xref: /netbsd/sys/dev/ic/hme.c (revision 95570c7c)
1 /*	$NetBSD: hme.c,v 1.108 2020/03/12 03:01:46 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * HME Ethernet module driver.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.108 2020/03/12 03:01:46 thorpej Exp $");
38 
39 /* #define HMEDEBUG */
40 
41 #include "opt_inet.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/syslog.h>
48 #include <sys/socket.h>
49 #include <sys/device.h>
50 #include <sys/malloc.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/rndsource.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59 #include <net/bpf.h>
60 
61 #ifdef INET
62 #include <net/if_vlanvar.h>
63 #include <netinet/in.h>
64 #include <netinet/if_inarp.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <sys/bus.h>
76 
77 #include <dev/ic/hmereg.h>
78 #include <dev/ic/hmevar.h>
79 
80 static void	hme_start(struct ifnet *);
81 static void	hme_stop(struct ifnet *, int);
82 static int	hme_ioctl(struct ifnet *, u_long, void *);
83 static void	hme_tick(void *);
84 static void	hme_watchdog(struct ifnet *);
85 static bool	hme_shutdown(device_t, int);
86 static int	hme_init(struct ifnet *);
87 static void	hme_meminit(struct hme_softc *);
88 static void	hme_mifinit(struct hme_softc *);
89 static void	hme_reset(struct hme_softc *);
90 static void	hme_chipreset(struct hme_softc *);
91 static void	hme_setladrf(struct hme_softc *);
92 
93 /* MII methods & callbacks */
94 static int	hme_mii_readreg(device_t, int, int, uint16_t *);
95 static int	hme_mii_writereg(device_t, int, int, uint16_t);
96 static void	hme_mii_statchg(struct ifnet *);
97 
98 static int	hme_mediachange(struct ifnet *);
99 
100 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
101 static int	hme_put(struct hme_softc *, int, struct mbuf *);
102 static void	hme_read(struct hme_softc *, int, uint32_t);
103 static int	hme_eint(struct hme_softc *, u_int);
104 static int	hme_rint(struct hme_softc *);
105 static int	hme_tint(struct hme_softc *);
106 
107 #if 0
108 /* Default buffer copy routines */
109 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
110 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
111 #endif
112 
113 void
114 hme_config(struct hme_softc *sc)
115 {
116 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
117 	struct mii_data *mii = &sc->sc_mii;
118 	struct mii_softc *child;
119 	bus_dma_tag_t dmatag = sc->sc_dmatag;
120 	bus_dma_segment_t seg;
121 	bus_size_t size;
122 	int rseg, error;
123 
124 	/*
125 	 * HME common initialization.
126 	 *
127 	 * hme_softc fields that must be initialized by the front-end:
128 	 *
129 	 * the bus tag:
130 	 *	sc_bustag
131 	 *
132 	 * the DMA bus tag:
133 	 *	sc_dmatag
134 	 *
135 	 * the bus handles:
136 	 *	sc_seb		(Shared Ethernet Block registers)
137 	 *	sc_erx		(Receiver Unit registers)
138 	 *	sc_etx		(Transmitter Unit registers)
139 	 *	sc_mac		(MAC registers)
140 	 *	sc_mif		(Management Interface registers)
141 	 *
142 	 * the maximum bus burst size:
143 	 *	sc_burst
144 	 *
145 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
146 	 *	rb_membase, rb_dmabase)
147 	 *
148 	 * the local Ethernet address:
149 	 *	sc_enaddr
150 	 *
151 	 */
152 
153 	/* Make sure the chip is stopped. */
154 	hme_chipreset(sc);
155 
156 	/*
157 	 * Allocate descriptors and buffers
158 	 * XXX - do all this differently.. and more configurably,
159 	 * eg. use things as `dma_load_mbuf()' on transmit,
160 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
161 	 *     all the time) on the receiver side.
162 	 *
163 	 * Note: receive buffers must be 64-byte aligned.
164 	 * Also, apparently, the buffers must extend to a DMA burst
165 	 * boundary beyond the maximum packet size.
166 	 */
167 #define _HME_NDESC	128
168 #define _HME_BUFSZ	1600
169 
170 	/* Note: the # of descriptors must be a multiple of 16 */
171 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
172 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
173 
174 	/*
175 	 * Allocate DMA capable memory
176 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
177 	 * take this into account when calculating the size. Note that
178 	 * the maximum number of descriptors (256) occupies 2048 bytes,
179 	 * so we allocate that much regardless of _HME_NDESC.
180 	 */
181 	size =	2048 +					/* TX descriptors */
182 		2048 +					/* RX descriptors */
183 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
184 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
185 
186 	/* Allocate DMA buffer */
187 	if ((error = bus_dmamem_alloc(dmatag, size,
188 				      2048, 0,
189 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
190 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
191 			error);
192 		return;
193 	}
194 
195 	/* Map DMA memory in CPU addressable space */
196 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
197 				    &sc->sc_rb.rb_membase,
198 				    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
199 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
200 			error);
201 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
202 		bus_dmamem_free(dmatag, &seg, rseg);
203 		return;
204 	}
205 
206 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
207 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
208 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
209 			error);
210 		return;
211 	}
212 
213 	/* Load the buffer */
214 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
215 	    sc->sc_rb.rb_membase, size, NULL,
216 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
217 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
218 			error);
219 		bus_dmamem_free(dmatag, &seg, rseg);
220 		return;
221 	}
222 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
223 
224 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
225 	    ether_sprintf(sc->sc_enaddr));
226 
227 	/* Initialize ifnet structure. */
228 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
229 	ifp->if_softc = sc;
230 	ifp->if_start = hme_start;
231 	ifp->if_stop = hme_stop;
232 	ifp->if_ioctl = hme_ioctl;
233 	ifp->if_init = hme_init;
234 	ifp->if_watchdog = hme_watchdog;
235 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
236 	sc->sc_if_flags = ifp->if_flags;
237 	ifp->if_capabilities |=
238 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
239 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
240 	IFQ_SET_READY(&ifp->if_snd);
241 
242 	/* Initialize ifmedia structures and MII info */
243 	mii->mii_ifp = ifp;
244 	mii->mii_readreg = hme_mii_readreg;
245 	mii->mii_writereg = hme_mii_writereg;
246 	mii->mii_statchg = hme_mii_statchg;
247 
248 	sc->sc_ethercom.ec_mii = mii;
249 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
250 
251 	hme_mifinit(sc);
252 
253 	mii_attach(sc->sc_dev, mii, 0xffffffff,
254 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
255 
256 	child = LIST_FIRST(&mii->mii_phys);
257 	if (child == NULL) {
258 		/* No PHY attached */
259 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
260 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
261 	} else {
262 		/*
263 		 * Walk along the list of attached MII devices and
264 		 * establish an `MII instance' to `phy number'
265 		 * mapping. We'll use this mapping in media change
266 		 * requests to determine which phy to use to program
267 		 * the MIF configuration register.
268 		 */
269 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
270 			/*
271 			 * Note: we support just two PHYs: the built-in
272 			 * internal device and an external on the MII
273 			 * connector.
274 			 */
275 			if (child->mii_phy > 1 || child->mii_inst > 1) {
276 				aprint_error_dev(sc->sc_dev,
277 				    "cannot accommodate MII device %s"
278 				       " at phy %d, instance %d\n",
279 				       device_xname(child->mii_dev),
280 				       child->mii_phy, child->mii_inst);
281 				continue;
282 			}
283 
284 			sc->sc_phys[child->mii_inst] = child->mii_phy;
285 		}
286 
287 		/*
288 		 * Set the default media to auto negotiation if the phy has
289 		 * the auto negotiation capability.
290 		 * XXX; What to do otherwise?
291 		 */
292 		if (ifmedia_match(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0))
293 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
294 /*
295 		else
296 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
297 */
298 	}
299 
300 	/* claim 802.1q capability */
301 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
302 
303 	/* Attach the interface. */
304 	if_attach(ifp);
305 	if_deferred_start_init(ifp, NULL);
306 	ether_ifattach(ifp, sc->sc_enaddr);
307 
308 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
309 		pmf_class_network_register(sc->sc_dev, ifp);
310 	else
311 		aprint_error_dev(sc->sc_dev,
312 		    "couldn't establish power handler\n");
313 
314 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
315 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
316 
317 	callout_init(&sc->sc_tick_ch, 0);
318 	callout_setfunc(&sc->sc_tick_ch, hme_tick, sc);
319 }
320 
321 void
322 hme_tick(void *arg)
323 {
324 	struct hme_softc *sc = arg;
325 	int s;
326 
327 	s = splnet();
328 	mii_tick(&sc->sc_mii);
329 	splx(s);
330 
331 	callout_schedule(&sc->sc_tick_ch, hz);
332 }
333 
334 void
335 hme_reset(struct hme_softc *sc)
336 {
337 	int s;
338 
339 	s = splnet();
340 	(void)hme_init(&sc->sc_ethercom.ec_if);
341 	splx(s);
342 }
343 
344 void
345 hme_chipreset(struct hme_softc *sc)
346 {
347 	bus_space_tag_t t = sc->sc_bustag;
348 	bus_space_handle_t seb = sc->sc_seb;
349 	int n;
350 
351 	/* Mask all interrupts */
352 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
353 
354 	/* Reset transmitter and receiver */
355 	bus_space_write_4(t, seb, HME_SEBI_RESET,
356 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
357 
358 	for (n = 0; n < 20; n++) {
359 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
360 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
361 			return;
362 		DELAY(20);
363 	}
364 
365 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
366 }
367 
368 void
369 hme_stop(struct ifnet *ifp, int disable)
370 {
371 	struct hme_softc *sc;
372 
373 	sc = ifp->if_softc;
374 
375 	ifp->if_timer = 0;
376 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
377 
378 	callout_stop(&sc->sc_tick_ch);
379 	mii_down(&sc->sc_mii);
380 
381 	hme_chipreset(sc);
382 }
383 
384 void
385 hme_meminit(struct hme_softc *sc)
386 {
387 	bus_addr_t txbufdma, rxbufdma;
388 	bus_addr_t dma;
389 	char *p;
390 	unsigned int ntbuf, nrbuf, i;
391 	struct hme_ring *hr = &sc->sc_rb;
392 
393 	p = hr->rb_membase;
394 	dma = hr->rb_dmabase;
395 
396 	ntbuf = hr->rb_ntbuf;
397 	nrbuf = hr->rb_nrbuf;
398 
399 	/*
400 	 * Allocate transmit descriptors
401 	 */
402 	hr->rb_txd = p;
403 	hr->rb_txddma = dma;
404 	p += ntbuf * HME_XD_SIZE;
405 	dma += ntbuf * HME_XD_SIZE;
406 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
407 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
408 	p = (void *)roundup((u_long)p, 2048);
409 
410 	/*
411 	 * Allocate receive descriptors
412 	 */
413 	hr->rb_rxd = p;
414 	hr->rb_rxddma = dma;
415 	p += nrbuf * HME_XD_SIZE;
416 	dma += nrbuf * HME_XD_SIZE;
417 	/* Again move forward to the next 2048 byte boundary.*/
418 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
419 	p = (void *)roundup((u_long)p, 2048);
420 
421 
422 	/*
423 	 * Allocate transmit buffers
424 	 */
425 	hr->rb_txbuf = p;
426 	txbufdma = dma;
427 	p += ntbuf * _HME_BUFSZ;
428 	dma += ntbuf * _HME_BUFSZ;
429 
430 	/*
431 	 * Allocate receive buffers
432 	 */
433 	hr->rb_rxbuf = p;
434 	rxbufdma = dma;
435 	p += nrbuf * _HME_BUFSZ;
436 	dma += nrbuf * _HME_BUFSZ;
437 
438 	/*
439 	 * Initialize transmit buffer descriptors
440 	 */
441 	for (i = 0; i < ntbuf; i++) {
442 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
443 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
444 	}
445 
446 	/*
447 	 * Initialize receive buffer descriptors
448 	 */
449 	for (i = 0; i < nrbuf; i++) {
450 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
451 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
452 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
453 	}
454 
455 	hr->rb_tdhead = hr->rb_tdtail = 0;
456 	hr->rb_td_nbusy = 0;
457 	hr->rb_rdtail = 0;
458 }
459 
460 /*
461  * Initialization of interface; set up initialization block
462  * and transmit/receive descriptor rings.
463  */
464 int
465 hme_init(struct ifnet *ifp)
466 {
467 	struct hme_softc *sc = ifp->if_softc;
468 	bus_space_tag_t t = sc->sc_bustag;
469 	bus_space_handle_t seb = sc->sc_seb;
470 	bus_space_handle_t etx = sc->sc_etx;
471 	bus_space_handle_t erx = sc->sc_erx;
472 	bus_space_handle_t mac = sc->sc_mac;
473 	uint8_t *ea;
474 	uint32_t v;
475 	int rc;
476 
477 	/*
478 	 * Initialization sequence. The numbered steps below correspond
479 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
480 	 * Channel Engine manual (part of the PCIO manual).
481 	 * See also the STP2002-STQ document from Sun Microsystems.
482 	 */
483 
484 	/* step 1 & 2. Reset the Ethernet Channel */
485 	hme_stop(ifp, 0);
486 
487 	/* Re-initialize the MIF */
488 	hme_mifinit(sc);
489 
490 	/* Call MI reset function if any */
491 	if (sc->sc_hwreset)
492 		(*sc->sc_hwreset)(sc);
493 
494 #if 0
495 	/* Mask all MIF interrupts, just in case */
496 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
497 #endif
498 
499 	/* step 3. Setup data structures in host memory */
500 	hme_meminit(sc);
501 
502 	/* step 4. TX MAC registers & counters */
503 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
504 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
505 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
506 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
507 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
508 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
509 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
510 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
511 
512 	/* Load station MAC address */
513 	ea = sc->sc_enaddr;
514 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
515 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
516 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
517 
518 	/*
519 	 * Init seed for backoff
520 	 * (source suggested by manual: low 10 bits of MAC address)
521 	 */
522 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
523 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
524 
525 
526 	/* Note: Accepting power-on default for other MAC registers here.. */
527 
528 
529 	/* step 5. RX MAC registers & counters */
530 	hme_setladrf(sc);
531 
532 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
533 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
534 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
535 
536 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
537 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
538 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
539 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
540 
541 	/* step 8. Global Configuration & Interrupt Mask */
542 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
543 			~(
544 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
545 			  HME_SEB_STAT_HOSTTOTX |
546 			  HME_SEB_STAT_RXTOHOST |
547 			  HME_SEB_STAT_TXALL |
548 			  HME_SEB_STAT_TXPERR |
549 			  HME_SEB_STAT_RCNTEXP |
550 			  HME_SEB_STAT_MIFIRQ |
551 			  HME_SEB_STAT_ALL_ERRORS ));
552 
553 	switch (sc->sc_burst) {
554 	default:
555 		v = 0;
556 		break;
557 	case 16:
558 		v = HME_SEB_CFG_BURST16;
559 		break;
560 	case 32:
561 		v = HME_SEB_CFG_BURST32;
562 		break;
563 	case 64:
564 		v = HME_SEB_CFG_BURST64;
565 		break;
566 	}
567 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
568 
569 	/* step 9. ETX Configuration: use mostly default values */
570 
571 	/* Enable DMA */
572 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
573 	v |= HME_ETX_CFG_DMAENABLE;
574 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
575 
576 	/* Transmit Descriptor ring size: in increments of 16 */
577 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
578 
579 
580 	/* step 10. ERX Configuration */
581 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
582 
583 	/* Encode Receive Descriptor ring size: four possible values */
584 	switch (_HME_NDESC /*XXX*/) {
585 	case 32:
586 		v |= HME_ERX_CFG_RINGSIZE32;
587 		break;
588 	case 64:
589 		v |= HME_ERX_CFG_RINGSIZE64;
590 		break;
591 	case 128:
592 		v |= HME_ERX_CFG_RINGSIZE128;
593 		break;
594 	case 256:
595 		v |= HME_ERX_CFG_RINGSIZE256;
596 		break;
597 	default:
598 		printf("hme: invalid Receive Descriptor ring size\n");
599 		break;
600 	}
601 
602 	/* Enable DMA */
603 	v |= HME_ERX_CFG_DMAENABLE;
604 
605 	/* set h/w rx checksum start offset (# of half-words) */
606 #ifdef INET
607 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
608 		<< HME_ERX_CFG_CSUMSHIFT) &
609 		HME_ERX_CFG_CSUMSTART;
610 #endif
611 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
612 
613 	/* step 11. XIF Configuration */
614 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
615 	v |= HME_MAC_XIF_OE;
616 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
617 
618 	/* step 12. RX_MAC Configuration Register */
619 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
620 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
621 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
622 
623 	/* step 13. TX_MAC Configuration Register */
624 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
625 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
626 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
627 
628 	/* step 14. Issue Transmit Pending command */
629 
630 	/* Call MI initialization function if any */
631 	if (sc->sc_hwinit)
632 		(*sc->sc_hwinit)(sc);
633 
634 	/* Set the current media. */
635 	if ((rc = hme_mediachange(ifp)) != 0)
636 		return rc;
637 
638 	/* Start the one second timer. */
639 	callout_schedule(&sc->sc_tick_ch, hz);
640 
641 	ifp->if_flags |= IFF_RUNNING;
642 	ifp->if_flags &= ~IFF_OACTIVE;
643 	sc->sc_if_flags = ifp->if_flags;
644 	ifp->if_timer = 0;
645 	hme_start(ifp);
646 	return 0;
647 }
648 
649 /*
650  * Routine to copy from mbuf chain to transmit buffer in
651  * network buffer memory.
652  * Returns the amount of data copied.
653  */
654 int
655 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
656 	/* ri:			 Ring index */
657 {
658 	struct mbuf *n;
659 	int len, tlen = 0;
660 	char *bp;
661 
662 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
663 	for (; m; m = n) {
664 		len = m->m_len;
665 		if (len == 0) {
666 			n = m_free(m);
667 			continue;
668 		}
669 		memcpy(bp, mtod(m, void *), len);
670 		bp += len;
671 		tlen += len;
672 		n = m_free(m);
673 	}
674 	return (tlen);
675 }
676 
677 /*
678  * Pull data off an interface.
679  * Len is length of data, with local net header stripped.
680  * We copy the data into mbufs.  When full cluster sized units are present
681  * we copy into clusters.
682  */
683 struct mbuf *
684 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
685 {
686 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
687 	struct mbuf *m, *m0, *newm;
688 	char *bp;
689 	int len, totlen;
690 #ifdef INET
691 	int csum_flags;
692 #endif
693 
694 	totlen = HME_XD_DECODE_RSIZE(flags);
695 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
696 	if (m0 == 0)
697 		return (0);
698 	MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
699 	m_set_rcvif(m0, ifp);
700 	m0->m_pkthdr.len = totlen;
701 	len = MHLEN;
702 	m = m0;
703 
704 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
705 
706 	while (totlen > 0) {
707 		if (totlen >= MINCLSIZE) {
708 			MCLGET(m, M_DONTWAIT);
709 			if ((m->m_flags & M_EXT) == 0)
710 				goto bad;
711 			len = MCLBYTES;
712 		}
713 
714 		if (m == m0) {
715 			char *newdata = (char *)
716 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
717 			    sizeof(struct ether_header);
718 			len -= newdata - m->m_data;
719 			m->m_data = newdata;
720 		}
721 
722 		m->m_len = len = uimin(totlen, len);
723 		memcpy(mtod(m, void *), bp, len);
724 		bp += len;
725 
726 		totlen -= len;
727 		if (totlen > 0) {
728 			MGET(newm, M_DONTWAIT, MT_DATA);
729 			if (newm == 0)
730 				goto bad;
731 			len = MLEN;
732 			m = m->m_next = newm;
733 		}
734 	}
735 
736 #ifdef INET
737 	/* hardware checksum */
738 	csum_flags = 0;
739 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
740 		struct ether_header *eh;
741 		struct ether_vlan_header *evh;
742 		struct ip *ip;
743 		struct udphdr *uh;
744 		uint16_t *opts;
745 		int32_t hlen, pktlen;
746 		uint32_t csum_data;
747 
748 		eh = mtod(m0, struct ether_header *);
749 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
750 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
751 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
752 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
753 			evh = (struct ether_vlan_header *)eh;
754 			if (ntohs(evh->evl_proto) != ETHERTYPE_IP)
755 				goto swcsum;
756 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
757 			    ETHER_VLAN_ENCAP_LEN);
758 			pktlen = m0->m_pkthdr.len -
759 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
760 		} else
761 			goto swcsum;
762 
763 		/* IPv4 only */
764 		if (ip->ip_v != IPVERSION)
765 			goto swcsum;
766 
767 		hlen = ip->ip_hl << 2;
768 		if (hlen < sizeof(struct ip))
769 			goto swcsum;
770 
771 		/*
772 		 * bail if too short, has random trailing garbage, truncated,
773 		 * fragment, or has ethernet pad.
774 		 */
775 		if (ntohs(ip->ip_len) < hlen ||
776 		    ntohs(ip->ip_len) != pktlen ||
777 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
778 			goto swcsum;
779 
780 		switch (ip->ip_p) {
781 		case IPPROTO_TCP:
782 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
783 				goto swcsum;
784 			if (pktlen < (hlen + sizeof(struct tcphdr)))
785 				goto swcsum;
786 			csum_flags =
787 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
788 			break;
789 		case IPPROTO_UDP:
790 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
791 				goto swcsum;
792 			if (pktlen < (hlen + sizeof(struct udphdr)))
793 				goto swcsum;
794 			uh = (struct udphdr *)((char *)ip + hlen);
795 			/* no checksum */
796 			if (uh->uh_sum == 0)
797 				goto swcsum;
798 			csum_flags =
799 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
800 			break;
801 		default:
802 			goto swcsum;
803 		}
804 
805 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
806 		csum_data = ~flags & HME_XD_RXCKSUM;
807 
808 		/*
809 		 * If data offset is different from RX cksum start offset,
810 		 * we have to deduct them.
811 		 */
812 		hlen = ((char *)ip + hlen) -
813 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
814 		if (hlen > 1) {
815 			uint32_t optsum;
816 
817 			optsum = 0;
818 			opts = (uint16_t *)((char *)eh +
819 			    ETHER_HDR_LEN + sizeof(struct ip));
820 
821 			while (hlen > 1) {
822 				optsum += ntohs(*opts++);
823 				hlen -= 2;
824 			}
825 			while (optsum >> 16)
826 				optsum = (optsum >> 16) + (optsum & 0xffff);
827 
828 			/* Deduct the ip opts sum from the hwsum. */
829 			csum_data += (uint16_t)~optsum;
830 
831 			while (csum_data >> 16)
832 				csum_data =
833 				    (csum_data >> 16) + (csum_data & 0xffff);
834 		}
835 		m0->m_pkthdr.csum_data = csum_data;
836 	}
837 swcsum:
838 	m0->m_pkthdr.csum_flags = csum_flags;
839 #endif
840 
841 	return (m0);
842 
843 bad:
844 	m_freem(m0);
845 	return (0);
846 }
847 
848 /*
849  * Pass a packet to the higher levels.
850  */
851 void
852 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
853 {
854 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
855 	struct mbuf *m;
856 	int len;
857 
858 	len = HME_XD_DECODE_RSIZE(flags);
859 	if (len <= sizeof(struct ether_header) ||
860 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
861 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
862 	    ETHERMTU + sizeof(struct ether_header))) {
863 #ifdef HMEDEBUG
864 		printf("%s: invalid packet size %d; dropping\n",
865 		    device_xname(sc->sc_dev), len);
866 #endif
867 		if_statinc(ifp, if_ierrors);
868 		return;
869 	}
870 
871 	/* Pull packet off interface. */
872 	m = hme_get(sc, ix, flags);
873 	if (m == 0) {
874 		if_statinc(ifp, if_ierrors);
875 		return;
876 	}
877 
878 	/* Pass the packet up. */
879 	if_percpuq_enqueue(ifp->if_percpuq, m);
880 }
881 
882 void
883 hme_start(struct ifnet *ifp)
884 {
885 	struct hme_softc *sc = ifp->if_softc;
886 	void *txd = sc->sc_rb.rb_txd;
887 	struct mbuf *m;
888 	unsigned int txflags;
889 	unsigned int ri, len, obusy;
890 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
891 
892 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
893 		return;
894 
895 	ri = sc->sc_rb.rb_tdhead;
896 	obusy = sc->sc_rb.rb_td_nbusy;
897 
898 	for (;;) {
899 		IFQ_DEQUEUE(&ifp->if_snd, m);
900 		if (m == 0)
901 			break;
902 
903 		/*
904 		 * If BPF is listening on this interface, let it see the
905 		 * packet before we commit it to the wire.
906 		 */
907 		bpf_mtap(ifp, m, BPF_D_OUT);
908 
909 #ifdef INET
910 		/* collect bits for h/w csum, before hme_put frees the mbuf */
911 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
912 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
913 			struct ether_header *eh;
914 			uint16_t offset, start;
915 
916 			eh = mtod(m, struct ether_header *);
917 			switch (ntohs(eh->ether_type)) {
918 			case ETHERTYPE_IP:
919 				start = ETHER_HDR_LEN;
920 				break;
921 			case ETHERTYPE_VLAN:
922 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
923 				break;
924 			default:
925 				/* unsupported, drop it */
926 				m_free(m);
927 				continue;
928 			}
929 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
930 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
931 			    + start;
932 			txflags = HME_XD_TXCKSUM |
933 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
934 				  (start << HME_XD_TXCSSTARTSHIFT);
935 		} else
936 #endif
937 			txflags = 0;
938 
939 		/*
940 		 * Copy the mbuf chain into the transmit buffer.
941 		 */
942 		len = hme_put(sc, ri, m);
943 
944 		/*
945 		 * Initialize transmit registers and start transmission
946 		 */
947 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
948 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
949 			HME_XD_ENCODE_TSIZE(len) | txflags);
950 
951 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
952 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
953 				  HME_ETX_TP_DMAWAKEUP);
954 
955 		if (++ri == ntbuf)
956 			ri = 0;
957 
958 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
959 			ifp->if_flags |= IFF_OACTIVE;
960 			break;
961 		}
962 	}
963 
964 	if (obusy != sc->sc_rb.rb_td_nbusy) {
965 		sc->sc_rb.rb_tdhead = ri;
966 		ifp->if_timer = 5;
967 	}
968 }
969 
970 /*
971  * Transmit interrupt.
972  */
973 int
974 hme_tint(struct hme_softc *sc)
975 {
976 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
977 	bus_space_tag_t t = sc->sc_bustag;
978 	bus_space_handle_t mac = sc->sc_mac;
979 	unsigned int ri, txflags;
980 
981 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
982 
983 	/*
984 	 * Unload collision counters
985 	 */
986 	if_statadd_ref(nsr, if_collisions,
987 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
988 		bus_space_read_4(t, mac, HME_MACI_FCCNT));
989 	if_statadd_ref(nsr, if_oerrors,
990 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
991 		bus_space_read_4(t, mac, HME_MACI_LTCNT));
992 
993 	/*
994 	 * then clear the hardware counters.
995 	 */
996 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
997 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
998 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
999 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1000 
1001 	/* Fetch current position in the transmit ring */
1002 	ri = sc->sc_rb.rb_tdtail;
1003 
1004 	for (;;) {
1005 		if (sc->sc_rb.rb_td_nbusy <= 0)
1006 			break;
1007 
1008 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1009 
1010 		if (txflags & HME_XD_OWN)
1011 			break;
1012 
1013 		ifp->if_flags &= ~IFF_OACTIVE;
1014 		if_statinc_ref(nsr, if_opackets);
1015 
1016 		if (++ri == sc->sc_rb.rb_ntbuf)
1017 			ri = 0;
1018 
1019 		--sc->sc_rb.rb_td_nbusy;
1020 	}
1021 
1022 	IF_STAT_PUTREF(ifp);
1023 
1024 	/* Update ring */
1025 	sc->sc_rb.rb_tdtail = ri;
1026 
1027 	if_schedule_deferred_start(ifp);
1028 
1029 	if (sc->sc_rb.rb_td_nbusy == 0)
1030 		ifp->if_timer = 0;
1031 
1032 	return (1);
1033 }
1034 
1035 /*
1036  * Receive interrupt.
1037  */
1038 int
1039 hme_rint(struct hme_softc *sc)
1040 {
1041 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1042 	bus_space_tag_t t = sc->sc_bustag;
1043 	bus_space_handle_t mac = sc->sc_mac;
1044 	void *xdr = sc->sc_rb.rb_rxd;
1045 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1046 	unsigned int ri;
1047 	uint32_t flags;
1048 
1049 	ri = sc->sc_rb.rb_rdtail;
1050 
1051 	/*
1052 	 * Process all buffers with valid data.
1053 	 */
1054 	for (;;) {
1055 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1056 		if (flags & HME_XD_OWN)
1057 			break;
1058 
1059 		if (flags & HME_XD_OFL) {
1060 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1061 					device_xname(sc->sc_dev), ri, flags);
1062 		} else
1063 			hme_read(sc, ri, flags);
1064 
1065 		/* This buffer can be used by the hardware again */
1066 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1067 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1068 
1069 		if (++ri == nrbuf)
1070 			ri = 0;
1071 	}
1072 
1073 	sc->sc_rb.rb_rdtail = ri;
1074 
1075 	/* Read error counters ... */
1076 	if_statadd(ifp, if_ierrors,
1077 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1078 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1079 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1080 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT));
1081 
1082 	/* ... then clear the hardware counters. */
1083 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1084 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1085 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1086 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1087 	return (1);
1088 }
1089 
1090 int
1091 hme_eint(struct hme_softc *sc, u_int status)
1092 {
1093 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1094 	char bits[128];
1095 
1096 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1097 		bus_space_tag_t t = sc->sc_bustag;
1098 		bus_space_handle_t mif = sc->sc_mif;
1099 		uint32_t cf, st, sm;
1100 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1101 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1102 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1103 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1104 			device_xname(sc->sc_dev), cf, st, sm);
1105 		return (1);
1106 	}
1107 
1108 	/* Receive error counters rolled over */
1109 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1110 	if (status & HME_SEB_STAT_ACNTEXP)
1111 		if_statadd_ref(nsr, if_ierrors, 0xff);
1112 	if (status & HME_SEB_STAT_CCNTEXP)
1113 		if_statadd_ref(nsr, if_ierrors, 0xff);
1114 	if (status & HME_SEB_STAT_LCNTEXP)
1115 		if_statadd_ref(nsr, if_ierrors, 0xff);
1116 	if (status & HME_SEB_STAT_CVCNTEXP)
1117 		if_statadd_ref(nsr, if_ierrors, 0xff);
1118 	IF_STAT_PUTREF(ifp);
1119 
1120 	/* RXTERR locks up the interface, so do a reset */
1121 	if (status & HME_SEB_STAT_RXTERR)
1122 		hme_reset(sc);
1123 
1124 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1125 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1126 
1127 	return (1);
1128 }
1129 
1130 int
1131 hme_intr(void *v)
1132 {
1133 	struct hme_softc *sc = v;
1134 	bus_space_tag_t t = sc->sc_bustag;
1135 	bus_space_handle_t seb = sc->sc_seb;
1136 	uint32_t status;
1137 	int r = 0;
1138 
1139 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1140 
1141 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1142 		r |= hme_eint(sc, status);
1143 
1144 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1145 		r |= hme_tint(sc);
1146 
1147 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1148 		r |= hme_rint(sc);
1149 
1150 	rnd_add_uint32(&sc->rnd_source, status);
1151 
1152 	return (r);
1153 }
1154 
1155 
1156 void
1157 hme_watchdog(struct ifnet *ifp)
1158 {
1159 	struct hme_softc *sc = ifp->if_softc;
1160 
1161 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1162 	if_statinc(ifp, if_oerrors);
1163 
1164 	hme_reset(sc);
1165 }
1166 
1167 /*
1168  * Initialize the MII Management Interface
1169  */
1170 void
1171 hme_mifinit(struct hme_softc *sc)
1172 {
1173 	bus_space_tag_t t = sc->sc_bustag;
1174 	bus_space_handle_t mif = sc->sc_mif;
1175 	bus_space_handle_t mac = sc->sc_mac;
1176 	int instance, phy;
1177 	uint32_t v;
1178 
1179 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1180 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1181 		phy = sc->sc_phys[instance];
1182 	} else
1183 		/* No media set yet, pick phy arbitrarily.. */
1184 		phy = HME_PHYAD_EXTERNAL;
1185 
1186 	/* Configure the MIF in frame mode, no poll, current phy select */
1187 	v = 0;
1188 	if (phy == HME_PHYAD_EXTERNAL)
1189 		v |= HME_MIF_CFG_PHY;
1190 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1191 
1192 	/* If an external transceiver is selected, enable its MII drivers */
1193 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1194 	v &= ~HME_MAC_XIF_MIIENABLE;
1195 	if (phy == HME_PHYAD_EXTERNAL)
1196 		v |= HME_MAC_XIF_MIIENABLE;
1197 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1198 }
1199 
1200 /*
1201  * MII interface
1202  */
1203 static int
1204 hme_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1205 {
1206 	struct hme_softc *sc = device_private(self);
1207 	bus_space_tag_t t = sc->sc_bustag;
1208 	bus_space_handle_t mif = sc->sc_mif;
1209 	bus_space_handle_t mac = sc->sc_mac;
1210 	uint32_t v, xif_cfg, mifi_cfg;
1211 	int n, rv;
1212 
1213 	/* We can at most have two PHYs */
1214 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1215 		return -1;
1216 
1217 	/* Select the desired PHY in the MIF configuration register */
1218 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1219 	v &= ~HME_MIF_CFG_PHY;
1220 	if (phy == HME_PHYAD_EXTERNAL)
1221 		v |= HME_MIF_CFG_PHY;
1222 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1223 
1224 	/* Enable MII drivers on external transceiver */
1225 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1226 	if (phy == HME_PHYAD_EXTERNAL)
1227 		v |= HME_MAC_XIF_MIIENABLE;
1228 	else
1229 		v &= ~HME_MAC_XIF_MIIENABLE;
1230 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1231 
1232 #if 0
1233 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1234 	/*
1235 	 * Check whether a transceiver is connected by testing
1236 	 * the MIF configuration register's MDI_X bits. Note that
1237 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1238 	 */
1239 	mif_mdi_bit = 1 << (8 + (1 - phy));
1240 	delay(100);
1241 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1242 	if ((v & mif_mdi_bit) == 0) {
1243 		rv = -1;
1244 		goto out;
1245 	}
1246 #endif
1247 
1248 	/* Construct the frame command */
1249 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1250 	    HME_MIF_FO_TAMSB |
1251 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1252 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1253 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1254 
1255 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1256 	for (n = 0; n < 100; n++) {
1257 		DELAY(1);
1258 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1259 		if (v & HME_MIF_FO_TALSB) {
1260 			*val = v & HME_MIF_FO_DATA;
1261 			rv = 0;
1262 			goto out;
1263 		}
1264 	}
1265 
1266 	rv = ETIMEDOUT;
1267 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1268 
1269 out:
1270 	/* Restore MIFI_CFG register */
1271 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1272 	/* Restore XIF register */
1273 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1274 	return rv;
1275 }
1276 
1277 static int
1278 hme_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1279 {
1280 	struct hme_softc *sc = device_private(self);
1281 	bus_space_tag_t t = sc->sc_bustag;
1282 	bus_space_handle_t mif = sc->sc_mif;
1283 	bus_space_handle_t mac = sc->sc_mac;
1284 	uint32_t v, xif_cfg, mifi_cfg;
1285 	int n, rv;
1286 
1287 	/* We can at most have two PHYs */
1288 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1289 		return -1;
1290 
1291 	/* Select the desired PHY in the MIF configuration register */
1292 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1293 	v &= ~HME_MIF_CFG_PHY;
1294 	if (phy == HME_PHYAD_EXTERNAL)
1295 		v |= HME_MIF_CFG_PHY;
1296 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1297 
1298 	/* Enable MII drivers on external transceiver */
1299 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1300 	if (phy == HME_PHYAD_EXTERNAL)
1301 		v |= HME_MAC_XIF_MIIENABLE;
1302 	else
1303 		v &= ~HME_MAC_XIF_MIIENABLE;
1304 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1305 
1306 #if 0
1307 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1308 	/*
1309 	 * Check whether a transceiver is connected by testing
1310 	 * the MIF configuration register's MDI_X bits. Note that
1311 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1312 	 */
1313 	mif_mdi_bit = 1 << (8 + (1 - phy));
1314 	delay(100);
1315 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1316 	if ((v & mif_mdi_bit) == 0) {
1317 		rv = -1;
1318 		goto out;
1319 	}
1320 #endif
1321 
1322 	/* Construct the frame command */
1323 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1324 	    HME_MIF_FO_TAMSB				|
1325 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1326 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1327 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1328 	    (val & HME_MIF_FO_DATA);
1329 
1330 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1331 	for (n = 0; n < 100; n++) {
1332 		DELAY(1);
1333 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1334 		if (v & HME_MIF_FO_TALSB) {
1335 			rv = 0;
1336 			goto out;
1337 		}
1338 	}
1339 
1340 	rv = ETIMEDOUT;
1341 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1342 out:
1343 	/* Restore MIFI_CFG register */
1344 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1345 	/* Restore XIF register */
1346 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1347 
1348 	return rv;
1349 }
1350 
1351 static void
1352 hme_mii_statchg(struct ifnet *ifp)
1353 {
1354 	struct hme_softc *sc = ifp->if_softc;
1355 	bus_space_tag_t t = sc->sc_bustag;
1356 	bus_space_handle_t mac = sc->sc_mac;
1357 	uint32_t v;
1358 
1359 #ifdef HMEDEBUG
1360 	if (sc->sc_debug)
1361 		printf("hme_mii_statchg: status change\n");
1362 #endif
1363 
1364 	/* Set the MAC Full Duplex bit appropriately */
1365 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1366 	   but not otherwise. */
1367 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1368 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1369 		v |= HME_MAC_TXCFG_FULLDPLX;
1370 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1371 	} else {
1372 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1373 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1374 	}
1375 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1376 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1377 }
1378 
1379 int
1380 hme_mediachange(struct ifnet *ifp)
1381 {
1382 	struct hme_softc *sc = ifp->if_softc;
1383 	bus_space_tag_t t = sc->sc_bustag;
1384 	bus_space_handle_t mif = sc->sc_mif;
1385 	bus_space_handle_t mac = sc->sc_mac;
1386 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1387 	int phy = sc->sc_phys[instance];
1388 	int rc;
1389 	uint32_t v;
1390 
1391 #ifdef HMEDEBUG
1392 	if (sc->sc_debug)
1393 		printf("hme_mediachange: phy = %d\n", phy);
1394 #endif
1395 
1396 	/* Select the current PHY in the MIF configuration register */
1397 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1398 	v &= ~HME_MIF_CFG_PHY;
1399 	if (phy == HME_PHYAD_EXTERNAL)
1400 		v |= HME_MIF_CFG_PHY;
1401 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1402 
1403 	/* If an external transceiver is selected, enable its MII drivers */
1404 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1405 	v &= ~HME_MAC_XIF_MIIENABLE;
1406 	if (phy == HME_PHYAD_EXTERNAL)
1407 		v |= HME_MAC_XIF_MIIENABLE;
1408 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1409 
1410 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1411 		return 0;
1412 	return rc;
1413 }
1414 
1415 /*
1416  * Process an ioctl request.
1417  */
1418 int
1419 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1420 {
1421 	struct hme_softc *sc = ifp->if_softc;
1422 	struct ifaddr *ifa = (struct ifaddr *)data;
1423 	int s, error = 0;
1424 
1425 	s = splnet();
1426 
1427 	switch (cmd) {
1428 
1429 	case SIOCINITIFADDR:
1430 		switch (ifa->ifa_addr->sa_family) {
1431 #ifdef INET
1432 		case AF_INET:
1433 			if (ifp->if_flags & IFF_UP)
1434 				hme_setladrf(sc);
1435 			else {
1436 				ifp->if_flags |= IFF_UP;
1437 				error = hme_init(ifp);
1438 			}
1439 			arp_ifinit(ifp, ifa);
1440 			break;
1441 #endif
1442 		default:
1443 			ifp->if_flags |= IFF_UP;
1444 			error = hme_init(ifp);
1445 			break;
1446 		}
1447 		break;
1448 
1449 	case SIOCSIFFLAGS:
1450 #ifdef HMEDEBUG
1451 		{
1452 			struct ifreq *ifr = data;
1453 			sc->sc_debug =
1454 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1455 		}
1456 #endif
1457 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1458 			break;
1459 
1460 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1461 		case IFF_RUNNING:
1462 			/*
1463 			 * If interface is marked down and it is running, then
1464 			 * stop it.
1465 			 */
1466 			hme_stop(ifp, 0);
1467 			ifp->if_flags &= ~IFF_RUNNING;
1468 			break;
1469 		case IFF_UP:
1470 			/*
1471 			 * If interface is marked up and it is stopped, then
1472 			 * start it.
1473 			 */
1474 			error = hme_init(ifp);
1475 			break;
1476 		case IFF_UP | IFF_RUNNING:
1477 			/*
1478 			 * If setting debug or promiscuous mode, do not reset
1479 			 * the chip; for everything else, call hme_init()
1480 			 * which will trigger a reset.
1481 			 */
1482 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1483 			if (ifp->if_flags != sc->sc_if_flags) {
1484 				if ((ifp->if_flags & (~RESETIGN))
1485 				    == (sc->sc_if_flags & (~RESETIGN)))
1486 					hme_setladrf(sc);
1487 				else
1488 					error = hme_init(ifp);
1489 			}
1490 #undef RESETIGN
1491 			break;
1492 		case 0:
1493 			break;
1494 		}
1495 
1496 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1497 			error = hme_init(ifp);
1498 
1499 		break;
1500 
1501 	default:
1502 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1503 			break;
1504 
1505 		error = 0;
1506 
1507 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1508 			;
1509 		else if (ifp->if_flags & IFF_RUNNING) {
1510 			/*
1511 			 * Multicast list has changed; set the hardware filter
1512 			 * accordingly.
1513 			 */
1514 			hme_setladrf(sc);
1515 		}
1516 		break;
1517 	}
1518 
1519 	sc->sc_if_flags = ifp->if_flags;
1520 	splx(s);
1521 	return (error);
1522 }
1523 
1524 bool
1525 hme_shutdown(device_t self, int howto)
1526 {
1527 	struct hme_softc *sc;
1528 	struct ifnet *ifp;
1529 
1530 	sc = device_private(self);
1531 	ifp = &sc->sc_ethercom.ec_if;
1532 	hme_stop(ifp, 1);
1533 
1534 	return true;
1535 }
1536 
1537 /*
1538  * Set up the logical address filter.
1539  */
1540 void
1541 hme_setladrf(struct hme_softc *sc)
1542 {
1543 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1544 	struct ether_multi *enm;
1545 	struct ether_multistep step;
1546 	struct ethercom *ec = &sc->sc_ethercom;
1547 	bus_space_tag_t t = sc->sc_bustag;
1548 	bus_space_handle_t mac = sc->sc_mac;
1549 	uint32_t v;
1550 	uint32_t crc;
1551 	uint32_t hash[4];
1552 
1553 	/* Clear hash table */
1554 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1555 
1556 	/* Get current RX configuration */
1557 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1558 
1559 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1560 		/* Turn on promiscuous mode; turn off the hash filter */
1561 		v |= HME_MAC_RXCFG_PMISC;
1562 		v &= ~HME_MAC_RXCFG_HENABLE;
1563 		ifp->if_flags |= IFF_ALLMULTI;
1564 		goto chipit;
1565 	}
1566 
1567 	/* Turn off promiscuous mode; turn on the hash filter */
1568 	v &= ~HME_MAC_RXCFG_PMISC;
1569 	v |= HME_MAC_RXCFG_HENABLE;
1570 
1571 	/*
1572 	 * Set up multicast address filter by passing all multicast addresses
1573 	 * through a crc generator, and then using the high order 6 bits as an
1574 	 * index into the 64 bit logical address filter.  The high order bit
1575 	 * selects the word, while the rest of the bits select the bit within
1576 	 * the word.
1577 	 */
1578 
1579 	ETHER_LOCK(ec);
1580 	ETHER_FIRST_MULTI(step, ec, enm);
1581 	while (enm != NULL) {
1582 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1583 			/*
1584 			 * We must listen to a range of multicast addresses.
1585 			 * For now, just accept all multicasts, rather than
1586 			 * trying to set only those filter bits needed to match
1587 			 * the range.  (At this time, the only use of address
1588 			 * ranges is for IP multicast routing, for which the
1589 			 * range is big enough to require all bits set.)
1590 			 */
1591 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1592 			ifp->if_flags |= IFF_ALLMULTI;
1593 			ETHER_UNLOCK(ec);
1594 			goto chipit;
1595 		}
1596 
1597 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1598 
1599 		/* Just want the 6 most significant bits. */
1600 		crc >>= 26;
1601 
1602 		/* Set the corresponding bit in the filter. */
1603 		hash[crc >> 4] |= 1 << (crc & 0xf);
1604 
1605 		ETHER_NEXT_MULTI(step, enm);
1606 	}
1607 	ETHER_UNLOCK(ec);
1608 
1609 	ifp->if_flags &= ~IFF_ALLMULTI;
1610 
1611 chipit:
1612 	/* Now load the hash table into the chip */
1613 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1614 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1615 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1616 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1617 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1618 }
1619 
1620 /*
1621  * Routines for accessing the transmit and receive buffers.
1622  * The various CPU and adapter configurations supported by this
1623  * driver require three different access methods for buffers
1624  * and descriptors:
1625  *	(1) contig (contiguous data; no padding),
1626  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1627  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1628  */
1629 
1630 #if 0
1631 /*
1632  * contig: contiguous data with no padding.
1633  *
1634  * Buffers may have any alignment.
1635  */
1636 
1637 void
1638 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1639 {
1640 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1641 
1642 	/*
1643 	 * Just call memcpy() to do the work.
1644 	 */
1645 	memcpy(buf, from, len);
1646 }
1647 
1648 void
1649 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1650 {
1651 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1652 
1653 	/*
1654 	 * Just call memcpy() to do the work.
1655 	 */
1656 	memcpy(to, buf, len);
1657 }
1658 #endif
1659