xref: /netbsd/sys/dev/ic/hme.c (revision 60eeab91)
1 /*	$NetBSD: hme.c,v 1.4 1999/12/17 14:37:15 pk Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * HME Ethernet module driver.
41  */
42 
43 #define HMEDEBUG
44 
45 #include "opt_inet.h"
46 #include "opt_ccitt.h"
47 #include "opt_llc.h"
48 #include "opt_ns.h"
49 #include "bpfilter.h"
50 #include "rnd.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/mbuf.h>
55 #include <sys/syslog.h>
56 #include <sys/socket.h>
57 #include <sys/device.h>
58 #include <sys/malloc.h>
59 #include <sys/ioctl.h>
60 #include <sys/errno.h>
61 #if NRND > 0
62 #include <sys/rnd.h>
63 #endif
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_ether.h>
68 #include <net/if_media.h>
69 
70 #ifdef INET
71 #include <netinet/in.h>
72 #include <netinet/if_inarp.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76 #endif
77 
78 #ifdef NS
79 #include <netns/ns.h>
80 #include <netns/ns_if.h>
81 #endif
82 
83 #if NBPFILTER > 0
84 #include <net/bpf.h>
85 #include <net/bpfdesc.h>
86 #endif
87 
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 
91 #include <machine/bus.h>
92 
93 #include <dev/ic/hmereg.h>
94 #include <dev/ic/hmevar.h>
95 
96 void		hme_start __P((struct ifnet *));
97 void		hme_stop __P((struct hme_softc *));
98 int		hme_ioctl __P((struct ifnet *, u_long, caddr_t));
99 void		hme_watchdog __P((struct ifnet *));
100 void		hme_shutdown __P((void *));
101 void		hme_init __P((struct hme_softc *));
102 void		hme_meminit __P((struct hme_softc *));
103 void		hme_mifinit __P((struct hme_softc *));
104 void		hme_reset __P((struct hme_softc *));
105 void		hme_setladrf __P((struct hme_softc *));
106 
107 /* MII methods & callbacks */
108 static int	hme_mii_readreg __P((struct device *, int, int));
109 static void	hme_mii_writereg __P((struct device *, int, int, int));
110 static void	hme_mii_statchg __P((struct device *));
111 
112 int		hme_mediachange __P((struct ifnet *));
113 void		hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
114 
115 struct mbuf	*hme_get __P((struct hme_softc *, int, int));
116 int		hme_put __P((struct hme_softc *, int, struct mbuf *));
117 void		hme_read __P((struct hme_softc *, int, int));
118 int		hme_eint __P((struct hme_softc *, u_int));
119 int		hme_rint __P((struct hme_softc *));
120 int		hme_tint __P((struct hme_softc *));
121 
122 static int	ether_cmp __P((u_char *, u_char *));
123 
124 /* Default buffer copy routines */
125 void	hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
126 void	hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
127 void	hme_zerobuf_contig __P((struct hme_softc *, int, int));
128 
129 
130 void
131 hme_config(sc)
132 	struct hme_softc *sc;
133 {
134 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 	struct mii_data *mii = &sc->sc_mii;
136 	bus_dma_segment_t seg;
137 	bus_size_t size;
138 	int rseg, error;
139 
140 	/*
141 	 * HME common initialization.
142 	 *
143 	 * hme_softc fields that must be initialized by the front-end:
144 	 *
145 	 * the bus tag:
146 	 *	sc_bustag
147 	 *
148 	 * the dma bus tag:
149 	 *	sc_dmatag
150 	 *
151 	 * the bus handles:
152 	 *	sc_seb		(Shared Ethernet Block registers)
153 	 *	sc_erx		(Receiver Unit registers)
154 	 *	sc_etx		(Transmitter Unit registers)
155 	 *	sc_mac		(MAC registers)
156 	 *	sc_mif		(Managment Interface registers)
157 	 *
158 	 * the maximum bus burst size:
159 	 *	sc_burst
160 	 *
161 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
162 	 *	rb_membase, rb_dmabase)
163 	 *
164 	 * the local Ethernet address:
165 	 *	sc_enaddr
166 	 *
167 	 */
168 
169 	/* Make sure the chip is stopped. */
170 	hme_stop(sc);
171 
172 
173 	/*
174 	 * Allocate descriptors and buffers
175 	 * XXX - do all this differently.. and more configurably,
176 	 * eg. use things as `dma_load_mbuf()' on transmit,
177 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
178 	 *     all the time) on the reveiver side.
179 	 */
180 #define _HME_NDESC	32
181 #define _HME_BUFSZ	1536
182 
183 	/* Note: the # of descriptors must be a multiple of 16 */
184 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
185 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
186 
187 	/*
188 	 * Allocate DMA capable memory
189 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
190 	 * take this into account when calculating the size. Note that
191 	 * the maximum number of descriptors (256) occupies 2048 bytes,
192 	 * so we allocate that much regardless of _HME_NDESC.
193 	 */
194 	size =	2048 +					/* TX descriptors */
195 		2048 +					/* RX descriptors */
196 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
197 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* TX buffers */
198 	if ((error = bus_dmamem_alloc(sc->sc_dmatag, size,
199 				      2048, 0,
200 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
201 		printf("%s: DMA buffer alloc error %d\n",
202 			sc->sc_dev.dv_xname, error);
203 	}
204 	sc->sc_rb.rb_dmabase = seg.ds_addr;
205 
206 	/* Map DMA memory in CPU adressable space */
207 	if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg, size,
208 				    &sc->sc_rb.rb_membase,
209 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
210 		printf("%s: DMA buffer map error %d\n",
211 			sc->sc_dev.dv_xname, error);
212 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
213 		return;
214 	}
215 
216 #if 0
217 	/*
218 	 * Install default copy routines if not supplied.
219 	 */
220 	if (sc->sc_copytobuf == NULL)
221 		sc->sc_copytobuf = hme_copytobuf_contig;
222 
223 	if (sc->sc_copyfrombuf == NULL)
224 		sc->sc_copyfrombuf = hme_copyfrombuf_contig;
225 #endif
226 
227 	printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
228 
229 	/* Initialize ifnet structure. */
230 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
231 	ifp->if_softc = sc;
232 	ifp->if_start = hme_start;
233 	ifp->if_ioctl = hme_ioctl;
234 	ifp->if_watchdog = hme_watchdog;
235 	ifp->if_flags =
236 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
237 
238 	/* Initialize ifmedia structures and MII info */
239 	mii->mii_ifp = ifp;
240 	mii->mii_readreg = hme_mii_readreg;
241 	mii->mii_writereg = hme_mii_writereg;
242 	mii->mii_statchg = hme_mii_statchg;
243 
244 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
245 
246 	hme_mifinit(sc);
247 
248 	mii_phy_probe(&sc->sc_dev, mii, 0xffffffff,
249 			MII_PHY_ANY, MII_OFFSET_ANY);
250 
251 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
252 		/* No PHY attached */
253 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
254 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
255 	} else {
256 		/*
257 		 * XXX - we can really do the following ONLY if the
258 		 * phy indeed has the auto negotiation capability!!
259 		 */
260 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
261 	}
262 
263 	/* Attach the interface. */
264 	if_attach(ifp);
265 	ether_ifattach(ifp, sc->sc_enaddr);
266 
267 #if NBPFILTER > 0
268 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
269 #endif
270 
271 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
272 	if (sc->sc_sh == NULL)
273 		panic("hme_config: can't establish shutdownhook");
274 
275 #if 0
276 	printf("%s: %d receive buffers, %d transmit buffers\n",
277 	    sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
278 	sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
279 					M_WAITOK);
280 	sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
281 					M_WAITOK);
282 #endif
283 
284 #if NRND > 0
285 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
286 			  RND_TYPE_NET, 0);
287 #endif
288 }
289 
290 void
291 hme_reset(sc)
292 	struct hme_softc *sc;
293 {
294 	int s;
295 
296 	s = splnet();
297 	hme_init(sc);
298 	splx(s);
299 }
300 
301 void
302 hme_stop(sc)
303 	struct hme_softc *sc;
304 {
305 	bus_space_tag_t t = sc->sc_bustag;
306 	bus_space_handle_t seb = sc->sc_seb;
307 	int n;
308 
309 	/* Reset transmitter and receiver */
310 	bus_space_write_4(t, seb, HME_SEBI_RESET,
311 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
312 
313 	for (n = 0; n < 20; n++) {
314 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
315 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
316 			return;
317 		DELAY(20);
318 	}
319 
320 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
321 }
322 
323 void
324 hme_meminit(sc)
325 	struct hme_softc *sc;
326 {
327 	bus_addr_t txbufdma, rxbufdma;
328 	bus_addr_t dma;
329 	caddr_t p;
330 	unsigned int ntbuf, nrbuf, i;
331 	struct hme_ring *hr = &sc->sc_rb;
332 
333 	p = hr->rb_membase;
334 	dma = hr->rb_dmabase;
335 
336 	ntbuf = hr->rb_ntbuf;
337 	nrbuf = hr->rb_nrbuf;
338 
339 	/*
340 	 * Allocate transmit descriptors
341 	 */
342 	hr->rb_txd = p;
343 	hr->rb_txddma = dma;
344 	p += ntbuf * HME_XD_SIZE;
345 	dma += ntbuf * HME_XD_SIZE;
346 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
347 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
348 	p = (caddr_t)roundup((u_long)p, 2048);
349 
350 	/*
351 	 * Allocate receive descriptors
352 	 */
353 	hr->rb_rxd = p;
354 	hr->rb_rxddma = dma;
355 	p += nrbuf * HME_XD_SIZE;
356 	dma += nrbuf * HME_XD_SIZE;
357 	/* Again move forward to the next 2048 byte boundary.*/
358 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
359 	p = (caddr_t)roundup((u_long)p, 2048);
360 
361 
362 	/*
363 	 * Allocate transmit buffers
364 	 */
365 	hr->rb_txbuf = p;
366 	txbufdma = dma;
367 	p += ntbuf * _HME_BUFSZ;
368 	dma += ntbuf * _HME_BUFSZ;
369 
370 	/*
371 	 * Allocate receive buffers
372 	 */
373 	hr->rb_rxbuf = p;
374 	rxbufdma = dma;
375 	p += nrbuf * _HME_BUFSZ;
376 	dma += nrbuf * _HME_BUFSZ;
377 
378 	/*
379 	 * Initialize transmit buffer descriptors
380 	 */
381 	for (i = 0; i < ntbuf; i++) {
382 		HME_XD_SETADDR(hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
383 		HME_XD_SETFLAGS(hr->rb_txd, i, 0);
384 	}
385 
386 	/*
387 	 * Initialize receive buffer descriptors
388 	 */
389 	for (i = 0; i < nrbuf; i++) {
390 		HME_XD_SETADDR(hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
391 		HME_XD_SETFLAGS(hr->rb_rxd, i,
392 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
393 	}
394 
395 	hr->rb_tdhead = hr->rb_tdtail = 0;
396 	hr->rb_td_nbusy = 0;
397 	hr->rb_rdtail = 0;
398 }
399 
400 /*
401  * Initialization of interface; set up initialization block
402  * and transmit/receive descriptor rings.
403  */
404 void
405 hme_init(sc)
406 	struct hme_softc *sc;
407 {
408 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
409 	bus_space_tag_t t = sc->sc_bustag;
410 	bus_space_handle_t seb = sc->sc_seb;
411 	bus_space_handle_t etx = sc->sc_etx;
412 	bus_space_handle_t erx = sc->sc_erx;
413 	bus_space_handle_t mac = sc->sc_mac;
414 	bus_space_handle_t mif = sc->sc_mif;
415 	u_int8_t *ea;
416 	u_int32_t v;
417 
418 	/*
419 	 * Initialization sequence. The numbered steps below correspond
420 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
421 	 * Channel Engine manual (part of the PCIO manual).
422 	 * See also the STP2002-STQ document from Sun Microsystems.
423 	 */
424 
425 	/* step 1 & 2. Reset the Ethernet Channel */
426 	hme_stop(sc);
427 
428 	/* Re-initialize the MIF */
429 	hme_mifinit(sc);
430 
431 	/* Call MI reset function if any */
432 	if (sc->sc_hwreset)
433 		(*sc->sc_hwreset)(sc);
434 
435 #if 0
436 	/* Mask all MIF interrupts, just in case */
437 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
438 #endif
439 
440 	/* step 3. Setup data structures in host memory */
441 	hme_meminit(sc);
442 
443 	/* step 4. TX MAC registers & counters */
444 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
445 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
446 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
447 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
448 
449 	/* Load station MAC address */
450 	ea = sc->sc_enaddr;
451 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
452 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
453 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
454 
455 	/*
456 	 * Init seed for backoff
457 	 * (source suggested by manual: low 10 bits of MAC address)
458 	 */
459 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
460 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
461 
462 
463 	/* Note: Accepting power-on default for other MAC registers here.. */
464 
465 
466 	/* step 5. RX MAC registers & counters */
467 	hme_setladrf(sc);
468 
469 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
470 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
471 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
472 
473 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
474 
475 
476 	/* step 8. Global Configuration & Interrupt Mask */
477 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
478 			~(
479 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
480 			  HME_SEB_STAT_HOSTTOTX |
481 			  HME_SEB_STAT_RXTOHOST |
482 			  HME_SEB_STAT_TXALL |
483 			  HME_SEB_STAT_TXPERR |
484 			  HME_SEB_STAT_RCNTEXP |
485 			  HME_SEB_STAT_ALL_ERRORS ));
486 
487 	switch (sc->sc_burst) {
488 	default:
489 		v = 0;
490 		break;
491 	case 16:
492 		v = HME_SEB_CFG_BURST16;
493 		break;
494 	case 32:
495 		v = HME_SEB_CFG_BURST32;
496 		break;
497 	case 64:
498 		v = HME_SEB_CFG_BURST64;
499 		break;
500 	}
501 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
502 
503 	/* step 9. ETX Configuration: use mostly default values */
504 
505 	/* Enable DMA */
506 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
507 	v |= HME_ETX_CFG_DMAENABLE;
508 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
509 
510 	/* Transmit Descriptor ring size: in increments of 16 */
511 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
512 
513 
514 	/* step 10. ERX Configuration */
515 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
516 
517 	/* Encode Receive Descriptor ring size: four possible values */
518 	switch (_HME_NDESC /*XXX*/) {
519 	case 32:
520 		v |= HME_ERX_CFG_RINGSIZE32;
521 		break;
522 	case 64:
523 		v |= HME_ERX_CFG_RINGSIZE64;
524 		break;
525 	case 128:
526 		v |= HME_ERX_CFG_RINGSIZE128;
527 		break;
528 	case 256:
529 		v |= HME_ERX_CFG_RINGSIZE256;
530 		break;
531 	default:
532 		printf("hme: invalid Receive Descriptor ring size\n");
533 		break;
534 	}
535 
536 	/* Enable DMA */
537 	v |= HME_ERX_CFG_DMAENABLE;
538 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
539 
540 	/* step 11. XIF Configuration */
541 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
542 	v |= HME_MAC_XIF_OE;
543 	/* If an external transceiver is connected, enable its MII drivers */
544 	if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
545 		v |= HME_MAC_XIF_MIIENABLE;
546 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
547 
548 
549 	/* step 12. RX_MAC Configuration Register */
550 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
551 	v |= HME_MAC_RXCFG_ENABLE;
552 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
553 
554 	/* step 13. TX_MAC Configuration Register */
555 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
556 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
557 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
558 
559 	/* step 14. Issue Transmit Pending command */
560 
561 	/* Call MI initialization function if any */
562 	if (sc->sc_hwinit)
563 		(*sc->sc_hwinit)(sc);
564 
565 	ifp->if_flags |= IFF_RUNNING;
566 	ifp->if_flags &= ~IFF_OACTIVE;
567 	ifp->if_timer = 0;
568 	hme_start(ifp);
569 }
570 
571 /*
572  * Compare two Ether/802 addresses for equality, inlined and unrolled for
573  * speed.
574  */
575 static __inline__ int
576 ether_cmp(a, b)
577 	u_char *a, *b;
578 {
579 
580 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
581 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
582 		return (0);
583 	return (1);
584 }
585 
586 
587 /*
588  * Routine to copy from mbuf chain to transmit buffer in
589  * network buffer memory.
590  * Returns the amount of data copied.
591  */
592 int
593 hme_put(sc, ri, m)
594 	struct hme_softc *sc;
595 	int ri;			/* Ring index */
596 	struct mbuf *m;
597 {
598 	struct mbuf *n;
599 	int len, tlen = 0;
600 	caddr_t bp;
601 
602 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
603 	for (; m; m = n) {
604 		len = m->m_len;
605 		if (len == 0) {
606 			MFREE(m, n);
607 			continue;
608 		}
609 		bcopy(mtod(m, caddr_t), bp, len);
610 		bp += len;
611 		tlen += len;
612 		MFREE(m, n);
613 	}
614 	return (tlen);
615 }
616 
617 /*
618  * Pull data off an interface.
619  * Len is length of data, with local net header stripped.
620  * We copy the data into mbufs.  When full cluster sized units are present
621  * we copy into clusters.
622  */
623 struct mbuf *
624 hme_get(sc, ri, totlen)
625 	struct hme_softc *sc;
626 	int ri, totlen;
627 {
628 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
629 	struct mbuf *m, *m0, *newm;
630 	caddr_t bp;
631 	int len;
632 
633 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
634 	if (m0 == 0)
635 		return (0);
636 	m0->m_pkthdr.rcvif = ifp;
637 	m0->m_pkthdr.len = totlen;
638 	len = MHLEN;
639 	m = m0;
640 
641 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
642 
643 	while (totlen > 0) {
644 		if (totlen >= MINCLSIZE) {
645 			MCLGET(m, M_DONTWAIT);
646 			if ((m->m_flags & M_EXT) == 0)
647 				goto bad;
648 			len = MCLBYTES;
649 		}
650 
651 		if (m == m0) {
652 			caddr_t newdata = (caddr_t)
653 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
654 			    sizeof(struct ether_header);
655 			len -= newdata - m->m_data;
656 			m->m_data = newdata;
657 		}
658 
659 		m->m_len = len = min(totlen, len);
660 		bcopy(bp, mtod(m, caddr_t), len);
661 		bp += len;
662 
663 		totlen -= len;
664 		if (totlen > 0) {
665 			MGET(newm, M_DONTWAIT, MT_DATA);
666 			if (newm == 0)
667 				goto bad;
668 			len = MLEN;
669 			m = m->m_next = newm;
670 		}
671 	}
672 
673 	return (m0);
674 
675 bad:
676 	m_freem(m0);
677 	return (0);
678 }
679 
680 /*
681  * Pass a packet to the higher levels.
682  */
683 void
684 hme_read(sc, ix, len)
685 	struct hme_softc *sc;
686 	int ix, len;
687 {
688 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
689 	struct mbuf *m;
690 
691 	if (len <= sizeof(struct ether_header) ||
692 	    len > ETHERMTU + sizeof(struct ether_header)) {
693 #ifdef HMEDEBUG
694 		printf("%s: invalid packet size %d; dropping\n",
695 		    sc->sc_dev.dv_xname, len);
696 #endif
697 		ifp->if_ierrors++;
698 		return;
699 	}
700 
701 	/* Pull packet off interface. */
702 	m = hme_get(sc, ix, len);
703 	if (m == 0) {
704 		ifp->if_ierrors++;
705 		return;
706 	}
707 
708 	ifp->if_ipackets++;
709 
710 #if NBPFILTER > 0
711 	/*
712 	 * Check if there's a BPF listener on this interface.
713 	 * If so, hand off the raw packet to BPF.
714 	 */
715 	if (ifp->if_bpf) {
716 		struct ether_header *eh;
717 
718 		bpf_mtap(ifp->if_bpf, m);
719 
720 		/*
721 		 * Note that the interface cannot be in promiscuous mode if
722 		 * there are no BPF listeners.  And if we are in promiscuous
723 		 * mode, we have to check if this packet is really ours.
724 		 */
725 
726 		/* We assume that the header fit entirely in one mbuf. */
727 		eh = mtod(m, struct ether_header *);
728 
729 		if ((ifp->if_flags & IFF_PROMISC) != 0 &&
730 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
731 		    ether_cmp(eh->ether_dhost, sc->sc_enaddr) == 0) {
732 			m_freem(m);
733 			return;
734 		}
735 	}
736 #endif
737 
738 	/* Pass the packet up. */
739 	(*ifp->if_input)(ifp, m);
740 }
741 
742 void
743 hme_start(ifp)
744 	struct ifnet *ifp;
745 {
746 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
747 	caddr_t txd = sc->sc_rb.rb_txd;
748 	struct mbuf *m;
749 	unsigned int ri, len;
750 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
751 
752 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
753 		return;
754 
755 	ri = sc->sc_rb.rb_tdhead;
756 
757 	for (;;) {
758 		IF_DEQUEUE(&ifp->if_snd, m);
759 		if (m == 0)
760 			break;
761 
762 #if NBPFILTER > 0
763 		/*
764 		 * If BPF is listening on this interface, let it see the
765 		 * packet before we commit it to the wire.
766 		 */
767 		if (ifp->if_bpf)
768 			bpf_mtap(ifp->if_bpf, m);
769 #endif
770 
771 		/*
772 		 * Copy the mbuf chain into the transmit buffer.
773 		 */
774 		len = hme_put(sc, ri, m);
775 
776 		/*
777 		 * Initialize transmit registers and start transmission
778 		 */
779 		HME_XD_SETFLAGS(txd, ri,
780 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
781 			HME_XD_ENCODE_TSIZE(len));
782 
783 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
784 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
785 				  HME_ETX_TP_DMAWAKEUP);
786 
787 		if (++ri == ntbuf)
788 			ri = 0;
789 
790 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
791 			ifp->if_flags |= IFF_OACTIVE;
792 			break;
793 		}
794 	}
795 
796 	sc->sc_rb.rb_tdhead = ri;
797 }
798 
799 /*
800  * Transmit interrupt.
801  */
802 int
803 hme_tint(sc)
804 	struct hme_softc *sc;
805 {
806 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
807 	bus_space_tag_t t = sc->sc_bustag;
808 	bus_space_handle_t mac = sc->sc_mac;
809 	unsigned int ri, txflags;
810 
811 	/*
812 	 * Unload collision counters
813 	 */
814 	ifp->if_collisions +=
815 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
816 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
817 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
818 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
819 
820 	/*
821 	 * then clear the hardware counters.
822 	 */
823 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
824 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
825 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
826 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
827 
828 	/* Fetch current position in the transmit ring */
829 	ri = sc->sc_rb.rb_tdtail;
830 
831 	for (;;) {
832 		if (sc->sc_rb.rb_td_nbusy <= 0)
833 			break;
834 
835 		txflags = HME_XD_GETFLAGS(sc->sc_rb.rb_txd, ri);
836 
837 		if (txflags & HME_XD_OWN)
838 			break;
839 
840 		ifp->if_flags &= ~IFF_OACTIVE;
841 		ifp->if_opackets++;
842 
843 		if (++ri == sc->sc_rb.rb_ntbuf)
844 			ri = 0;
845 
846 		--sc->sc_rb.rb_td_nbusy;
847 	}
848 
849 	/* Update ring */
850 	sc->sc_rb.rb_tdtail = ri;
851 
852 	hme_start(ifp);
853 
854 	if (sc->sc_rb.rb_td_nbusy == 0)
855 		ifp->if_timer = 0;
856 
857 	return (1);
858 }
859 
860 /*
861  * Receive interrupt.
862  */
863 int
864 hme_rint(sc)
865 	struct hme_softc *sc;
866 {
867 	caddr_t xdr = sc->sc_rb.rb_rxd;
868 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
869 	unsigned int ri, len;
870 	u_int32_t flags;
871 
872 	ri = sc->sc_rb.rb_rdtail;
873 
874 	/*
875 	 * Process all buffers with valid data.
876 	 */
877 	for (;;) {
878 		flags = HME_XD_GETFLAGS(xdr, ri);
879 		if (flags & HME_XD_OWN)
880 			break;
881 
882 		if (flags & HME_XD_OFL) {
883 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
884 					sc->sc_dev.dv_xname, ri, flags);
885 		} else {
886 			len = HME_XD_DECODE_RSIZE(flags);
887 			hme_read(sc, ri, len);
888 		}
889 
890 		/* This buffer can be used by the hardware again */
891 		HME_XD_SETFLAGS(xdr, ri,
892 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
893 
894 		if (++ri == nrbuf)
895 			ri = 0;
896 	}
897 
898 	sc->sc_rb.rb_rdtail = ri;
899 
900 	return (1);
901 }
902 
903 int
904 hme_eint(sc, status)
905 	struct hme_softc *sc;
906 	u_int status;
907 {
908 	char bits[128];
909 
910 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
911 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
912 		return (1);
913 	}
914 
915 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
916 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
917 	return (1);
918 }
919 
920 int
921 hme_intr(v)
922 	void *v;
923 {
924 	struct hme_softc *sc = (struct hme_softc *)v;
925 	bus_space_tag_t t = sc->sc_bustag;
926 	bus_space_handle_t seb = sc->sc_seb;
927 	u_int32_t status;
928 	int r = 0;
929 
930 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
931 
932 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
933 		r |= hme_eint(sc, status);
934 
935 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
936 		r |= hme_tint(sc);
937 
938 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
939 		r |= hme_rint(sc);
940 
941 	return (r);
942 }
943 
944 
945 void
946 hme_watchdog(ifp)
947 	struct ifnet *ifp;
948 {
949 	struct hme_softc *sc = ifp->if_softc;
950 
951 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
952 	++ifp->if_oerrors;
953 
954 	hme_reset(sc);
955 }
956 
957 /*
958  * Initialize the MII Management Interface
959  */
960 void
961 hme_mifinit(sc)
962 	struct hme_softc *sc;
963 {
964 	bus_space_tag_t t = sc->sc_bustag;
965 	bus_space_handle_t mif = sc->sc_mif;
966 	u_int32_t v;
967 
968 	/* Configure the MIF in frame mode */
969 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
970 	v &= ~HME_MIF_CFG_BBMODE;
971 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
972 }
973 
974 /*
975  * MII interface
976  */
977 static int
978 hme_mii_readreg(self, phy, reg)
979 	struct device *self;
980 	int phy, reg;
981 {
982 	struct hme_softc *sc = (void *)self;
983 	bus_space_tag_t t = sc->sc_bustag;
984 	bus_space_handle_t mif = sc->sc_mif;
985 	int n;
986 	u_int32_t v;
987 
988 	/* Construct the frame command */
989 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
990 	    HME_MIF_FO_TAMSB |
991 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
992 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
993 	    (reg << HME_MIF_FO_REGAD_SHIFT);
994 
995 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
996 	for (n = 0; n < 100; n++) {
997 		DELAY(1);
998 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
999 		if (v & HME_MIF_FO_TALSB)
1000 			return (v & HME_MIF_FO_DATA);
1001 	}
1002 
1003 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1004 	return (0);
1005 }
1006 
1007 static void
1008 hme_mii_writereg(self, phy, reg, val)
1009 	struct device *self;
1010 	int phy, reg, val;
1011 {
1012 	struct hme_softc *sc = (void *)self;
1013 	bus_space_tag_t t = sc->sc_bustag;
1014 	bus_space_handle_t mif = sc->sc_mif;
1015 	int n;
1016 	u_int32_t v;
1017 
1018 	/* Construct the frame command */
1019 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1020 	    HME_MIF_FO_TAMSB				|
1021 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1022 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1023 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1024 	    (val & HME_MIF_FO_DATA);
1025 
1026 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1027 	for (n = 0; n < 100; n++) {
1028 		DELAY(1);
1029 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1030 		if (v & HME_MIF_FO_TALSB)
1031 			return;
1032 	}
1033 
1034 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1035 }
1036 
1037 static void
1038 hme_mii_statchg(dev)
1039 	struct device *dev;
1040 {
1041 #ifdef HMEDEBUG
1042 	struct hme_softc *sc = (void *)dev;
1043 	if (sc->sc_debug)
1044 		printf("hme_mii_statchg: status change\n");
1045 #endif
1046 }
1047 
1048 int
1049 hme_mediachange(ifp)
1050 	struct ifnet *ifp;
1051 {
1052 	struct hme_softc *sc = ifp->if_softc;
1053 	struct ifmedia *ifm = &sc->sc_media;
1054 	int newmedia = ifm->ifm_media;
1055 	bus_space_tag_t t = sc->sc_bustag;
1056 	bus_space_handle_t mac = sc->sc_mac;
1057 	u_int32_t v;
1058 	int error;
1059 
1060 	if (IFM_TYPE(newmedia) != IFM_ETHER)
1061 		return (EINVAL);
1062 
1063 	if ((ifp->if_flags & IFF_UP) == 0)
1064 		return (0);
1065 
1066 	if ((error = mii_mediachg(&sc->sc_mii)) != 0)
1067 		return (error);
1068 
1069 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1070 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1071 		v |= HME_MAC_TXCFG_FULLDPLX;
1072 	else
1073 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1074 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1075 
1076 	return (0);
1077 }
1078 
1079 void
1080 hme_mediastatus(ifp, ifmr)
1081 	struct ifnet *ifp;
1082 	struct ifmediareq *ifmr;
1083 {
1084 	struct hme_softc *sc = ifp->if_softc;
1085 
1086 	if ((ifp->if_flags & IFF_UP) == 0)
1087 		return;
1088 
1089 	mii_pollstat(&sc->sc_mii);
1090 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1091 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1092 }
1093 
1094 /*
1095  * Process an ioctl request.
1096  */
1097 int
1098 hme_ioctl(ifp, cmd, data)
1099 	struct ifnet *ifp;
1100 	u_long cmd;
1101 	caddr_t data;
1102 {
1103 	struct hme_softc *sc = ifp->if_softc;
1104 	struct ifaddr *ifa = (struct ifaddr *)data;
1105 	struct ifreq *ifr = (struct ifreq *)data;
1106 	int s, error = 0;
1107 
1108 	s = splnet();
1109 
1110 	switch (cmd) {
1111 
1112 	case SIOCSIFADDR:
1113 		ifp->if_flags |= IFF_UP;
1114 
1115 		switch (ifa->ifa_addr->sa_family) {
1116 #ifdef INET
1117 		case AF_INET:
1118 			hme_init(sc);
1119 			arp_ifinit(ifp, ifa);
1120 			break;
1121 #endif
1122 #ifdef NS
1123 		case AF_NS:
1124 		    {
1125 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1126 
1127 			if (ns_nullhost(*ina))
1128 				ina->x_host =
1129 				    *(union ns_host *)LLADDR(ifp->if_sadl);
1130 			else {
1131 				bcopy(ina->x_host.c_host,
1132 				    LLADDR(ifp->if_sadl),
1133 				    sizeof(sc->sc_enaddr));
1134 			}
1135 			/* Set new address. */
1136 			hme_init(sc);
1137 			break;
1138 		    }
1139 #endif
1140 		default:
1141 			hme_init(sc);
1142 			break;
1143 		}
1144 		break;
1145 
1146 	case SIOCSIFFLAGS:
1147 		if ((ifp->if_flags & IFF_UP) == 0 &&
1148 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1149 			/*
1150 			 * If interface is marked down and it is running, then
1151 			 * stop it.
1152 			 */
1153 			hme_stop(sc);
1154 			ifp->if_flags &= ~IFF_RUNNING;
1155 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1156 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
1157 			/*
1158 			 * If interface is marked up and it is stopped, then
1159 			 * start it.
1160 			 */
1161 			hme_init(sc);
1162 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1163 			/*
1164 			 * Reset the interface to pick up changes in any other
1165 			 * flags that affect hardware registers.
1166 			 */
1167 			/*hme_stop(sc);*/
1168 			hme_init(sc);
1169 		}
1170 #ifdef HMEDEBUG
1171 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1172 #endif
1173 		break;
1174 
1175 	case SIOCADDMULTI:
1176 	case SIOCDELMULTI:
1177 		error = (cmd == SIOCADDMULTI) ?
1178 		    ether_addmulti(ifr, &sc->sc_ethercom) :
1179 		    ether_delmulti(ifr, &sc->sc_ethercom);
1180 
1181 		if (error == ENETRESET) {
1182 			/*
1183 			 * Multicast list has changed; set the hardware filter
1184 			 * accordingly.
1185 			 */
1186 			hme_setladrf(sc);
1187 			error = 0;
1188 		}
1189 		break;
1190 
1191 	case SIOCGIFMEDIA:
1192 	case SIOCSIFMEDIA:
1193 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1194 		break;
1195 
1196 	default:
1197 		error = EINVAL;
1198 		break;
1199 	}
1200 
1201 	splx(s);
1202 	return (error);
1203 }
1204 
1205 void
1206 hme_shutdown(arg)
1207 	void *arg;
1208 {
1209 
1210 	hme_stop((struct hme_softc *)arg);
1211 }
1212 
1213 /*
1214  * Set up the logical address filter.
1215  */
1216 void
1217 hme_setladrf(sc)
1218 	struct hme_softc *sc;
1219 {
1220 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1221 	struct ether_multi *enm;
1222 	struct ether_multistep step;
1223 	struct ethercom *ec = &sc->sc_ethercom;
1224 	bus_space_tag_t t = sc->sc_bustag;
1225 	bus_space_handle_t mac = sc->sc_mac;
1226 	u_char *cp;
1227 	u_int32_t crc;
1228 	u_int32_t hash[4];
1229 	int len;
1230 
1231 	/*
1232 	 * Set up multicast address filter by passing all multicast addresses
1233 	 * through a crc generator, and then using the high order 6 bits as an
1234 	 * index into the 64 bit logical address filter.  The high order bit
1235 	 * selects the word, while the rest of the bits select the bit within
1236 	 * the word.
1237 	 */
1238 
1239 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1240 		u_int32_t v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1241 		v |= HME_MAC_RXCFG_PMISC;
1242 		bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1243 		goto allmulti;
1244 	}
1245 
1246 	/* Clear hash table */
1247 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1248 	ETHER_FIRST_MULTI(step, ec, enm);
1249 	while (enm != NULL) {
1250 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1251 			/*
1252 			 * We must listen to a range of multicast addresses.
1253 			 * For now, just accept all multicasts, rather than
1254 			 * trying to set only those filter bits needed to match
1255 			 * the range.  (At this time, the only use of address
1256 			 * ranges is for IP multicast routing, for which the
1257 			 * range is big enough to require all bits set.)
1258 			 */
1259 			goto allmulti;
1260 		}
1261 
1262 		cp = enm->enm_addrlo;
1263 		crc = 0xffffffff;
1264 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1265 			int octet = *cp++;
1266 			int i;
1267 
1268 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1269 			for (i = 0; i < 8; i++) {
1270 				if ((crc & 1) ^ (octet & 1)) {
1271 					crc >>= 1;
1272 					crc ^= MC_POLY_LE;
1273 				} else {
1274 					crc >>= 1;
1275 				}
1276 				octet >>= 1;
1277 			}
1278 		}
1279 		/* Just want the 6 most significant bits. */
1280 		crc >>= 26;
1281 
1282 		/* Set the corresponding bit in the filter. */
1283 		hash[crc >> 4] |= 1 << (crc & 0xf);
1284 
1285 		ETHER_NEXT_MULTI(step, enm);
1286 	}
1287 
1288 	/* Now load the hash table onto the chip */
1289 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1290 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1291 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1292 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1293 
1294 	ifp->if_flags &= ~IFF_ALLMULTI;
1295 	return;
1296 
1297 allmulti:
1298 	ifp->if_flags |= IFF_ALLMULTI;
1299 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, 0xffff);
1300 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, 0xffff);
1301 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, 0xffff);
1302 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, 0xffff);
1303 }
1304 
1305 /*
1306  * Routines for accessing the transmit and receive buffers.
1307  * The various CPU and adapter configurations supported by this
1308  * driver require three different access methods for buffers
1309  * and descriptors:
1310  *	(1) contig (contiguous data; no padding),
1311  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1312  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1313  */
1314 
1315 #if 0
1316 /*
1317  * contig: contiguous data with no padding.
1318  *
1319  * Buffers may have any alignment.
1320  */
1321 
1322 void
1323 hme_copytobuf_contig(sc, from, ri, len)
1324 	struct hme_softc *sc;
1325 	void *from;
1326 	int ri, len;
1327 {
1328 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1329 
1330 	/*
1331 	 * Just call bcopy() to do the work.
1332 	 */
1333 	bcopy(from, buf, len);
1334 }
1335 
1336 void
1337 hme_copyfrombuf_contig(sc, to, boff, len)
1338 	struct hme_softc *sc;
1339 	void *to;
1340 	int boff, len;
1341 {
1342 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1343 
1344 	/*
1345 	 * Just call bcopy() to do the work.
1346 	 */
1347 	bcopy(buf, to, len);
1348 }
1349 #endif
1350