 		}
3091 		m = bf->bf_m;
3092 		if (m == NULL) {		/* NB: shouldn't happen */
3093 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3094 			break;
3095 		}
3096 		/* XXX sync descriptor memory */
3097 		/*
3098 		 * Must provide the virtual address of the current
3099 		 * descriptor, the physical address, and the virtual
3100 		 * address of the next descriptor in the h/w chain.
3101 		 * This allows the HAL to look ahead to see if the
3102 		 * hardware is done with a descriptor by checking the
3103 		 * done bit in the following descriptor and the address
3104 		 * of the current descriptor the DMA engine is working
3105 		 * on.  All this is necessary because of our use of
3106 		 * a self-linked list to avoid rx overruns.
3107 		 */
3108 		status = ath_hal_rxprocdesc(ah, ds,
3109 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3110 				&ds->ds_rxstat);
3111 #ifdef AR_DEBUG
3112 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3113 			ath_printrxbuf(bf, status == HAL_OK);
3114 #endif
3115 		if (status == HAL_EINPROGRESS)
3116 			break;
3117 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3118 		if (ds->ds_rxstat.rs_more) {
3119 			/*
3120 			 * Frame spans multiple descriptors; this
3121 			 * cannot happen yet as we don't support
3122 			 * jumbograms.  If not in monitor mode,
3123 			 * discard the frame.
3124 			 */
3125 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3126 				sc->sc_stats.ast_rx_toobig++;
3127 				goto rx_next;
3128 			}
3129 			/* fall thru for monitor mode handling... */
3130 		} else if (ds->ds_rxstat.rs_status != 0) {
3131 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3132 				sc->sc_stats.ast_rx_crcerr++;
3133 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3134 				sc->sc_stats.ast_rx_fifoerr++;
3135 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3136 				sc->sc_stats.ast_rx_phyerr++;
3137 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3138 				sc->sc_stats.ast_rx_phy[phyerr]++;
3139 				goto rx_next;
3140 			}
3141 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3142 				/*
3143 				 * Decrypt error.  If the error occurred
3144 				 * because there was no hardware key, then
3145 				 * let the frame through so the upper layers
3146 				 * can process it.  This is necessary for 5210
3147 				 * parts which have no way to setup a ``clear''
3148 				 * key cache entry.
3149 				 *
3150 				 * XXX do key cache faulting
3151 				 */
3152 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3153 					goto rx_accept;
3154 				sc->sc_stats.ast_rx_badcrypt++;
3155 			}
3156 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3157 				sc->sc_stats.ast_rx_badmic++;
3158 				/*
3159 				 * Do minimal work required to hand off
3160 				 * the 802.11 header for notifcation.
3161 				 */
3162 				/* XXX frag's and qos frames */
3163 				len = ds->ds_rxstat.rs_datalen;
3164 				if (len >= sizeof (struct ieee80211_frame)) {
3165 					bus_dmamap_sync(sc->sc_dmat,
3166 					    bf->bf_dmamap,
3167 					    0, bf->bf_dmamap->dm_mapsize,
3168 					    BUS_DMASYNC_POSTREAD);
3169 					ath_handle_micerror(ic,
3170 					    mtod(m, struct ieee80211_frame *),
3171 					    sc->sc_splitmic ?
3172 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3173 				}
3174 			}
3175 			ifp->if_ierrors++;
3176 			/*
3177 			 * Reject error frames, we normally don't want
3178 			 * to see them in monitor mode (in monitor mode
3179 			 * allow through packets that have crypto problems).
3180 			 */
3181 
3182 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3183 				goto rx_next;
3184 		}
3185 rx_accept:
3186 		/*
3187 		 * Sync and unmap the frame.  At this point we're
3188 		 * committed to passing the mbuf somewhere so clear
3189 		 * bf_m; this means a new sk_buff must be allocated
3190 		 * when the rx descriptor is setup again to receive
3191 		 * another frame.
3192 		 */
3193 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3194 		    0, bf->bf_dmamap->dm_mapsize,
3195 		    BUS_DMASYNC_POSTREAD);
3196 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3197 		bf->bf_m = NULL;
3198 
3199 		m_set_rcvif(m, ifp);
3200 		len = ds->ds_rxstat.rs_datalen;
3201 		m->m_pkthdr.len = m->m_len = len;
3202 
3203 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3204 
3205 		if (sc->sc_drvbpf) {
3206 			u_int8_t rix;
3207 
3208 			/*
3209 			 * Discard anything shorter than an ack or cts.
3210 			 */
3211 			if (len < IEEE80211_ACK_LEN) {
3212 				DPRINTF(sc, ATH_DEBUG_RECV,
3213 					"%s: runt packet %d\n",
3214 					__func__, len);
3215 				sc->sc_stats.ast_rx_tooshort++;
3216 				m_freem(m);
3217 				goto rx_next;
3218 			}
3219 			rix = ds->ds_rxstat.rs_rate;
3220 			sc->sc_rx_th.wr_tsf = htole64(
3221 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3222 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3223 			if (ds->ds_rxstat.rs_status &
3224 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3225 				sc->sc_rx_th.wr_flags |=
3226 				    IEEE80211_RADIOTAP_F_BADFCS;
3227 			}
3228 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3229 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3230 			sc->sc_rx_th.wr_antnoise = nf;
3231 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3232 
3233 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
3234 			    sc->sc_rx_th_len, m, BPF_D_IN);
3235 		}
3236 
3237 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
3238 			m_freem(m);
3239 			goto rx_next;
3240 		}
3241 		/*
3242 		 * From this point on we assume the frame is at least
3243 		 * as large as ieee80211_frame_min; verify that.
3244 		 */
3245 		if (len < IEEE80211_MIN_LEN) {
3246 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3247 				__func__, len);
3248 			sc->sc_stats.ast_rx_tooshort++;
3249 			m_freem(m);
3250 			goto rx_next;
3251 		}
3252 
3253 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3254 			ieee80211_dump_pkt(mtod(m, void *), len,
3255 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3256 				   ds->ds_rxstat.rs_rssi);
3257 		}
3258 
3259 		m_adj(m, -IEEE80211_CRC_LEN);
3260 
3261 		/*
3262 		 * Locate the node for sender, track state, and then
3263 		 * pass the (referenced) node up to the 802.11 layer
3264 		 * for its use.
3265 		 */
3266 		ni = ieee80211_find_rxnode_withkey(ic,
3267 			mtod(m, const struct ieee80211_frame_min *),
3268 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3269 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3270 		/*
3271 		 * Track rx rssi and do any rx antenna management.
3272 		 */
3273 		an = ATH_NODE(ni);
3274 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3275 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3276 		/*
3277 		 * Send frame up for processing.
3278 		 */
3279 		type = ieee80211_input(ic, m, ni,
3280 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3281 		ieee80211_free_node(ni);
3282 		if (sc->sc_diversity) {
3283 			/*
3284 			 * When using fast diversity, change the default rx
3285 			 * antenna if diversity chooses the other antenna 3
3286 			 * times in a row.
3287 			 */
3288 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3289 				if (++sc->sc_rxotherant >= 3)
3290 					ath_setdefantenna(sc,
3291 						ds->ds_rxstat.rs_antenna);
3292 			} else
3293 				sc->sc_rxotherant = 0;
3294 		}
3295 		if (sc->sc_softled) {
3296 			/*
3297 			 * Blink for any data frame.  Otherwise do a
3298 			 * heartbeat-style blink when idle.  The latter
3299 			 * is mainly for station mode where we depend on
3300 			 * periodic beacon frames to trigger the poll event.
3301 			 */
3302 			if (type == IEEE80211_FC0_TYPE_DATA) {
3303 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3304 				ath_led_event(sc, ATH_LED_RX);
3305 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3306 				ath_led_event(sc, ATH_LED_POLL);
3307 		}
3308 		/*
3309 		 * Arrange to update the last rx timestamp only for
3310 		 * frames from our ap when operating in station mode.
3311 		 * This assumes the rx key is always setup when associated.
3312 		 */
3313 		if (ic->ic_opmode == IEEE80211_M_STA &&
3314 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3315 			ngood++;
3316 rx_next:
3317 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3318 	} while (ath_rxbuf_init(sc, bf) == 0);
3319 
3320 	/* rx signal state monitoring */
3321 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3322 #if 0
3323 	if (ath_hal_radar_event(ah))
3324 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3325 #endif
3326 	if (ngood)
3327 		sc->sc_lastrx = tsf;
3328 
3329 #ifdef __NetBSD__
3330 	/* XXX Why isn't this necessary in FreeBSD? */
3331 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3332 		ath_start(ifp);
3333 #endif /* __NetBSD__ */
3334 
3335 	NET_UNLOCK_GIANT();		/* XXX */
3336 #undef PA2DESC
3337 }
3338 
3339 /*
3340  * Setup a h/w transmit queue.
3341  */
3342 static struct ath_txq *
3343 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3344 {
3345 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3346 	struct ath_hal *ah = sc->sc_ah;
3347 	HAL_TXQ_INFO qi;
3348 	int qnum;
3349 
3350 	memset(&qi, 0, sizeof(qi));
3351 	qi.tqi_subtype = subtype;
3352 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3353 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3354 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3355 	/*
3356 	 * Enable interrupts only for EOL and DESC conditions.
3357 	 * We mark tx descriptors to receive a DESC interrupt
3358 	 * when a tx queue gets deep; otherwise waiting for the
3359 	 * EOL to reap descriptors.  Note that this is done to
3360 	 * reduce interrupt load and this only defers reaping
3361 	 * descriptors, never transmitting frames.  Aside from
3362 	 * reducing interrupts this also permits more concurrency.
3363 	 * The only potential downside is if the tx queue backs
3364 	 * up in which case the top half of the kernel may backup
3365 	 * due to a lack of tx descriptors.
3366 	 */
3367 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3368 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3369 	if (qnum == -1) {
3370 		/*
3371 		 * NB: don't print a message, this happens
3372 		 * normally on parts with too few tx queues
3373 		 */
3374 		return NULL;
3375 	}
3376 	if (qnum >= N(sc->sc_txq)) {
3377 		device_printf(sc->sc_dev,
3378 			"hal qnum %u out of range, max %zu!\n",
3379 			qnum, N(sc->sc_txq));
3380 		ath_hal_releasetxqueue(ah, qnum);
3381 		return NULL;
3382 	}
3383 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3384 		struct ath_txq *txq = &sc->sc_txq[qnum];
3385 
3386 		txq->axq_qnum = qnum;
3387 		txq->axq_depth = 0;
3388 		txq->axq_intrcnt = 0;
3389 		txq->axq_link = NULL;
3390 		STAILQ_INIT(&txq->axq_q);
3391 		ATH_TXQ_LOCK_INIT(sc, txq);
3392 		sc->sc_txqsetup |= 1<<qnum;
3393 	}
3394 	return &sc->sc_txq[qnum];
3395 #undef N
3396 }
3397 
3398 /*
3399  * Setup a hardware data transmit queue for the specified
3400  * access control.  The hal may not support all requested
3401  * queues in which case it will return a reference to a
3402  * previously setup queue.  We record the mapping from ac's
3403  * to h/w queues for use by ath_tx_start and also track
3404  * the set of h/w queues being used to optimize work in the
3405  * transmit interrupt handler and related routines.
3406  */
3407 static int
3408 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3409 {
3410 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3411 	struct ath_txq *txq;
3412 
3413 	if (ac >= N(sc->sc_ac2q)) {
3414 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3415 			ac, N(sc->sc_ac2q));
3416 		return 0;
3417 	}
3418 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3419 	if (txq != NULL) {
3420 		sc->sc_ac2q[ac] = txq;
3421 		return 1;
3422 	} else
3423 		return 0;
3424 #undef N
3425 }
3426 
3427 /*
3428  * Update WME parameters for a transmit queue.
3429  */
3430 static int
3431 ath_txq_update(struct ath_softc *sc, int ac)
3432 {
3433 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3434 #define	ATH_TXOP_TO_US(v)		(v<<5)
3435 	struct ieee80211com *ic = &sc->sc_ic;
3436 	struct ath_txq *txq = sc->sc_ac2q[ac];
3437 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3438 	struct ath_hal *ah = sc->sc_ah;
3439 	HAL_TXQ_INFO qi;
3440 
3441 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3442 	qi.tqi_aifs = wmep->wmep_aifsn;
3443 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3444 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3445 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3446 
3447 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3448 		device_printf(sc->sc_dev, "unable to update hardware queue "
3449 			"parameters for %s traffic!\n",
3450 			ieee80211_wme_acnames[ac]);
3451 		return 0;
3452 	} else {
3453 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3454 		return 1;
3455 	}
3456 #undef ATH_TXOP_TO_US
3457 #undef ATH_EXPONENT_TO_VALUE
3458 }
3459 
3460 /*
3461  * Callback from the 802.11 layer to update WME parameters.
3462  */
3463 static int
3464 ath_wme_update(struct ieee80211com *ic)
3465 {
3466 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3467 
3468 	return !ath_txq_update(sc, WME_AC_BE) ||
3469 	    !ath_txq_update(sc, WME_AC_BK) ||
3470 	    !ath_txq_update(sc, WME_AC_VI) ||
3471 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3472 }
3473 
3474 /*
3475  * Reclaim resources for a setup queue.
3476  */
3477 static void
3478 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3479 {
3480 
3481 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3482 	ATH_TXQ_LOCK_DESTROY(txq);
3483 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3484 }
3485 
3486 /*
3487  * Reclaim all tx queue resources.
3488  */
3489 static void
3490 ath_tx_cleanup(struct ath_softc *sc)
3491 {
3492 	int i;
3493 
3494 	ATH_TXBUF_LOCK_DESTROY(sc);
3495 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3496 		if (ATH_TXQ_SETUP(sc, i))
3497 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3498 }
3499 
3500 /*
3501  * Defragment an mbuf chain, returning at most maxfrags separate
3502  * mbufs+clusters.  If this is not possible NULL is returned and
3503  * the original mbuf chain is left in its present (potentially
3504  * modified) state.  We use two techniques: collapsing consecutive
3505  * mbufs and replacing consecutive mbufs by a cluster.
3506  */
3507 static struct mbuf *
3508 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3509 {
3510 	struct mbuf *m, *n, *n2, **prev;
3511 	u_int curfrags;
3512 
3513 	/*
3514 	 * Calculate the current number of frags.
3515 	 */
3516 	curfrags = 0;
3517 	for (m = m0; m != NULL; m = m->m_next)
3518 		curfrags++;
3519 	/*
3520 	 * First, try to collapse mbufs.  Note that we always collapse
3521 	 * towards the front so we don't need to deal with moving the
3522 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3523 	 * less data than the following.
3524 	 */
3525 	m = m0;
3526 again:
3527 	for (;;) {
3528 		n = m->m_next;
3529 		if (n == NULL)
3530 			break;
3531 		if (n->m_len < M_TRAILINGSPACE(m)) {
3532 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3533 				n->m_len);
3534 			m->m_len += n->m_len;
3535 			m->m_next = n->m_next;
3536 			m_free(n);
3537 			if (--curfrags <= maxfrags)
3538 				return m0;
3539 		} else
3540 			m = n;
3541 	}
3542 	KASSERTMSG(maxfrags > 1,
3543 		"maxfrags %u, but normal collapse failed", maxfrags);
3544 	/*
3545 	 * Collapse consecutive mbufs to a cluster.
3546 	 */
3547 	prev = &m0->m_next;		/* NB: not the first mbuf */
3548 	while ((n = *prev) != NULL) {
3549 		if ((n2 = n->m_next) != NULL &&
3550 		    n->m_len + n2->m_len < MCLBYTES) {
3551 			m = m_getcl(how, MT_DATA, 0);
3552 			if (m == NULL)
3553 				goto bad;
3554 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3555 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3556 				n2->m_len);
3557 			m->m_len = n->m_len + n2->m_len;
3558 			m->m_next = n2->m_next;
3559 			*prev = m;
3560 			m_free(n);
3561 			m_free(n2);
3562 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3563 				return m0;
3564 			/*
3565 			 * Still not there, try the normal collapse
3566 			 * again before we allocate another cluster.
3567 			 */
3568 			goto again;
3569 		}
3570 		prev = &n->m_next;
3571 	}
3572 	/*
3573 	 * No place where we can collapse to a cluster; punt.
3574 	 * This can occur if, for example, you request 2 frags
3575 	 * but the packet requires that both be clusters (we
3576 	 * never reallocate the first mbuf to avoid moving the
3577 	 * packet header).
3578 	 */
3579 bad:
3580 	return NULL;
3581 }
3582 
3583 /*
3584  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3585  */
3586 static int
3587 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3588 {
3589 	int i;
3590 
3591 	for (i = 0; i < rt->rateCount; i++)
3592 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3593 			return i;
3594 	return 0;		/* NB: lowest rate */
3595 }
3596 
3597 static void
3598 ath_freetx(struct mbuf *m)
3599 {
3600 	struct mbuf *next;
3601 
3602 	do {
3603 		next = m->m_nextpkt;
3604 		m->m_nextpkt = NULL;
3605 		m_freem(m);
3606 	} while ((m = next) != NULL);
3607 }
3608 
3609 static int
3610 deduct_pad_bytes(int len, int hdrlen)
3611 {
3612 	/* XXX I am suspicious that this code, which I extracted
3613 	 * XXX from ath_tx_start() for reuse, does the right thing.
3614 	 */
3615 	return len - (hdrlen & 3);
3616 }
3617 
3618 static int
3619 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3620     struct mbuf *m0)
3621 {
3622 	struct ieee80211com *ic = &sc->sc_ic;
3623 	struct ath_hal *ah = sc->sc_ah;
3624 	struct ifnet *ifp = &sc->sc_if;
3625 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3626 	int i, error, iswep, ismcast, isfrag, ismrr;
3627 	int keyix, hdrlen, pktlen, try0;
3628 	u_int8_t rix, txrate, ctsrate;
3629 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3630 	struct ath_desc *ds, *ds0;
3631 	struct ath_txq *txq;
3632 	struct ieee80211_frame *wh;
3633 	u_int subtype, flags, ctsduration;
3634 	HAL_PKT_TYPE atype;
3635 	const HAL_RATE_TABLE *rt;
3636 	HAL_BOOL shortPreamble;
3637 	struct ath_node *an;
3638 	struct mbuf *m;
3639 	u_int pri;
3640 
3641 	wh = mtod(m0, struct ieee80211_frame *);
3642 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3643 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3644 	isfrag = m0->m_flags & M_FRAG;
3645 	hdrlen = ieee80211_anyhdrsize(wh);
3646 	/*
3647 	 * Packet length must not include any
3648 	 * pad bytes; deduct them here.
3649 	 */
3650 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3651 
3652 	if (iswep) {
3653 		const struct ieee80211_cipher *cip;
3654 		struct ieee80211_key *k;
3655 
3656 		/*
3657 		 * Construct the 802.11 header+trailer for an encrypted
3658 		 * frame. The only reason this can fail is because of an
3659 		 * unknown or unsupported cipher/key type.
3660 		 */
3661 		k = ieee80211_crypto_encap(ic, ni, m0);
3662 		if (k == NULL) {
3663 			/*
3664 			 * This can happen when the key is yanked after the
3665 			 * frame was queued.  Just discard the frame; the
3666 			 * 802.11 layer counts failures and provides
3667 			 * debugging/diagnostics.
3668 			 */
3669 			ath_freetx(m0);
3670 			return EIO;
3671 		}
3672 		/*
3673 		 * Adjust the packet + header lengths for the crypto
3674 		 * additions and calculate the h/w key index.  When
3675 		 * a s/w mic is done the frame will have had any mic
3676 		 * added to it prior to entry so m0->m_pkthdr.len above will
3677 		 * account for it. Otherwise we need to add it to the
3678 		 * packet length.
3679 		 */
3680 		cip = k->wk_cipher;
3681 		hdrlen += cip->ic_header;
3682 		pktlen += cip->ic_header + cip->ic_trailer;
3683 		/* NB: frags always have any TKIP MIC done in s/w */
3684 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3685 			pktlen += cip->ic_miclen;
3686 		keyix = k->wk_keyix;
3687 
3688 		/* packet header may have moved, reset our local pointer */
3689 		wh = mtod(m0, struct ieee80211_frame *);
3690 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3691 		/*
3692 		 * Use station key cache slot, if assigned.
3693 		 */
3694 		keyix = ni->ni_ucastkey.wk_keyix;
3695 		if (keyix == IEEE80211_KEYIX_NONE)
3696 			keyix = HAL_TXKEYIX_INVALID;
3697 	} else
3698 		keyix = HAL_TXKEYIX_INVALID;
3699 
3700 	pktlen += IEEE80211_CRC_LEN;
3701 
3702 	/*
3703 	 * Load the DMA map so any coalescing is done.  This
3704 	 * also calculates the number of descriptors we need.
3705 	 */
3706 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3707 				     BUS_DMA_NOWAIT);
3708 	if (error == EFBIG) {
3709 		/* XXX packet requires too many descriptors */
3710 		bf->bf_nseg = ATH_TXDESC+1;
3711 	} else if (error != 0) {
3712 		sc->sc_stats.ast_tx_busdma++;
3713 		ath_freetx(m0);
3714 		return error;
3715 	}
3716 	/*
3717 	 * Discard null packets and check for packets that
3718 	 * require too many TX descriptors.  We try to convert
3719 	 * the latter to a cluster.
3720 	 */
3721 	if (error == EFBIG) {		/* too many desc's, linearize */
3722 		sc->sc_stats.ast_tx_linear++;
3723 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3724 		if (m == NULL) {
3725 			ath_freetx(m0);
3726 			sc->sc_stats.ast_tx_nombuf++;
3727 			return ENOMEM;
3728 		}
3729 		m0 = m;
3730 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3731 					     BUS_DMA_NOWAIT);
3732 		if (error != 0) {
3733 			sc->sc_stats.ast_tx_busdma++;
3734 			ath_freetx(m0);
3735 			return error;
3736 		}
3737 		KASSERTMSG(bf->bf_nseg <= ATH_TXDESC,
3738 		    "too many segments after defrag; nseg %u", bf->bf_nseg);
3739 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3740 		sc->sc_stats.ast_tx_nodata++;
3741 		ath_freetx(m0);
3742 		return EIO;
3743 	}
3744 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3745 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3746 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3747 	bf->bf_m = m0;
3748 	bf->bf_node = ni;			/* NB: held reference */
3749 
3750 	/* setup descriptors */
3751 	ds = bf->bf_desc;
3752 	rt = sc->sc_currates;
3753 	KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
3754 
3755 	/*
3756 	 * NB: the 802.11 layer marks whether or not we should
3757 	 * use short preamble based on the current mode and
3758 	 * negotiated parameters.
3759 	 */
3760 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3761 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3762 		shortPreamble = AH_TRUE;
3763 		sc->sc_stats.ast_tx_shortpre++;
3764 	} else {
3765 		shortPreamble = AH_FALSE;
3766 	}
3767 
3768 	an = ATH_NODE(ni);
3769 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3770 	ismrr = 0;				/* default no multi-rate retry*/
3771 	/*
3772 	 * Calculate Atheros packet type from IEEE80211 packet header,
3773 	 * setup for rate calculations, and select h/w transmit queue.
3774 	 */
3775 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3776 	case IEEE80211_FC0_TYPE_MGT:
3777 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3778 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3779 			atype = HAL_PKT_TYPE_BEACON;
3780 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3781 			atype = HAL_PKT_TYPE_PROBE_RESP;
3782 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3783 			atype = HAL_PKT_TYPE_ATIM;
3784 		else
3785 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3786 		rix = sc->sc_minrateix;
3787 		txrate = rt->info[rix].rateCode;
3788 		if (shortPreamble)
3789 			txrate |= rt->info[rix].shortPreamble;
3790 		try0 = ATH_TXMGTTRY;
3791 		/* NB: force all management frames to highest queue */
3792 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3793 			/* NB: force all management frames to highest queue */
3794 			pri = WME_AC_VO;
3795 		} else
3796 			pri = WME_AC_BE;
3797 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3798 		break;
3799 	case IEEE80211_FC0_TYPE_CTL:
3800 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3801 		rix = sc->sc_minrateix;
3802 		txrate = rt->info[rix].rateCode;
3803 		if (shortPreamble)
3804 			txrate |= rt->info[rix].shortPreamble;
3805 		try0 = ATH_TXMGTTRY;
3806 		/* NB: force all ctl frames to highest queue */
3807 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3808 			/* NB: force all ctl frames to highest queue */
3809 			pri = WME_AC_VO;
3810 		} else
3811 			pri = WME_AC_BE;
3812 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3813 		break;
3814 	case IEEE80211_FC0_TYPE_DATA:
3815 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3816 		/*
3817 		 * Data frames: multicast frames go out at a fixed rate,
3818 		 * otherwise consult the rate control module for the
3819 		 * rate to use.
3820 		 */
3821 		if (ismcast) {
3822 			/*
3823 			 * Check mcast rate setting in case it's changed.
3824 			 * XXX move out of fastpath
3825 			 */
3826 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3827 				sc->sc_mcastrix =
3828 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3829 				sc->sc_mcastrate = ic->ic_mcast_rate;
3830 			}
3831 			rix = sc->sc_mcastrix;
3832 			txrate = rt->info[rix].rateCode;
3833 			try0 = 1;
3834 		} else {
3835 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3836 				&rix, &try0, &txrate);
3837 			sc->sc_txrate = txrate;		/* for LED blinking */
3838 			if (try0 != ATH_TXMAXTRY)
3839 				ismrr = 1;
3840 		}
3841 		pri = M_WME_GETAC(m0);
3842 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3843 			flags |= HAL_TXDESC_NOACK;
3844 		break;
3845 	default:
3846 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3847 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3848 		/* XXX statistic */
3849 		ath_freetx(m0);
3850 		return EIO;
3851 	}
3852 	txq = sc->sc_ac2q[pri];
3853 
3854 	/*
3855 	 * When servicing one or more stations in power-save mode
3856 	 * multicast frames must be buffered until after the beacon.
3857 	 * We use the CAB queue for that.
3858 	 */
3859 	if (ismcast && ic->ic_ps_sta) {
3860 		txq = sc->sc_cabq;
3861 		/* XXX? more bit in 802.11 frame header */
3862 	}
3863 
3864 	/*
3865 	 * Calculate miscellaneous flags.
3866 	 */
3867 	if (ismcast) {
3868 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3869 	} else if (pktlen > ic->ic_rtsthreshold) {
3870 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3871 		cix = rt->info[rix].controlRate;
3872 		sc->sc_stats.ast_tx_rts++;
3873 	}
3874 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3875 		sc->sc_stats.ast_tx_noack++;
3876 
3877 	/*
3878 	 * If 802.11g protection is enabled, determine whether
3879 	 * to use RTS/CTS or just CTS.  Note that this is only
3880 	 * done for OFDM unicast frames.
3881 	 */
3882 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3883 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3884 	    (flags & HAL_TXDESC_NOACK) == 0) {
3885 		/* XXX fragments must use CCK rates w/ protection */
3886 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3887 			flags |= HAL_TXDESC_RTSENA;
3888 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3889 			flags |= HAL_TXDESC_CTSENA;
3890 		if (isfrag) {
3891 			/*
3892 			 * For frags it would be desirable to use the
3893 			 * highest CCK rate for RTS/CTS.  But stations
3894 			 * farther away may detect it at a lower CCK rate
3895 			 * so use the configured protection rate instead
3896 			 * (for now).
3897 			 */
3898 			cix = rt->info[sc->sc_protrix].controlRate;
3899 		} else
3900 			cix = rt->info[sc->sc_protrix].controlRate;
3901 		sc->sc_stats.ast_tx_protect++;
3902 	}
3903 
3904 	/*
3905 	 * Calculate duration.  This logically belongs in the 802.11
3906 	 * layer but it lacks sufficient information to calculate it.
3907 	 */
3908 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3909 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3910 		u_int16_t dur;
3911 		/*
3912 		 * XXX not right with fragmentation.
3913 		 */
3914 		if (shortPreamble)
3915 			dur = rt->info[rix].spAckDuration;
3916 		else
3917 			dur = rt->info[rix].lpAckDuration;
3918 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3919 			dur += dur;		/* additional SIFS+ACK */
3920 			KASSERTMSG(m0->m_nextpkt != NULL, "no fragment");
3921 			/*
3922 			 * Include the size of next fragment so NAV is
3923 			 * updated properly.  The last fragment uses only
3924 			 * the ACK duration
3925 			 */
3926 			dur += ath_hal_computetxtime(ah, rt,
3927 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3928 				hdrlen) -
3929 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3930 			    rix, shortPreamble);
3931 		}
3932 		if (isfrag) {
3933 			/*
3934 			 * Force hardware to use computed duration for next
3935 			 * fragment by disabling multi-rate retry which updates
3936 			 * duration based on the multi-rate duration table.
3937 			 */
3938 			try0 = ATH_TXMAXTRY;
3939 		}
3940 		*(u_int16_t *)wh->i_dur = htole16(dur);
3941 	}
3942 
3943 	/*
3944 	 * Calculate RTS/CTS rate and duration if needed.
3945 	 */
3946 	ctsduration = 0;
3947 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3948 		/*
3949 		 * CTS transmit rate is derived from the transmit rate
3950 		 * by looking in the h/w rate table.  We must also factor
3951 		 * in whether or not a short preamble is to be used.
3952 		 */
3953 		/* NB: cix is set above where RTS/CTS is enabled */
3954 		KASSERTMSG(cix != 0xff, "cix not setup");
3955 		ctsrate = rt->info[cix].rateCode;
3956 		/*
3957 		 * Compute the transmit duration based on the frame
3958 		 * size and the size of an ACK frame.  We call into the
3959 		 * HAL to do the computation since it depends on the
3960 		 * characteristics of the actual PHY being used.
3961 		 *
3962 		 * NB: CTS is assumed the same size as an ACK so we can
3963 		 *     use the precalculated ACK durations.
3964 		 */
3965 		if (shortPreamble) {
3966 			ctsrate |= rt->info[cix].shortPreamble;
3967 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3968 				ctsduration += rt->info[cix].spAckDuration;
3969 			ctsduration += ath_hal_computetxtime(ah,
3970 				rt, pktlen, rix, AH_TRUE);
3971 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3972 				ctsduration += rt->info[rix].spAckDuration;
3973 		} else {
3974 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3975 				ctsduration += rt->info[cix].lpAckDuration;
3976 			ctsduration += ath_hal_computetxtime(ah,
3977 				rt, pktlen, rix, AH_FALSE);
3978 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3979 				ctsduration += rt->info[rix].lpAckDuration;
3980 		}
3981 		/*
3982 		 * Must disable multi-rate retry when using RTS/CTS.
3983 		 */
3984 		ismrr = 0;
3985 		try0 = ATH_TXMGTTRY;		/* XXX */
3986 	} else
3987 		ctsrate = 0;
3988 
3989 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3990 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3991 			sc->sc_hwmap[txrate].ieeerate, -1);
3992 	bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3993 	if (sc->sc_drvbpf) {
3994 		u_int64_t tsf = ath_hal_gettsf64(ah);
3995 
3996 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3997 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3998 		if (iswep)
3999 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4000 		if (isfrag)
4001 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4002 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
4003 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4004 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4005 
4006 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0,
4007 		    BPF_D_OUT);
4008 	}
4009 
4010 	/*
4011 	 * Determine if a tx interrupt should be generated for
4012 	 * this descriptor.  We take a tx interrupt to reap
4013 	 * descriptors when the h/w hits an EOL condition or
4014 	 * when the descriptor is specifically marked to generate
4015 	 * an interrupt.  We periodically mark descriptors in this
4016 	 * way to insure timely replenishing of the supply needed
4017 	 * for sending frames.  Defering interrupts reduces system
4018 	 * load and potentially allows more concurrent work to be
4019 	 * done but if done to aggressively can cause senders to
4020 	 * backup.
4021 	 *
4022 	 * NB: use >= to deal with sc_txintrperiod changing
4023 	 *     dynamically through sysctl.
4024 	 */
4025 	if (flags & HAL_TXDESC_INTREQ) {
4026 		txq->axq_intrcnt = 0;
4027 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4028 		flags |= HAL_TXDESC_INTREQ;
4029 		txq->axq_intrcnt = 0;
4030 	}
4031 
4032 	/*
4033 	 * Formulate first tx descriptor with tx controls.
4034 	 */
4035 	/* XXX check return value? */
4036 	ath_hal_setuptxdesc(ah, ds
4037 		, pktlen		/* packet length */
4038 		, hdrlen		/* header length */
4039 		, atype			/* Atheros packet type */
4040 		, ni->ni_txpower	/* txpower */
4041 		, txrate, try0		/* series 0 rate/tries */
4042 		, keyix			/* key cache index */
4043 		, sc->sc_txantenna	/* antenna mode */
4044 		, flags			/* flags */
4045 		, ctsrate		/* rts/cts rate */
4046 		, ctsduration		/* rts/cts duration */
4047 	);
4048 	bf->bf_flags = flags;
4049 	/*
4050 	 * Setup the multi-rate retry state only when we're
4051 	 * going to use it.  This assumes ath_hal_setuptxdesc
4052 	 * initializes the descriptors (so we don't have to)
4053 	 * when the hardware supports multi-rate retry and
4054 	 * we don't use it.
4055 	 */
4056 	if (ismrr)
4057 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4058 
4059 	/*
4060 	 * Fillin the remainder of the descriptor info.
4061 	 */
4062 	ds0 = ds;
4063 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4064 		ds->ds_data = bf->bf_segs[i].ds_addr;
4065 		if (i == bf->bf_nseg - 1)
4066 			ds->ds_link = 0;
4067 		else
4068 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4069 		ath_hal_filltxdesc(ah, ds
4070 			, bf->bf_segs[i].ds_len	/* segment length */
4071 			, i == 0		/* first segment */
4072 			, i == bf->bf_nseg - 1	/* last segment */
4073 			, ds0			/* first descriptor */
4074 		);
4075 
4076 		/* NB: The desc swap function becomes void,
4077 		 * if descriptor swapping is not enabled
4078 		 */
4079 		ath_desc_swap(ds);
4080 
4081 		DPRINTF(sc, ATH_DEBUG_XMIT,
4082 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4083 			__func__, i, ds->ds_link, ds->ds_data,
4084 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4085 	}
4086 	/*
4087 	 * Insert the frame on the outbound list and
4088 	 * pass it on to the hardware.
4089 	 */
4090 	ATH_TXQ_LOCK(txq);
4091 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4092 	if (txq->axq_link == NULL) {
4093 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4094 		DPRINTF(sc, ATH_DEBUG_XMIT,
4095 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4096 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4097 		    txq->axq_depth);
4098 	} else {
4099 		*txq->axq_link = HTOAH32(bf->bf_daddr);
4100 		DPRINTF(sc, ATH_DEBUG_XMIT,
4101 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4102 		    __func__, txq->axq_qnum, txq->axq_link,
4103 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4104 	}
4105 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4106 	/*
4107 	 * The CAB queue is started from the SWBA handler since
4108 	 * frames only go out on DTIM and to avoid possible races.
4109 	 */
4110 	if (txq != sc->sc_cabq)
4111 		ath_hal_txstart(ah, txq->axq_qnum);
4112 	ATH_TXQ_UNLOCK(txq);
4113 
4114 	return 0;
4115 }
4116 
4117 /*
4118  * Process completed xmit descriptors from the specified queue.
4119  */
4120 static int
4121 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4122 {
4123 	struct ath_hal *ah = sc->sc_ah;
4124 	struct ieee80211com *ic = &sc->sc_ic;
4125 	struct ath_buf *bf;
4126 	struct ath_desc *ds, *ds0;
4127 	struct ieee80211_node *ni;
4128 	struct ath_node *an;
4129 	int sr, lr, pri, nacked;
4130 	HAL_STATUS status;
4131 
4132 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4133 		__func__, txq->axq_qnum,
4134 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4135 		txq->axq_link);
4136 	nacked = 0;
4137 	for (;;) {
4138 		ATH_TXQ_LOCK(txq);
4139 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4140 		bf = STAILQ_FIRST(&txq->axq_q);
4141 		if (bf == NULL) {
4142 			txq->axq_link = NULL;
4143 			ATH_TXQ_UNLOCK(txq);
4144 			break;
4145 		}
4146 		ds0 = &bf->bf_desc[0];
4147 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4148 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4149 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4150 			ath_printtxbuf(bf, status == HAL_OK);
4151 		if (status == HAL_EINPROGRESS) {
4152 			ATH_TXQ_UNLOCK(txq);
4153 			break;
4154 		}
4155 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4156 		ATH_TXQ_UNLOCK(txq);
4157 
4158 		ni = bf->bf_node;
4159 		if (ni != NULL) {
4160 			an = ATH_NODE(ni);
4161 			if (ds->ds_txstat.ts_status == 0) {
4162 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4163 				sc->sc_stats.ast_ant_tx[txant]++;
4164 				sc->sc_ant_tx[txant]++;
4165 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4166 					sc->sc_stats.ast_tx_altrate++;
4167 				sc->sc_stats.ast_tx_rssi =
4168 					ds->ds_txstat.ts_rssi;
4169 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4170 					ds->ds_txstat.ts_rssi);
4171 				pri = M_WME_GETAC(bf->bf_m);
4172 				if (pri >= WME_AC_VO)
4173 					ic->ic_wme.wme_hipri_traffic++;
4174 				ni->ni_inact = ni->ni_inact_reload;
4175 			} else {
4176 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4177 					sc->sc_stats.ast_tx_xretries++;
4178 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4179 					sc->sc_stats.ast_tx_fifoerr++;
4180 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4181 					sc->sc_stats.ast_tx_filtered++;
4182 			}
4183 			sr = ds->ds_txstat.ts_shortretry;
4184 			lr = ds->ds_txstat.ts_longretry;
4185 			sc->sc_stats.ast_tx_shortretry += sr;
4186 			sc->sc_stats.ast_tx_longretry += lr;
4187 			/*
4188 			 * Hand the descriptor to the rate control algorithm.
4189 			 */
4190 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4191 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4192 				/*
4193 				 * If frame was ack'd update the last rx time
4194 				 * used to workaround phantom bmiss interrupts.
4195 				 */
4196 				if (ds->ds_txstat.ts_status == 0)
4197 					nacked++;
4198 				ath_rate_tx_complete(sc, an, ds, ds0);
4199 			}
4200 			/*
4201 			 * Reclaim reference to node.
4202 			 *
4203 			 * NB: the node may be reclaimed here if, for example
4204 			 *     this is a DEAUTH message that was sent and the
4205 			 *     node was timed out due to inactivity.
4206 			 */
4207 			ieee80211_free_node(ni);
4208 		}
4209 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4210 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4211 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4212 		m_freem(bf->bf_m);
4213 		bf->bf_m = NULL;
4214 		bf->bf_node = NULL;
4215 
4216 		ATH_TXBUF_LOCK(sc);
4217 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4218 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4219 		ATH_TXBUF_UNLOCK(sc);
4220 	}
4221 	return nacked;
4222 }
4223 
4224 static inline int
4225 txqactive(struct ath_hal *ah, int qnum)
4226 {
4227 	u_int32_t txqs = 1<<qnum;
4228 	ath_hal_gettxintrtxqs(ah, &txqs);
4229 	return (txqs & (1<<qnum));
4230 }
4231 
4232 /*
4233  * Deferred processing of transmit interrupt; special-cased
4234  * for a single hardware transmit queue (e.g. 5210 and 5211).
4235  */
4236 static void
4237 ath_tx_proc_q0(void *arg, int npending)
4238 {
4239 	struct ath_softc *sc = arg;
4240 	struct ifnet *ifp = &sc->sc_if;
4241 #ifdef __NetBSD__
4242 	int s;
4243 #endif
4244 
4245 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0)
4246 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4247 
4248 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4249 		ath_tx_processq(sc, sc->sc_cabq);
4250 
4251 	if (sc->sc_softled)
4252 		ath_led_event(sc, ATH_LED_TX);
4253 
4254 #ifdef __NetBSD__
4255 	s = splnet();
4256 #endif
4257 	ath_start(ifp);
4258 #ifdef __NetBSD__
4259 	splx(s);
4260 #endif
4261 }
4262 
4263 /*
4264  * Deferred processing of transmit interrupt; special-cased
4265  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4266  */
4267 static void
4268 ath_tx_proc_q0123(void *arg, int npending)
4269 {
4270 	struct ath_softc *sc = arg;
4271 	struct ifnet *ifp = &sc->sc_if;
4272 	int nacked;
4273 #ifdef __NetBSD__
4274 	int s;
4275 #endif
4276 
4277 	/*
4278 	 * Process each active queue.
4279 	 */
4280 	nacked = 0;
4281 	if (txqactive(sc->sc_ah, 0))
4282 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4283 	if (txqactive(sc->sc_ah, 1))
4284 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4285 	if (txqactive(sc->sc_ah, 2))
4286 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4287 	if (txqactive(sc->sc_ah, 3))
4288 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4289 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4290 		ath_tx_processq(sc, sc->sc_cabq);
4291 	if (nacked) {
4292 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4293 	}
4294 
4295 	if (sc->sc_softled)
4296 		ath_led_event(sc, ATH_LED_TX);
4297 
4298 #ifdef __NetBSD__
4299 	s = splnet();
4300 #endif
4301 	ath_start(ifp);
4302 #ifdef __NetBSD__
4303 	splx(s);
4304 #endif
4305 }
4306 
4307 /*
4308  * Deferred processing of transmit interrupt.
4309  */
4310 static void
4311 ath_tx_proc(void *arg, int npending)
4312 {
4313 	struct ath_softc *sc = arg;
4314 	struct ifnet *ifp = &sc->sc_if;
4315 	int i, nacked;
4316 #ifdef __NetBSD__
4317 	int s;
4318 #endif
4319 
4320 	/*
4321 	 * Process each active queue.
4322 	 */
4323 	nacked = 0;
4324 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4325 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4326 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4327 	if (nacked) {
4328 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4329 	}
4330 
4331 	if (sc->sc_softled)
4332 		ath_led_event(sc, ATH_LED_TX);
4333 
4334 #ifdef __NetBSD__
4335 	s = splnet();
4336 #endif
4337 	ath_start(ifp);
4338 #ifdef __NetBSD__
4339 	splx(s);
4340 #endif
4341 }
4342 
4343 static void
4344 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4345 {
4346 	struct ath_hal *ah = sc->sc_ah;
4347 	struct ieee80211_node *ni;
4348 	struct ath_buf *bf;
4349 	struct ath_desc *ds;
4350 
4351 	/*
4352 	 * NB: this assumes output has been stopped and
4353 	 *     we do not need to block ath_tx_tasklet
4354 	 */
4355 	for (;;) {
4356 		ATH_TXQ_LOCK(txq);
4357 		bf = STAILQ_FIRST(&txq->axq_q);
4358 		if (bf == NULL) {
4359 			txq->axq_link = NULL;
4360 			ATH_TXQ_UNLOCK(txq);
4361 			break;
4362 		}
4363 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4364 		ATH_TXQ_UNLOCK(txq);
4365 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4366 		if (sc->sc_debug & ATH_DEBUG_RESET)
4367 			ath_printtxbuf(bf,
4368 				ath_hal_txprocdesc(ah, bf->bf_desc,
4369 					&ds->ds_txstat) == HAL_OK);
4370 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4371 		m_freem(bf->bf_m);
4372 		bf->bf_m = NULL;
4373 		ni = bf->bf_node;
4374 		bf->bf_node = NULL;
4375 		if (ni != NULL) {
4376 			/*
4377 			 * Reclaim node reference.
4378 			 */
4379 			ieee80211_free_node(ni);
4380 		}
4381 		ATH_TXBUF_LOCK(sc);
4382 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4383 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4384 		ATH_TXBUF_UNLOCK(sc);
4385 	}
4386 }
4387 
4388 static void
4389 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4390 {
4391 	struct ath_hal *ah = sc->sc_ah;
4392 
4393 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4394 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4395 	    __func__, txq->axq_qnum,
4396 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4397 	    txq->axq_link);
4398 }
4399 
4400 /*
4401  * Drain the transmit queues and reclaim resources.
4402  */
4403 static void
4404 ath_draintxq(struct ath_softc *sc)
4405 {
4406 	struct ath_hal *ah = sc->sc_ah;
4407 	int i;
4408 
4409 	/* XXX return value */
4410 	if (device_is_active(sc->sc_dev)) {
4411 		/* don't touch the hardware if marked invalid */
4412 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4413 		DPRINTF(sc, ATH_DEBUG_RESET,
4414 		    "%s: beacon queue %p\n", __func__,
4415 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4416 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4417 			if (ATH_TXQ_SETUP(sc, i))
4418 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4419 	}
4420 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4421 		if (ATH_TXQ_SETUP(sc, i))
4422 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4423 }
4424 
4425 /*
4426  * Disable the receive h/w in preparation for a reset.
4427  */
4428 static void
4429 ath_stoprecv(struct ath_softc *sc)
4430 {
4431 #define	PA2DESC(_sc, _pa) \
4432 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4433 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4434 	struct ath_hal *ah = sc->sc_ah;
4435 
4436 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4437 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4438 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4439 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4440 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4441 		struct ath_buf *bf;
4442 
4443 		printf("%s: rx queue %p, link %p\n", __func__,
4444 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4445 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4446 			struct ath_desc *ds = bf->bf_desc;
4447 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4448 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4449 				&ds->ds_rxstat);
4450 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4451 				ath_printrxbuf(bf, status == HAL_OK);
4452 		}
4453 	}
4454 	sc->sc_rxlink = NULL;		/* just in case */
4455 #undef PA2DESC
4456 }
4457 
4458 /*
4459  * Enable the receive h/w following a reset.
4460  */
4461 static int
4462 ath_startrecv(struct ath_softc *sc)
4463 {
4464 	struct ath_hal *ah = sc->sc_ah;
4465 	struct ath_buf *bf;
4466 
4467 	sc->sc_rxlink = NULL;
4468 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4469 		int error = ath_rxbuf_init(sc, bf);
4470 		if (error != 0) {
4471 			DPRINTF(sc, ATH_DEBUG_RECV,
4472 				"%s: ath_rxbuf_init failed %d\n",
4473 				__func__, error);
4474 			return error;
4475 		}
4476 	}
4477 
4478 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4479 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4480 	ath_hal_rxena(ah);		/* enable recv descriptors */
4481 	ath_mode_init(sc);		/* set filters, etc. */
4482 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4483 	return 0;
4484 }
4485 
4486 /*
4487  * Update internal state after a channel change.
4488  */
4489 static void
4490 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4491 {
4492 	struct ieee80211com *ic = &sc->sc_ic;
4493 	enum ieee80211_phymode mode;
4494 	u_int16_t flags;
4495 
4496 	/*
4497 	 * Change channels and update the h/w rate map
4498 	 * if we're switching; e.g. 11a to 11b/g.
4499 	 */
4500 	mode = ieee80211_chan2mode(ic, chan);
4501 	if (mode != sc->sc_curmode)
4502 		ath_setcurmode(sc, mode);
4503 	/*
4504 	 * Update BPF state.  NB: ethereal et. al. don't handle
4505 	 * merged flags well so pick a unique mode for their use.
4506 	 */
4507 	if (IEEE80211_IS_CHAN_A(chan))
4508 		flags = IEEE80211_CHAN_A;
4509 	/* XXX 11g schizophrenia */
4510 	else if (IEEE80211_IS_CHAN_G(chan) ||
4511 	    IEEE80211_IS_CHAN_PUREG(chan))
4512 		flags = IEEE80211_CHAN_G;
4513 	else
4514 		flags = IEEE80211_CHAN_B;
4515 	if (IEEE80211_IS_CHAN_T(chan))
4516 		flags |= IEEE80211_CHAN_TURBO;
4517 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4518 		htole16(chan->ic_freq);
4519 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4520 		htole16(flags);
4521 }
4522 
4523 #if 0
4524 /*
4525  * Poll for a channel clear indication; this is required
4526  * for channels requiring DFS and not previously visited
4527  * and/or with a recent radar detection.
4528  */
4529 static void
4530 ath_dfswait(void *arg)
4531 {
4532 	struct ath_softc *sc = arg;
4533 	struct ath_hal *ah = sc->sc_ah;
4534 	HAL_CHANNEL hchan;
4535 
4536 	ath_hal_radar_wait(ah, &hchan);
4537 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4538 		if_printf(&sc->sc_if,
4539 		    "channel %u/0x%x/0x%x has interference\n",
4540 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4541 		return;
4542 	}
4543 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4544 		/* XXX should not happen */
4545 		return;
4546 	}
4547 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4548 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4549 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4550 		if_printf(&sc->sc_if,
4551 		    "channel %u/0x%x/0x%x marked clear\n",
4552 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4553 	} else
4554 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4555 }
4556 #endif
4557 
4558 /*
4559  * Set/change channels.  If the channel is really being changed,
4560  * it's done by reseting the chip.  To accomplish this we must
4561  * first cleanup any pending DMA, then restart stuff after a la
4562  * ath_init.
4563  */
4564 static int
4565 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4566 {
4567 	struct ath_hal *ah = sc->sc_ah;
4568 	struct ieee80211com *ic = &sc->sc_ic;
4569 	HAL_CHANNEL hchan;
4570 
4571 	/*
4572 	 * Convert to a HAL channel description with
4573 	 * the flags constrained to reflect the current
4574 	 * operating mode.
4575 	 */
4576 	hchan.channel = chan->ic_freq;
4577 	hchan.channelFlags = ath_chan2flags(ic, chan);
4578 
4579 	DPRINTF(sc, ATH_DEBUG_RESET,
4580 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4581 	    __func__,
4582 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4583 		sc->sc_curchan.channelFlags),
4584 		sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4585 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4586 		hchan.channel, hchan.channelFlags);
4587 	if (hchan.channel != sc->sc_curchan.channel ||
4588 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4589 		HAL_STATUS status;
4590 
4591 		/*
4592 		 * To switch channels clear any pending DMA operations;
4593 		 * wait long enough for the RX fifo to drain, reset the
4594 		 * hardware at the new frequency, and then re-enable
4595 		 * the relevant bits of the h/w.
4596 		 */
4597 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4598 		ath_draintxq(sc);		/* clear pending tx frames */
4599 		ath_stoprecv(sc);		/* turn off frame recv */
4600 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4601 			if_printf(ic->ic_ifp, "%s: unable to reset "
4602 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4603 			    __func__, ieee80211_chan2ieee(ic, chan),
4604 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4605 			return EIO;
4606 		}
4607 		sc->sc_curchan = hchan;
4608 		ath_update_txpow(sc);		/* update tx power state */
4609 		ath_restore_diversity(sc);
4610 		sc->sc_calinterval = 1;
4611 		sc->sc_caltries = 0;
4612 
4613 		/*
4614 		 * Re-enable rx framework.
4615 		 */
4616 		if (ath_startrecv(sc) != 0) {
4617 			if_printf(&sc->sc_if,
4618 				"%s: unable to restart recv logic\n", __func__);
4619 			return EIO;
4620 		}
4621 
4622 		/*
4623 		 * Change channels and update the h/w rate map
4624 		 * if we're switching; e.g. 11a to 11b/g.
4625 		 */
4626 		ic->ic_ibss_chan = chan;
4627 		ath_chan_change(sc, chan);
4628 
4629 #if 0
4630 		/*
4631 		 * Handle DFS required waiting period to determine
4632 		 * if channel is clear of radar traffic.
4633 		 */
4634 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4635 #define	DFS_AND_NOT_CLEAR(_c) \
4636 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4637 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4638 				if_printf(&sc->sc_if,
4639 					"wait for DFS clear channel signal\n");
4640 				/* XXX stop sndq */
4641 				sc->sc_if.if_flags |= IFF_OACTIVE;
4642 				callout_reset(&sc->sc_dfs_ch,
4643 					2 * hz, ath_dfswait, sc);
4644 			} else
4645 				callout_stop(&sc->sc_dfs_ch);
4646 #undef DFS_NOT_CLEAR
4647 		}
4648 #endif
4649 
4650 		/*
4651 		 * Re-enable interrupts.
4652 		 */
4653 		ath_hal_intrset(ah, sc->sc_imask);
4654 	}
4655 	return 0;
4656 }
4657 
4658 static void
4659 ath_next_scan(void *arg)
4660 {
4661 	struct ath_softc *sc = arg;
4662 	struct ieee80211com *ic = &sc->sc_ic;
4663 	int s;
4664 
4665 	/* don't call ath_start w/o network interrupts blocked */
4666 	s = splnet();
4667 
4668 	if (ic->ic_state == IEEE80211_S_SCAN)
4669 		ieee80211_next_scan(ic);
4670 	splx(s);
4671 }
4672 
4673 /*
4674  * Periodically recalibrate the PHY to account
4675  * for temperature/environment changes.
4676  */
4677 static void
4678 ath_calibrate(void *arg)
4679 {
4680 	struct ath_softc *sc = arg;
4681 	struct ath_hal *ah = sc->sc_ah;
4682 	HAL_BOOL iqCalDone;
4683 	int s;
4684 
4685 	sc->sc_stats.ast_per_cal++;
4686 
4687 	 s = splnet();
4688 
4689 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4690 		/*
4691 		 * Rfgain is out of bounds, reset the chip
4692 		 * to load new gain values.
4693 		 */
4694 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4695 			"%s: rfgain change\n", __func__);
4696 		sc->sc_stats.ast_per_rfgain++;
4697 		ath_reset(&sc->sc_if);
4698 	}
4699 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4700 		DPRINTF(sc, ATH_DEBUG_ANY,
4701 			"%s: calibration of channel %u failed\n",
4702 			__func__, sc->sc_curchan.channel);
4703 		sc->sc_stats.ast_per_calfail++;
4704 	}
4705 	/*
4706 	 * Calibrate noise floor data again in case of change.
4707 	 */
4708 	ath_hal_process_noisefloor(ah);
4709 	/*
4710 	 * Poll more frequently when the IQ calibration is in
4711 	 * progress to speedup loading the final settings.
4712 	 * We temper this aggressive polling with an exponential
4713 	 * back off after 4 tries up to ath_calinterval.
4714 	 */
4715 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4716 		sc->sc_caltries = 0;
4717 		sc->sc_calinterval = ath_calinterval;
4718 	} else if (sc->sc_caltries > 4) {
4719 		sc->sc_caltries = 0;
4720 		sc->sc_calinterval <<= 1;
4721 		if (sc->sc_calinterval > ath_calinterval)
4722 			sc->sc_calinterval = ath_calinterval;
4723 	}
4724 	KASSERTMSG(0 < sc->sc_calinterval &&
4725 		   sc->sc_calinterval <= ath_calinterval,
4726 		   "bad calibration interval %u", sc->sc_calinterval);
4727 
4728 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4729 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4730 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4731 	sc->sc_caltries++;
4732 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4733 		ath_calibrate, sc);
4734 	splx(s);
4735 }
4736 
4737 static int
4738 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4739 {
4740 	struct ifnet *ifp = ic->ic_ifp;
4741 	struct ath_softc *sc = ifp->if_softc;
4742 	struct ath_hal *ah = sc->sc_ah;
4743 	struct ieee80211_node *ni;
4744 	int i, error;
4745 	const u_int8_t *bssid;
4746 	u_int32_t rfilt;
4747 	static const HAL_LED_STATE leds[] = {
4748 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4749 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4750 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4751 	    HAL_LED_ASSOC,	/* IEEE80211_S_ASSOC */
4752 	    HAL_LED_RUN,	/* IEEE80211_S_RUN */
4753 	};
4754 
4755 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4756 		ieee80211_state_name[ic->ic_state],
4757 		ieee80211_state_name[nstate]);
4758 
4759 	callout_stop(&sc->sc_scan_ch);
4760 	callout_stop(&sc->sc_cal_ch);
4761 #if 0
4762 	callout_stop(&sc->sc_dfs_ch);
4763 #endif
4764 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4765 
4766 	if (nstate == IEEE80211_S_INIT) {
4767 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4768 		/*
4769 		 * NB: disable interrupts so we don't rx frames.
4770 		 */
4771 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4772 		/*
4773 		 * Notify the rate control algorithm.
4774 		 */
4775 		ath_rate_newstate(sc, nstate);
4776 		goto done;
4777 	}
4778 	ni = ic->ic_bss;
4779 	error = ath_chan_set(sc, ic->ic_curchan);
4780 	if (error != 0)
4781 		goto bad;
4782 	rfilt = ath_calcrxfilter(sc, nstate);
4783 	if (nstate == IEEE80211_S_SCAN)
4784 		bssid = ifp->if_broadcastaddr;
4785 	else
4786 		bssid = ni->ni_bssid;
4787 	ath_hal_setrxfilter(ah, rfilt);
4788 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4789 		 __func__, rfilt, ether_sprintf(bssid));
4790 
4791 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4792 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4793 	else
4794 		ath_hal_setassocid(ah, bssid, 0);
4795 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4796 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4797 			if (ath_hal_keyisvalid(ah, i))
4798 				ath_hal_keysetmac(ah, i, bssid);
4799 	}
4800 
4801 	/*
4802 	 * Notify the rate control algorithm so rates
4803 	 * are setup should ath_beacon_alloc be called.
4804 	 */
4805 	ath_rate_newstate(sc, nstate);
4806 
4807 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4808 		/* nothing to do */;
4809 	} else if (nstate == IEEE80211_S_RUN) {
4810 		DPRINTF(sc, ATH_DEBUG_STATE,
4811 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4812 			"capinfo=0x%04x chan=%d\n"
4813 			 , __func__
4814 			 , ic->ic_flags
4815 			 , ni->ni_intval
4816 			 , ether_sprintf(ni->ni_bssid)
4817 			 , ni->ni_capinfo
4818 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4819 
4820 		switch (ic->ic_opmode) {
4821 		case IEEE80211_M_HOSTAP:
4822 		case IEEE80211_M_IBSS:
4823 			/*
4824 			 * Allocate and setup the beacon frame.
4825 			 *
4826 			 * Stop any previous beacon DMA.  This may be
4827 			 * necessary, for example, when an ibss merge
4828 			 * causes reconfiguration; there will be a state
4829 			 * transition from RUN->RUN that means we may
4830 			 * be called with beacon transmission active.
4831 			 */
4832 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4833 			ath_beacon_free(sc);
4834 			error = ath_beacon_alloc(sc, ni);
4835 			if (error != 0)
4836 				goto bad;
4837 			/*
4838 			 * If joining an adhoc network defer beacon timer
4839 			 * configuration to the next beacon frame so we
4840 			 * have a current TSF to use.  Otherwise we're
4841 			 * starting an ibss/bss so there's no need to delay.
4842 			 */
4843 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4844 			    ic->ic_bss->ni_tstamp.tsf != 0)
4845 				sc->sc_syncbeacon = 1;
4846 			else
4847 				ath_beacon_config(sc);
4848 			break;
4849 		case IEEE80211_M_STA:
4850 			/*
4851 			 * Allocate a key cache slot to the station.
4852 			 */
4853 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4854 			    sc->sc_hasclrkey &&
4855 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4856 				ath_setup_stationkey(ni);
4857 			/*
4858 			 * Defer beacon timer configuration to the next
4859 			 * beacon frame so we have a current TSF to use
4860 			 * (any TSF collected when scanning is likely old).
4861 			 */
4862 			sc->sc_syncbeacon = 1;
4863 			break;
4864 		default:
4865 			break;
4866 		}
4867 		/*
4868 		 * Let the hal process statistics collected during a
4869 		 * scan so it can provide calibrated noise floor data.
4870 		 */
4871 		ath_hal_process_noisefloor(ah);
4872 		/*
4873 		 * Reset rssi stats; maybe not the best place...
4874 		 */
4875 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4876 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4877 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4878 	} else {
4879 		ath_hal_intrset(ah,
4880 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4881 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4882 	}
4883 done:
4884 	/*
4885 	 * Invoke the parent method to complete the work.
4886 	 */
4887 	error = sc->sc_newstate(ic, nstate, arg);
4888 	/*
4889 	 * Finally, start any timers.
4890 	 */
4891 	if (nstate == IEEE80211_S_RUN) {
4892 		/* start periodic recalibration timer */
4893 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4894 			ath_calibrate, sc);
4895 	} else if (nstate == IEEE80211_S_SCAN) {
4896 		/* start ap/neighbor scan timer */
4897 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4898 			ath_next_scan, sc);
4899 	}
4900 bad:
4901 	return error;
4902 }
4903 
4904 /*
4905  * Allocate a key cache slot to the station so we can
4906  * setup a mapping from key index to node. The key cache
4907  * slot is needed for managing antenna state and for
4908  * compression when stations do not use crypto.  We do
4909  * it uniliaterally here; if crypto is employed this slot
4910  * will be reassigned.
4911  */
4912 static void
4913 ath_setup_stationkey(struct ieee80211_node *ni)
4914 {
4915 	struct ieee80211com *ic = ni->ni_ic;
4916 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4917 	ieee80211_keyix keyix, rxkeyix;
4918 
4919 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4920 		/*
4921 		 * Key cache is full; we'll fall back to doing
4922 		 * the more expensive lookup in software.  Note
4923 		 * this also means no h/w compression.
4924 		 */
4925 		/* XXX msg+statistic */
4926 	} else {
4927 		/* XXX locking? */
4928 		ni->ni_ucastkey.wk_keyix = keyix;
4929 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4930 		/* NB: this will create a pass-thru key entry */
4931 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4932 	}
4933 }
4934 
4935 /*
4936  * Setup driver-specific state for a newly associated node.
4937  * Note that we're called also on a re-associate, the isnew
4938  * param tells us if this is the first time or not.
4939  */
4940 static void
4941 ath_newassoc(struct ieee80211_node *ni, int isnew)
4942 {
4943 	struct ieee80211com *ic = ni->ni_ic;
4944 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4945 
4946 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4947 	if (isnew &&
4948 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4949 		KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4950 		    "new assoc with a unicast key already setup (keyix %u)",
4951 		    ni->ni_ucastkey.wk_keyix);
4952 		ath_setup_stationkey(ni);
4953 	}
4954 }
4955 
4956 static int
4957 ath_getchannels(struct ath_softc *sc, u_int cc,
4958 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4959 {
4960 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4961 	struct ieee80211com *ic = &sc->sc_ic;
4962 	struct ifnet *ifp = &sc->sc_if;
4963 	struct ath_hal *ah = sc->sc_ah;
4964 	HAL_CHANNEL *chans;
4965 	int i, ix, nchan;
4966 
4967 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4968 			M_TEMP, M_NOWAIT);
4969 	if (chans == NULL) {
4970 		if_printf(ifp, "unable to allocate channel table\n");
4971 		return ENOMEM;
4972 	}
4973 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4974 	    NULL, 0, NULL,
4975 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4976 		u_int32_t rd;
4977 
4978 		(void)ath_hal_getregdomain(ah, &rd);
4979 		if_printf(ifp, "unable to collect channel list from hal; "
4980 			"regdomain likely %u country code %u\n", rd, cc);
4981 		free(chans, M_TEMP);
4982 		return EINVAL;
4983 	}
4984 
4985 	/*
4986 	 * Convert HAL channels to ieee80211 ones and insert
4987 	 * them in the table according to their channel number.
4988 	 */
4989 	for (i = 0; i < nchan; i++) {
4990 		HAL_CHANNEL *c = &chans[i];
4991 		u_int16_t flags;
4992 
4993 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4994 		if (ix > IEEE80211_CHAN_MAX) {
4995 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4996 				ix, c->channel, c->channelFlags);
4997 			continue;
4998 		}
4999 		if (ix < 0) {
5000 			/* XXX can't handle stuff <2400 right now */
5001 			if (bootverbose)
5002 				if_printf(ifp, "hal channel %d (%u/%x) "
5003 				    "cannot be handled; ignored\n",
5004 				    ix, c->channel, c->channelFlags);
5005 			continue;
5006 		}
5007 		/*
5008 		 * Calculate net80211 flags; most are compatible
5009 		 * but some need massaging.  Note the static turbo
5010 		 * conversion can be removed once net80211 is updated
5011 		 * to understand static vs. dynamic turbo.
5012 		 */
5013 		flags = c->channelFlags & COMPAT;
5014 		if (c->channelFlags & CHANNEL_STURBO)
5015 			flags |= IEEE80211_CHAN_TURBO;
5016 		if (ic->ic_channels[ix].ic_freq == 0) {
5017 			ic->ic_channels[ix].ic_freq = c->channel;
5018 			ic->ic_channels[ix].ic_flags = flags;
5019 		} else {
5020 			/* channels overlap; e.g. 11g and 11b */
5021 			ic->ic_channels[ix].ic_flags |= flags;
5022 		}
5023 	}
5024 	free(chans, M_TEMP);
5025 	return 0;
5026 #undef COMPAT
5027 }
5028 
5029 static void
5030 ath_led_done(void *arg)
5031 {
5032 	struct ath_softc *sc = arg;
5033 
5034 	sc->sc_blinking = 0;
5035 }
5036 
5037 /*
5038  * Turn the LED off: flip the pin and then set a timer so no
5039  * update will happen for the specified duration.
5040  */
5041 static void
5042 ath_led_off(void *arg)
5043 {
5044 	struct ath_softc *sc = arg;
5045 
5046 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5047 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5048 }
5049 
5050 /*
5051  * Blink the LED according to the specified on/off times.
5052  */
5053 static void
5054 ath_led_blink(struct ath_softc *sc, int on, int off)
5055 {
5056 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5057 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5058 	sc->sc_blinking = 1;
5059 	sc->sc_ledoff = off;
5060 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5061 }
5062 
5063 static void
5064 ath_led_event(struct ath_softc *sc, int event)
5065 {
5066 
5067 	sc->sc_ledevent = ticks;	/* time of last event */
5068 	if (sc->sc_blinking)		/* don't interrupt active blink */
5069 		return;
5070 	switch (event) {
5071 	case ATH_LED_POLL:
5072 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
5073 			sc->sc_hwmap[0].ledoff);
5074 		break;
5075 	case ATH_LED_TX:
5076 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
5077 			sc->sc_hwmap[sc->sc_txrate].ledoff);
5078 		break;
5079 	case ATH_LED_RX:
5080 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
5081 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
5082 		break;
5083 	}
5084 }
5085 
5086 static void
5087 ath_update_txpow(struct ath_softc *sc)
5088 {
5089 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5090 	struct ieee80211com *ic = &sc->sc_ic;
5091 	struct ath_hal *ah = sc->sc_ah;
5092 	u_int32_t txpow;
5093 
5094 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5095 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5096 		/* read back in case value is clamped */
5097 		(void)ath_hal_gettxpowlimit(ah, &txpow);
5098 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5099 	}
5100 	/*
5101 	 * Fetch max tx power level for status requests.
5102 	 */
5103 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5104 	ic->ic_bss->ni_txpower = txpow;
5105 }
5106 
5107 static void
5108 rate_setup(struct ath_softc *sc,
5109 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5110 {
5111 	int i, maxrates;
5112 
5113 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5114 		DPRINTF(sc, ATH_DEBUG_ANY,
5115 			"%s: rate table too small (%u > %u)\n",
5116 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5117 		maxrates = IEEE80211_RATE_MAXSIZE;
5118 	} else
5119 		maxrates = rt->rateCount;
5120 	for (i = 0; i < maxrates; i++)
5121 		rs->rs_rates[i] = rt->info[i].dot11Rate;
5122 	rs->rs_nrates = maxrates;
5123 }
5124 
5125 static int
5126 ath_rate_setup(struct ath_softc *sc, u_int mode)
5127 {
5128 	struct ath_hal *ah = sc->sc_ah;
5129 	struct ieee80211com *ic = &sc->sc_ic;
5130 	const HAL_RATE_TABLE *rt;
5131 
5132 	switch (mode) {
5133 	case IEEE80211_MODE_11A:
5134 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5135 		break;
5136 	case IEEE80211_MODE_11B:
5137 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5138 		break;
5139 	case IEEE80211_MODE_11G:
5140 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5141 		break;
5142 	case IEEE80211_MODE_TURBO_A:
5143 		/* XXX until static/dynamic turbo is fixed */
5144 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5145 		break;
5146 	case IEEE80211_MODE_TURBO_G:
5147 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5148 		break;
5149 	default:
5150 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5151 			__func__, mode);
5152 		return 0;
5153 	}
5154 	sc->sc_rates[mode] = rt;
5155 	if (rt != NULL) {
5156 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5157 		return 1;
5158 	} else
5159 		return 0;
5160 }
5161 
5162 static void
5163 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5164 {
5165 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5166 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5167 	static const struct {
5168 		u_int		rate;		/* tx/rx 802.11 rate */
5169 		u_int16_t	timeOn;		/* LED on time (ms) */
5170 		u_int16_t	timeOff;	/* LED off time (ms) */
5171 	} blinkrates[] = {
5172 		{ 108,  40,  10 },
5173 		{  96,  44,  11 },
5174 		{  72,  50,  13 },
5175 		{  48,  57,  14 },
5176 		{  36,  67,  16 },
5177 		{  24,  80,  20 },
5178 		{  22, 100,  25 },
5179 		{  18, 133,  34 },
5180 		{  12, 160,  40 },
5181 		{  10, 200,  50 },
5182 		{   6, 240,  58 },
5183 		{   4, 267,  66 },
5184 		{   2, 400, 100 },
5185 		{   0, 500, 130 },
5186 	};
5187 	const HAL_RATE_TABLE *rt;
5188 	int i, j;
5189 
5190 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5191 	rt = sc->sc_rates[mode];
5192 	KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode);
5193 	for (i = 0; i < rt->rateCount; i++)
5194 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5195 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5196 	for (i = 0; i < 32; i++) {
5197 		u_int8_t ix = rt->rateCodeToIndex[i];
5198 		if (ix == 0xff) {
5199 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5200 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5201 			continue;
5202 		}
5203 		sc->sc_hwmap[i].ieeerate =
5204 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5205 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5206 		if (rt->info[ix].shortPreamble ||
5207 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5208 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5209 		/* NB: receive frames include FCS */
5210 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5211 			IEEE80211_RADIOTAP_F_FCS;
5212 		/* setup blink rate table to avoid per-packet lookup */
5213 		for (j = 0; j < N(blinkrates)-1; j++)
5214 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5215 				break;
5216 		/* NB: this uses the last entry if the rate isn't found */
5217 		/* XXX beware of overlow */
5218 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5219 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5220 	}
5221 	sc->sc_currates = rt;
5222 	sc->sc_curmode = mode;
5223 	/*
5224 	 * All protection frames are transmited at 2Mb/s for
5225 	 * 11g, otherwise at 1Mb/s.
5226 	 */
5227 	if (mode == IEEE80211_MODE_11G)
5228 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5229 	else
5230 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5231 	/* rate index used to send management frames */
5232 	sc->sc_minrateix = 0;
5233 	/*
5234 	 * Setup multicast rate state.
5235 	 */
5236 	/* XXX layering violation */
5237 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5238 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5239 	/* NB: caller is responsible for reseting rate control state */
5240 #undef N
5241 }
5242 
5243 #ifdef AR_DEBUG
5244 static void
5245 ath_printrxbuf(struct ath_buf *bf, int done)
5246 {
5247 	struct ath_desc *ds;
5248 	int i;
5249 
5250 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5251 		printf("R%d (%p %" PRIx64
5252 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5253 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5254 		    ds->ds_link, ds->ds_data,
5255 		    ds->ds_ctl0, ds->ds_ctl1,
5256 		    ds->ds_hw[0], ds->ds_hw[1],
5257 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5258 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5259 	}
5260 }
5261 
5262 static void
5263 ath_printtxbuf(struct ath_buf *bf, int done)
5264 {
5265 	struct ath_desc *ds;
5266 	int i;
5267 
5268 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5269 		printf("T%d (%p %" PRIx64
5270 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5271 		    i, ds,
5272 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5273 		    ds->ds_link, ds->ds_data,
5274 		    ds->ds_ctl0, ds->ds_ctl1,
5275 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5276 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5277 	}
5278 }
5279 #endif	/* AR_DEBUG */
5280 
5281 static void
5282 ath_watchdog(struct ifnet *ifp)
5283 {
5284 	struct ath_softc *sc = ifp->if_softc;
5285 	struct ieee80211com *ic = &sc->sc_ic;
5286 	struct ath_txq *axq;
5287 	int i;
5288 
5289 	ifp->if_timer = 0;
5290 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5291 	    !device_is_active(sc->sc_dev))
5292 		return;
5293 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5294 		if (!ATH_TXQ_SETUP(sc, i))
5295 			continue;
5296 		axq = &sc->sc_txq[i];
5297 		ATH_TXQ_LOCK(axq);
5298 		if (axq->axq_timer == 0)
5299 			;
5300 		else if (--axq->axq_timer == 0) {
5301 			ATH_TXQ_UNLOCK(axq);
5302 			if_printf(ifp, "device timeout (txq %d, "
5303 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5304 			if (sc->sc_txintrperiod > 1)
5305 				sc->sc_txintrperiod--;
5306 			ath_reset(ifp);
5307 			ifp->if_oerrors++;
5308 			sc->sc_stats.ast_watchdog++;
5309 			break;
5310 		} else
5311 			ifp->if_timer = 1;
5312 		ATH_TXQ_UNLOCK(axq);
5313 	}
5314 	ieee80211_watchdog(ic);
5315 }
5316 
5317 /*
5318  * Diagnostic interface to the HAL.  This is used by various
5319  * tools to do things like retrieve register contents for
5320  * debugging.  The mechanism is intentionally opaque so that
5321  * it can change frequently w/o concern for compatiblity.
5322  */
5323 static int
5324 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5325 {
5326 	struct ath_hal *ah = sc->sc_ah;
5327 	u_int id = ad->ad_id & ATH_DIAG_ID;
5328 	void *indata = NULL;
5329 	void *outdata = NULL;
5330 	u_int32_t insize = ad->ad_in_size;
5331 	u_int32_t outsize = ad->ad_out_size;
5332 	int error = 0;
5333 
5334 	if (ad->ad_id & ATH_DIAG_IN) {
5335 		/*
5336 		 * Copy in data.
5337 		 */
5338 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5339 		if (indata == NULL) {
5340 			error = ENOMEM;
5341 			goto bad;
5342 		}
5343 		error = copyin(ad->ad_in_data, indata, insize);
5344 		if (error)
5345 			goto bad;
5346 	}
5347 	if (ad->ad_id & ATH_DIAG_DYN) {
5348 		/*
5349 		 * Allocate a buffer for the results (otherwise the HAL
5350 		 * returns a pointer to a buffer where we can read the
5351 		 * results).  Note that we depend on the HAL leaving this
5352 		 * pointer for us to use below in reclaiming the buffer;
5353 		 * may want to be more defensive.
5354 		 */
5355 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5356 		if (outdata == NULL) {
5357 			error = ENOMEM;
5358 			goto bad;
5359 		}
5360 	}
5361 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5362 		if (outsize < ad->ad_out_size)
5363 			ad->ad_out_size = outsize;
5364 		if (outdata != NULL)
5365 			error = copyout(outdata, ad->ad_out_data,
5366 					ad->ad_out_size);
5367 	} else {
5368 		error = EINVAL;
5369 	}
5370 bad:
5371 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5372 		free(indata, M_TEMP);
5373 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5374 		free(outdata, M_TEMP);
5375 	return error;
5376 }
5377 
5378 static int
5379 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5380 {
5381 #define	IS_RUNNING(ifp) \
5382 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5383 	struct ath_softc *sc = ifp->if_softc;
5384 	struct ieee80211com *ic = &sc->sc_ic;
5385 	struct ifreq *ifr = (struct ifreq *)data;
5386 	int error = 0, s;
5387 
5388 	s = splnet();
5389 	switch (cmd) {
5390 	case SIOCSIFFLAGS:
5391 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5392 			break;
5393 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
5394 		case IFF_UP | IFF_RUNNING:
5395 			/*
5396 			 * To avoid rescanning another access point,
5397 			 * do not call ath_init() here.  Instead,
5398 			 * only reflect promisc mode settings.
5399 			 */
5400 			ath_mode_init(sc);
5401 			break;
5402 		case IFF_UP:
5403 			/*
5404 			 * Beware of being called during attach/detach
5405 			 * to reset promiscuous mode.  In that case we
5406 			 * will still be marked UP but not RUNNING.
5407 			 * However trying to re-init the interface
5408 			 * is the wrong thing to do as we've already
5409 			 * torn down much of our state.  There's
5410 			 * probably a better way to deal with this.
5411 			 */
5412 			error = ath_init(sc);
5413 			break;
5414 		case IFF_RUNNING:
5415 			ath_stop_locked(ifp, 1);
5416 			break;
5417 		case 0:
5418 			break;
5419 		}
5420 		break;
5421 	case SIOCADDMULTI:
5422 	case SIOCDELMULTI:
5423 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5424 			if (ifp->if_flags & IFF_RUNNING)
5425 				ath_mode_init(sc);
5426 			error = 0;
5427 		}
5428 		break;
5429 	case SIOCGATHSTATS:
5430 		/* NB: embed these numbers to get a consistent view */
5431 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5432 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5433 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5434 		splx(s);
5435 		/*
5436 		 * NB: Drop the softc lock in case of a page fault;
5437 		 * we'll accept any potential inconsisentcy in the
5438 		 * statistics.  The alternative is to copy the data
5439 		 * to a local structure.
5440 		 */
5441 		return copyout(&sc->sc_stats,
5442 				ifr->ifr_data, sizeof (sc->sc_stats));
5443 	case SIOCGATHDIAG:
5444 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5445 		break;
5446 	default:
5447 		error = ieee80211_ioctl(ic, cmd, data);
5448 		if (error != ENETRESET)
5449 			;
5450 		else if (IS_RUNNING(ifp) &&
5451 			 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5452 			error = ath_init(sc);
5453 		else
5454 			error = 0;
5455 		break;
5456 	}
5457 	splx(s);
5458 	return error;
5459 #undef IS_RUNNING
5460 }
5461 
5462 static void
5463 ath_bpfattach(struct ath_softc *sc)
5464 {
5465 	struct ifnet *ifp = &sc->sc_if;
5466 
5467 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
5468 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5469 	    &sc->sc_drvbpf);
5470 
5471 	/*
5472 	 * Initialize constant fields.
5473 	 * XXX make header lengths a multiple of 32-bits so subsequent
5474 	 *     headers are properly aligned; this is a kludge to keep
5475 	 *     certain applications happy.
5476 	 *
5477 	 * NB: the channel is setup each time we transition to the
5478 	 *     RUN state to avoid filling it in for each frame.
5479 	 */
5480 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5481 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5482 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5483 
5484 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5485 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5486 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5487 }
5488 
5489 /*
5490  * Announce various information on device/driver attach.
5491  */
5492 static void
5493 ath_announce(struct ath_softc *sc)
5494 {
5495 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5496 	struct ifnet *ifp = &sc->sc_if;
5497 	struct ath_hal *ah = sc->sc_ah;
5498 	u_int modes, cc;
5499 
5500 	if_printf(ifp, "mac %d.%d phy %d.%d",
5501 		ah->ah_macVersion, ah->ah_macRev,
5502 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5503 	/*
5504 	 * Print radio revision(s).  We check the wireless modes
5505 	 * to avoid falsely printing revs for inoperable parts.
5506 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5507 	 */
5508 	ath_hal_getcountrycode(ah, &cc);
5509 	modes = ath_hal_getwirelessmodes(ah, cc);
5510 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5511 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5512 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5513 				ah->ah_analog5GhzRev >> 4,
5514 				ah->ah_analog5GhzRev & 0xf,
5515 				ah->ah_analog2GhzRev >> 4,
5516 				ah->ah_analog2GhzRev & 0xf);
5517 		else
5518 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5519 				ah->ah_analog5GhzRev & 0xf);
5520 	} else
5521 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5522 			ah->ah_analog5GhzRev & 0xf);
5523 	printf("\n");
5524 	if (bootverbose) {
5525 		int i;
5526 		for (i = 0; i <= WME_AC_VO; i++) {
5527 			struct ath_txq *txq = sc->sc_ac2q[i];
5528 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5529 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5530 		}
5531 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5532 			sc->sc_cabq->axq_qnum);
5533 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5534 	}
5535 	if (ath_rxbuf != ATH_RXBUF)
5536 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5537 	if (ath_txbuf != ATH_TXBUF)
5538 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5539 #undef HAL_MODE_DUALBAND
5540 }
5541