xref: /netbsd/sys/dev/pci/if_wpi.c (revision 79fb1406)
1 /*	$NetBSD: if_wpi.c,v 1.84 2018/12/09 11:14:02 jdolecek Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.84 2018/12/09 11:14:02 jdolecek Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51 
52 #include <dev/sysmon/sysmonvar.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70 
71 #include <dev/firmload.h>
72 
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75 
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82 
83 static int	wpi_match(device_t, cfdata_t, void *);
84 static void	wpi_attach(device_t, device_t, void *);
85 static int	wpi_detach(device_t , int);
86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
89 static int	wpi_alloc_shared(struct wpi_softc *);
90 static void	wpi_free_shared(struct wpi_softc *);
91 static int	wpi_alloc_fwmem(struct wpi_softc *);
92 static void	wpi_free_fwmem(struct wpi_softc *);
93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int	wpi_alloc_rpool(struct wpi_softc *);
96 static void	wpi_free_rpool(struct wpi_softc *);
97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 		    int, int);
102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void	wpi_newassoc(struct ieee80211_node *, int);
106 static int	wpi_media_change(struct ifnet *);
107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void	wpi_mem_lock(struct wpi_softc *);
109 static void	wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 		    const uint32_t *, int);
114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
116 static int	wpi_cache_firmware(struct wpi_softc *);
117 static void	wpi_release_firmware(void);
118 static int	wpi_load_firmware(struct wpi_softc *);
119 static void	wpi_calib_timeout(void *);
120 static void	wpi_iter_func(void *, struct ieee80211_node *);
121 static void	wpi_power_calibration(struct wpi_softc *, int);
122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 		    struct wpi_rx_data *);
124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void	wpi_notif_intr(struct wpi_softc *);
127 static int	wpi_intr(void *);
128 static void	wpi_softintr(void *);
129 static void	wpi_read_eeprom(struct wpi_softc *);
130 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
131 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
132 static uint8_t	wpi_plcp_signal(int);
133 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
134 		    struct ieee80211_node *, int);
135 static void	wpi_start(struct ifnet *);
136 static void	wpi_watchdog(struct ifnet *);
137 static int	wpi_ioctl(struct ifnet *, u_long, void *);
138 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int	wpi_wme_update(struct ieee80211com *);
140 static int	wpi_mrr_setup(struct wpi_softc *);
141 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int	wpi_set_txpower(struct wpi_softc *,
144 		    struct ieee80211_channel *, int);
145 static int	wpi_get_power_index(struct wpi_softc *,
146 		    struct wpi_power_group *, struct ieee80211_channel *, int);
147 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
148 static int	wpi_auth(struct wpi_softc *);
149 static int	wpi_scan(struct wpi_softc *);
150 static int	wpi_config(struct wpi_softc *);
151 static void	wpi_stop_master(struct wpi_softc *);
152 static int	wpi_power_up(struct wpi_softc *);
153 static int	wpi_reset(struct wpi_softc *);
154 static void	wpi_hw_config(struct wpi_softc *);
155 static int	wpi_init(struct ifnet *);
156 static void	wpi_stop(struct ifnet *, int);
157 static bool	wpi_resume(device_t, const pmf_qual_t *);
158 static int	wpi_getrfkill(struct wpi_softc *);
159 static void	wpi_sysctlattach(struct wpi_softc *);
160 static void	wpi_rsw_thread(void *);
161 
162 #ifdef WPI_DEBUG
163 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
164 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
165 int wpi_debug = 1;
166 #else
167 #define DPRINTF(x)
168 #define DPRINTFN(n, x)
169 #endif
170 
171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172 	wpi_detach, NULL);
173 
174 static int
175 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
176 {
177 	struct pci_attach_args *pa = aux;
178 
179 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180 		return 0;
181 
182 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184 		return 1;
185 
186 	return 0;
187 }
188 
189 /* Base Address Register */
190 #define WPI_PCI_BAR0	0x10
191 
192 static int
193 wpi_attach_once(void)
194 {
195 
196 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
197 	return 0;
198 }
199 
200 static void
201 wpi_attach(device_t parent __unused, device_t self, void *aux)
202 {
203 	struct wpi_softc *sc = device_private(self);
204 	struct ieee80211com *ic = &sc->sc_ic;
205 	struct ifnet *ifp = &sc->sc_ec.ec_if;
206 	struct pci_attach_args *pa = aux;
207 	const char *intrstr;
208 	bus_space_tag_t memt;
209 	bus_space_handle_t memh;
210 	pcireg_t data;
211 	int ac, error;
212 	char intrbuf[PCI_INTRSTR_LEN];
213 
214 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 	sc->fw_used = false;
216 
217 	sc->sc_dev = self;
218 	sc->sc_pct = pa->pa_pc;
219 	sc->sc_pcitag = pa->pa_tag;
220 
221 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 	sc->sc_rsw.smpsw_name = device_xname(self);
223 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 	error = sysmon_pswitch_register(&sc->sc_rsw);
225 	if (error) {
226 		aprint_error_dev(self,
227 		    "unable to register radio switch with sysmon\n");
228 		return;
229 	}
230 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 	cv_init(&sc->sc_rsw_cv, "wpirsw");
232 	sc->sc_rsw_suspend = false;
233 	sc->sc_rsw_suspended = false;
234 	if (kthread_create(PRI_NONE, 0, NULL,
235 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
236 		aprint_error_dev(self, "couldn't create switch thread\n");
237 	}
238 
239 	callout_init(&sc->calib_to, 0);
240 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
241 
242 	pci_aprint_devinfo(pa, NULL);
243 
244 	/* enable bus-mastering */
245 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
246 	data |= PCI_COMMAND_MASTER_ENABLE;
247 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
248 
249 	/* map the register window */
250 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
251 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
252 	if (error != 0) {
253 		aprint_error_dev(self, "could not map memory space\n");
254 		return;
255 	}
256 
257 	sc->sc_st = memt;
258 	sc->sc_sh = memh;
259 	sc->sc_dmat = pa->pa_dmat;
260 
261 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
262 	if (sc->sc_soft_ih == NULL) {
263 		aprint_error_dev(self, "could not establish softint\n");
264 		goto unmap;
265 	}
266 
267 	if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
268 		aprint_error_dev(self, "could not map interrupt\n");
269 		goto failsi;
270 	}
271 
272 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
273 	    sizeof(intrbuf));
274 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
275 	    IPL_NET, wpi_intr, sc, device_xname(self));
276 	if (sc->sc_ih == NULL) {
277 		aprint_error_dev(self, "could not establish interrupt");
278 		if (intrstr != NULL)
279 			aprint_error(" at %s", intrstr);
280 		aprint_error("\n");
281 		goto failia;
282 	}
283 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
284 
285 	/*
286 	 * Put adapter into a known state.
287 	 */
288 	if ((error = wpi_reset(sc)) != 0) {
289 		aprint_error_dev(self, "could not reset adapter\n");
290 		goto failih;
291 	}
292 
293 	/*
294 	 * Allocate DMA memory for firmware transfers.
295 	 */
296 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
297 		aprint_error_dev(self, "could not allocate firmware memory\n");
298 		goto failih;
299 	}
300 
301 	/*
302 	 * Allocate shared page and Tx/Rx rings.
303 	 */
304 	if ((error = wpi_alloc_shared(sc)) != 0) {
305 		aprint_error_dev(self, "could not allocate shared area\n");
306 		goto fail1;
307 	}
308 
309 	if ((error = wpi_alloc_rpool(sc)) != 0) {
310 		aprint_error_dev(self, "could not allocate Rx buffers\n");
311 		goto fail2;
312 	}
313 
314 	for (ac = 0; ac < 4; ac++) {
315 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
316 		    ac);
317 		if (error != 0) {
318 			aprint_error_dev(self,
319 			    "could not allocate Tx ring %d\n", ac);
320 			goto fail3;
321 		}
322 	}
323 
324 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
325 	if (error != 0) {
326 		aprint_error_dev(self, "could not allocate command ring\n");
327 		goto fail3;
328 	}
329 
330 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
331 	if (error != 0) {
332 		aprint_error_dev(self, "could not allocate Rx ring\n");
333 		goto fail4;
334 	}
335 
336 	ic->ic_ifp = ifp;
337 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
338 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
339 	ic->ic_state = IEEE80211_S_INIT;
340 
341 	/* set device capabilities */
342 	ic->ic_caps =
343 	    IEEE80211_C_WPA |		/* 802.11i */
344 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
345 	    IEEE80211_C_TXPMGT |	/* tx power management */
346 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
347 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
348 	    IEEE80211_C_WME;		/* 802.11e */
349 
350 	/* read supported channels and MAC address from EEPROM */
351 	wpi_read_eeprom(sc);
352 
353 	/* set supported .11a, .11b and .11g rates */
354 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
355 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
356 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
357 
358 	/* IBSS channel undefined for now */
359 	ic->ic_ibss_chan = &ic->ic_channels[0];
360 
361 	ifp->if_softc = sc;
362 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
363 	ifp->if_init = wpi_init;
364 	ifp->if_stop = wpi_stop;
365 	ifp->if_ioctl = wpi_ioctl;
366 	ifp->if_start = wpi_start;
367 	ifp->if_watchdog = wpi_watchdog;
368 	IFQ_SET_READY(&ifp->if_snd);
369 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
370 
371 	error = if_initialize(ifp);
372 	if (error != 0) {
373 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
374 		    error);
375 		goto fail5;
376 	}
377 	ieee80211_ifattach(ic);
378 	/* Use common softint-based if_input */
379 	ifp->if_percpuq = if_percpuq_create(ifp);
380 	if_register(ifp);
381 
382 	/* override default methods */
383 	ic->ic_node_alloc = wpi_node_alloc;
384 	ic->ic_newassoc = wpi_newassoc;
385 	ic->ic_wme.wme_update = wpi_wme_update;
386 
387 	/* override state transition machine */
388 	sc->sc_newstate = ic->ic_newstate;
389 	ic->ic_newstate = wpi_newstate;
390 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
391 
392 	sc->amrr.amrr_min_success_threshold =  1;
393 	sc->amrr.amrr_max_success_threshold = 15;
394 
395 	wpi_sysctlattach(sc);
396 
397 	if (pmf_device_register(self, NULL, wpi_resume))
398 		pmf_class_network_register(self, ifp);
399 	else
400 		aprint_error_dev(self, "couldn't establish power handler\n");
401 
402 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
403 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
404 	    &sc->sc_drvbpf);
405 
406 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
407 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
408 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
409 
410 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
411 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
412 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
413 
414 	ieee80211_announce(ic);
415 
416 	return;
417 
418 	/* free allocated memory if something failed during attachment */
419 fail5:	wpi_free_rx_ring(sc, &sc->rxq);
420 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
421 fail3:	while (--ac >= 0)
422 		wpi_free_tx_ring(sc, &sc->txq[ac]);
423 	wpi_free_rpool(sc);
424 fail2:	wpi_free_shared(sc);
425 fail1:	wpi_free_fwmem(sc);
426 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
427 	sc->sc_ih = NULL;
428 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
429 	sc->sc_pihp = NULL;
430 failsi:	softint_disestablish(sc->sc_soft_ih);
431 	sc->sc_soft_ih = NULL;
432 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
433 }
434 
435 static int
436 wpi_detach(device_t self, int flags __unused)
437 {
438 	struct wpi_softc *sc = device_private(self);
439 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
440 	int ac;
441 
442 	wpi_stop(ifp, 1);
443 
444 	if (ifp != NULL)
445 		bpf_detach(ifp);
446 	ieee80211_ifdetach(&sc->sc_ic);
447 	if (ifp != NULL)
448 		if_detach(ifp);
449 
450 	for (ac = 0; ac < 4; ac++)
451 		wpi_free_tx_ring(sc, &sc->txq[ac]);
452 	wpi_free_tx_ring(sc, &sc->cmdq);
453 	wpi_free_rx_ring(sc, &sc->rxq);
454 	wpi_free_rpool(sc);
455 	wpi_free_shared(sc);
456 
457 	if (sc->sc_ih != NULL) {
458 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
459 		sc->sc_ih = NULL;
460 	}
461 	if (sc->sc_pihp != NULL) {
462 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
463 		sc->sc_pihp = NULL;
464 	}
465 	if (sc->sc_soft_ih != NULL) {
466 		softint_disestablish(sc->sc_soft_ih);
467 		sc->sc_soft_ih = NULL;
468 	}
469 
470 	mutex_enter(&sc->sc_rsw_mtx);
471 	sc->sc_dying = 1;
472 	cv_signal(&sc->sc_rsw_cv);
473 	while (sc->sc_rsw_lwp != NULL)
474 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
475 	mutex_exit(&sc->sc_rsw_mtx);
476 	sysmon_pswitch_unregister(&sc->sc_rsw);
477 
478 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
479 
480 	if (sc->fw_used) {
481 		sc->fw_used = false;
482 		wpi_release_firmware();
483 	}
484 	cv_destroy(&sc->sc_rsw_cv);
485 	mutex_destroy(&sc->sc_rsw_mtx);
486 	return 0;
487 }
488 
489 static int
490 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
491     bus_size_t size, bus_size_t alignment, int flags)
492 {
493 	int nsegs, error;
494 
495 	dma->tag = tag;
496 	dma->size = size;
497 
498 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
499 	if (error != 0)
500 		goto fail;
501 
502 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
503 	    flags);
504 	if (error != 0)
505 		goto fail;
506 
507 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
508 	if (error != 0)
509 		goto fail;
510 
511 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
512 	if (error != 0)
513 		goto fail;
514 
515 	memset(dma->vaddr, 0, size);
516 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
517 
518 	dma->paddr = dma->map->dm_segs[0].ds_addr;
519 	if (kvap != NULL)
520 		*kvap = dma->vaddr;
521 
522 	return 0;
523 
524 fail:	wpi_dma_contig_free(dma);
525 	return error;
526 }
527 
528 static void
529 wpi_dma_contig_free(struct wpi_dma_info *dma)
530 {
531 	if (dma->map != NULL) {
532 		if (dma->vaddr != NULL) {
533 			bus_dmamap_unload(dma->tag, dma->map);
534 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
535 			bus_dmamem_free(dma->tag, &dma->seg, 1);
536 			dma->vaddr = NULL;
537 		}
538 		bus_dmamap_destroy(dma->tag, dma->map);
539 		dma->map = NULL;
540 	}
541 }
542 
543 /*
544  * Allocate a shared page between host and NIC.
545  */
546 static int
547 wpi_alloc_shared(struct wpi_softc *sc)
548 {
549 	int error;
550 
551 	/* must be aligned on a 4K-page boundary */
552 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
553 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
554 	    BUS_DMA_NOWAIT);
555 	if (error != 0)
556 		aprint_error_dev(sc->sc_dev,
557 		    "could not allocate shared area DMA memory\n");
558 
559 	return error;
560 }
561 
562 static void
563 wpi_free_shared(struct wpi_softc *sc)
564 {
565 	wpi_dma_contig_free(&sc->shared_dma);
566 }
567 
568 /*
569  * Allocate DMA-safe memory for firmware transfer.
570  */
571 static int
572 wpi_alloc_fwmem(struct wpi_softc *sc)
573 {
574 	int error;
575 
576 	/* allocate enough contiguous space to store text and data */
577 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
578 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
579 	    BUS_DMA_NOWAIT);
580 
581 	if (error != 0)
582 		aprint_error_dev(sc->sc_dev,
583 		    "could not allocate firmware transfer area DMA memory\n");
584 	return error;
585 }
586 
587 static void
588 wpi_free_fwmem(struct wpi_softc *sc)
589 {
590 	wpi_dma_contig_free(&sc->fw_dma);
591 }
592 
593 static struct wpi_rbuf *
594 wpi_alloc_rbuf(struct wpi_softc *sc)
595 {
596 	struct wpi_rbuf *rbuf;
597 
598 	mutex_enter(&sc->rxq.freelist_mtx);
599 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
600 	if (rbuf != NULL) {
601 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
602 	}
603 	mutex_exit(&sc->rxq.freelist_mtx);
604 
605 	return rbuf;
606 }
607 
608 /*
609  * This is called automatically by the network stack when the mbuf to which our
610  * Rx buffer is attached is freed.
611  */
612 static void
613 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
614 {
615 	struct wpi_rbuf *rbuf = arg;
616 	struct wpi_softc *sc = rbuf->sc;
617 
618 	/* put the buffer back in the free list */
619 
620 	mutex_enter(&sc->rxq.freelist_mtx);
621 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
622 	mutex_exit(&sc->rxq.freelist_mtx);
623 
624 	if (__predict_true(m != NULL))
625 		pool_cache_put(mb_cache, m);
626 }
627 
628 static int
629 wpi_alloc_rpool(struct wpi_softc *sc)
630 {
631 	struct wpi_rx_ring *ring = &sc->rxq;
632 	int i, error;
633 
634 	/* allocate a big chunk of DMA'able memory.. */
635 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
636 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
637 	if (error != 0) {
638 		aprint_normal_dev(sc->sc_dev,
639 		    "could not allocate Rx buffers DMA memory\n");
640 		return error;
641 	}
642 
643 	/* ..and split it into 3KB chunks */
644 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
645 	SLIST_INIT(&ring->freelist);
646 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
647 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
648 
649 		rbuf->sc = sc;	/* backpointer for callbacks */
650 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
651 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
652 
653 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
654 	}
655 
656 	return 0;
657 }
658 
659 static void
660 wpi_free_rpool(struct wpi_softc *sc)
661 {
662 	mutex_destroy(&sc->rxq.freelist_mtx);
663 	wpi_dma_contig_free(&sc->rxq.buf_dma);
664 }
665 
666 static int
667 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
668 {
669 	bus_size_t size;
670 	int i, error;
671 
672 	ring->cur = 0;
673 
674 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
675 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
676 	    (void **)&ring->desc, size,
677 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
678 	if (error != 0) {
679 		aprint_error_dev(sc->sc_dev,
680 		    "could not allocate rx ring DMA memory\n");
681 		goto fail;
682 	}
683 
684 	/*
685 	 * Setup Rx buffers.
686 	 */
687 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
688 		struct wpi_rx_data *data = &ring->data[i];
689 		struct wpi_rbuf *rbuf;
690 
691 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
692 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
693 		if (error) {
694 			aprint_error_dev(sc->sc_dev,
695 			    "could not allocate rx dma map\n");
696 			goto fail;
697 		}
698 
699 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
700 		if (data->m == NULL) {
701 			aprint_error_dev(sc->sc_dev,
702 			    "could not allocate rx mbuf\n");
703 			error = ENOMEM;
704 			goto fail;
705 		}
706 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
707 			m_freem(data->m);
708 			data->m = NULL;
709 			aprint_error_dev(sc->sc_dev,
710 			    "could not allocate rx cluster\n");
711 			error = ENOMEM;
712 			goto fail;
713 		}
714 		/* attach Rx buffer to mbuf */
715 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
716 		    rbuf);
717 		data->m->m_flags |= M_EXT_RW;
718 
719 		error = bus_dmamap_load(sc->sc_dmat, data->map,
720 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
721 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
722 		if (error) {
723 			aprint_error_dev(sc->sc_dev,
724 			    "could not load mbuf: %d\n", error);
725 			goto fail;
726 		}
727 
728 		ring->desc[i] = htole32(rbuf->paddr);
729 	}
730 
731 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
732 	    BUS_DMASYNC_PREWRITE);
733 
734 	return 0;
735 
736 fail:	wpi_free_rx_ring(sc, ring);
737 	return error;
738 }
739 
740 static void
741 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
742 {
743 	int ntries;
744 
745 	wpi_mem_lock(sc);
746 
747 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
748 	for (ntries = 0; ntries < 100; ntries++) {
749 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
750 			break;
751 		DELAY(10);
752 	}
753 #ifdef WPI_DEBUG
754 	if (ntries == 100 && wpi_debug > 0)
755 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
756 #endif
757 	wpi_mem_unlock(sc);
758 
759 	ring->cur = 0;
760 }
761 
762 static void
763 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
764 {
765 	int i;
766 
767 	wpi_dma_contig_free(&ring->desc_dma);
768 
769 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
770 		if (ring->data[i].m != NULL) {
771 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
772 			m_freem(ring->data[i].m);
773 		}
774 		if (ring->data[i].map != NULL) {
775 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
776 		}
777 	}
778 }
779 
780 static int
781 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
782     int qid)
783 {
784 	int i, error;
785 
786 	ring->qid = qid;
787 	ring->count = count;
788 	ring->queued = 0;
789 	ring->cur = 0;
790 
791 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
792 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
793 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
794 	if (error != 0) {
795 		aprint_error_dev(sc->sc_dev,
796 		    "could not allocate tx ring DMA memory\n");
797 		goto fail;
798 	}
799 
800 	/* update shared page with ring's base address */
801 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
802 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
803 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
804 
805 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
806 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
807 	    BUS_DMA_NOWAIT);
808 	if (error != 0) {
809 		aprint_error_dev(sc->sc_dev,
810 		    "could not allocate tx cmd DMA memory\n");
811 		goto fail;
812 	}
813 
814 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
815 	    M_NOWAIT | M_ZERO);
816 	if (ring->data == NULL) {
817 		aprint_error_dev(sc->sc_dev,
818 		    "could not allocate tx data slots\n");
819 		goto fail;
820 	}
821 
822 	for (i = 0; i < count; i++) {
823 		struct wpi_tx_data *data = &ring->data[i];
824 
825 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
826 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
827 		    &data->map);
828 		if (error != 0) {
829 			aprint_error_dev(sc->sc_dev,
830 			    "could not create tx buf DMA map\n");
831 			goto fail;
832 		}
833 	}
834 
835 	return 0;
836 
837 fail:	wpi_free_tx_ring(sc, ring);
838 	return error;
839 }
840 
841 static void
842 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
843 {
844 	int i, ntries;
845 
846 	wpi_mem_lock(sc);
847 
848 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
849 	for (ntries = 0; ntries < 100; ntries++) {
850 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
851 			break;
852 		DELAY(10);
853 	}
854 #ifdef WPI_DEBUG
855 	if (ntries == 100 && wpi_debug > 0) {
856 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
857 		    ring->qid);
858 	}
859 #endif
860 	wpi_mem_unlock(sc);
861 
862 	for (i = 0; i < ring->count; i++) {
863 		struct wpi_tx_data *data = &ring->data[i];
864 
865 		if (data->m != NULL) {
866 			bus_dmamap_unload(sc->sc_dmat, data->map);
867 			m_freem(data->m);
868 			data->m = NULL;
869 		}
870 	}
871 
872 	ring->queued = 0;
873 	ring->cur = 0;
874 }
875 
876 static void
877 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
878 {
879 	int i;
880 
881 	wpi_dma_contig_free(&ring->desc_dma);
882 	wpi_dma_contig_free(&ring->cmd_dma);
883 
884 	if (ring->data != NULL) {
885 		for (i = 0; i < ring->count; i++) {
886 			struct wpi_tx_data *data = &ring->data[i];
887 
888 			if (data->m != NULL) {
889 				bus_dmamap_unload(sc->sc_dmat, data->map);
890 				m_freem(data->m);
891 			}
892 		}
893 		free(ring->data, M_DEVBUF);
894 	}
895 }
896 
897 /*ARGUSED*/
898 static struct ieee80211_node *
899 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
900 {
901 	struct wpi_node *wn;
902 
903 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
904 
905 	return (struct ieee80211_node *)wn;
906 }
907 
908 static void
909 wpi_newassoc(struct ieee80211_node *ni, int isnew)
910 {
911 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
912 	int i;
913 
914 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
915 
916 	/* set rate to some reasonable initial value */
917 	for (i = ni->ni_rates.rs_nrates - 1;
918 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
919 	     i--);
920 	ni->ni_txrate = i;
921 }
922 
923 static int
924 wpi_media_change(struct ifnet *ifp)
925 {
926 	int error;
927 
928 	error = ieee80211_media_change(ifp);
929 	if (error != ENETRESET)
930 		return error;
931 
932 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
933 		wpi_init(ifp);
934 
935 	return 0;
936 }
937 
938 static int
939 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
940 {
941 	struct ifnet *ifp = ic->ic_ifp;
942 	struct wpi_softc *sc = ifp->if_softc;
943 	struct ieee80211_node *ni;
944 	enum ieee80211_state ostate = ic->ic_state;
945 	int error;
946 
947 	callout_stop(&sc->calib_to);
948 
949 	switch (nstate) {
950 	case IEEE80211_S_SCAN:
951 
952 		if (sc->is_scanning)
953 			break;
954 
955 		sc->is_scanning = true;
956 
957 		if (ostate != IEEE80211_S_SCAN) {
958 			/* make the link LED blink while we're scanning */
959 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
960 		}
961 
962 		if ((error = wpi_scan(sc)) != 0) {
963 			aprint_error_dev(sc->sc_dev,
964 			    "could not initiate scan\n");
965 			return error;
966 		}
967 		break;
968 
969 	case IEEE80211_S_ASSOC:
970 		if (ic->ic_state != IEEE80211_S_RUN)
971 			break;
972 		/* FALLTHROUGH */
973 	case IEEE80211_S_AUTH:
974 		/* reset state to handle reassociations correctly */
975 		sc->config.associd = 0;
976 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
977 
978 		if ((error = wpi_auth(sc)) != 0) {
979 			aprint_error_dev(sc->sc_dev,
980 			    "could not send authentication request\n");
981 			return error;
982 		}
983 		break;
984 
985 	case IEEE80211_S_RUN:
986 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
987 			/* link LED blinks while monitoring */
988 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
989 			break;
990 		}
991 		ni = ic->ic_bss;
992 
993 		if (ic->ic_opmode != IEEE80211_M_STA) {
994 			(void) wpi_auth(sc);    /* XXX */
995 			wpi_setup_beacon(sc, ni);
996 		}
997 
998 		wpi_enable_tsf(sc, ni);
999 
1000 		/* update adapter's configuration */
1001 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
1002 		/* short preamble/slot time are negotiated when associating */
1003 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
1004 		    WPI_CONFIG_SHSLOT);
1005 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1006 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1007 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1008 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1009 		sc->config.filter |= htole32(WPI_FILTER_BSS);
1010 		if (ic->ic_opmode != IEEE80211_M_STA)
1011 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
1012 
1013 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1014 
1015 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1016 		    sc->config.flags));
1017 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1018 		    sizeof (struct wpi_config), 1);
1019 		if (error != 0) {
1020 			aprint_error_dev(sc->sc_dev,
1021 			    "could not update configuration\n");
1022 			return error;
1023 		}
1024 
1025 		/* configuration has changed, set Tx power accordingly */
1026 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
1027 			aprint_error_dev(sc->sc_dev,
1028 			    "could not set Tx power\n");
1029 			return error;
1030 		}
1031 
1032 		if (ic->ic_opmode == IEEE80211_M_STA) {
1033 			/* fake a join to init the tx rate */
1034 			wpi_newassoc(ni, 1);
1035 		}
1036 
1037 		/* start periodic calibration timer */
1038 		sc->calib_cnt = 0;
1039 		callout_schedule(&sc->calib_to, hz/2);
1040 
1041 		/* link LED always on while associated */
1042 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1043 		break;
1044 
1045 	case IEEE80211_S_INIT:
1046 		sc->is_scanning = false;
1047 		break;
1048 	}
1049 
1050 	return sc->sc_newstate(ic, nstate, arg);
1051 }
1052 
1053 /*
1054  * Grab exclusive access to NIC memory.
1055  */
1056 static void
1057 wpi_mem_lock(struct wpi_softc *sc)
1058 {
1059 	uint32_t tmp;
1060 	int ntries;
1061 
1062 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1063 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1064 
1065 	/* spin until we actually get the lock */
1066 	for (ntries = 0; ntries < 1000; ntries++) {
1067 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1068 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1069 			break;
1070 		DELAY(10);
1071 	}
1072 	if (ntries == 1000)
1073 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1074 }
1075 
1076 /*
1077  * Release lock on NIC memory.
1078  */
1079 static void
1080 wpi_mem_unlock(struct wpi_softc *sc)
1081 {
1082 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1083 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1084 }
1085 
1086 static uint32_t
1087 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1088 {
1089 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1090 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1091 }
1092 
1093 static void
1094 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1095 {
1096 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1097 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1098 }
1099 
1100 static void
1101 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1102     const uint32_t *data, int wlen)
1103 {
1104 	for (; wlen > 0; wlen--, data++, addr += 4)
1105 		wpi_mem_write(sc, addr, *data);
1106 }
1107 
1108 /*
1109  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1110  * instead of using the traditional bit-bang method.
1111  */
1112 static int
1113 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1114 {
1115 	uint8_t *out = data;
1116 	uint32_t val;
1117 	int ntries;
1118 
1119 	wpi_mem_lock(sc);
1120 	for (; len > 0; len -= 2, addr++) {
1121 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1122 
1123 		for (ntries = 0; ntries < 10; ntries++) {
1124 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1125 			    WPI_EEPROM_READY)
1126 				break;
1127 			DELAY(5);
1128 		}
1129 		if (ntries == 10) {
1130 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1131 			return ETIMEDOUT;
1132 		}
1133 		*out++ = val >> 16;
1134 		if (len > 1)
1135 			*out++ = val >> 24;
1136 	}
1137 	wpi_mem_unlock(sc);
1138 
1139 	return 0;
1140 }
1141 
1142 /*
1143  * The firmware boot code is small and is intended to be copied directly into
1144  * the NIC internal memory.
1145  */
1146 int
1147 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1148 {
1149 	int ntries;
1150 
1151 	size /= sizeof (uint32_t);
1152 
1153 	wpi_mem_lock(sc);
1154 
1155 	/* copy microcode image into NIC memory */
1156 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1157 	    (const uint32_t *)ucode, size);
1158 
1159 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1160 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1161 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1162 
1163 	/* run microcode */
1164 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1165 
1166 	/* wait for transfer to complete */
1167 	for (ntries = 0; ntries < 1000; ntries++) {
1168 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1169 			break;
1170 		DELAY(10);
1171 	}
1172 	if (ntries == 1000) {
1173 		wpi_mem_unlock(sc);
1174 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1175 		return ETIMEDOUT;
1176 	}
1177 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1178 
1179 	wpi_mem_unlock(sc);
1180 
1181 	return 0;
1182 }
1183 
1184 static int
1185 wpi_cache_firmware(struct wpi_softc *sc)
1186 {
1187 	const char *const fwname = wpi_firmware_name;
1188 	firmware_handle_t fw;
1189 	int error;
1190 
1191 	/* sc is used here only to report error messages.  */
1192 
1193 	mutex_enter(&wpi_firmware_mutex);
1194 
1195 	if (wpi_firmware_users == SIZE_MAX) {
1196 		mutex_exit(&wpi_firmware_mutex);
1197 		return ENFILE;	/* Too many of something in the system...  */
1198 	}
1199 	if (wpi_firmware_users++) {
1200 		KASSERT(wpi_firmware_image != NULL);
1201 		KASSERT(wpi_firmware_size > 0);
1202 		mutex_exit(&wpi_firmware_mutex);
1203 		return 0;	/* Already good to go.  */
1204 	}
1205 
1206 	KASSERT(wpi_firmware_image == NULL);
1207 	KASSERT(wpi_firmware_size == 0);
1208 
1209 	/* load firmware image from disk */
1210 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1211 		aprint_error_dev(sc->sc_dev,
1212 		    "could not open firmware file %s: %d\n", fwname, error);
1213 		goto fail0;
1214 	}
1215 
1216 	wpi_firmware_size = firmware_get_size(fw);
1217 
1218 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1219 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1220 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1221 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1222 		aprint_error_dev(sc->sc_dev,
1223 		    "firmware file %s too large: %zu bytes\n",
1224 		    fwname, wpi_firmware_size);
1225 		error = EFBIG;
1226 		goto fail1;
1227 	}
1228 
1229 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1230 		aprint_error_dev(sc->sc_dev,
1231 		    "firmware file %s too small: %zu bytes\n",
1232 		    fwname, wpi_firmware_size);
1233 		error = EINVAL;
1234 		goto fail1;
1235 	}
1236 
1237 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1238 	if (wpi_firmware_image == NULL) {
1239 		aprint_error_dev(sc->sc_dev,
1240 		    "not enough memory for firmware file %s\n", fwname);
1241 		error = ENOMEM;
1242 		goto fail1;
1243 	}
1244 
1245 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1246 	if (error != 0) {
1247 		aprint_error_dev(sc->sc_dev,
1248 		    "error reading firmware file %s: %d\n", fwname, error);
1249 		goto fail2;
1250 	}
1251 
1252 	/* Success!  */
1253 	firmware_close(fw);
1254 	mutex_exit(&wpi_firmware_mutex);
1255 	return 0;
1256 
1257 fail2:
1258 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1259 	wpi_firmware_image = NULL;
1260 fail1:
1261 	wpi_firmware_size = 0;
1262 	firmware_close(fw);
1263 fail0:
1264 	KASSERT(wpi_firmware_users == 1);
1265 	wpi_firmware_users = 0;
1266 	KASSERT(wpi_firmware_image == NULL);
1267 	KASSERT(wpi_firmware_size == 0);
1268 
1269 	mutex_exit(&wpi_firmware_mutex);
1270 	return error;
1271 }
1272 
1273 static void
1274 wpi_release_firmware(void)
1275 {
1276 
1277 	mutex_enter(&wpi_firmware_mutex);
1278 
1279 	KASSERT(wpi_firmware_users > 0);
1280 	KASSERT(wpi_firmware_image != NULL);
1281 	KASSERT(wpi_firmware_size != 0);
1282 
1283 	if (--wpi_firmware_users == 0) {
1284 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1285 		wpi_firmware_image = NULL;
1286 		wpi_firmware_size = 0;
1287 	}
1288 
1289 	mutex_exit(&wpi_firmware_mutex);
1290 }
1291 
1292 static int
1293 wpi_load_firmware(struct wpi_softc *sc)
1294 {
1295 	struct wpi_dma_info *dma = &sc->fw_dma;
1296 	struct wpi_firmware_hdr hdr;
1297 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1298 	const uint8_t *boot_text;
1299 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1300 	uint32_t boot_textsz;
1301 	size_t size;
1302 	int error;
1303 
1304 	if (!sc->fw_used) {
1305 		if ((error = wpi_cache_firmware(sc)) != 0)
1306 			return error;
1307 		sc->fw_used = true;
1308 	}
1309 
1310 	KASSERT(sc->fw_used);
1311 	KASSERT(wpi_firmware_image != NULL);
1312 	KASSERT(wpi_firmware_size > sizeof(hdr));
1313 
1314 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1315 
1316 	main_textsz = le32toh(hdr.main_textsz);
1317 	main_datasz = le32toh(hdr.main_datasz);
1318 	init_textsz = le32toh(hdr.init_textsz);
1319 	init_datasz = le32toh(hdr.init_datasz);
1320 	boot_textsz = le32toh(hdr.boot_textsz);
1321 
1322 	/* sanity-check firmware segments sizes */
1323 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1324 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1325 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1326 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1327 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1328 	    (boot_textsz & 3) != 0) {
1329 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1330 		error = EINVAL;
1331 		goto free_firmware;
1332 	}
1333 
1334 	/* check that all firmware segments are present */
1335 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1336 	    main_datasz + init_textsz + init_datasz + boot_textsz;
1337 	if (wpi_firmware_size < size) {
1338 		aprint_error_dev(sc->sc_dev,
1339 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1340 		    wpi_firmware_size, size);
1341 		error = EINVAL;
1342 		goto free_firmware;
1343 	}
1344 
1345 	/* get pointers to firmware segments */
1346 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1347 	main_data = main_text + main_textsz;
1348 	init_text = main_data + main_datasz;
1349 	init_data = init_text + init_textsz;
1350 	boot_text = init_data + init_datasz;
1351 
1352 	/* copy initialization images into pre-allocated DMA-safe memory */
1353 	memcpy(dma->vaddr, init_data, init_datasz);
1354 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1355 	    init_textsz);
1356 
1357 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1358 
1359 	/* tell adapter where to find initialization images */
1360 	wpi_mem_lock(sc);
1361 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1362 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1363 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1364 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1365 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1366 	wpi_mem_unlock(sc);
1367 
1368 	/* load firmware boot code */
1369 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1370 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1371 		return error;
1372 	}
1373 
1374 	/* now press "execute" ;-) */
1375 	WPI_WRITE(sc, WPI_RESET, 0);
1376 
1377 	/* wait at most one second for first alive notification */
1378 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1379 		/* this isn't what was supposed to happen.. */
1380 		aprint_error_dev(sc->sc_dev,
1381 		    "timeout waiting for adapter to initialize\n");
1382 	}
1383 
1384 	/* copy runtime images into pre-allocated DMA-safe memory */
1385 	memcpy(dma->vaddr, main_data, main_datasz);
1386 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1387 	    main_textsz);
1388 
1389 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1390 
1391 	/* tell adapter where to find runtime images */
1392 	wpi_mem_lock(sc);
1393 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1394 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1395 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1396 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1397 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1398 	wpi_mem_unlock(sc);
1399 
1400 	/* wait at most one second for second alive notification */
1401 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1402 		/* this isn't what was supposed to happen.. */
1403 		aprint_error_dev(sc->sc_dev,
1404 		    "timeout waiting for adapter to initialize\n");
1405 	}
1406 
1407 	return error;
1408 
1409 free_firmware:
1410 	sc->fw_used = false;
1411 	wpi_release_firmware();
1412 	return error;
1413 }
1414 
1415 static void
1416 wpi_calib_timeout(void *arg)
1417 {
1418 	struct wpi_softc *sc = arg;
1419 	struct ieee80211com *ic = &sc->sc_ic;
1420 	int temp, s;
1421 
1422 	/* automatic rate control triggered every 500ms */
1423 	if (ic->ic_fixed_rate == -1) {
1424 		s = splnet();
1425 		if (ic->ic_opmode == IEEE80211_M_STA)
1426 			wpi_iter_func(sc, ic->ic_bss);
1427 		else
1428 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1429 		splx(s);
1430 	}
1431 
1432 	/* update sensor data */
1433 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1434 
1435 	/* automatic power calibration every 60s */
1436 	if (++sc->calib_cnt >= 120) {
1437 		wpi_power_calibration(sc, temp);
1438 		sc->calib_cnt = 0;
1439 	}
1440 
1441 	callout_schedule(&sc->calib_to, hz/2);
1442 }
1443 
1444 static void
1445 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1446 {
1447 	struct wpi_softc *sc = arg;
1448 	struct wpi_node *wn = (struct wpi_node *)ni;
1449 
1450 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1451 }
1452 
1453 /*
1454  * This function is called periodically (every 60 seconds) to adjust output
1455  * power to temperature changes.
1456  */
1457 void
1458 wpi_power_calibration(struct wpi_softc *sc, int temp)
1459 {
1460 	/* sanity-check read value */
1461 	if (temp < -260 || temp > 25) {
1462 		/* this can't be correct, ignore */
1463 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1464 		return;
1465 	}
1466 
1467 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1468 
1469 	/* adjust Tx power if need be */
1470 	if (abs(temp - sc->temp) <= 6)
1471 		return;
1472 
1473 	sc->temp = temp;
1474 
1475 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1476 		/* just warn, too bad for the automatic calibration... */
1477 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1478 	}
1479 }
1480 
1481 static void
1482 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1483     struct wpi_rx_data *data)
1484 {
1485 	struct ieee80211com *ic = &sc->sc_ic;
1486 	struct ifnet *ifp = ic->ic_ifp;
1487 	struct wpi_rx_ring *ring = &sc->rxq;
1488 	struct wpi_rx_stat *stat;
1489 	struct wpi_rx_head *head;
1490 	struct wpi_rx_tail *tail;
1491 	struct wpi_rbuf *rbuf;
1492 	struct ieee80211_frame *wh;
1493 	struct ieee80211_node *ni;
1494 	struct mbuf *m, *mnew;
1495 	int data_off, error, s;
1496 
1497 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1498 	    BUS_DMASYNC_POSTREAD);
1499 	stat = (struct wpi_rx_stat *)(desc + 1);
1500 
1501 	if (stat->len > WPI_STAT_MAXLEN) {
1502 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1503 		ifp->if_ierrors++;
1504 		return;
1505 	}
1506 
1507 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1508 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1509 
1510 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1511 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1512 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1513 	    le64toh(tail->tstamp)));
1514 
1515 	/*
1516 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1517 	 * to radiotap in monitor mode).
1518 	 */
1519 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1520 		DPRINTF(("rx tail flags error %x\n",
1521 		    le32toh(tail->flags)));
1522 		ifp->if_ierrors++;
1523 		return;
1524 	}
1525 
1526 	/* Compute where are the useful datas */
1527 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1528 
1529 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1530 	if (mnew == NULL) {
1531 		ifp->if_ierrors++;
1532 		return;
1533 	}
1534 
1535 	rbuf = wpi_alloc_rbuf(sc);
1536 	if (rbuf == NULL) {
1537 		m_freem(mnew);
1538 		ifp->if_ierrors++;
1539 		return;
1540 	}
1541 
1542 	/* attach Rx buffer to mbuf */
1543 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1544 		rbuf);
1545 	mnew->m_flags |= M_EXT_RW;
1546 
1547 	bus_dmamap_unload(sc->sc_dmat, data->map);
1548 
1549 	error = bus_dmamap_load(sc->sc_dmat, data->map,
1550 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1551 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
1552 	if (error) {
1553 		device_printf(sc->sc_dev,
1554 		    "couldn't load rx mbuf: %d\n", error);
1555 		m_freem(mnew);
1556 		ifp->if_ierrors++;
1557 
1558 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1559 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1560 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1561 		if (error)
1562 			panic("%s: bus_dmamap_load failed: %d\n",
1563 			    device_xname(sc->sc_dev), error);
1564 		return;
1565 	}
1566 
1567 	/* new mbuf loaded successfully */
1568 	m = data->m;
1569 	data->m = mnew;
1570 
1571 	/* update Rx descriptor */
1572 	ring->desc[ring->cur] = htole32(rbuf->paddr);
1573 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1574 	    ring->desc_dma.size,
1575 	    BUS_DMASYNC_PREWRITE);
1576 
1577 	m->m_data = (char*)m->m_data + data_off;
1578 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1579 
1580 	/* finalize mbuf */
1581 	m_set_rcvif(m, ifp);
1582 
1583 	s = splnet();
1584 
1585 	if (sc->sc_drvbpf != NULL) {
1586 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1587 
1588 		tap->wr_flags = 0;
1589 		tap->wr_chan_freq =
1590 		    htole16(ic->ic_channels[head->chan].ic_freq);
1591 		tap->wr_chan_flags =
1592 		    htole16(ic->ic_channels[head->chan].ic_flags);
1593 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1594 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1595 		tap->wr_tsft = tail->tstamp;
1596 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1597 		switch (head->rate) {
1598 		/* CCK rates */
1599 		case  10: tap->wr_rate =   2; break;
1600 		case  20: tap->wr_rate =   4; break;
1601 		case  55: tap->wr_rate =  11; break;
1602 		case 110: tap->wr_rate =  22; break;
1603 		/* OFDM rates */
1604 		case 0xd: tap->wr_rate =  12; break;
1605 		case 0xf: tap->wr_rate =  18; break;
1606 		case 0x5: tap->wr_rate =  24; break;
1607 		case 0x7: tap->wr_rate =  36; break;
1608 		case 0x9: tap->wr_rate =  48; break;
1609 		case 0xb: tap->wr_rate =  72; break;
1610 		case 0x1: tap->wr_rate =  96; break;
1611 		case 0x3: tap->wr_rate = 108; break;
1612 		/* unknown rate: should not happen */
1613 		default:  tap->wr_rate =   0;
1614 		}
1615 		if (le16toh(head->flags) & 0x4)
1616 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1617 
1618 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1619 	}
1620 
1621 	/* grab a reference to the source node */
1622 	wh = mtod(m, struct ieee80211_frame *);
1623 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1624 
1625 	/* send the frame to the 802.11 layer */
1626 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1627 
1628 	/* release node reference */
1629 	ieee80211_free_node(ni);
1630 
1631 	splx(s);
1632 }
1633 
1634 static void
1635 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1636 {
1637 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1638 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1639 	struct wpi_tx_data *data = &ring->data[desc->idx];
1640 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1641 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1642 	int s;
1643 
1644 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1645 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1646 	    stat->nkill, stat->rate, le32toh(stat->duration),
1647 	    le32toh(stat->status)));
1648 
1649 	s = splnet();
1650 
1651 	/*
1652 	 * Update rate control statistics for the node.
1653 	 * XXX we should not count mgmt frames since they're always sent at
1654 	 * the lowest available bit-rate.
1655 	 */
1656 	wn->amn.amn_txcnt++;
1657 	if (stat->ntries > 0) {
1658 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1659 		wn->amn.amn_retrycnt++;
1660 	}
1661 
1662 	if ((le32toh(stat->status) & 0xff) != 1)
1663 		ifp->if_oerrors++;
1664 	else
1665 		ifp->if_opackets++;
1666 
1667 	bus_dmamap_unload(sc->sc_dmat, data->map);
1668 	m_freem(data->m);
1669 	data->m = NULL;
1670 	ieee80211_free_node(data->ni);
1671 	data->ni = NULL;
1672 
1673 	ring->queued--;
1674 
1675 	sc->sc_tx_timer = 0;
1676 	ifp->if_flags &= ~IFF_OACTIVE;
1677 	wpi_start(ifp); /* in softint */
1678 
1679 	splx(s);
1680 }
1681 
1682 static void
1683 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1684 {
1685 	struct wpi_tx_ring *ring = &sc->cmdq;
1686 	struct wpi_tx_data *data;
1687 
1688 	if ((desc->qid & 7) != 4)
1689 		return;	/* not a command ack */
1690 
1691 	data = &ring->data[desc->idx];
1692 
1693 	/* if the command was mapped in a mbuf, free it */
1694 	if (data->m != NULL) {
1695 		bus_dmamap_unload(sc->sc_dmat, data->map);
1696 		m_freem(data->m);
1697 		data->m = NULL;
1698 	}
1699 
1700 	wakeup(&ring->cmd[desc->idx]);
1701 }
1702 
1703 static void
1704 wpi_notif_intr(struct wpi_softc *sc)
1705 {
1706 	struct ieee80211com *ic = &sc->sc_ic;
1707 	struct ifnet *ifp =  ic->ic_ifp;
1708 	uint32_t hw;
1709 	int s;
1710 
1711 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1712 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1713 
1714 	hw = le32toh(sc->shared->next);
1715 	while (sc->rxq.cur != hw) {
1716 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1717 		struct wpi_rx_desc *desc;
1718 
1719 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1720 		    BUS_DMASYNC_POSTREAD);
1721 		desc = mtod(data->m, struct wpi_rx_desc *);
1722 
1723 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1724 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
1725 		    desc->type, le32toh(desc->len)));
1726 
1727 		if (!(desc->qid & 0x80))	/* reply to a command */
1728 			wpi_cmd_intr(sc, desc);
1729 
1730 		switch (desc->type) {
1731 		case WPI_RX_DONE:
1732 			/* a 802.11 frame was received */
1733 			wpi_rx_intr(sc, desc, data);
1734 			break;
1735 
1736 		case WPI_TX_DONE:
1737 			/* a 802.11 frame has been transmitted */
1738 			wpi_tx_intr(sc, desc);
1739 			break;
1740 
1741 		case WPI_UC_READY:
1742 		{
1743 			struct wpi_ucode_info *uc =
1744 			    (struct wpi_ucode_info *)(desc + 1);
1745 
1746 			/* the microcontroller is ready */
1747 			DPRINTF(("microcode alive notification version %x "
1748 			    "alive %x\n", le32toh(uc->version),
1749 			    le32toh(uc->valid)));
1750 
1751 			if (le32toh(uc->valid) != 1) {
1752 				aprint_error_dev(sc->sc_dev,
1753 				    "microcontroller initialization failed\n");
1754 			}
1755 			break;
1756 		}
1757 		case WPI_STATE_CHANGED:
1758 		{
1759 			uint32_t *status = (uint32_t *)(desc + 1);
1760 
1761 			/* enabled/disabled notification */
1762 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1763 
1764 			if (le32toh(*status) & 1) {
1765 				s = splnet();
1766 				/* the radio button has to be pushed */
1767 				/* wake up thread to signal powerd */
1768 				cv_signal(&sc->sc_rsw_cv);
1769 				aprint_error_dev(sc->sc_dev,
1770 				    "Radio transmitter is off\n");
1771 				/* turn the interface down */
1772 				ifp->if_flags &= ~IFF_UP;
1773 				wpi_stop(ifp, 1);
1774 				splx(s);
1775 				return;	/* no further processing */
1776 			}
1777 			break;
1778 		}
1779 		case WPI_START_SCAN:
1780 		{
1781 #if 0
1782 			struct wpi_start_scan *scan =
1783 			    (struct wpi_start_scan *)(desc + 1);
1784 
1785 			DPRINTFN(2, ("scanning channel %d status %x\n",
1786 			    scan->chan, le32toh(scan->status)));
1787 
1788 			/* fix current channel */
1789 			ic->ic_curchan = &ic->ic_channels[scan->chan];
1790 #endif
1791 			break;
1792 		}
1793 		case WPI_STOP_SCAN:
1794 		{
1795 #ifdef WPI_DEBUG
1796 			struct wpi_stop_scan *scan =
1797 			    (struct wpi_stop_scan *)(desc + 1);
1798 #endif
1799 
1800 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1801 			    scan->nchan, scan->status, scan->chan));
1802 
1803 			s = splnet();
1804 			sc->is_scanning = false;
1805 			if (ic->ic_state == IEEE80211_S_SCAN)
1806 				ieee80211_next_scan(ic);
1807 			splx(s);
1808 			break;
1809 		}
1810 		}
1811 
1812 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1813 	}
1814 
1815 	/* tell the firmware what we have processed */
1816 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1817 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1818 }
1819 
1820 static int
1821 wpi_intr(void *arg)
1822 {
1823 	struct wpi_softc *sc = arg;
1824 	uint32_t r;
1825 
1826 	r = WPI_READ(sc, WPI_INTR);
1827 	if (r == 0 || r == 0xffffffff)
1828 		return 0;	/* not for us */
1829 
1830 	DPRINTFN(6, ("interrupt reg %x\n", r));
1831 
1832 	/* disable interrupts */
1833 	WPI_WRITE(sc, WPI_MASK, 0);
1834 
1835 	softint_schedule(sc->sc_soft_ih);
1836 	return 1;
1837 }
1838 
1839 static void
1840 wpi_softintr(void *arg)
1841 {
1842 	struct wpi_softc *sc = arg;
1843 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1844 	uint32_t r;
1845 
1846 	r = WPI_READ(sc, WPI_INTR);
1847 	if (r == 0 || r == 0xffffffff)
1848 		goto out;
1849 
1850 	/* ack interrupts */
1851 	WPI_WRITE(sc, WPI_INTR, r);
1852 
1853 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1854 		/* SYSTEM FAILURE, SYSTEM FAILURE */
1855 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1856 		ifp->if_flags &= ~IFF_UP;
1857 		wpi_stop(ifp, 1);
1858 		return;
1859 	}
1860 
1861 	if (r & WPI_RX_INTR)
1862 		wpi_notif_intr(sc);
1863 
1864 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1865 		wakeup(sc);
1866 
1867  out:
1868 	/* re-enable interrupts */
1869 	if (ifp->if_flags & IFF_UP)
1870 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1871 }
1872 
1873 static uint8_t
1874 wpi_plcp_signal(int rate)
1875 {
1876 	switch (rate) {
1877 	/* CCK rates (returned values are device-dependent) */
1878 	case 2:		return 10;
1879 	case 4:		return 20;
1880 	case 11:	return 55;
1881 	case 22:	return 110;
1882 
1883 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1884 	/* R1-R4, (u)ral is R4-R1 */
1885 	case 12:	return 0xd;
1886 	case 18:	return 0xf;
1887 	case 24:	return 0x5;
1888 	case 36:	return 0x7;
1889 	case 48:	return 0x9;
1890 	case 72:	return 0xb;
1891 	case 96:	return 0x1;
1892 	case 108:	return 0x3;
1893 
1894 	/* unsupported rates (should not get there) */
1895 	default:	return 0;
1896 	}
1897 }
1898 
1899 /* quickly determine if a given rate is CCK or OFDM */
1900 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1901 
1902 static int
1903 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1904     int ac)
1905 {
1906 	struct ieee80211com *ic = &sc->sc_ic;
1907 	struct wpi_tx_ring *ring = &sc->txq[ac];
1908 	struct wpi_tx_desc *desc;
1909 	struct wpi_tx_data *data;
1910 	struct wpi_tx_cmd *cmd;
1911 	struct wpi_cmd_data *tx;
1912 	struct ieee80211_frame *wh;
1913 	struct ieee80211_key *k;
1914 	const struct chanAccParams *cap;
1915 	struct mbuf *mnew;
1916 	int i, rate, error, hdrlen, noack = 0;
1917 
1918 	desc = &ring->desc[ring->cur];
1919 	data = &ring->data[ring->cur];
1920 
1921 	wh = mtod(m0, struct ieee80211_frame *);
1922 
1923 	if (ieee80211_has_qos(wh)) {
1924 		cap = &ic->ic_wme.wme_chanParams;
1925 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1926 	}
1927 
1928 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1929 		k = ieee80211_crypto_encap(ic, ni, m0);
1930 		if (k == NULL) {
1931 			m_freem(m0);
1932 			return ENOBUFS;
1933 		}
1934 
1935 		/* packet header may have moved, reset our local pointer */
1936 		wh = mtod(m0, struct ieee80211_frame *);
1937 	}
1938 
1939 	hdrlen = ieee80211_anyhdrsize(wh);
1940 
1941 	/* pickup a rate */
1942 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1943 	    IEEE80211_FC0_TYPE_MGT) {
1944 		/* mgmt frames are sent at the lowest available bit-rate */
1945 		rate = ni->ni_rates.rs_rates[0];
1946 	} else {
1947 		if (ic->ic_fixed_rate != -1) {
1948 			rate = ic->ic_sup_rates[ic->ic_curmode].
1949 			    rs_rates[ic->ic_fixed_rate];
1950 		} else
1951 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1952 	}
1953 	rate &= IEEE80211_RATE_VAL;
1954 
1955 	if (sc->sc_drvbpf != NULL) {
1956 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1957 
1958 		tap->wt_flags = 0;
1959 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1960 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1961 		tap->wt_rate = rate;
1962 		tap->wt_hwqueue = ac;
1963 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1964 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1965 
1966 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1967 	}
1968 
1969 	cmd = &ring->cmd[ring->cur];
1970 	cmd->code = WPI_CMD_TX_DATA;
1971 	cmd->flags = 0;
1972 	cmd->qid = ring->qid;
1973 	cmd->idx = ring->cur;
1974 
1975 	tx = (struct wpi_cmd_data *)cmd->data;
1976 	/* no need to zero tx, all fields are reinitialized here */
1977 	tx->flags = 0;
1978 
1979 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1980 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1981 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1982 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1983 
1984 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1985 
1986 	/* retrieve destination node's id */
1987 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1988 		WPI_ID_BSS;
1989 
1990 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1991 	    IEEE80211_FC0_TYPE_MGT) {
1992 		/* tell h/w to set timestamp in probe responses */
1993 		if ((wh->i_fc[0] &
1994 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1995 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1996 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1997 
1998 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1999 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2000 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2001 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2002 			tx->timeout = htole16(3);
2003 		else
2004 			tx->timeout = htole16(2);
2005 	} else
2006 		tx->timeout = htole16(0);
2007 
2008 	tx->rate = wpi_plcp_signal(rate);
2009 
2010 	/* be very persistant at sending frames out */
2011 	tx->rts_ntries = 7;
2012 	tx->data_ntries = 15;
2013 
2014 	tx->ofdm_mask = 0xff;
2015 	tx->cck_mask = 0x0f;
2016 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2017 
2018 	tx->len = htole16(m0->m_pkthdr.len);
2019 
2020 	/* save and trim IEEE802.11 header */
2021 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2022 	m_adj(m0, hdrlen);
2023 
2024 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2025 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2026 	if (error != 0 && error != EFBIG) {
2027 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2028 		    error);
2029 		m_freem(m0);
2030 		return error;
2031 	}
2032 	if (error != 0) {
2033 		/* too many fragments, linearize */
2034 
2035 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2036 		if (mnew == NULL) {
2037 			m_freem(m0);
2038 			return ENOMEM;
2039 		}
2040 		M_COPY_PKTHDR(mnew, m0);
2041 		if (m0->m_pkthdr.len > MHLEN) {
2042 			MCLGET(mnew, M_DONTWAIT);
2043 			if (!(mnew->m_flags & M_EXT)) {
2044 				m_freem(m0);
2045 				m_freem(mnew);
2046 				return ENOMEM;
2047 			}
2048 		}
2049 
2050 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2051 		m_freem(m0);
2052 		mnew->m_len = mnew->m_pkthdr.len;
2053 		m0 = mnew;
2054 
2055 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2056 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2057 		if (error != 0) {
2058 			aprint_error_dev(sc->sc_dev,
2059 			    "could not map mbuf (error %d)\n", error);
2060 			m_freem(m0);
2061 			return error;
2062 		}
2063 	}
2064 
2065 	data->m = m0;
2066 	data->ni = ni;
2067 
2068 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2069 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2070 
2071 	/* first scatter/gather segment is used by the tx data command */
2072 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2073 	    (1 + data->map->dm_nsegs) << 24);
2074 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2075 	    ring->cur * sizeof (struct wpi_tx_cmd));
2076 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
2077 	    ((hdrlen + 3) & ~3));
2078 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2079 		desc->segs[i].addr =
2080 		    htole32(data->map->dm_segs[i - 1].ds_addr);
2081 		desc->segs[i].len  =
2082 		    htole32(data->map->dm_segs[i - 1].ds_len);
2083 	}
2084 
2085 	ring->queued++;
2086 
2087 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2088 	    data->map->dm_mapsize,
2089 	    BUS_DMASYNC_PREWRITE);
2090 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2091 	    ring->cmd_dma.size,
2092 	    BUS_DMASYNC_PREWRITE);
2093 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2094 	    ring->desc_dma.size,
2095 	    BUS_DMASYNC_PREWRITE);
2096 
2097 	/* kick ring */
2098 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2099 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2100 
2101 	return 0;
2102 }
2103 
2104 static void
2105 wpi_start(struct ifnet *ifp)
2106 {
2107 	struct wpi_softc *sc = ifp->if_softc;
2108 	struct ieee80211com *ic = &sc->sc_ic;
2109 	struct ieee80211_node *ni;
2110 	struct ether_header *eh;
2111 	struct mbuf *m0;
2112 	int ac;
2113 
2114 	/*
2115 	 * net80211 may still try to send management frames even if the
2116 	 * IFF_RUNNING flag is not set...
2117 	 */
2118 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2119 		return;
2120 
2121 	for (;;) {
2122 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2123 		if (m0 != NULL) {
2124 
2125 			ni = M_GETCTX(m0, struct ieee80211_node *);
2126 			M_CLEARCTX(m0);
2127 
2128 			/* management frames go into ring 0 */
2129 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2130 				ifp->if_oerrors++;
2131 				continue;
2132 			}
2133 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2134 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2135 				ifp->if_oerrors++;
2136 				break;
2137 			}
2138 		} else {
2139 			if (ic->ic_state != IEEE80211_S_RUN)
2140 				break;
2141 			IFQ_POLL(&ifp->if_snd, m0);
2142 			if (m0 == NULL)
2143 				break;
2144 
2145 			if (m0->m_len < sizeof (*eh) &&
2146 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2147 				ifp->if_oerrors++;
2148 				continue;
2149 			}
2150 			eh = mtod(m0, struct ether_header *);
2151 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2152 			if (ni == NULL) {
2153 				m_freem(m0);
2154 				ifp->if_oerrors++;
2155 				continue;
2156 			}
2157 
2158 			/* classify mbuf so we can find which tx ring to use */
2159 			if (ieee80211_classify(ic, m0, ni) != 0) {
2160 				m_freem(m0);
2161 				ieee80211_free_node(ni);
2162 				ifp->if_oerrors++;
2163 				continue;
2164 			}
2165 
2166 			/* no QoS encapsulation for EAPOL frames */
2167 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2168 			    M_WME_GETAC(m0) : WME_AC_BE;
2169 
2170 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2171 				/* there is no place left in this ring */
2172 				ifp->if_flags |= IFF_OACTIVE;
2173 				break;
2174 			}
2175 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2176 			bpf_mtap(ifp, m0, BPF_D_OUT);
2177 			m0 = ieee80211_encap(ic, m0, ni);
2178 			if (m0 == NULL) {
2179 				ieee80211_free_node(ni);
2180 				ifp->if_oerrors++;
2181 				continue;
2182 			}
2183 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2184 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2185 				ieee80211_free_node(ni);
2186 				ifp->if_oerrors++;
2187 				break;
2188 			}
2189 		}
2190 
2191 		sc->sc_tx_timer = 5;
2192 		ifp->if_timer = 1;
2193 	}
2194 }
2195 
2196 static void
2197 wpi_watchdog(struct ifnet *ifp)
2198 {
2199 	struct wpi_softc *sc = ifp->if_softc;
2200 
2201 	ifp->if_timer = 0;
2202 
2203 	if (sc->sc_tx_timer > 0) {
2204 		if (--sc->sc_tx_timer == 0) {
2205 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2206 			ifp->if_flags &= ~IFF_UP;
2207 			wpi_stop(ifp, 1);
2208 			ifp->if_oerrors++;
2209 			return;
2210 		}
2211 		ifp->if_timer = 1;
2212 	}
2213 
2214 	ieee80211_watchdog(&sc->sc_ic);
2215 }
2216 
2217 static int
2218 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2219 {
2220 #define IS_RUNNING(ifp) \
2221 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2222 
2223 	struct wpi_softc *sc = ifp->if_softc;
2224 	struct ieee80211com *ic = &sc->sc_ic;
2225 	int s, error = 0;
2226 
2227 	s = splnet();
2228 
2229 	switch (cmd) {
2230 	case SIOCSIFFLAGS:
2231 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2232 			break;
2233 		if (ifp->if_flags & IFF_UP) {
2234 			if (!(ifp->if_flags & IFF_RUNNING))
2235 				wpi_init(ifp);
2236 		} else {
2237 			if (ifp->if_flags & IFF_RUNNING)
2238 				wpi_stop(ifp, 1);
2239 		}
2240 		break;
2241 
2242 	case SIOCADDMULTI:
2243 	case SIOCDELMULTI:
2244 		/* XXX no h/w multicast filter? --dyoung */
2245 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2246 			/* setup multicast filter, etc */
2247 			error = 0;
2248 		}
2249 		break;
2250 
2251 	default:
2252 		error = ieee80211_ioctl(ic, cmd, data);
2253 	}
2254 
2255 	if (error == ENETRESET) {
2256 		if (IS_RUNNING(ifp) &&
2257 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2258 			wpi_init(ifp);
2259 		error = 0;
2260 	}
2261 
2262 	splx(s);
2263 	return error;
2264 
2265 #undef IS_RUNNING
2266 }
2267 
2268 /*
2269  * Extract various information from EEPROM.
2270  */
2271 static void
2272 wpi_read_eeprom(struct wpi_softc *sc)
2273 {
2274 	struct ieee80211com *ic = &sc->sc_ic;
2275 	char domain[4];
2276 	int i;
2277 
2278 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2279 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2280 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2281 
2282 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2283 	    sc->type));
2284 
2285 	/* read and print regulatory domain */
2286 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2287 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2288 
2289 	/* read and print MAC address */
2290 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2291 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2292 
2293 	/* read the list of authorized channels */
2294 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2295 		wpi_read_eeprom_channels(sc, i);
2296 
2297 	/* read the list of power groups */
2298 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2299 		wpi_read_eeprom_group(sc, i);
2300 }
2301 
2302 static void
2303 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2304 {
2305 	struct ieee80211com *ic = &sc->sc_ic;
2306 	const struct wpi_chan_band *band = &wpi_bands[n];
2307 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2308 	int chan, i;
2309 
2310 	wpi_read_prom_data(sc, band->addr, channels,
2311 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2312 
2313 	for (i = 0; i < band->nchan; i++) {
2314 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2315 			continue;
2316 
2317 		chan = band->chan[i];
2318 
2319 		if (n == 0) {	/* 2GHz band */
2320 			ic->ic_channels[chan].ic_freq =
2321 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2322 			ic->ic_channels[chan].ic_flags =
2323 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2324 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2325 
2326 		} else {	/* 5GHz band */
2327 			/*
2328 			 * Some 3945ABG adapters support channels 7, 8, 11
2329 			 * and 12 in the 2GHz *and* 5GHz bands.
2330 			 * Because of limitations in our net80211(9) stack,
2331 			 * we can't support these channels in 5GHz band.
2332 			 */
2333 			if (chan <= 14)
2334 				continue;
2335 
2336 			ic->ic_channels[chan].ic_freq =
2337 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2338 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2339 		}
2340 
2341 		/* is active scan allowed on this channel? */
2342 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2343 			ic->ic_channels[chan].ic_flags |=
2344 			    IEEE80211_CHAN_PASSIVE;
2345 		}
2346 
2347 		/* save maximum allowed power for this channel */
2348 		sc->maxpwr[chan] = channels[i].maxpwr;
2349 
2350 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2351 		    chan, channels[i].flags, sc->maxpwr[chan]));
2352 	}
2353 }
2354 
2355 static void
2356 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2357 {
2358 	struct wpi_power_group *group = &sc->groups[n];
2359 	struct wpi_eeprom_group rgroup;
2360 	int i;
2361 
2362 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2363 	    sizeof rgroup);
2364 
2365 	/* save power group information */
2366 	group->chan   = rgroup.chan;
2367 	group->maxpwr = rgroup.maxpwr;
2368 	/* temperature at which the samples were taken */
2369 	group->temp   = (int16_t)le16toh(rgroup.temp);
2370 
2371 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2372 	    group->chan, group->maxpwr, group->temp));
2373 
2374 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2375 		group->samples[i].index = rgroup.samples[i].index;
2376 		group->samples[i].power = rgroup.samples[i].power;
2377 
2378 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2379 		    group->samples[i].index, group->samples[i].power));
2380 	}
2381 }
2382 
2383 /*
2384  * Send a command to the firmware.
2385  */
2386 static int
2387 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2388 {
2389 	struct wpi_tx_ring *ring = &sc->cmdq;
2390 	struct wpi_tx_desc *desc;
2391 	struct wpi_tx_cmd *cmd;
2392 	struct wpi_dma_info *dma;
2393 
2394 	KASSERT(size <= sizeof cmd->data);
2395 
2396 	desc = &ring->desc[ring->cur];
2397 	cmd = &ring->cmd[ring->cur];
2398 
2399 	cmd->code = code;
2400 	cmd->flags = 0;
2401 	cmd->qid = ring->qid;
2402 	cmd->idx = ring->cur;
2403 	memcpy(cmd->data, buf, size);
2404 
2405 	dma = &ring->cmd_dma;
2406 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2407 
2408 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2409 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2410 	    ring->cur * sizeof (struct wpi_tx_cmd));
2411 	desc->segs[0].len  = htole32(4 + size);
2412 
2413 	dma = &ring->desc_dma;
2414 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2415 
2416 	/* kick cmd ring */
2417 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2418 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2419 
2420 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2421 }
2422 
2423 static int
2424 wpi_wme_update(struct ieee80211com *ic)
2425 {
2426 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2427 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2428 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2429 	const struct wmeParams *wmep;
2430 	struct wpi_wme_setup wme;
2431 	int ac;
2432 
2433 	/* don't override default WME values if WME is not actually enabled */
2434 	if (!(ic->ic_flags & IEEE80211_F_WME))
2435 		return 0;
2436 
2437 	wme.flags = 0;
2438 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2439 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2440 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2441 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2442 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2443 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2444 
2445 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2446 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2447 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2448 	}
2449 
2450 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2451 #undef WPI_USEC
2452 #undef WPI_EXP2
2453 }
2454 
2455 /*
2456  * Configure h/w multi-rate retries.
2457  */
2458 static int
2459 wpi_mrr_setup(struct wpi_softc *sc)
2460 {
2461 	struct ieee80211com *ic = &sc->sc_ic;
2462 	struct wpi_mrr_setup mrr;
2463 	int i, error;
2464 
2465 	/* CCK rates (not used with 802.11a) */
2466 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2467 		mrr.rates[i].flags = 0;
2468 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2469 		/* fallback to the immediate lower CCK rate (if any) */
2470 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2471 		/* try one time at this rate before falling back to "next" */
2472 		mrr.rates[i].ntries = 1;
2473 	}
2474 
2475 	/* OFDM rates (not used with 802.11b) */
2476 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2477 		mrr.rates[i].flags = 0;
2478 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2479 		/* fallback to the immediate lower rate (if any) */
2480 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2481 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2482 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2483 			WPI_OFDM6 : WPI_CCK2) :
2484 		    i - 1;
2485 		/* try one time at this rate before falling back to "next" */
2486 		mrr.rates[i].ntries = 1;
2487 	}
2488 
2489 	/* setup MRR for control frames */
2490 	mrr.which = htole32(WPI_MRR_CTL);
2491 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2492 	if (error != 0) {
2493 		aprint_error_dev(sc->sc_dev,
2494 		    "could not setup MRR for control frames\n");
2495 		return error;
2496 	}
2497 
2498 	/* setup MRR for data frames */
2499 	mrr.which = htole32(WPI_MRR_DATA);
2500 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2501 	if (error != 0) {
2502 		aprint_error_dev(sc->sc_dev,
2503 		    "could not setup MRR for data frames\n");
2504 		return error;
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 static void
2511 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2512 {
2513 	struct wpi_cmd_led led;
2514 
2515 	led.which = which;
2516 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2517 	led.off = off;
2518 	led.on = on;
2519 
2520 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2521 }
2522 
2523 static void
2524 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2525 {
2526 	struct wpi_cmd_tsf tsf;
2527 	uint64_t val, mod;
2528 
2529 	memset(&tsf, 0, sizeof tsf);
2530 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2531 	tsf.bintval = htole16(ni->ni_intval);
2532 	tsf.lintval = htole16(10);
2533 
2534 	/* compute remaining time until next beacon */
2535 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2536 	mod = le64toh(tsf.tstamp) % val;
2537 	tsf.binitval = htole32((uint32_t)(val - mod));
2538 
2539 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2540 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2541 
2542 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2543 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2544 }
2545 
2546 /*
2547  * Update Tx power to match what is defined for channel `c'.
2548  */
2549 static int
2550 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2551 {
2552 	struct ieee80211com *ic = &sc->sc_ic;
2553 	struct wpi_power_group *group;
2554 	struct wpi_cmd_txpower txpower;
2555 	u_int chan;
2556 	int i;
2557 
2558 	/* get channel number */
2559 	chan = ieee80211_chan2ieee(ic, c);
2560 
2561 	/* find the power group to which this channel belongs */
2562 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2563 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2564 			if (chan <= group->chan)
2565 				break;
2566 	} else
2567 		group = &sc->groups[0];
2568 
2569 	memset(&txpower, 0, sizeof txpower);
2570 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2571 	txpower.chan = htole16(chan);
2572 
2573 	/* set Tx power for all OFDM and CCK rates */
2574 	for (i = 0; i <= 11 ; i++) {
2575 		/* retrieve Tx power for this channel/rate combination */
2576 		int idx = wpi_get_power_index(sc, group, c,
2577 		    wpi_ridx_to_rate[i]);
2578 
2579 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2580 
2581 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2582 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2583 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2584 		} else {
2585 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2586 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2587 		}
2588 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2589 		    wpi_ridx_to_rate[i], idx));
2590 	}
2591 
2592 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2593 }
2594 
2595 /*
2596  * Determine Tx power index for a given channel/rate combination.
2597  * This takes into account the regulatory information from EEPROM and the
2598  * current temperature.
2599  */
2600 static int
2601 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2602     struct ieee80211_channel *c, int rate)
2603 {
2604 /* fixed-point arithmetic division using a n-bit fractional part */
2605 #define fdivround(a, b, n)	\
2606 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2607 
2608 /* linear interpolation */
2609 #define interpolate(x, x1, y1, x2, y2, n)	\
2610 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2611 
2612 	struct ieee80211com *ic = &sc->sc_ic;
2613 	struct wpi_power_sample *sample;
2614 	int pwr, idx;
2615 	u_int chan;
2616 
2617 	/* get channel number */
2618 	chan = ieee80211_chan2ieee(ic, c);
2619 
2620 	/* default power is group's maximum power - 3dB */
2621 	pwr = group->maxpwr / 2;
2622 
2623 	/* decrease power for highest OFDM rates to reduce distortion */
2624 	switch (rate) {
2625 	case 72:	/* 36Mb/s */
2626 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2627 		break;
2628 	case 96:	/* 48Mb/s */
2629 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2630 		break;
2631 	case 108:	/* 54Mb/s */
2632 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2633 		break;
2634 	}
2635 
2636 	/* never exceed channel's maximum allowed Tx power */
2637 	pwr = uimin(pwr, sc->maxpwr[chan]);
2638 
2639 	/* retrieve power index into gain tables from samples */
2640 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2641 		if (pwr > sample[1].power)
2642 			break;
2643 	/* fixed-point linear interpolation using a 19-bit fractional part */
2644 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2645 	    sample[1].power, sample[1].index, 19);
2646 
2647 	/*-
2648 	 * Adjust power index based on current temperature:
2649 	 * - if cooler than factory-calibrated: decrease output power
2650 	 * - if warmer than factory-calibrated: increase output power
2651 	 */
2652 	idx -= (sc->temp - group->temp) * 11 / 100;
2653 
2654 	/* decrease power for CCK rates (-5dB) */
2655 	if (!WPI_RATE_IS_OFDM(rate))
2656 		idx += 10;
2657 
2658 	/* keep power index in a valid range */
2659 	if (idx < 0)
2660 		return 0;
2661 	if (idx > WPI_MAX_PWR_INDEX)
2662 		return WPI_MAX_PWR_INDEX;
2663 	return idx;
2664 
2665 #undef interpolate
2666 #undef fdivround
2667 }
2668 
2669 /*
2670  * Build a beacon frame that the firmware will broadcast periodically in
2671  * IBSS or HostAP modes.
2672  */
2673 static int
2674 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2675 {
2676 	struct ieee80211com *ic = &sc->sc_ic;
2677 	struct wpi_tx_ring *ring = &sc->cmdq;
2678 	struct wpi_tx_desc *desc;
2679 	struct wpi_tx_data *data;
2680 	struct wpi_tx_cmd *cmd;
2681 	struct wpi_cmd_beacon *bcn;
2682 	struct ieee80211_beacon_offsets bo;
2683 	struct mbuf *m0;
2684 	int error;
2685 
2686 	desc = &ring->desc[ring->cur];
2687 	data = &ring->data[ring->cur];
2688 
2689 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2690 	if (m0 == NULL) {
2691 		aprint_error_dev(sc->sc_dev,
2692 		    "could not allocate beacon frame\n");
2693 		return ENOMEM;
2694 	}
2695 
2696 	cmd = &ring->cmd[ring->cur];
2697 	cmd->code = WPI_CMD_SET_BEACON;
2698 	cmd->flags = 0;
2699 	cmd->qid = ring->qid;
2700 	cmd->idx = ring->cur;
2701 
2702 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2703 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2704 	bcn->id = WPI_ID_BROADCAST;
2705 	bcn->ofdm_mask = 0xff;
2706 	bcn->cck_mask = 0x0f;
2707 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2708 	bcn->len = htole16(m0->m_pkthdr.len);
2709 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2710 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2711 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2712 
2713 	/* save and trim IEEE802.11 header */
2714 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2715 	m_adj(m0, sizeof (struct ieee80211_frame));
2716 
2717 	/* assume beacon frame is contiguous */
2718 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2719 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2720 	if (error != 0) {
2721 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2722 		m_freem(m0);
2723 		return error;
2724 	}
2725 
2726 	data->m = m0;
2727 
2728 	/* first scatter/gather segment is used by the beacon command */
2729 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2730 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2731 	    ring->cur * sizeof (struct wpi_tx_cmd));
2732 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2733 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2734 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2735 
2736 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2737 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2738 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2739 	    BUS_DMASYNC_PREWRITE);
2740 
2741 	/* kick cmd ring */
2742 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2743 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2744 
2745 	return 0;
2746 }
2747 
2748 static int
2749 wpi_auth(struct wpi_softc *sc)
2750 {
2751 	struct ieee80211com *ic = &sc->sc_ic;
2752 	struct ieee80211_node *ni = ic->ic_bss;
2753 	struct wpi_node_info node;
2754 	int error;
2755 
2756 	/* update adapter's configuration */
2757 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2758 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2759 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2760 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2761 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2762 		    WPI_CONFIG_24GHZ);
2763 	}
2764 	switch (ic->ic_curmode) {
2765 	case IEEE80211_MODE_11A:
2766 		sc->config.cck_mask  = 0;
2767 		sc->config.ofdm_mask = 0x15;
2768 		break;
2769 	case IEEE80211_MODE_11B:
2770 		sc->config.cck_mask  = 0x03;
2771 		sc->config.ofdm_mask = 0;
2772 		break;
2773 	default:	/* assume 802.11b/g */
2774 		sc->config.cck_mask  = 0x0f;
2775 		sc->config.ofdm_mask = 0x15;
2776 	}
2777 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2778 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2779 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2780 	    sizeof (struct wpi_config), 1);
2781 	if (error != 0) {
2782 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2783 		return error;
2784 	}
2785 
2786 	/* configuration has changed, set Tx power accordingly */
2787 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2788 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2789 		return error;
2790 	}
2791 
2792 	/* add default node */
2793 	memset(&node, 0, sizeof node);
2794 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2795 	node.id = WPI_ID_BSS;
2796 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2797 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2798 	node.action = htole32(WPI_ACTION_SET_RATE);
2799 	node.antenna = WPI_ANTENNA_BOTH;
2800 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2801 	if (error != 0) {
2802 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2803 		return error;
2804 	}
2805 
2806 	return 0;
2807 }
2808 
2809 /*
2810  * Send a scan request to the firmware.  Since this command is huge, we map it
2811  * into a mbuf instead of using the pre-allocated set of commands.
2812  */
2813 static int
2814 wpi_scan(struct wpi_softc *sc)
2815 {
2816 	struct ieee80211com *ic = &sc->sc_ic;
2817 	struct wpi_tx_ring *ring = &sc->cmdq;
2818 	struct wpi_tx_desc *desc;
2819 	struct wpi_tx_data *data;
2820 	struct wpi_tx_cmd *cmd;
2821 	struct wpi_scan_hdr *hdr;
2822 	struct wpi_scan_chan *chan;
2823 	struct ieee80211_frame *wh;
2824 	struct ieee80211_rateset *rs;
2825 	struct ieee80211_channel *c;
2826 	uint8_t *frm;
2827 	int pktlen, error, nrates;
2828 
2829 	if (ic->ic_curchan == NULL)
2830 		return EIO;
2831 
2832 	desc = &ring->desc[ring->cur];
2833 	data = &ring->data[ring->cur];
2834 
2835 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2836 	if (data->m == NULL) {
2837 		aprint_error_dev(sc->sc_dev,
2838 		    "could not allocate mbuf for scan command\n");
2839 		return ENOMEM;
2840 	}
2841 	MCLGET(data->m, M_DONTWAIT);
2842 	if (!(data->m->m_flags & M_EXT)) {
2843 		m_freem(data->m);
2844 		data->m = NULL;
2845 		aprint_error_dev(sc->sc_dev,
2846 		    "could not allocate mbuf for scan command\n");
2847 		return ENOMEM;
2848 	}
2849 
2850 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2851 	cmd->code = WPI_CMD_SCAN;
2852 	cmd->flags = 0;
2853 	cmd->qid = ring->qid;
2854 	cmd->idx = ring->cur;
2855 
2856 	hdr = (struct wpi_scan_hdr *)cmd->data;
2857 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2858 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2859 	hdr->cmd.id = WPI_ID_BROADCAST;
2860 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2861 	/*
2862 	 * Move to the next channel if no packets are received within 5 msecs
2863 	 * after sending the probe request (this helps to reduce the duration
2864 	 * of active scans).
2865 	 */
2866 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
2867 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2868 
2869 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2870 		hdr->crc_threshold = htole16(1);
2871 		/* send probe requests at 6Mbps */
2872 		hdr->cmd.rate = wpi_plcp_signal(12);
2873 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2874 	} else {
2875 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2876 		/* send probe requests at 1Mbps */
2877 		hdr->cmd.rate = wpi_plcp_signal(2);
2878 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2879 	}
2880 
2881 	/* for directed scans, firmware inserts the essid IE itself */
2882 	if (ic->ic_des_esslen != 0) {
2883 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2884 		hdr->essid[0].len = ic->ic_des_esslen;
2885 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2886 	}
2887 
2888 	/*
2889 	 * Build a probe request frame.  Most of the following code is a
2890 	 * copy & paste of what is done in net80211.
2891 	 */
2892 	wh = (struct ieee80211_frame *)(hdr + 1);
2893 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2894 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2895 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2896 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2897 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2898 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2899 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2900 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2901 
2902 	frm = (uint8_t *)(wh + 1);
2903 
2904 	/* add empty essid IE (firmware generates it for directed scans) */
2905 	*frm++ = IEEE80211_ELEMID_SSID;
2906 	*frm++ = 0;
2907 
2908 	/* add supported rates IE */
2909 	*frm++ = IEEE80211_ELEMID_RATES;
2910 	nrates = rs->rs_nrates;
2911 	if (nrates > IEEE80211_RATE_SIZE)
2912 		nrates = IEEE80211_RATE_SIZE;
2913 	*frm++ = nrates;
2914 	memcpy(frm, rs->rs_rates, nrates);
2915 	frm += nrates;
2916 
2917 	/* add supported xrates IE */
2918 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2919 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2920 		*frm++ = IEEE80211_ELEMID_XRATES;
2921 		*frm++ = nrates;
2922 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2923 		frm += nrates;
2924 	}
2925 
2926 	/* setup length of probe request */
2927 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2928 
2929 	chan = (struct wpi_scan_chan *)frm;
2930 	c = ic->ic_curchan;
2931 
2932 	chan->chan = ieee80211_chan2ieee(ic, c);
2933 	chan->flags = 0;
2934 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2935 		chan->flags |= WPI_CHAN_ACTIVE;
2936 		if (ic->ic_des_esslen != 0)
2937 			chan->flags |= WPI_CHAN_DIRECT;
2938 	}
2939 	chan->dsp_gain = 0x6e;
2940 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2941 		chan->rf_gain = 0x3b;
2942 		chan->active  = htole16(10);
2943 		chan->passive = htole16(110);
2944 	} else {
2945 		chan->rf_gain = 0x28;
2946 		chan->active  = htole16(20);
2947 		chan->passive = htole16(120);
2948 	}
2949 	hdr->nchan++;
2950 	chan++;
2951 
2952 	frm += sizeof (struct wpi_scan_chan);
2953 
2954 	hdr->len = htole16(frm - (uint8_t *)hdr);
2955 	pktlen = frm - (uint8_t *)cmd;
2956 
2957 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2958 	    BUS_DMA_NOWAIT);
2959 	if (error != 0) {
2960 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2961 		m_freem(data->m);
2962 		data->m = NULL;
2963 		return error;
2964 	}
2965 
2966 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2967 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2968 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2969 
2970 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2971 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2972 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2973 	    BUS_DMASYNC_PREWRITE);
2974 
2975 	/* kick cmd ring */
2976 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2977 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2978 
2979 	return 0;	/* will be notified async. of failure/success */
2980 }
2981 
2982 static int
2983 wpi_config(struct wpi_softc *sc)
2984 {
2985 	struct ieee80211com *ic = &sc->sc_ic;
2986 	struct ifnet *ifp = ic->ic_ifp;
2987 	struct wpi_power power;
2988 	struct wpi_bluetooth bluetooth;
2989 	struct wpi_node_info node;
2990 	int error;
2991 
2992 	memset(&power, 0, sizeof power);
2993 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2994 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2995 	if (error != 0) {
2996 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2997 		return error;
2998 	}
2999 
3000 	/* configure bluetooth coexistence */
3001 	memset(&bluetooth, 0, sizeof bluetooth);
3002 	bluetooth.flags = 3;
3003 	bluetooth.lead = 0xaa;
3004 	bluetooth.kill = 1;
3005 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3006 	    0);
3007 	if (error != 0) {
3008 		aprint_error_dev(sc->sc_dev,
3009 			"could not configure bluetooth coexistence\n");
3010 		return error;
3011 	}
3012 
3013 	/* configure adapter */
3014 	memset(&sc->config, 0, sizeof (struct wpi_config));
3015 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3016 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3017 	/* set default channel */
3018 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3019 	sc->config.flags = htole32(WPI_CONFIG_TSF);
3020 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3021 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
3022 		    WPI_CONFIG_24GHZ);
3023 	}
3024 	sc->config.filter = 0;
3025 	switch (ic->ic_opmode) {
3026 	case IEEE80211_M_STA:
3027 		sc->config.mode = WPI_MODE_STA;
3028 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
3029 		break;
3030 	case IEEE80211_M_IBSS:
3031 	case IEEE80211_M_AHDEMO:
3032 		sc->config.mode = WPI_MODE_IBSS;
3033 		break;
3034 	case IEEE80211_M_HOSTAP:
3035 		sc->config.mode = WPI_MODE_HOSTAP;
3036 		break;
3037 	case IEEE80211_M_MONITOR:
3038 		sc->config.mode = WPI_MODE_MONITOR;
3039 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
3040 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3041 		break;
3042 	}
3043 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3044 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3045 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
3046 	    sizeof (struct wpi_config), 0);
3047 	if (error != 0) {
3048 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
3049 		return error;
3050 	}
3051 
3052 	/* configuration has changed, set Tx power accordingly */
3053 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
3054 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3055 		return error;
3056 	}
3057 
3058 	/* add broadcast node */
3059 	memset(&node, 0, sizeof node);
3060 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
3061 	node.id = WPI_ID_BROADCAST;
3062 	node.rate = wpi_plcp_signal(2);
3063 	node.action = htole32(WPI_ACTION_SET_RATE);
3064 	node.antenna = WPI_ANTENNA_BOTH;
3065 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3066 	if (error != 0) {
3067 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3068 		return error;
3069 	}
3070 
3071 	if ((error = wpi_mrr_setup(sc)) != 0) {
3072 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3073 		return error;
3074 	}
3075 
3076 	return 0;
3077 }
3078 
3079 static void
3080 wpi_stop_master(struct wpi_softc *sc)
3081 {
3082 	uint32_t tmp;
3083 	int ntries;
3084 
3085 	tmp = WPI_READ(sc, WPI_RESET);
3086 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3087 
3088 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3089 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3090 		return;	/* already asleep */
3091 
3092 	for (ntries = 0; ntries < 100; ntries++) {
3093 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3094 			break;
3095 		DELAY(10);
3096 	}
3097 	if (ntries == 100) {
3098 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3099 	}
3100 }
3101 
3102 static int
3103 wpi_power_up(struct wpi_softc *sc)
3104 {
3105 	uint32_t tmp;
3106 	int ntries;
3107 
3108 	wpi_mem_lock(sc);
3109 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3110 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3111 	wpi_mem_unlock(sc);
3112 
3113 	for (ntries = 0; ntries < 5000; ntries++) {
3114 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3115 			break;
3116 		DELAY(10);
3117 	}
3118 	if (ntries == 5000) {
3119 		aprint_error_dev(sc->sc_dev,
3120 		    "timeout waiting for NIC to power up\n");
3121 		return ETIMEDOUT;
3122 	}
3123 	return 0;
3124 }
3125 
3126 static int
3127 wpi_reset(struct wpi_softc *sc)
3128 {
3129 	uint32_t tmp;
3130 	int ntries;
3131 
3132 	/* clear any pending interrupts */
3133 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3134 
3135 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3136 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3137 
3138 	tmp = WPI_READ(sc, WPI_CHICKEN);
3139 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3140 
3141 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3142 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3143 
3144 	/* wait for clock stabilization */
3145 	for (ntries = 0; ntries < 1000; ntries++) {
3146 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3147 			break;
3148 		DELAY(10);
3149 	}
3150 	if (ntries == 1000) {
3151 		aprint_error_dev(sc->sc_dev,
3152 		    "timeout waiting for clock stabilization\n");
3153 		return ETIMEDOUT;
3154 	}
3155 
3156 	/* initialize EEPROM */
3157 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3158 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3159 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3160 		return EIO;
3161 	}
3162 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3163 
3164 	return 0;
3165 }
3166 
3167 static void
3168 wpi_hw_config(struct wpi_softc *sc)
3169 {
3170 	uint32_t rev, hw;
3171 
3172 	/* voodoo from the reference driver */
3173 	hw = WPI_READ(sc, WPI_HWCONFIG);
3174 
3175 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3176 	rev = PCI_REVISION(rev);
3177 	if ((rev & 0xc0) == 0x40)
3178 		hw |= WPI_HW_ALM_MB;
3179 	else if (!(rev & 0x80))
3180 		hw |= WPI_HW_ALM_MM;
3181 
3182 	if (sc->cap == 0x80)
3183 		hw |= WPI_HW_SKU_MRC;
3184 
3185 	hw &= ~WPI_HW_REV_D;
3186 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3187 		hw |= WPI_HW_REV_D;
3188 
3189 	if (sc->type > 1)
3190 		hw |= WPI_HW_TYPE_B;
3191 
3192 	DPRINTF(("setting h/w config %x\n", hw));
3193 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3194 }
3195 
3196 static int
3197 wpi_init(struct ifnet *ifp)
3198 {
3199 	struct wpi_softc *sc = ifp->if_softc;
3200 	struct ieee80211com *ic = &sc->sc_ic;
3201 	uint32_t tmp;
3202 	int qid, ntries, error;
3203 
3204 	wpi_stop(ifp,1);
3205 	(void)wpi_reset(sc);
3206 
3207 	wpi_mem_lock(sc);
3208 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3209 	DELAY(20);
3210 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3211 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3212 	wpi_mem_unlock(sc);
3213 
3214 	(void)wpi_power_up(sc);
3215 	wpi_hw_config(sc);
3216 
3217 	/* init Rx ring */
3218 	wpi_mem_lock(sc);
3219 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3220 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3221 	    offsetof(struct wpi_shared, next));
3222 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3223 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3224 	wpi_mem_unlock(sc);
3225 
3226 	/* init Tx rings */
3227 	wpi_mem_lock(sc);
3228 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3229 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3230 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3231 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3232 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3233 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3234 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3235 
3236 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3237 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3238 
3239 	for (qid = 0; qid < 6; qid++) {
3240 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3241 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3242 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3243 	}
3244 	wpi_mem_unlock(sc);
3245 
3246 	/* clear "radio off" and "disable command" bits (reversed logic) */
3247 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3248 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3249 
3250 	/* clear any pending interrupts */
3251 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3252 	/* enable interrupts */
3253 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3254 
3255 	/* not sure why/if this is necessary... */
3256 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3257 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3258 
3259 	if ((error = wpi_load_firmware(sc)) != 0)
3260 		/* wpi_load_firmware prints error messages for us.  */
3261 		goto fail1;
3262 
3263 	/* Check the status of the radio switch */
3264 	mutex_enter(&sc->sc_rsw_mtx);
3265 	if (wpi_getrfkill(sc)) {
3266 		mutex_exit(&sc->sc_rsw_mtx);
3267 		aprint_error_dev(sc->sc_dev,
3268 		    "radio is disabled by hardware switch\n");
3269 		ifp->if_flags &= ~IFF_UP;
3270 		error = EBUSY;
3271 		goto fail1;
3272 	}
3273 	sc->sc_rsw_suspend = false;
3274 	cv_broadcast(&sc->sc_rsw_cv);
3275 	while (sc->sc_rsw_suspend)
3276 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3277 	mutex_exit(&sc->sc_rsw_mtx);
3278 
3279 	/* wait for thermal sensors to calibrate */
3280 	for (ntries = 0; ntries < 1000; ntries++) {
3281 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3282 			break;
3283 		DELAY(10);
3284 	}
3285 	if (ntries == 1000) {
3286 		aprint_error_dev(sc->sc_dev,
3287 		    "timeout waiting for thermal sensors calibration\n");
3288 		error = ETIMEDOUT;
3289 		goto fail1;
3290 	}
3291 	DPRINTF(("temperature %d\n", sc->temp));
3292 
3293 	if ((error = wpi_config(sc)) != 0) {
3294 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3295 		goto fail1;
3296 	}
3297 
3298 	ifp->if_flags &= ~IFF_OACTIVE;
3299 	ifp->if_flags |= IFF_RUNNING;
3300 
3301 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3302 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3303 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3304 	}
3305 	else
3306 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3307 
3308 	return 0;
3309 
3310 fail1:	wpi_stop(ifp, 1);
3311 	return error;
3312 }
3313 
3314 static void
3315 wpi_stop(struct ifnet *ifp, int disable)
3316 {
3317 	struct wpi_softc *sc = ifp->if_softc;
3318 	struct ieee80211com *ic = &sc->sc_ic;
3319 	uint32_t tmp;
3320 	int ac;
3321 
3322 	ifp->if_timer = sc->sc_tx_timer = 0;
3323 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3324 
3325 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3326 
3327 	/* suspend rfkill test thread */
3328 	mutex_enter(&sc->sc_rsw_mtx);
3329 	sc->sc_rsw_suspend = true;
3330 	cv_broadcast(&sc->sc_rsw_cv);
3331 	while (!sc->sc_rsw_suspended)
3332 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3333 	mutex_exit(&sc->sc_rsw_mtx);
3334 
3335 	/* disable interrupts */
3336 	WPI_WRITE(sc, WPI_MASK, 0);
3337 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3338 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3339 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3340 
3341 	wpi_mem_lock(sc);
3342 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3343 	wpi_mem_unlock(sc);
3344 
3345 	/* reset all Tx rings */
3346 	for (ac = 0; ac < 4; ac++)
3347 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3348 	wpi_reset_tx_ring(sc, &sc->cmdq);
3349 
3350 	/* reset Rx ring */
3351 	wpi_reset_rx_ring(sc, &sc->rxq);
3352 
3353 	wpi_mem_lock(sc);
3354 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3355 	wpi_mem_unlock(sc);
3356 
3357 	DELAY(5);
3358 
3359 	wpi_stop_master(sc);
3360 
3361 	tmp = WPI_READ(sc, WPI_RESET);
3362 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3363 }
3364 
3365 static bool
3366 wpi_resume(device_t dv, const pmf_qual_t *qual)
3367 {
3368 	struct wpi_softc *sc = device_private(dv);
3369 
3370 	(void)wpi_reset(sc);
3371 
3372 	return true;
3373 }
3374 
3375 /*
3376  * Return whether or not the radio is enabled in hardware
3377  * (i.e. the rfkill switch is "off").
3378  */
3379 static int
3380 wpi_getrfkill(struct wpi_softc *sc)
3381 {
3382 	uint32_t tmp;
3383 
3384 	wpi_mem_lock(sc);
3385 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3386 	wpi_mem_unlock(sc);
3387 
3388 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3389 	if (tmp & 0x01) {
3390 		/* switch is on */
3391 		if (sc->sc_rsw_status != WPI_RSW_ON) {
3392 			sc->sc_rsw_status = WPI_RSW_ON;
3393 			sysmon_pswitch_event(&sc->sc_rsw,
3394 			    PSWITCH_EVENT_PRESSED);
3395 		}
3396 	} else {
3397 		/* switch is off */
3398 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
3399 			sc->sc_rsw_status = WPI_RSW_OFF;
3400 			sysmon_pswitch_event(&sc->sc_rsw,
3401 			    PSWITCH_EVENT_RELEASED);
3402 		}
3403 	}
3404 
3405 	return !(tmp & 0x01);
3406 }
3407 
3408 static int
3409 wpi_sysctl_radio(SYSCTLFN_ARGS)
3410 {
3411 	struct sysctlnode node;
3412 	struct wpi_softc *sc;
3413 	int val, error;
3414 
3415 	node = *rnode;
3416 	sc = (struct wpi_softc *)node.sysctl_data;
3417 
3418 	mutex_enter(&sc->sc_rsw_mtx);
3419 	val = !wpi_getrfkill(sc);
3420 	mutex_exit(&sc->sc_rsw_mtx);
3421 
3422 	node.sysctl_data = &val;
3423 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3424 
3425 	if (error || newp == NULL)
3426 		return error;
3427 
3428 	return 0;
3429 }
3430 
3431 static void
3432 wpi_sysctlattach(struct wpi_softc *sc)
3433 {
3434 	int rc;
3435 	const struct sysctlnode *rnode;
3436 	const struct sysctlnode *cnode;
3437 
3438 	struct sysctllog **clog = &sc->sc_sysctllog;
3439 
3440 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3441 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3442 	    SYSCTL_DESCR("wpi controls and statistics"),
3443 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3444 		goto err;
3445 
3446 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3447 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3448 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3449 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3450 		goto err;
3451 
3452 #ifdef WPI_DEBUG
3453 	/* control debugging printfs */
3454 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3455 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3456 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3457 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3458 		goto err;
3459 #endif
3460 
3461 	return;
3462 err:
3463 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3464 }
3465 
3466 static void
3467 wpi_rsw_thread(void *arg)
3468 {
3469 	struct wpi_softc *sc = (struct wpi_softc *)arg;
3470 
3471 	mutex_enter(&sc->sc_rsw_mtx);
3472 	for (;;) {
3473 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3474 		if (sc->sc_dying) {
3475 			sc->sc_rsw_lwp = NULL;
3476 			cv_broadcast(&sc->sc_rsw_cv);
3477 			mutex_exit(&sc->sc_rsw_mtx);
3478 			kthread_exit(0);
3479 		}
3480 		if (sc->sc_rsw_suspend) {
3481 			sc->sc_rsw_suspended = true;
3482 			cv_broadcast(&sc->sc_rsw_cv);
3483 			while (sc->sc_rsw_suspend || sc->sc_dying)
3484 				cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3485 			sc->sc_rsw_suspended = false;
3486 			cv_broadcast(&sc->sc_rsw_cv);
3487 		}
3488 		wpi_getrfkill(sc);
3489 	}
3490 }
3491