xref: /netbsd/sys/dev/pci/agp.c (revision 8b2e8e84)
1 /*	$NetBSD: agp.c,v 1.80 2012/04/06 20:24:28 plunky Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29  */
30 
31 /*
32  * Copyright (c) 2001 Wasabi Systems, Inc.
33  * All rights reserved.
34  *
35  * Written by Frank van der Linden for Wasabi Systems, Inc.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *      This product includes software developed for the NetBSD Project by
48  *      Wasabi Systems, Inc.
49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50  *    or promote products derived from this software without specific prior
51  *    written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63  * POSSIBILITY OF SUCH DAMAGE.
64  */
65 
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.80 2012/04/06 20:24:28 plunky Exp $");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/agpvar.h>
85 #include <dev/pci/agpreg.h>
86 #include <dev/pci/pcidevs.h>
87 
88 #include <sys/bus.h>
89 
90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
91 
92 /* Helper functions for implementing chipset mini drivers. */
93 /* XXXfvdl get rid of this one. */
94 
95 extern struct cfdriver agp_cd;
96 
97 static int agp_info_user(struct agp_softc *, agp_info *);
98 static int agp_setup_user(struct agp_softc *, agp_setup *);
99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
100 static int agp_deallocate_user(struct agp_softc *, int);
101 static int agp_bind_user(struct agp_softc *, agp_bind *);
102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
103 static int agp_generic_enable_v2(struct agp_softc *,
104     const struct pci_attach_args *, int, u_int32_t);
105 static int agp_generic_enable_v3(struct agp_softc *,
106     const struct pci_attach_args *, int, u_int32_t);
107 static int agpdev_match(const struct pci_attach_args *);
108 static bool agp_resume(device_t, const pmf_qual_t *);
109 
110 #include "agp_ali.h"
111 #include "agp_amd.h"
112 #include "agp_i810.h"
113 #include "agp_intel.h"
114 #include "agp_sis.h"
115 #include "agp_via.h"
116 #include "agp_amd64.h"
117 
118 const struct agp_product {
119 	uint32_t	ap_vendor;
120 	uint32_t	ap_product;
121 	int		(*ap_match)(const struct pci_attach_args *);
122 	int		(*ap_attach)(device_t, device_t, void *);
123 } agp_products[] = {
124 #if NAGP_AMD64 > 0
125 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
126 	  agp_amd64_match,	agp_amd64_attach },
127 #endif
128 
129 #if NAGP_ALI > 0
130 	{ PCI_VENDOR_ALI,	-1,
131 	  NULL,			agp_ali_attach },
132 #endif
133 
134 #if NAGP_AMD64 > 0
135 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
136 	  agp_amd64_match,	agp_amd64_attach },
137 #endif
138 
139 #if NAGP_AMD > 0
140 	{ PCI_VENDOR_AMD,	-1,
141 	  agp_amd_match,	agp_amd_attach },
142 #endif
143 
144 #if NAGP_I810 > 0
145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
146 	  NULL,			agp_i810_attach },
147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
148 	  NULL,			agp_i810_attach },
149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
150 	  NULL,			agp_i810_attach },
151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
152 	  NULL,			agp_i810_attach },
153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
154 	  NULL,			agp_i810_attach },
155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
156 	  NULL,			agp_i810_attach },
157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
158 	  NULL,			agp_i810_attach },
159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
160 	  NULL,			agp_i810_attach },
161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
162 	  NULL,			agp_i810_attach },
163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
164 	  NULL,			agp_i810_attach },
165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
166 	  NULL,			agp_i810_attach },
167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
168 	  NULL,			agp_i810_attach },
169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
170 	  NULL,			agp_i810_attach },
171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
172 	  NULL,			agp_i810_attach },
173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
174 	  NULL,			agp_i810_attach },
175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
176 	  NULL,			agp_i810_attach },
177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
178 	  NULL,			agp_i810_attach },
179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
180 	  NULL,			agp_i810_attach },
181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
182 	  NULL,			agp_i810_attach },
183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
184 	  NULL,			agp_i810_attach },
185 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
186 	  NULL,			agp_i810_attach },
187 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
188 	  NULL,			agp_i810_attach },
189 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
190 	  NULL, 		agp_i810_attach },
191 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82IGD_E_HB,
192 	  NULL, 		agp_i810_attach },
193 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q45_HB,
194 	  NULL, 		agp_i810_attach },
195 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G45_HB,
196 	  NULL, 		agp_i810_attach },
197 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G41_HB,
198 	  NULL, 		agp_i810_attach },
199 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_E7221_HB,
200 	  NULL, 		agp_i810_attach },
201 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965GME_HB,
202 	  NULL, 		agp_i810_attach },
203 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82B43_HB,
204 	  NULL, 		agp_i810_attach },
205 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
206 	  NULL, 		agp_i810_attach },
207 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
208 	  NULL, 		agp_i810_attach },
209 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
210 	  NULL, 		agp_i810_attach },
211 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
212 	  NULL, 		agp_i810_attach },
213 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_HB,
214 	  NULL, 		agp_i810_attach },
215 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
216 	  NULL, 		agp_i810_attach },
217 #endif
218 
219 #if NAGP_INTEL > 0
220 	{ PCI_VENDOR_INTEL,	-1,
221 	  NULL,			agp_intel_attach },
222 #endif
223 
224 #if NAGP_AMD64 > 0
225 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
226 	  agp_amd64_match,	agp_amd64_attach },
227 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
228 	  agp_amd64_match,	agp_amd64_attach },
229 #endif
230 
231 #if NAGP_AMD64 > 0
232 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
233 	  agp_amd64_match,	agp_amd64_attach },
234 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
235 	  agp_amd64_match,	agp_amd64_attach },
236 #endif
237 
238 #if NAGP_SIS > 0
239 	{ PCI_VENDOR_SIS,	-1,
240 	  NULL,			agp_sis_attach },
241 #endif
242 
243 #if NAGP_AMD64 > 0
244 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
245 	  agp_amd64_match,	agp_amd64_attach },
246 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
247 	  agp_amd64_match,	agp_amd64_attach },
248 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
249 	  agp_amd64_match,	agp_amd64_attach },
250 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
251 	  agp_amd64_match,	agp_amd64_attach },
252 #endif
253 
254 #if NAGP_VIA > 0
255 	{ PCI_VENDOR_VIATECH,	-1,
256 	  NULL,			agp_via_attach },
257 #endif
258 
259 	{ 0,			0,
260 	  NULL,			NULL },
261 };
262 
263 static const struct agp_product *
264 agp_lookup(const struct pci_attach_args *pa)
265 {
266 	const struct agp_product *ap;
267 
268 	/* First find the vendor. */
269 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
270 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
271 			break;
272 	}
273 
274 	if (ap->ap_attach == NULL)
275 		return (NULL);
276 
277 	/* Now find the product within the vendor's domain. */
278 	for (; ap->ap_attach != NULL; ap++) {
279 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
280 			/* Ran out of this vendor's section of the table. */
281 			return (NULL);
282 		}
283 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
284 			/* Exact match. */
285 			break;
286 		}
287 		if (ap->ap_product == (uint32_t) -1) {
288 			/* Wildcard match. */
289 			break;
290 		}
291 	}
292 
293 	if (ap->ap_attach == NULL)
294 		return (NULL);
295 
296 	/* Now let the product-specific driver filter the match. */
297 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
298 		return (NULL);
299 
300 	return (ap);
301 }
302 
303 static int
304 agpmatch(device_t parent, cfdata_t match, void *aux)
305 {
306 	struct agpbus_attach_args *apa = aux;
307 	struct pci_attach_args *pa = &apa->apa_pci_args;
308 
309 	if (agp_lookup(pa) == NULL)
310 		return (0);
311 
312 	return (1);
313 }
314 
315 static const int agp_max[][2] = {
316 	{0,	0},
317 	{32,	4},
318 	{64,	28},
319 	{128,	96},
320 	{256,	204},
321 	{512,	440},
322 	{1024,	942},
323 	{2048,	1920},
324 	{4096,	3932}
325 };
326 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
327 
328 static void
329 agpattach(device_t parent, device_t self, void *aux)
330 {
331 	struct agpbus_attach_args *apa = aux;
332 	struct pci_attach_args *pa = &apa->apa_pci_args;
333 	struct agp_softc *sc = device_private(self);
334 	const struct agp_product *ap;
335 	int memsize, i, ret;
336 
337 	ap = agp_lookup(pa);
338 	KASSERT(ap != NULL);
339 
340 	aprint_naive(": AGP controller\n");
341 
342 	sc->as_dev = self;
343 	sc->as_dmat = pa->pa_dmat;
344 	sc->as_pc = pa->pa_pc;
345 	sc->as_tag = pa->pa_tag;
346 	sc->as_id = pa->pa_id;
347 
348 	/*
349 	 * Work out an upper bound for agp memory allocation. This
350 	 * uses a heuristic table from the Linux driver.
351 	 */
352 	memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
353 	for (i = 0; i < agp_max_size; i++) {
354 		if (memsize <= agp_max[i][0])
355 			break;
356 	}
357 	if (i == agp_max_size)
358 		i = agp_max_size - 1;
359 	sc->as_maxmem = agp_max[i][1] << 20U;
360 
361 	/*
362 	 * The mutex is used to prevent re-entry to
363 	 * agp_generic_bind_memory() since that function can sleep.
364 	 */
365 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
366 
367 	TAILQ_INIT(&sc->as_memory);
368 
369 	ret = (*ap->ap_attach)(parent, self, pa);
370 	if (ret == 0)
371 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
372 		    (unsigned long)sc->as_apaddr,
373 		    (unsigned long)AGP_GET_APERTURE(sc));
374 	else
375 		sc->as_chipc = NULL;
376 
377 	if (!pmf_device_register(self, NULL, agp_resume))
378 		aprint_error_dev(self, "couldn't establish power handler\n");
379 }
380 
381 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
382     agpmatch, agpattach, NULL, NULL);
383 
384 int
385 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
386 {
387 	/*
388 	 * Find the aperture. Don't map it (yet), this would
389 	 * eat KVA.
390 	 */
391 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
392 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
393 	    &sc->as_apflags) != 0)
394 		return ENXIO;
395 
396 	sc->as_apt = pa->pa_memt;
397 
398 	return 0;
399 }
400 
401 struct agp_gatt *
402 agp_alloc_gatt(struct agp_softc *sc)
403 {
404 	u_int32_t apsize = AGP_GET_APERTURE(sc);
405 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
406 	struct agp_gatt *gatt;
407 	void *virtual;
408 	int dummyseg;
409 
410 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
411 	if (!gatt)
412 		return NULL;
413 	gatt->ag_entries = entries;
414 
415 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
416 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
417 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
418 		free(gatt, M_AGP);
419 		return NULL;
420 	}
421 	gatt->ag_virtual = (uint32_t *)virtual;
422 
423 	gatt->ag_size = entries * sizeof(u_int32_t);
424 	memset(gatt->ag_virtual, 0, gatt->ag_size);
425 	agp_flush_cache();
426 
427 	return gatt;
428 }
429 
430 void
431 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
432 {
433 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
434 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
435 	free(gatt, M_AGP);
436 }
437 
438 
439 int
440 agp_generic_detach(struct agp_softc *sc)
441 {
442 	mutex_destroy(&sc->as_mtx);
443 	agp_flush_cache();
444 	return 0;
445 }
446 
447 static int
448 agpdev_match(const struct pci_attach_args *pa)
449 {
450 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
451 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
452 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
453 		    NULL, NULL))
454 		return 1;
455 
456 	return 0;
457 }
458 
459 int
460 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
461 {
462 	struct pci_attach_args pa;
463 	pcireg_t tstatus, mstatus;
464 	int capoff;
465 
466 	if (pci_find_device(&pa, agpdev_match) == 0 ||
467 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
468 	     &capoff, NULL) == 0) {
469 		aprint_error_dev(sc->as_dev, "can't find display\n");
470 		return ENXIO;
471 	}
472 
473 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
474 	    sc->as_capoff + AGP_STATUS);
475 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
476 	    capoff + AGP_STATUS);
477 
478 	if (AGP_MODE_GET_MODE_3(mode) &&
479 	    AGP_MODE_GET_MODE_3(tstatus) &&
480 	    AGP_MODE_GET_MODE_3(mstatus))
481 		return agp_generic_enable_v3(sc, &pa, capoff, mode);
482 	else
483 		return agp_generic_enable_v2(sc, &pa, capoff, mode);
484 }
485 
486 static int
487 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
488     int capoff, u_int32_t mode)
489 {
490 	pcireg_t tstatus, mstatus;
491 	pcireg_t command;
492 	int rq, sba, fw, rate;
493 
494 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
495 	    sc->as_capoff + AGP_STATUS);
496 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
497 	    capoff + AGP_STATUS);
498 
499 	/* Set RQ to the min of mode, tstatus and mstatus */
500 	rq = AGP_MODE_GET_RQ(mode);
501 	if (AGP_MODE_GET_RQ(tstatus) < rq)
502 		rq = AGP_MODE_GET_RQ(tstatus);
503 	if (AGP_MODE_GET_RQ(mstatus) < rq)
504 		rq = AGP_MODE_GET_RQ(mstatus);
505 
506 	/* Set SBA if all three can deal with SBA */
507 	sba = (AGP_MODE_GET_SBA(tstatus)
508 	       & AGP_MODE_GET_SBA(mstatus)
509 	       & AGP_MODE_GET_SBA(mode));
510 
511 	/* Similar for FW */
512 	fw = (AGP_MODE_GET_FW(tstatus)
513 	       & AGP_MODE_GET_FW(mstatus)
514 	       & AGP_MODE_GET_FW(mode));
515 
516 	/* Figure out the max rate */
517 	rate = (AGP_MODE_GET_RATE(tstatus)
518 		& AGP_MODE_GET_RATE(mstatus)
519 		& AGP_MODE_GET_RATE(mode));
520 	if (rate & AGP_MODE_V2_RATE_4x)
521 		rate = AGP_MODE_V2_RATE_4x;
522 	else if (rate & AGP_MODE_V2_RATE_2x)
523 		rate = AGP_MODE_V2_RATE_2x;
524 	else
525 		rate = AGP_MODE_V2_RATE_1x;
526 
527 	/* Construct the new mode word and tell the hardware */
528 	command = AGP_MODE_SET_RQ(0, rq);
529 	command = AGP_MODE_SET_SBA(command, sba);
530 	command = AGP_MODE_SET_FW(command, fw);
531 	command = AGP_MODE_SET_RATE(command, rate);
532 	command = AGP_MODE_SET_AGP(command, 1);
533 	pci_conf_write(sc->as_pc, sc->as_tag,
534 	    sc->as_capoff + AGP_COMMAND, command);
535 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command);
536 
537 	return 0;
538 }
539 
540 static int
541 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
542     int capoff, u_int32_t mode)
543 {
544 	pcireg_t tstatus, mstatus;
545 	pcireg_t command;
546 	int rq, sba, fw, rate, arqsz, cal;
547 
548 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
549 	    sc->as_capoff + AGP_STATUS);
550 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
551 	    capoff + AGP_STATUS);
552 
553 	/* Set RQ to the min of mode, tstatus and mstatus */
554 	rq = AGP_MODE_GET_RQ(mode);
555 	if (AGP_MODE_GET_RQ(tstatus) < rq)
556 		rq = AGP_MODE_GET_RQ(tstatus);
557 	if (AGP_MODE_GET_RQ(mstatus) < rq)
558 		rq = AGP_MODE_GET_RQ(mstatus);
559 
560 	/*
561 	 * ARQSZ - Set the value to the maximum one.
562 	 * Don't allow the mode register to override values.
563 	 */
564 	arqsz = AGP_MODE_GET_ARQSZ(mode);
565 	if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
566 		arqsz = AGP_MODE_GET_ARQSZ(tstatus);
567 	if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
568 		arqsz = AGP_MODE_GET_ARQSZ(mstatus);
569 
570 	/* Calibration cycle - don't allow override by mode register */
571 	cal = AGP_MODE_GET_CAL(tstatus);
572 	if (AGP_MODE_GET_CAL(mstatus) < cal)
573 		cal = AGP_MODE_GET_CAL(mstatus);
574 
575 	/* SBA must be supported for AGP v3. */
576 	sba = 1;
577 
578 	/* Set FW if all three support it. */
579 	fw = (AGP_MODE_GET_FW(tstatus)
580 	       & AGP_MODE_GET_FW(mstatus)
581 	       & AGP_MODE_GET_FW(mode));
582 
583 	/* Figure out the max rate */
584 	rate = (AGP_MODE_GET_RATE(tstatus)
585 		& AGP_MODE_GET_RATE(mstatus)
586 		& AGP_MODE_GET_RATE(mode));
587 	if (rate & AGP_MODE_V3_RATE_8x)
588 		rate = AGP_MODE_V3_RATE_8x;
589 	else
590 		rate = AGP_MODE_V3_RATE_4x;
591 
592 	/* Construct the new mode word and tell the hardware */
593 	command = AGP_MODE_SET_RQ(0, rq);
594 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
595 	command = AGP_MODE_SET_CAL(command, cal);
596 	command = AGP_MODE_SET_SBA(command, sba);
597 	command = AGP_MODE_SET_FW(command, fw);
598 	command = AGP_MODE_SET_RATE(command, rate);
599 	command = AGP_MODE_SET_AGP(command, 1);
600 	pci_conf_write(sc->as_pc, sc->as_tag,
601 	    sc->as_capoff + AGP_COMMAND, command);
602 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command);
603 
604 	return 0;
605 }
606 
607 struct agp_memory *
608 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
609 {
610 	struct agp_memory *mem;
611 
612 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
613 		return 0;
614 
615 	if (sc->as_allocated + size > sc->as_maxmem)
616 		return 0;
617 
618 	if (type != 0) {
619 		printf("agp_generic_alloc_memory: unsupported type %d\n",
620 		       type);
621 		return 0;
622 	}
623 
624 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
625 	if (mem == NULL)
626 		return NULL;
627 
628 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
629 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
630 		free(mem, M_AGP);
631 		return NULL;
632 	}
633 
634 	mem->am_id = sc->as_nextid++;
635 	mem->am_size = size;
636 	mem->am_type = 0;
637 	mem->am_physical = 0;
638 	mem->am_offset = 0;
639 	mem->am_is_bound = 0;
640 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
641 	sc->as_allocated += size;
642 
643 	return mem;
644 }
645 
646 int
647 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
648 {
649 	if (mem->am_is_bound)
650 		return EBUSY;
651 
652 	sc->as_allocated -= mem->am_size;
653 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
654 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
655 	free(mem, M_AGP);
656 	return 0;
657 }
658 
659 int
660 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
661 			off_t offset)
662 {
663 	off_t i, k;
664 	bus_size_t done, j;
665 	int error;
666 	bus_dma_segment_t *segs, *seg;
667 	bus_addr_t pa;
668 	int contigpages, nseg;
669 
670 	mutex_enter(&sc->as_mtx);
671 
672 	if (mem->am_is_bound) {
673 		aprint_error_dev(sc->as_dev, "memory already bound\n");
674 		mutex_exit(&sc->as_mtx);
675 		return EINVAL;
676 	}
677 
678 	if (offset < 0
679 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
680 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
681 		aprint_error_dev(sc->as_dev,
682 			      "binding memory at bad offset %#lx\n",
683 			      (unsigned long) offset);
684 		mutex_exit(&sc->as_mtx);
685 		return EINVAL;
686 	}
687 
688 	/*
689 	 * XXXfvdl
690 	 * The memory here needs to be directly accessable from the
691 	 * AGP video card, so it should be allocated using bus_dma.
692 	 * However, it need not be contiguous, since individual pages
693 	 * are translated using the GATT.
694 	 *
695 	 * Using a large chunk of contiguous memory may get in the way
696 	 * of other subsystems that may need one, so we try to be friendly
697 	 * and ask for allocation in chunks of a minimum of 8 pages
698 	 * of contiguous memory on average, falling back to 4, 2 and 1
699 	 * if really needed. Larger chunks are preferred, since allocating
700 	 * a bus_dma_segment per page would be overkill.
701 	 */
702 
703 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
704 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
705 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
706 		if (segs == NULL) {
707 			mutex_exit(&sc->as_mtx);
708 			return ENOMEM;
709 		}
710 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
711 				     segs, nseg, &mem->am_nseg,
712 				     contigpages > 1 ?
713 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
714 			free(segs, M_AGP);
715 			continue;
716 		}
717 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
718 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
719 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
720 			free(segs, M_AGP);
721 			continue;
722 		}
723 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
724 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
725 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
726 			    mem->am_size);
727 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
728 			free(segs, M_AGP);
729 			continue;
730 		}
731 		mem->am_dmaseg = segs;
732 		break;
733 	}
734 
735 	if (contigpages == 0) {
736 		mutex_exit(&sc->as_mtx);
737 		return ENOMEM;
738 	}
739 
740 
741 	/*
742 	 * Bind the individual pages and flush the chipset's
743 	 * TLB.
744 	 */
745 	done = 0;
746 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
747 		seg = &mem->am_dmamap->dm_segs[i];
748 		/*
749 		 * Install entries in the GATT, making sure that if
750 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
751 		 * aligned to PAGE_SIZE, we don't modify too many GATT
752 		 * entries.
753 		 */
754 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
755 		     j += AGP_PAGE_SIZE) {
756 			pa = seg->ds_addr + j;
757 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
758 				(unsigned long)(offset + done + j),
759 				(unsigned long)pa));
760 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
761 			if (error) {
762 				/*
763 				 * Bail out. Reverse all the mappings
764 				 * and unwire the pages.
765 				 */
766 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
767 					AGP_UNBIND_PAGE(sc, offset + k);
768 
769 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
770 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
771 						 mem->am_size);
772 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
773 						mem->am_nseg);
774 				free(mem->am_dmaseg, M_AGP);
775 				mutex_exit(&sc->as_mtx);
776 				return error;
777 			}
778 		}
779 		done += seg->ds_len;
780 	}
781 
782 	/*
783 	 * Flush the CPU cache since we are providing a new mapping
784 	 * for these pages.
785 	 */
786 	agp_flush_cache();
787 
788 	/*
789 	 * Make sure the chipset gets the new mappings.
790 	 */
791 	AGP_FLUSH_TLB(sc);
792 
793 	mem->am_offset = offset;
794 	mem->am_is_bound = 1;
795 
796 	mutex_exit(&sc->as_mtx);
797 
798 	return 0;
799 }
800 
801 int
802 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
803 {
804 	int i;
805 
806 	mutex_enter(&sc->as_mtx);
807 
808 	if (!mem->am_is_bound) {
809 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
810 		mutex_exit(&sc->as_mtx);
811 		return EINVAL;
812 	}
813 
814 
815 	/*
816 	 * Unbind the individual pages and flush the chipset's
817 	 * TLB. Unwire the pages so they can be swapped.
818 	 */
819 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
820 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
821 
822 	agp_flush_cache();
823 	AGP_FLUSH_TLB(sc);
824 
825 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
826 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
827 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
828 
829 	free(mem->am_dmaseg, M_AGP);
830 
831 	mem->am_offset = 0;
832 	mem->am_is_bound = 0;
833 
834 	mutex_exit(&sc->as_mtx);
835 
836 	return 0;
837 }
838 
839 /* Helper functions for implementing user/kernel api */
840 
841 static int
842 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
843 {
844 	if (sc->as_state != AGP_ACQUIRE_FREE)
845 		return EBUSY;
846 	sc->as_state = state;
847 
848 	return 0;
849 }
850 
851 static int
852 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
853 {
854 
855 	if (sc->as_state == AGP_ACQUIRE_FREE)
856 		return 0;
857 
858 	if (sc->as_state != state)
859 		return EBUSY;
860 
861 	sc->as_state = AGP_ACQUIRE_FREE;
862 	return 0;
863 }
864 
865 static struct agp_memory *
866 agp_find_memory(struct agp_softc *sc, int id)
867 {
868 	struct agp_memory *mem;
869 
870 	AGP_DPF(("searching for memory block %d\n", id));
871 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
872 		AGP_DPF(("considering memory block %d\n", mem->am_id));
873 		if (mem->am_id == id)
874 			return mem;
875 	}
876 	return 0;
877 }
878 
879 /* Implementation of the userland ioctl api */
880 
881 static int
882 agp_info_user(struct agp_softc *sc, agp_info *info)
883 {
884 	memset(info, 0, sizeof *info);
885 	info->bridge_id = sc->as_id;
886 	if (sc->as_capoff != 0)
887 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
888 					       sc->as_capoff + AGP_STATUS);
889 	else
890 		info->agp_mode = 0; /* i810 doesn't have real AGP */
891 	info->aper_base = sc->as_apaddr;
892 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
893 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
894 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
895 
896 	return 0;
897 }
898 
899 static int
900 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
901 {
902 	return AGP_ENABLE(sc, setup->agp_mode);
903 }
904 
905 static int
906 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
907 {
908 	struct agp_memory *mem;
909 
910 	mem = AGP_ALLOC_MEMORY(sc,
911 			       alloc->type,
912 			       alloc->pg_count << AGP_PAGE_SHIFT);
913 	if (mem) {
914 		alloc->key = mem->am_id;
915 		alloc->physical = mem->am_physical;
916 		return 0;
917 	} else {
918 		return ENOMEM;
919 	}
920 }
921 
922 static int
923 agp_deallocate_user(struct agp_softc *sc, int id)
924 {
925 	struct agp_memory *mem = agp_find_memory(sc, id);
926 
927 	if (mem) {
928 		AGP_FREE_MEMORY(sc, mem);
929 		return 0;
930 	} else {
931 		return ENOENT;
932 	}
933 }
934 
935 static int
936 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
937 {
938 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
939 
940 	if (!mem)
941 		return ENOENT;
942 
943 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
944 }
945 
946 static int
947 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
948 {
949 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
950 
951 	if (!mem)
952 		return ENOENT;
953 
954 	return AGP_UNBIND_MEMORY(sc, mem);
955 }
956 
957 static int
958 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
959 {
960 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
961 
962 	if (sc == NULL)
963 		return ENXIO;
964 
965 	if (sc->as_chipc == NULL)
966 		return ENXIO;
967 
968 	if (!sc->as_isopen)
969 		sc->as_isopen = 1;
970 	else
971 		return EBUSY;
972 
973 	return 0;
974 }
975 
976 static int
977 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
978 {
979 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
980 	struct agp_memory *mem;
981 
982 	if (sc == NULL)
983 		return ENODEV;
984 
985 	/*
986 	 * Clear the GATT and force release on last close
987 	 */
988 	if (sc->as_state == AGP_ACQUIRE_USER) {
989 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
990 			if (mem->am_is_bound) {
991 				printf("agpclose: mem %d is bound\n",
992 				       mem->am_id);
993 				AGP_UNBIND_MEMORY(sc, mem);
994 			}
995 			/*
996 			 * XXX it is not documented, but if the protocol allows
997 			 * allocate->acquire->bind, it would be possible that
998 			 * memory ranges are allocated by the kernel here,
999 			 * which we shouldn't free. We'd have to keep track of
1000 			 * the memory range's owner.
1001 			 * The kernel API is unsed yet, so we get away with
1002 			 * freeing all.
1003 			 */
1004 			AGP_FREE_MEMORY(sc, mem);
1005 		}
1006 		agp_release_helper(sc, AGP_ACQUIRE_USER);
1007 	}
1008 	sc->as_isopen = 0;
1009 
1010 	return 0;
1011 }
1012 
1013 static int
1014 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
1015 {
1016 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1017 
1018 	if (sc == NULL)
1019 		return ENODEV;
1020 
1021 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
1022 		return EPERM;
1023 
1024 	switch (cmd) {
1025 	case AGPIOC_INFO:
1026 		return agp_info_user(sc, (agp_info *) data);
1027 
1028 	case AGPIOC_ACQUIRE:
1029 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
1030 
1031 	case AGPIOC_RELEASE:
1032 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
1033 
1034 	case AGPIOC_SETUP:
1035 		return agp_setup_user(sc, (agp_setup *)data);
1036 
1037 #ifdef __x86_64__
1038 {
1039 	/*
1040 	 * Handle paddr_t change from 32 bit for non PAE kernels
1041 	 * to 64 bit.
1042 	 */
1043 #define AGPIOC_OALLOCATE  _IOWR(AGPIOC_BASE, 6, agp_oallocate)
1044 
1045 	typedef struct _agp_oallocate {
1046 		int key;		/* tag of allocation            */
1047 		size_t pg_count;	/* number of pages              */
1048 		uint32_t type;		/* 0 == normal, other devspec   */
1049 		u_long physical;	/* device specific (some devices
1050 					 * need a phys address of the
1051 					 * actual page behind the gatt
1052 					 * table)                        */
1053 	} agp_oallocate;
1054 
1055 	case AGPIOC_OALLOCATE: {
1056 		int ret;
1057 		agp_allocate aga;
1058 		agp_oallocate *oaga = data;
1059 
1060 		aga.type = oaga->type;
1061 		aga.pg_count = oaga->pg_count;
1062 
1063 		if ((ret = agp_allocate_user(sc, &aga)) == 0) {
1064 			oaga->key = aga.key;
1065 			oaga->physical = (u_long)aga.physical;
1066 		}
1067 
1068 		return ret;
1069 	}
1070 }
1071 #endif
1072 	case AGPIOC_ALLOCATE:
1073 		return agp_allocate_user(sc, (agp_allocate *)data);
1074 
1075 	case AGPIOC_DEALLOCATE:
1076 		return agp_deallocate_user(sc, *(int *) data);
1077 
1078 	case AGPIOC_BIND:
1079 		return agp_bind_user(sc, (agp_bind *)data);
1080 
1081 	case AGPIOC_UNBIND:
1082 		return agp_unbind_user(sc, (agp_unbind *)data);
1083 
1084 	}
1085 
1086 	return EINVAL;
1087 }
1088 
1089 static paddr_t
1090 agpmmap(dev_t dev, off_t offset, int prot)
1091 {
1092 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1093 
1094 	if (sc == NULL)
1095 		return ENODEV;
1096 
1097 	if (offset > AGP_GET_APERTURE(sc))
1098 		return -1;
1099 
1100 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
1101 	    BUS_SPACE_MAP_LINEAR));
1102 }
1103 
1104 const struct cdevsw agp_cdevsw = {
1105 	agpopen, agpclose, noread, nowrite, agpioctl,
1106 	nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
1107 };
1108 
1109 /* Implementation of the kernel api */
1110 
1111 void *
1112 agp_find_device(int unit)
1113 {
1114 	return device_lookup_private(&agp_cd, unit);
1115 }
1116 
1117 enum agp_acquire_state
1118 agp_state(void *devcookie)
1119 {
1120 	struct agp_softc *sc = devcookie;
1121 
1122 	return sc->as_state;
1123 }
1124 
1125 void
1126 agp_get_info(void *devcookie, struct agp_info *info)
1127 {
1128 	struct agp_softc *sc = devcookie;
1129 
1130 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1131 	    sc->as_capoff + AGP_STATUS);
1132 	info->ai_aperture_base = sc->as_apaddr;
1133 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
1134 	info->ai_memory_allowed = sc->as_maxmem;
1135 	info->ai_memory_used = sc->as_allocated;
1136 }
1137 
1138 int
1139 agp_acquire(void *dev)
1140 {
1141 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1142 }
1143 
1144 int
1145 agp_release(void *dev)
1146 {
1147 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1148 }
1149 
1150 int
1151 agp_enable(void *dev, u_int32_t mode)
1152 {
1153 	struct agp_softc *sc = dev;
1154 
1155 	return AGP_ENABLE(sc, mode);
1156 }
1157 
1158 void *
1159 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1160 {
1161 	struct agp_softc *sc = dev;
1162 
1163 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1164 }
1165 
1166 void
1167 agp_free_memory(void *dev, void *handle)
1168 {
1169 	struct agp_softc *sc = dev;
1170 	struct agp_memory *mem = handle;
1171 
1172 	AGP_FREE_MEMORY(sc, mem);
1173 }
1174 
1175 int
1176 agp_bind_memory(void *dev, void *handle, off_t offset)
1177 {
1178 	struct agp_softc *sc = dev;
1179 	struct agp_memory *mem = handle;
1180 
1181 	return AGP_BIND_MEMORY(sc, mem, offset);
1182 }
1183 
1184 int
1185 agp_unbind_memory(void *dev, void *handle)
1186 {
1187 	struct agp_softc *sc = dev;
1188 	struct agp_memory *mem = handle;
1189 
1190 	return AGP_UNBIND_MEMORY(sc, mem);
1191 }
1192 
1193 void
1194 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1195 {
1196 	struct agp_memory *mem = handle;
1197 
1198 	mi->ami_size = mem->am_size;
1199 	mi->ami_physical = mem->am_physical;
1200 	mi->ami_offset = mem->am_offset;
1201 	mi->ami_is_bound = mem->am_is_bound;
1202 }
1203 
1204 int
1205 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1206 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1207 		 bus_dma_segment_t *seg, int nseg, int *rseg)
1208 
1209 {
1210 	int error, level = 0;
1211 
1212 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1213 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1214 		goto out;
1215 	level++;
1216 
1217 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1218 			BUS_DMA_NOWAIT | flags)) != 0)
1219 		goto out;
1220 	level++;
1221 
1222 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1223 			BUS_DMA_NOWAIT, mapp)) != 0)
1224 		goto out;
1225 	level++;
1226 
1227 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1228 			BUS_DMA_NOWAIT)) != 0)
1229 		goto out;
1230 
1231 	*baddr = (*mapp)->dm_segs[0].ds_addr;
1232 
1233 	return 0;
1234 out:
1235 	switch (level) {
1236 	case 3:
1237 		bus_dmamap_destroy(tag, *mapp);
1238 		/* FALLTHROUGH */
1239 	case 2:
1240 		bus_dmamem_unmap(tag, *vaddr, size);
1241 		/* FALLTHROUGH */
1242 	case 1:
1243 		bus_dmamem_free(tag, seg, *rseg);
1244 		break;
1245 	default:
1246 		break;
1247 	}
1248 
1249 	return error;
1250 }
1251 
1252 void
1253 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1254 		void *vaddr, bus_dma_segment_t *seg, int nseg)
1255 {
1256 	bus_dmamap_unload(tag, map);
1257 	bus_dmamap_destroy(tag, map);
1258 	bus_dmamem_unmap(tag, vaddr, size);
1259 	bus_dmamem_free(tag, seg, nseg);
1260 }
1261 
1262 static bool
1263 agp_resume(device_t dv, const pmf_qual_t *qual)
1264 {
1265 	agp_flush_cache();
1266 
1267 	return true;
1268 }
1269