xref: /netbsd/sys/dev/pci/if_wpi.c (revision bbdda93b)
1 /*	$NetBSD: if_wpi.c,v 1.91 2021/06/16 00:21:18 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.91 2021/06/16 00:21:18 riastradh Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51 
52 #include <dev/sysmon/sysmonvar.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70 
71 #include <dev/firmload.h>
72 
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75 
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82 
83 static int	wpi_match(device_t, cfdata_t, void *);
84 static void	wpi_attach(device_t, device_t, void *);
85 static int	wpi_detach(device_t , int);
86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
89 static int	wpi_alloc_shared(struct wpi_softc *);
90 static void	wpi_free_shared(struct wpi_softc *);
91 static int	wpi_alloc_fwmem(struct wpi_softc *);
92 static void	wpi_free_fwmem(struct wpi_softc *);
93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int	wpi_alloc_rpool(struct wpi_softc *);
96 static void	wpi_free_rpool(struct wpi_softc *);
97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 		    int, int);
102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void	wpi_newassoc(struct ieee80211_node *, int);
106 static int	wpi_media_change(struct ifnet *);
107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void	wpi_mem_lock(struct wpi_softc *);
109 static void	wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 		    const uint32_t *, int);
114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
116 static int	wpi_cache_firmware(struct wpi_softc *);
117 static void	wpi_release_firmware(void);
118 static int	wpi_load_firmware(struct wpi_softc *);
119 static void	wpi_calib_timeout(void *);
120 static void	wpi_iter_func(void *, struct ieee80211_node *);
121 static void	wpi_power_calibration(struct wpi_softc *, int);
122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 		    struct wpi_rx_data *);
124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void	wpi_notif_intr(struct wpi_softc *);
127 static int	wpi_intr(void *);
128 static void	wpi_softintr(void *);
129 static void	wpi_read_eeprom(struct wpi_softc *);
130 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
131 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
132 static uint8_t	wpi_plcp_signal(int);
133 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
134 		    struct ieee80211_node *, int);
135 static void	wpi_start(struct ifnet *);
136 static void	wpi_watchdog(struct ifnet *);
137 static int	wpi_ioctl(struct ifnet *, u_long, void *);
138 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int	wpi_wme_update(struct ieee80211com *);
140 static int	wpi_mrr_setup(struct wpi_softc *);
141 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int	wpi_set_txpower(struct wpi_softc *,
144 		    struct ieee80211_channel *, int);
145 static int	wpi_get_power_index(struct wpi_softc *,
146 		    struct wpi_power_group *, struct ieee80211_channel *, int);
147 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
148 static int	wpi_auth(struct wpi_softc *);
149 static int	wpi_scan(struct wpi_softc *);
150 static int	wpi_config(struct wpi_softc *);
151 static void	wpi_stop_master(struct wpi_softc *);
152 static int	wpi_power_up(struct wpi_softc *);
153 static int	wpi_reset(struct wpi_softc *);
154 static void	wpi_hw_config(struct wpi_softc *);
155 static int	wpi_init(struct ifnet *);
156 static void	wpi_stop(struct ifnet *, int);
157 static bool	wpi_resume(device_t, const pmf_qual_t *);
158 static int	wpi_getrfkill(struct wpi_softc *);
159 static void	wpi_sysctlattach(struct wpi_softc *);
160 static void	wpi_rsw_thread(void *);
161 static void	wpi_rsw_suspend(struct wpi_softc *);
162 static void	wpi_stop_intr(struct ifnet *, int);
163 
164 #ifdef WPI_DEBUG
165 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
166 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
167 int wpi_debug = 1;
168 #else
169 #define DPRINTF(x)
170 #define DPRINTFN(n, x)
171 #endif
172 
173 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
174 	wpi_detach, NULL);
175 
176 static int
177 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
178 {
179 	struct pci_attach_args *pa = aux;
180 
181 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
182 		return 0;
183 
184 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
185 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
186 		return 1;
187 
188 	return 0;
189 }
190 
191 /* Base Address Register */
192 #define WPI_PCI_BAR0	0x10
193 
194 static int
195 wpi_attach_once(void)
196 {
197 
198 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
199 	return 0;
200 }
201 
202 static void
203 wpi_attach(device_t parent __unused, device_t self, void *aux)
204 {
205 	struct wpi_softc *sc = device_private(self);
206 	struct ieee80211com *ic = &sc->sc_ic;
207 	struct ifnet *ifp = &sc->sc_ec.ec_if;
208 	struct pci_attach_args *pa = aux;
209 	const char *intrstr;
210 	bus_space_tag_t memt;
211 	bus_space_handle_t memh;
212 	pcireg_t data;
213 	int ac, error;
214 	char intrbuf[PCI_INTRSTR_LEN];
215 
216 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
217 	sc->fw_used = false;
218 
219 	sc->sc_dev = self;
220 	sc->sc_pct = pa->pa_pc;
221 	sc->sc_pcitag = pa->pa_tag;
222 
223 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
224 	sc->sc_rsw.smpsw_name = device_xname(self);
225 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
226 	error = sysmon_pswitch_register(&sc->sc_rsw);
227 	if (error) {
228 		aprint_error_dev(self,
229 		    "unable to register radio switch with sysmon\n");
230 		return;
231 	}
232 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
233 	cv_init(&sc->sc_rsw_cv, "wpirsw");
234 	sc->sc_rsw_suspend = false;
235 	sc->sc_rsw_suspended = false;
236 	if (kthread_create(PRI_NONE, 0, NULL,
237 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
238 		aprint_error_dev(self, "couldn't create switch thread\n");
239 	}
240 
241 	callout_init(&sc->calib_to, 0);
242 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
243 
244 	pci_aprint_devinfo(pa, NULL);
245 
246 	/* enable bus-mastering */
247 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
248 	data |= PCI_COMMAND_MASTER_ENABLE;
249 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
250 
251 	/* map the register window */
252 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
253 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
254 	if (error != 0) {
255 		aprint_error_dev(self, "could not map memory space\n");
256 		return;
257 	}
258 
259 	sc->sc_st = memt;
260 	sc->sc_sh = memh;
261 	sc->sc_dmat = pa->pa_dmat;
262 
263 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
264 	if (sc->sc_soft_ih == NULL) {
265 		aprint_error_dev(self, "could not establish softint\n");
266 		goto unmap;
267 	}
268 
269 	if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
270 		aprint_error_dev(self, "could not map interrupt\n");
271 		goto failsi;
272 	}
273 
274 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
275 	    sizeof(intrbuf));
276 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
277 	    IPL_NET, wpi_intr, sc, device_xname(self));
278 	if (sc->sc_ih == NULL) {
279 		aprint_error_dev(self, "could not establish interrupt");
280 		if (intrstr != NULL)
281 			aprint_error(" at %s", intrstr);
282 		aprint_error("\n");
283 		goto failia;
284 	}
285 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
286 
287 	/*
288 	 * Put adapter into a known state.
289 	 */
290 	if ((error = wpi_reset(sc)) != 0) {
291 		aprint_error_dev(self, "could not reset adapter\n");
292 		goto failih;
293 	}
294 
295 	/*
296 	 * Allocate DMA memory for firmware transfers.
297 	 */
298 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
299 		aprint_error_dev(self, "could not allocate firmware memory\n");
300 		goto failih;
301 	}
302 
303 	/*
304 	 * Allocate shared page and Tx/Rx rings.
305 	 */
306 	if ((error = wpi_alloc_shared(sc)) != 0) {
307 		aprint_error_dev(self, "could not allocate shared area\n");
308 		goto fail1;
309 	}
310 
311 	if ((error = wpi_alloc_rpool(sc)) != 0) {
312 		aprint_error_dev(self, "could not allocate Rx buffers\n");
313 		goto fail2;
314 	}
315 
316 	for (ac = 0; ac < 4; ac++) {
317 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
318 		    ac);
319 		if (error != 0) {
320 			aprint_error_dev(self,
321 			    "could not allocate Tx ring %d\n", ac);
322 			goto fail3;
323 		}
324 	}
325 
326 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
327 	if (error != 0) {
328 		aprint_error_dev(self, "could not allocate command ring\n");
329 		goto fail3;
330 	}
331 
332 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
333 	if (error != 0) {
334 		aprint_error_dev(self, "could not allocate Rx ring\n");
335 		goto fail4;
336 	}
337 
338 	ic->ic_ifp = ifp;
339 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
340 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
341 	ic->ic_state = IEEE80211_S_INIT;
342 
343 	/* set device capabilities */
344 	ic->ic_caps =
345 	    IEEE80211_C_WPA |		/* 802.11i */
346 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
347 	    IEEE80211_C_TXPMGT |	/* tx power management */
348 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
349 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
350 	    IEEE80211_C_WME;		/* 802.11e */
351 
352 	/* read supported channels and MAC address from EEPROM */
353 	wpi_read_eeprom(sc);
354 
355 	/* set supported .11a, .11b and .11g rates */
356 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
357 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
358 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
359 
360 	/* IBSS channel undefined for now */
361 	ic->ic_ibss_chan = &ic->ic_channels[0];
362 
363 	ifp->if_softc = sc;
364 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
365 	ifp->if_init = wpi_init;
366 	ifp->if_stop = wpi_stop;
367 	ifp->if_ioctl = wpi_ioctl;
368 	ifp->if_start = wpi_start;
369 	ifp->if_watchdog = wpi_watchdog;
370 	IFQ_SET_READY(&ifp->if_snd);
371 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
372 
373 	if_initialize(ifp);
374 	ieee80211_ifattach(ic);
375 	/* Use common softint-based if_input */
376 	ifp->if_percpuq = if_percpuq_create(ifp);
377 	if_register(ifp);
378 
379 	/* override default methods */
380 	ic->ic_node_alloc = wpi_node_alloc;
381 	ic->ic_newassoc = wpi_newassoc;
382 	ic->ic_wme.wme_update = wpi_wme_update;
383 
384 	/* override state transition machine */
385 	sc->sc_newstate = ic->ic_newstate;
386 	ic->ic_newstate = wpi_newstate;
387 
388 	/* XXX media locking needs revisiting */
389 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
390 	ieee80211_media_init_with_lock(ic,
391 	    wpi_media_change, ieee80211_media_status, &sc->sc_media_mtx);
392 
393 	sc->amrr.amrr_min_success_threshold =  1;
394 	sc->amrr.amrr_max_success_threshold = 15;
395 
396 	wpi_sysctlattach(sc);
397 
398 	if (pmf_device_register(self, NULL, wpi_resume))
399 		pmf_class_network_register(self, ifp);
400 	else
401 		aprint_error_dev(self, "couldn't establish power handler\n");
402 
403 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
404 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
405 	    &sc->sc_drvbpf);
406 
407 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
408 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
409 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
410 
411 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
412 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
413 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
414 
415 	ieee80211_announce(ic);
416 
417 	return;
418 
419 	/* free allocated memory if something failed during attachment */
420 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
421 fail3:	while (--ac >= 0)
422 		wpi_free_tx_ring(sc, &sc->txq[ac]);
423 	wpi_free_rpool(sc);
424 fail2:	wpi_free_shared(sc);
425 fail1:	wpi_free_fwmem(sc);
426 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
427 	sc->sc_ih = NULL;
428 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
429 	sc->sc_pihp = NULL;
430 failsi:	softint_disestablish(sc->sc_soft_ih);
431 	sc->sc_soft_ih = NULL;
432 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
433 }
434 
435 static int
436 wpi_detach(device_t self, int flags __unused)
437 {
438 	struct wpi_softc *sc = device_private(self);
439 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
440 	int ac;
441 
442 	wpi_stop(ifp, 1);
443 
444 	if (ifp != NULL)
445 		bpf_detach(ifp);
446 	ieee80211_ifdetach(&sc->sc_ic);
447 	if (ifp != NULL)
448 		if_detach(ifp);
449 
450 	for (ac = 0; ac < 4; ac++)
451 		wpi_free_tx_ring(sc, &sc->txq[ac]);
452 	wpi_free_tx_ring(sc, &sc->cmdq);
453 	wpi_free_rx_ring(sc, &sc->rxq);
454 	wpi_free_rpool(sc);
455 	wpi_free_shared(sc);
456 
457 	if (sc->sc_ih != NULL) {
458 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
459 		sc->sc_ih = NULL;
460 	}
461 	if (sc->sc_pihp != NULL) {
462 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
463 		sc->sc_pihp = NULL;
464 	}
465 	if (sc->sc_soft_ih != NULL) {
466 		softint_disestablish(sc->sc_soft_ih);
467 		sc->sc_soft_ih = NULL;
468 	}
469 
470 	mutex_enter(&sc->sc_rsw_mtx);
471 	sc->sc_dying = 1;
472 	cv_signal(&sc->sc_rsw_cv);
473 	while (sc->sc_rsw_lwp != NULL)
474 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
475 	mutex_exit(&sc->sc_rsw_mtx);
476 	sysmon_pswitch_unregister(&sc->sc_rsw);
477 
478 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
479 
480 	if (sc->fw_used) {
481 		sc->fw_used = false;
482 		wpi_release_firmware();
483 	}
484 	cv_destroy(&sc->sc_rsw_cv);
485 	mutex_destroy(&sc->sc_rsw_mtx);
486 	return 0;
487 }
488 
489 static int
490 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
491     bus_size_t size, bus_size_t alignment, int flags)
492 {
493 	int nsegs, error;
494 
495 	dma->tag = tag;
496 	dma->size = size;
497 
498 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
499 	if (error != 0)
500 		goto fail;
501 
502 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
503 	    flags);
504 	if (error != 0)
505 		goto fail;
506 
507 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
508 	if (error != 0)
509 		goto fail;
510 
511 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
512 	if (error != 0)
513 		goto fail;
514 
515 	memset(dma->vaddr, 0, size);
516 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
517 
518 	dma->paddr = dma->map->dm_segs[0].ds_addr;
519 	if (kvap != NULL)
520 		*kvap = dma->vaddr;
521 
522 	return 0;
523 
524 fail:	wpi_dma_contig_free(dma);
525 	return error;
526 }
527 
528 static void
529 wpi_dma_contig_free(struct wpi_dma_info *dma)
530 {
531 	if (dma->map != NULL) {
532 		if (dma->vaddr != NULL) {
533 			bus_dmamap_unload(dma->tag, dma->map);
534 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
535 			bus_dmamem_free(dma->tag, &dma->seg, 1);
536 			dma->vaddr = NULL;
537 		}
538 		bus_dmamap_destroy(dma->tag, dma->map);
539 		dma->map = NULL;
540 	}
541 }
542 
543 /*
544  * Allocate a shared page between host and NIC.
545  */
546 static int
547 wpi_alloc_shared(struct wpi_softc *sc)
548 {
549 	int error;
550 
551 	/* must be aligned on a 4K-page boundary */
552 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
553 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
554 	    BUS_DMA_NOWAIT);
555 	if (error != 0)
556 		aprint_error_dev(sc->sc_dev,
557 		    "could not allocate shared area DMA memory\n");
558 
559 	return error;
560 }
561 
562 static void
563 wpi_free_shared(struct wpi_softc *sc)
564 {
565 	wpi_dma_contig_free(&sc->shared_dma);
566 }
567 
568 /*
569  * Allocate DMA-safe memory for firmware transfer.
570  */
571 static int
572 wpi_alloc_fwmem(struct wpi_softc *sc)
573 {
574 	int error;
575 
576 	/* allocate enough contiguous space to store text and data */
577 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
578 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
579 	    BUS_DMA_NOWAIT);
580 
581 	if (error != 0)
582 		aprint_error_dev(sc->sc_dev,
583 		    "could not allocate firmware transfer area DMA memory\n");
584 	return error;
585 }
586 
587 static void
588 wpi_free_fwmem(struct wpi_softc *sc)
589 {
590 	wpi_dma_contig_free(&sc->fw_dma);
591 }
592 
593 static struct wpi_rbuf *
594 wpi_alloc_rbuf(struct wpi_softc *sc)
595 {
596 	struct wpi_rbuf *rbuf;
597 
598 	mutex_enter(&sc->rxq.freelist_mtx);
599 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
600 	if (rbuf != NULL) {
601 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
602 	}
603 	mutex_exit(&sc->rxq.freelist_mtx);
604 
605 	return rbuf;
606 }
607 
608 /*
609  * This is called automatically by the network stack when the mbuf to which our
610  * Rx buffer is attached is freed.
611  */
612 static void
613 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
614 {
615 	struct wpi_rbuf *rbuf = arg;
616 	struct wpi_softc *sc = rbuf->sc;
617 
618 	/* put the buffer back in the free list */
619 
620 	mutex_enter(&sc->rxq.freelist_mtx);
621 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
622 	mutex_exit(&sc->rxq.freelist_mtx);
623 
624 	if (__predict_true(m != NULL))
625 		pool_cache_put(mb_cache, m);
626 }
627 
628 static int
629 wpi_alloc_rpool(struct wpi_softc *sc)
630 {
631 	struct wpi_rx_ring *ring = &sc->rxq;
632 	int i, error;
633 
634 	/* allocate a big chunk of DMA'able memory.. */
635 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
636 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
637 	if (error != 0) {
638 		aprint_normal_dev(sc->sc_dev,
639 		    "could not allocate Rx buffers DMA memory\n");
640 		return error;
641 	}
642 
643 	/* ..and split it into 3KB chunks */
644 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
645 	SLIST_INIT(&ring->freelist);
646 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
647 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
648 
649 		rbuf->sc = sc;	/* backpointer for callbacks */
650 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
651 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
652 
653 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
654 	}
655 
656 	return 0;
657 }
658 
659 static void
660 wpi_free_rpool(struct wpi_softc *sc)
661 {
662 	mutex_destroy(&sc->rxq.freelist_mtx);
663 	wpi_dma_contig_free(&sc->rxq.buf_dma);
664 }
665 
666 static int
667 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
668 {
669 	bus_size_t size;
670 	int i, error;
671 
672 	ring->cur = 0;
673 
674 	size = WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc);
675 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
676 	    (void **)&ring->desc, size,
677 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
678 	if (error != 0) {
679 		aprint_error_dev(sc->sc_dev,
680 		    "could not allocate rx ring DMA memory\n");
681 		goto fail;
682 	}
683 
684 	/*
685 	 * Setup Rx buffers.
686 	 */
687 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
688 		struct wpi_rx_data *data = &ring->data[i];
689 		struct wpi_rbuf *rbuf;
690 
691 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
692 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
693 		if (error) {
694 			aprint_error_dev(sc->sc_dev,
695 			    "could not allocate rx dma map\n");
696 			goto fail;
697 		}
698 
699 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
700 		if (data->m == NULL) {
701 			aprint_error_dev(sc->sc_dev,
702 			    "could not allocate rx mbuf\n");
703 			error = ENOMEM;
704 			goto fail;
705 		}
706 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
707 			m_freem(data->m);
708 			data->m = NULL;
709 			aprint_error_dev(sc->sc_dev,
710 			    "could not allocate rx cluster\n");
711 			error = ENOMEM;
712 			goto fail;
713 		}
714 		/* attach Rx buffer to mbuf */
715 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
716 		    rbuf);
717 		data->m->m_flags |= M_EXT_RW;
718 
719 		error = bus_dmamap_load(sc->sc_dmat, data->map,
720 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
721 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
722 		if (error) {
723 			aprint_error_dev(sc->sc_dev,
724 			    "could not load mbuf: %d\n", error);
725 			goto fail;
726 		}
727 
728 		ring->desc[i] = htole32(rbuf->paddr);
729 	}
730 
731 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
732 	    BUS_DMASYNC_PREWRITE);
733 
734 	return 0;
735 
736 fail:	wpi_free_rx_ring(sc, ring);
737 	return error;
738 }
739 
740 static void
741 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
742 {
743 	int ntries;
744 
745 	wpi_mem_lock(sc);
746 
747 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
748 	for (ntries = 0; ntries < 100; ntries++) {
749 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
750 			break;
751 		DELAY(10);
752 	}
753 #ifdef WPI_DEBUG
754 	if (ntries == 100 && wpi_debug > 0)
755 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
756 #endif
757 	wpi_mem_unlock(sc);
758 
759 	ring->cur = 0;
760 }
761 
762 static void
763 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
764 {
765 	int i;
766 
767 	wpi_dma_contig_free(&ring->desc_dma);
768 
769 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
770 		if (ring->data[i].m != NULL) {
771 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
772 			m_freem(ring->data[i].m);
773 		}
774 		if (ring->data[i].map != NULL) {
775 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
776 		}
777 	}
778 }
779 
780 static int
781 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
782     int qid)
783 {
784 	int i, error;
785 
786 	ring->qid = qid;
787 	ring->count = count;
788 	ring->queued = 0;
789 	ring->cur = 0;
790 
791 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
792 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
793 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
794 	if (error != 0) {
795 		aprint_error_dev(sc->sc_dev,
796 		    "could not allocate tx ring DMA memory\n");
797 		goto fail;
798 	}
799 
800 	/* update shared page with ring's base address */
801 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
802 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
803 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
804 
805 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
806 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
807 	    BUS_DMA_NOWAIT);
808 	if (error != 0) {
809 		aprint_error_dev(sc->sc_dev,
810 		    "could not allocate tx cmd DMA memory\n");
811 		goto fail;
812 	}
813 
814 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
815 	    M_WAITOK | M_ZERO);
816 
817 	for (i = 0; i < count; i++) {
818 		struct wpi_tx_data *data = &ring->data[i];
819 
820 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
821 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
822 		    &data->map);
823 		if (error != 0) {
824 			aprint_error_dev(sc->sc_dev,
825 			    "could not create tx buf DMA map\n");
826 			goto fail;
827 		}
828 	}
829 
830 	return 0;
831 
832 fail:	wpi_free_tx_ring(sc, ring);
833 	return error;
834 }
835 
836 static void
837 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
838 {
839 	int i, ntries;
840 
841 	wpi_mem_lock(sc);
842 
843 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
844 	for (ntries = 0; ntries < 100; ntries++) {
845 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
846 			break;
847 		DELAY(10);
848 	}
849 #ifdef WPI_DEBUG
850 	if (ntries == 100 && wpi_debug > 0) {
851 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
852 		    ring->qid);
853 	}
854 #endif
855 	wpi_mem_unlock(sc);
856 
857 	for (i = 0; i < ring->count; i++) {
858 		struct wpi_tx_data *data = &ring->data[i];
859 
860 		if (data->m != NULL) {
861 			bus_dmamap_unload(sc->sc_dmat, data->map);
862 			m_freem(data->m);
863 			data->m = NULL;
864 		}
865 	}
866 
867 	ring->queued = 0;
868 	ring->cur = 0;
869 }
870 
871 static void
872 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
873 {
874 	int i;
875 
876 	wpi_dma_contig_free(&ring->desc_dma);
877 	wpi_dma_contig_free(&ring->cmd_dma);
878 
879 	if (ring->data != NULL) {
880 		for (i = 0; i < ring->count; i++) {
881 			struct wpi_tx_data *data = &ring->data[i];
882 
883 			if (data->m != NULL) {
884 				bus_dmamap_unload(sc->sc_dmat, data->map);
885 				m_freem(data->m);
886 			}
887 		}
888 		free(ring->data, M_DEVBUF);
889 	}
890 }
891 
892 /*ARGUSED*/
893 static struct ieee80211_node *
894 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
895 {
896 	struct wpi_node *wn;
897 
898 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
899 
900 	return (struct ieee80211_node *)wn;
901 }
902 
903 static void
904 wpi_newassoc(struct ieee80211_node *ni, int isnew)
905 {
906 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
907 	int i;
908 
909 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
910 
911 	/* set rate to some reasonable initial value */
912 	for (i = ni->ni_rates.rs_nrates - 1;
913 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
914 	     i--);
915 	ni->ni_txrate = i;
916 }
917 
918 static int
919 wpi_media_change(struct ifnet *ifp)
920 {
921 	int error;
922 
923 	error = ieee80211_media_change(ifp);
924 	if (error != ENETRESET)
925 		return error;
926 
927 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
928 		wpi_init(ifp);
929 
930 	return 0;
931 }
932 
933 static int
934 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
935 {
936 	struct ifnet *ifp = ic->ic_ifp;
937 	struct wpi_softc *sc = ifp->if_softc;
938 	struct ieee80211_node *ni;
939 	enum ieee80211_state ostate = ic->ic_state;
940 	int error;
941 
942 	callout_stop(&sc->calib_to);
943 
944 	switch (nstate) {
945 	case IEEE80211_S_SCAN:
946 
947 		if (sc->is_scanning)
948 			break;
949 
950 		sc->is_scanning = true;
951 
952 		if (ostate != IEEE80211_S_SCAN) {
953 			/* make the link LED blink while we're scanning */
954 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
955 		}
956 
957 		if ((error = wpi_scan(sc)) != 0) {
958 			aprint_error_dev(sc->sc_dev,
959 			    "could not initiate scan\n");
960 			return error;
961 		}
962 		break;
963 
964 	case IEEE80211_S_ASSOC:
965 		if (ic->ic_state != IEEE80211_S_RUN)
966 			break;
967 		/* FALLTHROUGH */
968 	case IEEE80211_S_AUTH:
969 		/* reset state to handle reassociations correctly */
970 		sc->config.associd = 0;
971 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
972 
973 		if ((error = wpi_auth(sc)) != 0) {
974 			aprint_error_dev(sc->sc_dev,
975 			    "could not send authentication request\n");
976 			return error;
977 		}
978 		break;
979 
980 	case IEEE80211_S_RUN:
981 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
982 			/* link LED blinks while monitoring */
983 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
984 			break;
985 		}
986 		ni = ic->ic_bss;
987 
988 		if (ic->ic_opmode != IEEE80211_M_STA) {
989 			(void) wpi_auth(sc);    /* XXX */
990 			wpi_setup_beacon(sc, ni);
991 		}
992 
993 		wpi_enable_tsf(sc, ni);
994 
995 		/* update adapter's configuration */
996 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
997 		/* short preamble/slot time are negotiated when associating */
998 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
999 		    WPI_CONFIG_SHSLOT);
1000 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1001 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1002 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1003 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1004 		sc->config.filter |= htole32(WPI_FILTER_BSS);
1005 		if (ic->ic_opmode != IEEE80211_M_STA)
1006 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
1007 
1008 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1009 
1010 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1011 		    sc->config.flags));
1012 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1013 		    sizeof (struct wpi_config), 1);
1014 		if (error != 0) {
1015 			aprint_error_dev(sc->sc_dev,
1016 			    "could not update configuration\n");
1017 			return error;
1018 		}
1019 
1020 		/* configuration has changed, set Tx power accordingly */
1021 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
1022 			aprint_error_dev(sc->sc_dev,
1023 			    "could not set Tx power\n");
1024 			return error;
1025 		}
1026 
1027 		if (ic->ic_opmode == IEEE80211_M_STA) {
1028 			/* fake a join to init the tx rate */
1029 			wpi_newassoc(ni, 1);
1030 		}
1031 
1032 		/* start periodic calibration timer */
1033 		sc->calib_cnt = 0;
1034 		callout_schedule(&sc->calib_to, hz/2);
1035 
1036 		/* link LED always on while associated */
1037 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1038 		break;
1039 
1040 	case IEEE80211_S_INIT:
1041 		sc->is_scanning = false;
1042 		break;
1043 	}
1044 
1045 	return sc->sc_newstate(ic, nstate, arg);
1046 }
1047 
1048 /*
1049  * Grab exclusive access to NIC memory.
1050  */
1051 static void
1052 wpi_mem_lock(struct wpi_softc *sc)
1053 {
1054 	uint32_t tmp;
1055 	int ntries;
1056 
1057 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1058 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1059 
1060 	/* spin until we actually get the lock */
1061 	for (ntries = 0; ntries < 1000; ntries++) {
1062 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1063 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1064 			break;
1065 		DELAY(10);
1066 	}
1067 	if (ntries == 1000)
1068 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1069 }
1070 
1071 /*
1072  * Release lock on NIC memory.
1073  */
1074 static void
1075 wpi_mem_unlock(struct wpi_softc *sc)
1076 {
1077 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1078 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1079 }
1080 
1081 static uint32_t
1082 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1083 {
1084 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1085 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1086 }
1087 
1088 static void
1089 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1090 {
1091 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1092 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1093 }
1094 
1095 static void
1096 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1097     const uint32_t *data, int wlen)
1098 {
1099 	for (; wlen > 0; wlen--, data++, addr += 4)
1100 		wpi_mem_write(sc, addr, *data);
1101 }
1102 
1103 /*
1104  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1105  * instead of using the traditional bit-bang method.
1106  */
1107 static int
1108 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1109 {
1110 	uint8_t *out = data;
1111 	uint32_t val;
1112 	int ntries;
1113 
1114 	wpi_mem_lock(sc);
1115 	for (; len > 0; len -= 2, addr++) {
1116 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1117 
1118 		for (ntries = 0; ntries < 10; ntries++) {
1119 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1120 			    WPI_EEPROM_READY)
1121 				break;
1122 			DELAY(5);
1123 		}
1124 		if (ntries == 10) {
1125 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1126 			return ETIMEDOUT;
1127 		}
1128 		*out++ = val >> 16;
1129 		if (len > 1)
1130 			*out++ = val >> 24;
1131 	}
1132 	wpi_mem_unlock(sc);
1133 
1134 	return 0;
1135 }
1136 
1137 /*
1138  * The firmware boot code is small and is intended to be copied directly into
1139  * the NIC internal memory.
1140  */
1141 int
1142 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1143 {
1144 	int ntries;
1145 
1146 	size /= sizeof (uint32_t);
1147 
1148 	wpi_mem_lock(sc);
1149 
1150 	/* copy microcode image into NIC memory */
1151 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1152 	    (const uint32_t *)ucode, size);
1153 
1154 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1155 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1156 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1157 
1158 	/* run microcode */
1159 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1160 
1161 	/* wait for transfer to complete */
1162 	for (ntries = 0; ntries < 1000; ntries++) {
1163 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1164 			break;
1165 		DELAY(10);
1166 	}
1167 	if (ntries == 1000) {
1168 		wpi_mem_unlock(sc);
1169 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1170 		return ETIMEDOUT;
1171 	}
1172 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1173 
1174 	wpi_mem_unlock(sc);
1175 
1176 	return 0;
1177 }
1178 
1179 static int
1180 wpi_cache_firmware(struct wpi_softc *sc)
1181 {
1182 	const char *const fwname = wpi_firmware_name;
1183 	firmware_handle_t fw;
1184 	int error;
1185 
1186 	/* sc is used here only to report error messages.  */
1187 
1188 	mutex_enter(&wpi_firmware_mutex);
1189 
1190 	if (wpi_firmware_users == SIZE_MAX) {
1191 		mutex_exit(&wpi_firmware_mutex);
1192 		return ENFILE;	/* Too many of something in the system...  */
1193 	}
1194 	if (wpi_firmware_users++) {
1195 		KASSERT(wpi_firmware_image != NULL);
1196 		KASSERT(wpi_firmware_size > 0);
1197 		mutex_exit(&wpi_firmware_mutex);
1198 		return 0;	/* Already good to go.  */
1199 	}
1200 
1201 	KASSERT(wpi_firmware_image == NULL);
1202 	KASSERT(wpi_firmware_size == 0);
1203 
1204 	/* load firmware image from disk */
1205 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1206 		aprint_error_dev(sc->sc_dev,
1207 		    "could not open firmware file %s: %d\n", fwname, error);
1208 		goto fail0;
1209 	}
1210 
1211 	wpi_firmware_size = firmware_get_size(fw);
1212 
1213 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1214 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1215 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1216 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1217 		aprint_error_dev(sc->sc_dev,
1218 		    "firmware file %s too large: %zu bytes\n",
1219 		    fwname, wpi_firmware_size);
1220 		error = EFBIG;
1221 		goto fail1;
1222 	}
1223 
1224 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1225 		aprint_error_dev(sc->sc_dev,
1226 		    "firmware file %s too small: %zu bytes\n",
1227 		    fwname, wpi_firmware_size);
1228 		error = EINVAL;
1229 		goto fail1;
1230 	}
1231 
1232 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1233 	if (wpi_firmware_image == NULL) {
1234 		aprint_error_dev(sc->sc_dev,
1235 		    "not enough memory for firmware file %s\n", fwname);
1236 		error = ENOMEM;
1237 		goto fail1;
1238 	}
1239 
1240 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1241 	if (error != 0) {
1242 		aprint_error_dev(sc->sc_dev,
1243 		    "error reading firmware file %s: %d\n", fwname, error);
1244 		goto fail2;
1245 	}
1246 
1247 	/* Success!  */
1248 	firmware_close(fw);
1249 	mutex_exit(&wpi_firmware_mutex);
1250 	return 0;
1251 
1252 fail2:
1253 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1254 	wpi_firmware_image = NULL;
1255 fail1:
1256 	wpi_firmware_size = 0;
1257 	firmware_close(fw);
1258 fail0:
1259 	KASSERT(wpi_firmware_users == 1);
1260 	wpi_firmware_users = 0;
1261 	KASSERT(wpi_firmware_image == NULL);
1262 	KASSERT(wpi_firmware_size == 0);
1263 
1264 	mutex_exit(&wpi_firmware_mutex);
1265 	return error;
1266 }
1267 
1268 static void
1269 wpi_release_firmware(void)
1270 {
1271 
1272 	mutex_enter(&wpi_firmware_mutex);
1273 
1274 	KASSERT(wpi_firmware_users > 0);
1275 	KASSERT(wpi_firmware_image != NULL);
1276 	KASSERT(wpi_firmware_size != 0);
1277 
1278 	if (--wpi_firmware_users == 0) {
1279 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1280 		wpi_firmware_image = NULL;
1281 		wpi_firmware_size = 0;
1282 	}
1283 
1284 	mutex_exit(&wpi_firmware_mutex);
1285 }
1286 
1287 static int
1288 wpi_load_firmware(struct wpi_softc *sc)
1289 {
1290 	struct wpi_dma_info *dma = &sc->fw_dma;
1291 	struct wpi_firmware_hdr hdr;
1292 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1293 	const uint8_t *boot_text;
1294 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1295 	uint32_t boot_textsz;
1296 	size_t size;
1297 	int error;
1298 
1299 	if (!sc->fw_used) {
1300 		if ((error = wpi_cache_firmware(sc)) != 0)
1301 			return error;
1302 		sc->fw_used = true;
1303 	}
1304 
1305 	KASSERT(sc->fw_used);
1306 	KASSERT(wpi_firmware_image != NULL);
1307 	KASSERT(wpi_firmware_size > sizeof(hdr));
1308 
1309 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1310 
1311 	main_textsz = le32toh(hdr.main_textsz);
1312 	main_datasz = le32toh(hdr.main_datasz);
1313 	init_textsz = le32toh(hdr.init_textsz);
1314 	init_datasz = le32toh(hdr.init_datasz);
1315 	boot_textsz = le32toh(hdr.boot_textsz);
1316 
1317 	/* sanity-check firmware segments sizes */
1318 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1319 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1320 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1321 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1322 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1323 	    (boot_textsz & 3) != 0) {
1324 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1325 		error = EINVAL;
1326 		goto free_firmware;
1327 	}
1328 
1329 	/* check that all firmware segments are present */
1330 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1331 	    main_datasz + init_textsz + init_datasz + boot_textsz;
1332 	if (wpi_firmware_size < size) {
1333 		aprint_error_dev(sc->sc_dev,
1334 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1335 		    wpi_firmware_size, size);
1336 		error = EINVAL;
1337 		goto free_firmware;
1338 	}
1339 
1340 	/* get pointers to firmware segments */
1341 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1342 	main_data = main_text + main_textsz;
1343 	init_text = main_data + main_datasz;
1344 	init_data = init_text + init_textsz;
1345 	boot_text = init_data + init_datasz;
1346 
1347 	/* copy initialization images into pre-allocated DMA-safe memory */
1348 	memcpy(dma->vaddr, init_data, init_datasz);
1349 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1350 	    init_textsz);
1351 
1352 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1353 
1354 	/* tell adapter where to find initialization images */
1355 	wpi_mem_lock(sc);
1356 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1357 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1358 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1359 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1360 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1361 	wpi_mem_unlock(sc);
1362 
1363 	/* load firmware boot code */
1364 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1365 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1366 		return error;
1367 	}
1368 
1369 	/* now press "execute" ;-) */
1370 	WPI_WRITE(sc, WPI_RESET, 0);
1371 
1372 	/* wait at most one second for first alive notification */
1373 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1374 		/* this isn't what was supposed to happen.. */
1375 		aprint_error_dev(sc->sc_dev,
1376 		    "timeout waiting for adapter to initialize\n");
1377 	}
1378 
1379 	/* copy runtime images into pre-allocated DMA-safe memory */
1380 	memcpy(dma->vaddr, main_data, main_datasz);
1381 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1382 	    main_textsz);
1383 
1384 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1385 
1386 	/* tell adapter where to find runtime images */
1387 	wpi_mem_lock(sc);
1388 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1389 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1390 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1391 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1392 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1393 	wpi_mem_unlock(sc);
1394 
1395 	/* wait at most one second for second alive notification */
1396 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1397 		/* this isn't what was supposed to happen.. */
1398 		aprint_error_dev(sc->sc_dev,
1399 		    "timeout waiting for adapter to initialize\n");
1400 	}
1401 
1402 	return error;
1403 
1404 free_firmware:
1405 	sc->fw_used = false;
1406 	wpi_release_firmware();
1407 	return error;
1408 }
1409 
1410 static void
1411 wpi_calib_timeout(void *arg)
1412 {
1413 	struct wpi_softc *sc = arg;
1414 	struct ieee80211com *ic = &sc->sc_ic;
1415 	int temp, s;
1416 
1417 	/* automatic rate control triggered every 500ms */
1418 	if (ic->ic_fixed_rate == -1) {
1419 		s = splnet();
1420 		if (ic->ic_opmode == IEEE80211_M_STA)
1421 			wpi_iter_func(sc, ic->ic_bss);
1422 		else
1423 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1424 		splx(s);
1425 	}
1426 
1427 	/* update sensor data */
1428 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1429 
1430 	/* automatic power calibration every 60s */
1431 	if (++sc->calib_cnt >= 120) {
1432 		wpi_power_calibration(sc, temp);
1433 		sc->calib_cnt = 0;
1434 	}
1435 
1436 	callout_schedule(&sc->calib_to, hz/2);
1437 }
1438 
1439 static void
1440 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1441 {
1442 	struct wpi_softc *sc = arg;
1443 	struct wpi_node *wn = (struct wpi_node *)ni;
1444 
1445 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1446 }
1447 
1448 /*
1449  * This function is called periodically (every 60 seconds) to adjust output
1450  * power to temperature changes.
1451  */
1452 void
1453 wpi_power_calibration(struct wpi_softc *sc, int temp)
1454 {
1455 	/* sanity-check read value */
1456 	if (temp < -260 || temp > 25) {
1457 		/* this can't be correct, ignore */
1458 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1459 		return;
1460 	}
1461 
1462 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1463 
1464 	/* adjust Tx power if need be */
1465 	if (abs(temp - sc->temp) <= 6)
1466 		return;
1467 
1468 	sc->temp = temp;
1469 
1470 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1471 		/* just warn, too bad for the automatic calibration... */
1472 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1473 	}
1474 }
1475 
1476 static void
1477 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1478     struct wpi_rx_data *data)
1479 {
1480 	struct ieee80211com *ic = &sc->sc_ic;
1481 	struct ifnet *ifp = ic->ic_ifp;
1482 	struct wpi_rx_ring *ring = &sc->rxq;
1483 	struct wpi_rx_stat *stat;
1484 	struct wpi_rx_head *head;
1485 	struct wpi_rx_tail *tail;
1486 	struct wpi_rbuf *rbuf;
1487 	struct ieee80211_frame *wh;
1488 	struct ieee80211_node *ni;
1489 	struct mbuf *m, *mnew;
1490 	int data_off, error, s;
1491 
1492 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1493 	    BUS_DMASYNC_POSTREAD);
1494 	stat = (struct wpi_rx_stat *)(desc + 1);
1495 
1496 	if (stat->len > WPI_STAT_MAXLEN) {
1497 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1498 		if_statinc(ifp, if_ierrors);
1499 		return;
1500 	}
1501 
1502 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1503 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1504 
1505 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1506 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1507 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1508 	    le64toh(tail->tstamp)));
1509 
1510 	/*
1511 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1512 	 * to radiotap in monitor mode).
1513 	 */
1514 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1515 		DPRINTF(("rx tail flags error %x\n",
1516 		    le32toh(tail->flags)));
1517 		if_statinc(ifp, if_ierrors);
1518 		return;
1519 	}
1520 
1521 	/* Compute where are the useful datas */
1522 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1523 
1524 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1525 	if (mnew == NULL) {
1526 		if_statinc(ifp, if_ierrors);
1527 		return;
1528 	}
1529 
1530 	rbuf = wpi_alloc_rbuf(sc);
1531 	if (rbuf == NULL) {
1532 		m_freem(mnew);
1533 		if_statinc(ifp, if_ierrors);
1534 		return;
1535 	}
1536 
1537 	/* attach Rx buffer to mbuf */
1538 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1539 		rbuf);
1540 	mnew->m_flags |= M_EXT_RW;
1541 
1542 	bus_dmamap_unload(sc->sc_dmat, data->map);
1543 
1544 	error = bus_dmamap_load(sc->sc_dmat, data->map,
1545 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1546 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
1547 	if (error) {
1548 		device_printf(sc->sc_dev,
1549 		    "couldn't load rx mbuf: %d\n", error);
1550 		m_freem(mnew);
1551 		if_statinc(ifp, if_ierrors);
1552 
1553 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1554 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1555 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1556 		if (error)
1557 			panic("%s: bus_dmamap_load failed: %d\n",
1558 			    device_xname(sc->sc_dev), error);
1559 		return;
1560 	}
1561 
1562 	/* new mbuf loaded successfully */
1563 	m = data->m;
1564 	data->m = mnew;
1565 
1566 	/* update Rx descriptor */
1567 	ring->desc[ring->cur] = htole32(rbuf->paddr);
1568 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1569 	    ring->desc_dma.size,
1570 	    BUS_DMASYNC_PREWRITE);
1571 
1572 	m->m_data = (char*)m->m_data + data_off;
1573 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1574 
1575 	/* finalize mbuf */
1576 	m_set_rcvif(m, ifp);
1577 
1578 	s = splnet();
1579 
1580 	if (sc->sc_drvbpf != NULL) {
1581 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1582 
1583 		tap->wr_flags = 0;
1584 		tap->wr_chan_freq =
1585 		    htole16(ic->ic_channels[head->chan].ic_freq);
1586 		tap->wr_chan_flags =
1587 		    htole16(ic->ic_channels[head->chan].ic_flags);
1588 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1589 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1590 		tap->wr_tsft = tail->tstamp;
1591 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1592 		switch (head->rate) {
1593 		/* CCK rates */
1594 		case  10: tap->wr_rate =   2; break;
1595 		case  20: tap->wr_rate =   4; break;
1596 		case  55: tap->wr_rate =  11; break;
1597 		case 110: tap->wr_rate =  22; break;
1598 		/* OFDM rates */
1599 		case 0xd: tap->wr_rate =  12; break;
1600 		case 0xf: tap->wr_rate =  18; break;
1601 		case 0x5: tap->wr_rate =  24; break;
1602 		case 0x7: tap->wr_rate =  36; break;
1603 		case 0x9: tap->wr_rate =  48; break;
1604 		case 0xb: tap->wr_rate =  72; break;
1605 		case 0x1: tap->wr_rate =  96; break;
1606 		case 0x3: tap->wr_rate = 108; break;
1607 		/* unknown rate: should not happen */
1608 		default:  tap->wr_rate =   0;
1609 		}
1610 		if (le16toh(head->flags) & 0x4)
1611 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1612 
1613 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1614 	}
1615 
1616 	/* grab a reference to the source node */
1617 	wh = mtod(m, struct ieee80211_frame *);
1618 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1619 
1620 	/* send the frame to the 802.11 layer */
1621 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1622 
1623 	/* release node reference */
1624 	ieee80211_free_node(ni);
1625 
1626 	splx(s);
1627 }
1628 
1629 static void
1630 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1631 {
1632 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1633 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1634 	struct wpi_tx_data *data = &ring->data[desc->idx];
1635 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1636 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1637 	int s;
1638 
1639 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1640 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1641 	    stat->nkill, stat->rate, le32toh(stat->duration),
1642 	    le32toh(stat->status)));
1643 
1644 	s = splnet();
1645 
1646 	/*
1647 	 * Update rate control statistics for the node.
1648 	 * XXX we should not count mgmt frames since they're always sent at
1649 	 * the lowest available bit-rate.
1650 	 */
1651 	wn->amn.amn_txcnt++;
1652 	if (stat->ntries > 0) {
1653 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1654 		wn->amn.amn_retrycnt++;
1655 	}
1656 
1657 	if ((le32toh(stat->status) & 0xff) != 1)
1658 		if_statinc(ifp, if_oerrors);
1659 	else
1660 		if_statinc(ifp, if_opackets);
1661 
1662 	bus_dmamap_unload(sc->sc_dmat, data->map);
1663 	m_freem(data->m);
1664 	data->m = NULL;
1665 	ieee80211_free_node(data->ni);
1666 	data->ni = NULL;
1667 
1668 	ring->queued--;
1669 
1670 	sc->sc_tx_timer = 0;
1671 	ifp->if_flags &= ~IFF_OACTIVE;
1672 	wpi_start(ifp); /* in softint */
1673 
1674 	splx(s);
1675 }
1676 
1677 static void
1678 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1679 {
1680 	struct wpi_tx_ring *ring = &sc->cmdq;
1681 	struct wpi_tx_data *data;
1682 
1683 	if ((desc->qid & 7) != 4)
1684 		return;	/* not a command ack */
1685 
1686 	data = &ring->data[desc->idx];
1687 
1688 	/* if the command was mapped in a mbuf, free it */
1689 	if (data->m != NULL) {
1690 		bus_dmamap_unload(sc->sc_dmat, data->map);
1691 		m_freem(data->m);
1692 		data->m = NULL;
1693 	}
1694 
1695 	wakeup(&ring->cmd[desc->idx]);
1696 }
1697 
1698 static void
1699 wpi_notif_intr(struct wpi_softc *sc)
1700 {
1701 	struct ieee80211com *ic = &sc->sc_ic;
1702 	struct ifnet *ifp =  ic->ic_ifp;
1703 	uint32_t hw;
1704 	int s;
1705 
1706 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1707 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1708 
1709 	hw = le32toh(sc->shared->next);
1710 	while (sc->rxq.cur != hw) {
1711 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1712 		struct wpi_rx_desc *desc;
1713 
1714 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1715 		    BUS_DMASYNC_POSTREAD);
1716 		desc = mtod(data->m, struct wpi_rx_desc *);
1717 
1718 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1719 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
1720 		    desc->type, le32toh(desc->len)));
1721 
1722 		if (!(desc->qid & 0x80))	/* reply to a command */
1723 			wpi_cmd_intr(sc, desc);
1724 
1725 		switch (desc->type) {
1726 		case WPI_RX_DONE:
1727 			/* a 802.11 frame was received */
1728 			wpi_rx_intr(sc, desc, data);
1729 			break;
1730 
1731 		case WPI_TX_DONE:
1732 			/* a 802.11 frame has been transmitted */
1733 			wpi_tx_intr(sc, desc);
1734 			break;
1735 
1736 		case WPI_UC_READY:
1737 		{
1738 			struct wpi_ucode_info *uc =
1739 			    (struct wpi_ucode_info *)(desc + 1);
1740 
1741 			/* the microcontroller is ready */
1742 			DPRINTF(("microcode alive notification version %x "
1743 			    "alive %x\n", le32toh(uc->version),
1744 			    le32toh(uc->valid)));
1745 
1746 			if (le32toh(uc->valid) != 1) {
1747 				aprint_error_dev(sc->sc_dev,
1748 				    "microcontroller initialization failed\n");
1749 			}
1750 			break;
1751 		}
1752 		case WPI_STATE_CHANGED:
1753 		{
1754 			uint32_t *status = (uint32_t *)(desc + 1);
1755 
1756 			/* enabled/disabled notification */
1757 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1758 
1759 			if (le32toh(*status) & 1) {
1760 				s = splnet();
1761 				/* the radio button has to be pushed */
1762 				/* wake up thread to signal powerd */
1763 				cv_signal(&sc->sc_rsw_cv);
1764 				aprint_error_dev(sc->sc_dev,
1765 				    "Radio transmitter is off\n");
1766 				/* turn the interface down */
1767 				ifp->if_flags &= ~IFF_UP;
1768 				wpi_stop_intr(ifp, 1);
1769 				splx(s);
1770 				return;	/* no further processing */
1771 			}
1772 			break;
1773 		}
1774 		case WPI_START_SCAN:
1775 		{
1776 #if 0
1777 			struct wpi_start_scan *scan =
1778 			    (struct wpi_start_scan *)(desc + 1);
1779 
1780 			DPRINTFN(2, ("scanning channel %d status %x\n",
1781 			    scan->chan, le32toh(scan->status)));
1782 
1783 			/* fix current channel */
1784 			ic->ic_curchan = &ic->ic_channels[scan->chan];
1785 #endif
1786 			break;
1787 		}
1788 		case WPI_STOP_SCAN:
1789 		{
1790 #ifdef WPI_DEBUG
1791 			struct wpi_stop_scan *scan =
1792 			    (struct wpi_stop_scan *)(desc + 1);
1793 #endif
1794 
1795 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1796 			    scan->nchan, scan->status, scan->chan));
1797 
1798 			s = splnet();
1799 			sc->is_scanning = false;
1800 			if (ic->ic_state == IEEE80211_S_SCAN)
1801 				ieee80211_next_scan(ic);
1802 			splx(s);
1803 			break;
1804 		}
1805 		}
1806 
1807 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1808 	}
1809 
1810 	/* tell the firmware what we have processed */
1811 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1812 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1813 }
1814 
1815 static int
1816 wpi_intr(void *arg)
1817 {
1818 	struct wpi_softc *sc = arg;
1819 	uint32_t r;
1820 
1821 	r = WPI_READ(sc, WPI_INTR);
1822 	if (r == 0 || r == 0xffffffff)
1823 		return 0;	/* not for us */
1824 
1825 	DPRINTFN(6, ("interrupt reg %x\n", r));
1826 
1827 	/* disable interrupts */
1828 	WPI_WRITE(sc, WPI_MASK, 0);
1829 
1830 	softint_schedule(sc->sc_soft_ih);
1831 	return 1;
1832 }
1833 
1834 static void
1835 wpi_softintr(void *arg)
1836 {
1837 	struct wpi_softc *sc = arg;
1838 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1839 	uint32_t r;
1840 
1841 	r = WPI_READ(sc, WPI_INTR);
1842 	if (r == 0 || r == 0xffffffff)
1843 		goto out;
1844 
1845 	/* ack interrupts */
1846 	WPI_WRITE(sc, WPI_INTR, r);
1847 
1848 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1849 		/* SYSTEM FAILURE, SYSTEM FAILURE */
1850 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1851 		ifp->if_flags &= ~IFF_UP;
1852 		wpi_stop_intr(ifp, 1);
1853 		return;
1854 	}
1855 
1856 	if (r & WPI_RX_INTR)
1857 		wpi_notif_intr(sc);
1858 
1859 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1860 		wakeup(sc);
1861 
1862  out:
1863 	/* re-enable interrupts */
1864 	if (ifp->if_flags & IFF_UP)
1865 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1866 }
1867 
1868 static uint8_t
1869 wpi_plcp_signal(int rate)
1870 {
1871 	switch (rate) {
1872 	/* CCK rates (returned values are device-dependent) */
1873 	case 2:		return 10;
1874 	case 4:		return 20;
1875 	case 11:	return 55;
1876 	case 22:	return 110;
1877 
1878 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1879 	/* R1-R4, (u)ral is R4-R1 */
1880 	case 12:	return 0xd;
1881 	case 18:	return 0xf;
1882 	case 24:	return 0x5;
1883 	case 36:	return 0x7;
1884 	case 48:	return 0x9;
1885 	case 72:	return 0xb;
1886 	case 96:	return 0x1;
1887 	case 108:	return 0x3;
1888 
1889 	/* unsupported rates (should not get there) */
1890 	default:	return 0;
1891 	}
1892 }
1893 
1894 /* quickly determine if a given rate is CCK or OFDM */
1895 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1896 
1897 static int
1898 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1899     int ac)
1900 {
1901 	struct ieee80211com *ic = &sc->sc_ic;
1902 	struct wpi_tx_ring *ring = &sc->txq[ac];
1903 	struct wpi_tx_desc *desc;
1904 	struct wpi_tx_data *data;
1905 	struct wpi_tx_cmd *cmd;
1906 	struct wpi_cmd_data *tx;
1907 	struct ieee80211_frame *wh;
1908 	struct ieee80211_key *k;
1909 	const struct chanAccParams *cap;
1910 	struct mbuf *mnew;
1911 	int i, rate, error, hdrlen, noack = 0;
1912 
1913 	desc = &ring->desc[ring->cur];
1914 	data = &ring->data[ring->cur];
1915 
1916 	wh = mtod(m0, struct ieee80211_frame *);
1917 
1918 	if (ieee80211_has_qos(wh)) {
1919 		cap = &ic->ic_wme.wme_chanParams;
1920 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1921 	}
1922 
1923 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1924 		k = ieee80211_crypto_encap(ic, ni, m0);
1925 		if (k == NULL) {
1926 			m_freem(m0);
1927 			return ENOBUFS;
1928 		}
1929 
1930 		/* packet header may have moved, reset our local pointer */
1931 		wh = mtod(m0, struct ieee80211_frame *);
1932 	}
1933 
1934 	hdrlen = ieee80211_anyhdrsize(wh);
1935 
1936 	/* pickup a rate */
1937 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1938 	    IEEE80211_FC0_TYPE_MGT) {
1939 		/* mgmt frames are sent at the lowest available bit-rate */
1940 		rate = ni->ni_rates.rs_rates[0];
1941 	} else {
1942 		if (ic->ic_fixed_rate != -1) {
1943 			rate = ic->ic_sup_rates[ic->ic_curmode].
1944 			    rs_rates[ic->ic_fixed_rate];
1945 		} else
1946 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1947 	}
1948 	rate &= IEEE80211_RATE_VAL;
1949 
1950 	if (sc->sc_drvbpf != NULL) {
1951 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1952 
1953 		tap->wt_flags = 0;
1954 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1955 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1956 		tap->wt_rate = rate;
1957 		tap->wt_hwqueue = ac;
1958 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1959 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1960 
1961 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1962 	}
1963 
1964 	cmd = &ring->cmd[ring->cur];
1965 	cmd->code = WPI_CMD_TX_DATA;
1966 	cmd->flags = 0;
1967 	cmd->qid = ring->qid;
1968 	cmd->idx = ring->cur;
1969 
1970 	tx = (struct wpi_cmd_data *)cmd->data;
1971 	/* no need to zero tx, all fields are reinitialized here */
1972 	tx->flags = 0;
1973 
1974 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1975 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1976 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1977 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1978 
1979 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1980 
1981 	/* retrieve destination node's id */
1982 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1983 		WPI_ID_BSS;
1984 
1985 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1986 	    IEEE80211_FC0_TYPE_MGT) {
1987 		/* tell h/w to set timestamp in probe responses */
1988 		if ((wh->i_fc[0] &
1989 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1990 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1991 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1992 
1993 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1994 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1995 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1996 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1997 			tx->timeout = htole16(3);
1998 		else
1999 			tx->timeout = htole16(2);
2000 	} else
2001 		tx->timeout = htole16(0);
2002 
2003 	tx->rate = wpi_plcp_signal(rate);
2004 
2005 	/* be very persistant at sending frames out */
2006 	tx->rts_ntries = 7;
2007 	tx->data_ntries = 15;
2008 
2009 	tx->ofdm_mask = 0xff;
2010 	tx->cck_mask = 0x0f;
2011 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2012 
2013 	tx->len = htole16(m0->m_pkthdr.len);
2014 
2015 	/* save and trim IEEE802.11 header */
2016 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2017 	m_adj(m0, hdrlen);
2018 
2019 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2020 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2021 	if (error != 0 && error != EFBIG) {
2022 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2023 		    error);
2024 		m_freem(m0);
2025 		return error;
2026 	}
2027 	if (error != 0) {
2028 		/* too many fragments, linearize */
2029 
2030 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2031 		if (mnew == NULL) {
2032 			m_freem(m0);
2033 			return ENOMEM;
2034 		}
2035 		m_copy_pkthdr(mnew, m0);
2036 		if (m0->m_pkthdr.len > MHLEN) {
2037 			MCLGET(mnew, M_DONTWAIT);
2038 			if (!(mnew->m_flags & M_EXT)) {
2039 				m_freem(m0);
2040 				m_freem(mnew);
2041 				return ENOMEM;
2042 			}
2043 		}
2044 
2045 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2046 		m_freem(m0);
2047 		mnew->m_len = mnew->m_pkthdr.len;
2048 		m0 = mnew;
2049 
2050 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2051 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2052 		if (error != 0) {
2053 			aprint_error_dev(sc->sc_dev,
2054 			    "could not map mbuf (error %d)\n", error);
2055 			m_freem(m0);
2056 			return error;
2057 		}
2058 	}
2059 
2060 	data->m = m0;
2061 	data->ni = ni;
2062 
2063 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2064 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2065 
2066 	/* first scatter/gather segment is used by the tx data command */
2067 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2068 	    (1 + data->map->dm_nsegs) << 24);
2069 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2070 	    ring->cur * sizeof (struct wpi_tx_cmd));
2071 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
2072 	    ((hdrlen + 3) & ~3));
2073 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2074 		desc->segs[i].addr =
2075 		    htole32(data->map->dm_segs[i - 1].ds_addr);
2076 		desc->segs[i].len  =
2077 		    htole32(data->map->dm_segs[i - 1].ds_len);
2078 	}
2079 
2080 	ring->queued++;
2081 
2082 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2083 	    data->map->dm_mapsize,
2084 	    BUS_DMASYNC_PREWRITE);
2085 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2086 	    ring->cmd_dma.size,
2087 	    BUS_DMASYNC_PREWRITE);
2088 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2089 	    ring->desc_dma.size,
2090 	    BUS_DMASYNC_PREWRITE);
2091 
2092 	/* kick ring */
2093 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2094 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2095 
2096 	return 0;
2097 }
2098 
2099 static void
2100 wpi_start(struct ifnet *ifp)
2101 {
2102 	struct wpi_softc *sc = ifp->if_softc;
2103 	struct ieee80211com *ic = &sc->sc_ic;
2104 	struct ieee80211_node *ni;
2105 	struct ether_header *eh;
2106 	struct mbuf *m0;
2107 	int ac;
2108 
2109 	/*
2110 	 * net80211 may still try to send management frames even if the
2111 	 * IFF_RUNNING flag is not set...
2112 	 */
2113 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2114 		return;
2115 
2116 	for (;;) {
2117 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2118 		if (m0 != NULL) {
2119 
2120 			ni = M_GETCTX(m0, struct ieee80211_node *);
2121 			M_CLEARCTX(m0);
2122 
2123 			/* management frames go into ring 0 */
2124 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2125 				if_statinc(ifp, if_oerrors);
2126 				continue;
2127 			}
2128 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2129 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2130 				if_statinc(ifp, if_oerrors);
2131 				break;
2132 			}
2133 		} else {
2134 			if (ic->ic_state != IEEE80211_S_RUN)
2135 				break;
2136 			IFQ_POLL(&ifp->if_snd, m0);
2137 			if (m0 == NULL)
2138 				break;
2139 
2140 			if (m0->m_len < sizeof (*eh) &&
2141 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2142 				if_statinc(ifp, if_oerrors);
2143 				continue;
2144 			}
2145 			eh = mtod(m0, struct ether_header *);
2146 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2147 			if (ni == NULL) {
2148 				m_freem(m0);
2149 				if_statinc(ifp, if_oerrors);
2150 				continue;
2151 			}
2152 
2153 			/* classify mbuf so we can find which tx ring to use */
2154 			if (ieee80211_classify(ic, m0, ni) != 0) {
2155 				m_freem(m0);
2156 				ieee80211_free_node(ni);
2157 				if_statinc(ifp, if_oerrors);
2158 				continue;
2159 			}
2160 
2161 			/* no QoS encapsulation for EAPOL frames */
2162 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2163 			    M_WME_GETAC(m0) : WME_AC_BE;
2164 
2165 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2166 				/* there is no place left in this ring */
2167 				ifp->if_flags |= IFF_OACTIVE;
2168 				break;
2169 			}
2170 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2171 			bpf_mtap(ifp, m0, BPF_D_OUT);
2172 			m0 = ieee80211_encap(ic, m0, ni);
2173 			if (m0 == NULL) {
2174 				ieee80211_free_node(ni);
2175 				if_statinc(ifp, if_oerrors);
2176 				continue;
2177 			}
2178 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2179 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2180 				ieee80211_free_node(ni);
2181 				if_statinc(ifp, if_oerrors);
2182 				break;
2183 			}
2184 		}
2185 
2186 		sc->sc_tx_timer = 5;
2187 		ifp->if_timer = 1;
2188 	}
2189 }
2190 
2191 static void
2192 wpi_watchdog(struct ifnet *ifp)
2193 {
2194 	struct wpi_softc *sc = ifp->if_softc;
2195 
2196 	ifp->if_timer = 0;
2197 
2198 	if (sc->sc_tx_timer > 0) {
2199 		if (--sc->sc_tx_timer == 0) {
2200 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2201 			ifp->if_flags &= ~IFF_UP;
2202 			wpi_stop_intr(ifp, 1);
2203 			if_statinc(ifp, if_oerrors);
2204 			return;
2205 		}
2206 		ifp->if_timer = 1;
2207 	}
2208 
2209 	ieee80211_watchdog(&sc->sc_ic);
2210 }
2211 
2212 static int
2213 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2214 {
2215 #define IS_RUNNING(ifp) \
2216 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2217 
2218 	struct wpi_softc *sc = ifp->if_softc;
2219 	struct ieee80211com *ic = &sc->sc_ic;
2220 	int s, error = 0;
2221 
2222 	s = splnet();
2223 
2224 	switch (cmd) {
2225 	case SIOCSIFFLAGS:
2226 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2227 			break;
2228 		if (ifp->if_flags & IFF_UP) {
2229 			if (!(ifp->if_flags & IFF_RUNNING))
2230 				wpi_init(ifp);
2231 		} else {
2232 			if (ifp->if_flags & IFF_RUNNING)
2233 				wpi_stop(ifp, 1);
2234 		}
2235 		break;
2236 
2237 	case SIOCADDMULTI:
2238 	case SIOCDELMULTI:
2239 		/* XXX no h/w multicast filter? --dyoung */
2240 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2241 			/* setup multicast filter, etc */
2242 			error = 0;
2243 		}
2244 		break;
2245 
2246 	default:
2247 		error = ieee80211_ioctl(ic, cmd, data);
2248 	}
2249 
2250 	if (error == ENETRESET) {
2251 		if (IS_RUNNING(ifp) &&
2252 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2253 			wpi_init(ifp);
2254 		error = 0;
2255 	}
2256 
2257 	splx(s);
2258 	return error;
2259 
2260 #undef IS_RUNNING
2261 }
2262 
2263 /*
2264  * Extract various information from EEPROM.
2265  */
2266 static void
2267 wpi_read_eeprom(struct wpi_softc *sc)
2268 {
2269 	struct ieee80211com *ic = &sc->sc_ic;
2270 	char domain[4];
2271 	int i;
2272 
2273 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2274 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2275 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2276 
2277 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2278 	    sc->type));
2279 
2280 	/* read and print regulatory domain */
2281 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2282 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2283 
2284 	/* read and print MAC address */
2285 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2286 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2287 
2288 	/* read the list of authorized channels */
2289 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2290 		wpi_read_eeprom_channels(sc, i);
2291 
2292 	/* read the list of power groups */
2293 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2294 		wpi_read_eeprom_group(sc, i);
2295 }
2296 
2297 static void
2298 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2299 {
2300 	struct ieee80211com *ic = &sc->sc_ic;
2301 	const struct wpi_chan_band *band = &wpi_bands[n];
2302 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2303 	int chan, i;
2304 
2305 	wpi_read_prom_data(sc, band->addr, channels,
2306 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2307 
2308 	for (i = 0; i < band->nchan; i++) {
2309 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2310 			continue;
2311 
2312 		chan = band->chan[i];
2313 
2314 		if (n == 0) {	/* 2GHz band */
2315 			ic->ic_channels[chan].ic_freq =
2316 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2317 			ic->ic_channels[chan].ic_flags =
2318 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2319 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2320 
2321 		} else {	/* 5GHz band */
2322 			/*
2323 			 * Some 3945ABG adapters support channels 7, 8, 11
2324 			 * and 12 in the 2GHz *and* 5GHz bands.
2325 			 * Because of limitations in our net80211(9) stack,
2326 			 * we can't support these channels in 5GHz band.
2327 			 */
2328 			if (chan <= 14)
2329 				continue;
2330 
2331 			ic->ic_channels[chan].ic_freq =
2332 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2333 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2334 		}
2335 
2336 		/* is active scan allowed on this channel? */
2337 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2338 			ic->ic_channels[chan].ic_flags |=
2339 			    IEEE80211_CHAN_PASSIVE;
2340 		}
2341 
2342 		/* save maximum allowed power for this channel */
2343 		sc->maxpwr[chan] = channels[i].maxpwr;
2344 
2345 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2346 		    chan, channels[i].flags, sc->maxpwr[chan]));
2347 	}
2348 }
2349 
2350 static void
2351 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2352 {
2353 	struct wpi_power_group *group = &sc->groups[n];
2354 	struct wpi_eeprom_group rgroup;
2355 	int i;
2356 
2357 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2358 	    sizeof rgroup);
2359 
2360 	/* save power group information */
2361 	group->chan   = rgroup.chan;
2362 	group->maxpwr = rgroup.maxpwr;
2363 	/* temperature at which the samples were taken */
2364 	group->temp   = (int16_t)le16toh(rgroup.temp);
2365 
2366 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2367 	    group->chan, group->maxpwr, group->temp));
2368 
2369 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2370 		group->samples[i].index = rgroup.samples[i].index;
2371 		group->samples[i].power = rgroup.samples[i].power;
2372 
2373 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2374 		    group->samples[i].index, group->samples[i].power));
2375 	}
2376 }
2377 
2378 /*
2379  * Send a command to the firmware.
2380  */
2381 static int
2382 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2383 {
2384 	struct wpi_tx_ring *ring = &sc->cmdq;
2385 	struct wpi_tx_desc *desc;
2386 	struct wpi_tx_cmd *cmd;
2387 	struct wpi_dma_info *dma;
2388 
2389 	KASSERT(size <= sizeof cmd->data);
2390 
2391 	desc = &ring->desc[ring->cur];
2392 	cmd = &ring->cmd[ring->cur];
2393 
2394 	cmd->code = code;
2395 	cmd->flags = 0;
2396 	cmd->qid = ring->qid;
2397 	cmd->idx = ring->cur;
2398 	memcpy(cmd->data, buf, size);
2399 
2400 	dma = &ring->cmd_dma;
2401 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2402 
2403 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2404 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2405 	    ring->cur * sizeof (struct wpi_tx_cmd));
2406 	desc->segs[0].len  = htole32(4 + size);
2407 
2408 	dma = &ring->desc_dma;
2409 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2410 
2411 	/* kick cmd ring */
2412 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2413 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2414 
2415 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2416 }
2417 
2418 static int
2419 wpi_wme_update(struct ieee80211com *ic)
2420 {
2421 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2422 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2423 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2424 	const struct wmeParams *wmep;
2425 	struct wpi_wme_setup wme;
2426 	int ac;
2427 
2428 	/* don't override default WME values if WME is not actually enabled */
2429 	if (!(ic->ic_flags & IEEE80211_F_WME))
2430 		return 0;
2431 
2432 	wme.flags = 0;
2433 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2434 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2435 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2436 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2437 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2438 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2439 
2440 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2441 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2442 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2443 	}
2444 
2445 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2446 #undef WPI_USEC
2447 #undef WPI_EXP2
2448 }
2449 
2450 /*
2451  * Configure h/w multi-rate retries.
2452  */
2453 static int
2454 wpi_mrr_setup(struct wpi_softc *sc)
2455 {
2456 	struct ieee80211com *ic = &sc->sc_ic;
2457 	struct wpi_mrr_setup mrr;
2458 	int i, error;
2459 
2460 	/* CCK rates (not used with 802.11a) */
2461 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2462 		mrr.rates[i].flags = 0;
2463 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2464 		/* fallback to the immediate lower CCK rate (if any) */
2465 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2466 		/* try one time at this rate before falling back to "next" */
2467 		mrr.rates[i].ntries = 1;
2468 	}
2469 
2470 	/* OFDM rates (not used with 802.11b) */
2471 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2472 		mrr.rates[i].flags = 0;
2473 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2474 		/* fallback to the immediate lower rate (if any) */
2475 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2476 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2477 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2478 			WPI_OFDM6 : WPI_CCK2) :
2479 		    i - 1;
2480 		/* try one time at this rate before falling back to "next" */
2481 		mrr.rates[i].ntries = 1;
2482 	}
2483 
2484 	/* setup MRR for control frames */
2485 	mrr.which = htole32(WPI_MRR_CTL);
2486 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2487 	if (error != 0) {
2488 		aprint_error_dev(sc->sc_dev,
2489 		    "could not setup MRR for control frames\n");
2490 		return error;
2491 	}
2492 
2493 	/* setup MRR for data frames */
2494 	mrr.which = htole32(WPI_MRR_DATA);
2495 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2496 	if (error != 0) {
2497 		aprint_error_dev(sc->sc_dev,
2498 		    "could not setup MRR for data frames\n");
2499 		return error;
2500 	}
2501 
2502 	return 0;
2503 }
2504 
2505 static void
2506 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2507 {
2508 	struct wpi_cmd_led led;
2509 
2510 	led.which = which;
2511 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2512 	led.off = off;
2513 	led.on = on;
2514 
2515 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2516 }
2517 
2518 static void
2519 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2520 {
2521 	struct wpi_cmd_tsf tsf;
2522 	uint64_t val, mod;
2523 
2524 	memset(&tsf, 0, sizeof tsf);
2525 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2526 	tsf.bintval = htole16(ni->ni_intval);
2527 	tsf.lintval = htole16(10);
2528 
2529 	/* compute remaining time until next beacon */
2530 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2531 	mod = le64toh(tsf.tstamp) % val;
2532 	tsf.binitval = htole32((uint32_t)(val - mod));
2533 
2534 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2535 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2536 
2537 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2538 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2539 }
2540 
2541 /*
2542  * Update Tx power to match what is defined for channel `c'.
2543  */
2544 static int
2545 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2546 {
2547 	struct ieee80211com *ic = &sc->sc_ic;
2548 	struct wpi_power_group *group;
2549 	struct wpi_cmd_txpower txpower;
2550 	u_int chan;
2551 	int i;
2552 
2553 	/* get channel number */
2554 	chan = ieee80211_chan2ieee(ic, c);
2555 
2556 	/* find the power group to which this channel belongs */
2557 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2558 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2559 			if (chan <= group->chan)
2560 				break;
2561 	} else
2562 		group = &sc->groups[0];
2563 
2564 	memset(&txpower, 0, sizeof txpower);
2565 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2566 	txpower.chan = htole16(chan);
2567 
2568 	/* set Tx power for all OFDM and CCK rates */
2569 	for (i = 0; i <= 11 ; i++) {
2570 		/* retrieve Tx power for this channel/rate combination */
2571 		int idx = wpi_get_power_index(sc, group, c,
2572 		    wpi_ridx_to_rate[i]);
2573 
2574 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2575 
2576 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2577 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2578 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2579 		} else {
2580 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2581 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2582 		}
2583 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2584 		    wpi_ridx_to_rate[i], idx));
2585 	}
2586 
2587 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2588 }
2589 
2590 /*
2591  * Determine Tx power index for a given channel/rate combination.
2592  * This takes into account the regulatory information from EEPROM and the
2593  * current temperature.
2594  */
2595 static int
2596 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2597     struct ieee80211_channel *c, int rate)
2598 {
2599 /* fixed-point arithmetic division using a n-bit fractional part */
2600 #define fdivround(a, b, n)	\
2601 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2602 
2603 /* linear interpolation */
2604 #define interpolate(x, x1, y1, x2, y2, n)	\
2605 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2606 
2607 	struct ieee80211com *ic = &sc->sc_ic;
2608 	struct wpi_power_sample *sample;
2609 	int pwr, idx;
2610 	u_int chan;
2611 
2612 	/* get channel number */
2613 	chan = ieee80211_chan2ieee(ic, c);
2614 
2615 	/* default power is group's maximum power - 3dB */
2616 	pwr = group->maxpwr / 2;
2617 
2618 	/* decrease power for highest OFDM rates to reduce distortion */
2619 	switch (rate) {
2620 	case 72:	/* 36Mb/s */
2621 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2622 		break;
2623 	case 96:	/* 48Mb/s */
2624 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2625 		break;
2626 	case 108:	/* 54Mb/s */
2627 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2628 		break;
2629 	}
2630 
2631 	/* never exceed channel's maximum allowed Tx power */
2632 	pwr = uimin(pwr, sc->maxpwr[chan]);
2633 
2634 	/* retrieve power index into gain tables from samples */
2635 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2636 		if (pwr > sample[1].power)
2637 			break;
2638 	/* fixed-point linear interpolation using a 19-bit fractional part */
2639 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2640 	    sample[1].power, sample[1].index, 19);
2641 
2642 	/*-
2643 	 * Adjust power index based on current temperature:
2644 	 * - if cooler than factory-calibrated: decrease output power
2645 	 * - if warmer than factory-calibrated: increase output power
2646 	 */
2647 	idx -= (sc->temp - group->temp) * 11 / 100;
2648 
2649 	/* decrease power for CCK rates (-5dB) */
2650 	if (!WPI_RATE_IS_OFDM(rate))
2651 		idx += 10;
2652 
2653 	/* keep power index in a valid range */
2654 	if (idx < 0)
2655 		return 0;
2656 	if (idx > WPI_MAX_PWR_INDEX)
2657 		return WPI_MAX_PWR_INDEX;
2658 	return idx;
2659 
2660 #undef interpolate
2661 #undef fdivround
2662 }
2663 
2664 /*
2665  * Build a beacon frame that the firmware will broadcast periodically in
2666  * IBSS or HostAP modes.
2667  */
2668 static int
2669 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2670 {
2671 	struct ieee80211com *ic = &sc->sc_ic;
2672 	struct wpi_tx_ring *ring = &sc->cmdq;
2673 	struct wpi_tx_desc *desc;
2674 	struct wpi_tx_data *data;
2675 	struct wpi_tx_cmd *cmd;
2676 	struct wpi_cmd_beacon *bcn;
2677 	struct ieee80211_beacon_offsets bo;
2678 	struct mbuf *m0;
2679 	int error;
2680 
2681 	desc = &ring->desc[ring->cur];
2682 	data = &ring->data[ring->cur];
2683 
2684 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2685 	if (m0 == NULL) {
2686 		aprint_error_dev(sc->sc_dev,
2687 		    "could not allocate beacon frame\n");
2688 		return ENOMEM;
2689 	}
2690 
2691 	cmd = &ring->cmd[ring->cur];
2692 	cmd->code = WPI_CMD_SET_BEACON;
2693 	cmd->flags = 0;
2694 	cmd->qid = ring->qid;
2695 	cmd->idx = ring->cur;
2696 
2697 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2698 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2699 	bcn->id = WPI_ID_BROADCAST;
2700 	bcn->ofdm_mask = 0xff;
2701 	bcn->cck_mask = 0x0f;
2702 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2703 	bcn->len = htole16(m0->m_pkthdr.len);
2704 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2705 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2706 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2707 
2708 	/* save and trim IEEE802.11 header */
2709 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2710 	m_adj(m0, sizeof (struct ieee80211_frame));
2711 
2712 	/* assume beacon frame is contiguous */
2713 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2714 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2715 	if (error != 0) {
2716 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2717 		m_freem(m0);
2718 		return error;
2719 	}
2720 
2721 	data->m = m0;
2722 
2723 	/* first scatter/gather segment is used by the beacon command */
2724 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2725 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2726 	    ring->cur * sizeof (struct wpi_tx_cmd));
2727 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2728 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2729 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2730 
2731 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2732 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2733 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2734 	    BUS_DMASYNC_PREWRITE);
2735 
2736 	/* kick cmd ring */
2737 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2738 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2739 
2740 	return 0;
2741 }
2742 
2743 static int
2744 wpi_auth(struct wpi_softc *sc)
2745 {
2746 	struct ieee80211com *ic = &sc->sc_ic;
2747 	struct ieee80211_node *ni = ic->ic_bss;
2748 	struct wpi_node_info node;
2749 	int error;
2750 
2751 	/* update adapter's configuration */
2752 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2753 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2754 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2755 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2756 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2757 		    WPI_CONFIG_24GHZ);
2758 	}
2759 	switch (ic->ic_curmode) {
2760 	case IEEE80211_MODE_11A:
2761 		sc->config.cck_mask  = 0;
2762 		sc->config.ofdm_mask = 0x15;
2763 		break;
2764 	case IEEE80211_MODE_11B:
2765 		sc->config.cck_mask  = 0x03;
2766 		sc->config.ofdm_mask = 0;
2767 		break;
2768 	default:	/* assume 802.11b/g */
2769 		sc->config.cck_mask  = 0x0f;
2770 		sc->config.ofdm_mask = 0x15;
2771 	}
2772 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2773 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2774 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2775 	    sizeof (struct wpi_config), 1);
2776 	if (error != 0) {
2777 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2778 		return error;
2779 	}
2780 
2781 	/* configuration has changed, set Tx power accordingly */
2782 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2783 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2784 		return error;
2785 	}
2786 
2787 	/* add default node */
2788 	memset(&node, 0, sizeof node);
2789 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2790 	node.id = WPI_ID_BSS;
2791 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2792 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2793 	node.action = htole32(WPI_ACTION_SET_RATE);
2794 	node.antenna = WPI_ANTENNA_BOTH;
2795 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2796 	if (error != 0) {
2797 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2798 		return error;
2799 	}
2800 
2801 	return 0;
2802 }
2803 
2804 /*
2805  * Send a scan request to the firmware.  Since this command is huge, we map it
2806  * into a mbuf instead of using the pre-allocated set of commands.
2807  */
2808 static int
2809 wpi_scan(struct wpi_softc *sc)
2810 {
2811 	struct ieee80211com *ic = &sc->sc_ic;
2812 	struct wpi_tx_ring *ring = &sc->cmdq;
2813 	struct wpi_tx_desc *desc;
2814 	struct wpi_tx_data *data;
2815 	struct wpi_tx_cmd *cmd;
2816 	struct wpi_scan_hdr *hdr;
2817 	struct wpi_scan_chan *chan;
2818 	struct ieee80211_frame *wh;
2819 	struct ieee80211_rateset *rs;
2820 	struct ieee80211_channel *c;
2821 	uint8_t *frm;
2822 	int pktlen, error, nrates;
2823 
2824 	if (ic->ic_curchan == NULL)
2825 		return EIO;
2826 
2827 	desc = &ring->desc[ring->cur];
2828 	data = &ring->data[ring->cur];
2829 
2830 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2831 	if (data->m == NULL) {
2832 		aprint_error_dev(sc->sc_dev,
2833 		    "could not allocate mbuf for scan command\n");
2834 		return ENOMEM;
2835 	}
2836 	MCLGET(data->m, M_DONTWAIT);
2837 	if (!(data->m->m_flags & M_EXT)) {
2838 		m_freem(data->m);
2839 		data->m = NULL;
2840 		aprint_error_dev(sc->sc_dev,
2841 		    "could not allocate mbuf for scan command\n");
2842 		return ENOMEM;
2843 	}
2844 
2845 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2846 	cmd->code = WPI_CMD_SCAN;
2847 	cmd->flags = 0;
2848 	cmd->qid = ring->qid;
2849 	cmd->idx = ring->cur;
2850 
2851 	hdr = (struct wpi_scan_hdr *)cmd->data;
2852 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2853 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2854 	hdr->cmd.id = WPI_ID_BROADCAST;
2855 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2856 	/*
2857 	 * Move to the next channel if no packets are received within 5 msecs
2858 	 * after sending the probe request (this helps to reduce the duration
2859 	 * of active scans).
2860 	 */
2861 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
2862 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2863 
2864 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2865 		hdr->crc_threshold = htole16(1);
2866 		/* send probe requests at 6Mbps */
2867 		hdr->cmd.rate = wpi_plcp_signal(12);
2868 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2869 	} else {
2870 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2871 		/* send probe requests at 1Mbps */
2872 		hdr->cmd.rate = wpi_plcp_signal(2);
2873 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2874 	}
2875 
2876 	/* for directed scans, firmware inserts the essid IE itself */
2877 	if (ic->ic_des_esslen != 0) {
2878 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2879 		hdr->essid[0].len = ic->ic_des_esslen;
2880 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2881 	}
2882 
2883 	/*
2884 	 * Build a probe request frame.  Most of the following code is a
2885 	 * copy & paste of what is done in net80211.
2886 	 */
2887 	wh = (struct ieee80211_frame *)(hdr + 1);
2888 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2889 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2890 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2891 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2892 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2893 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2894 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2895 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2896 
2897 	frm = (uint8_t *)(wh + 1);
2898 
2899 	/* add empty essid IE (firmware generates it for directed scans) */
2900 	*frm++ = IEEE80211_ELEMID_SSID;
2901 	*frm++ = 0;
2902 
2903 	/* add supported rates IE */
2904 	*frm++ = IEEE80211_ELEMID_RATES;
2905 	nrates = rs->rs_nrates;
2906 	if (nrates > IEEE80211_RATE_SIZE)
2907 		nrates = IEEE80211_RATE_SIZE;
2908 	*frm++ = nrates;
2909 	memcpy(frm, rs->rs_rates, nrates);
2910 	frm += nrates;
2911 
2912 	/* add supported xrates IE */
2913 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2914 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2915 		*frm++ = IEEE80211_ELEMID_XRATES;
2916 		*frm++ = nrates;
2917 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2918 		frm += nrates;
2919 	}
2920 
2921 	/* setup length of probe request */
2922 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2923 
2924 	chan = (struct wpi_scan_chan *)frm;
2925 	c = ic->ic_curchan;
2926 
2927 	chan->chan = ieee80211_chan2ieee(ic, c);
2928 	chan->flags = 0;
2929 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2930 		chan->flags |= WPI_CHAN_ACTIVE;
2931 		if (ic->ic_des_esslen != 0)
2932 			chan->flags |= WPI_CHAN_DIRECT;
2933 	}
2934 	chan->dsp_gain = 0x6e;
2935 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2936 		chan->rf_gain = 0x3b;
2937 		chan->active  = htole16(10);
2938 		chan->passive = htole16(110);
2939 	} else {
2940 		chan->rf_gain = 0x28;
2941 		chan->active  = htole16(20);
2942 		chan->passive = htole16(120);
2943 	}
2944 	hdr->nchan++;
2945 	chan++;
2946 
2947 	frm += sizeof (struct wpi_scan_chan);
2948 
2949 	hdr->len = htole16(frm - (uint8_t *)hdr);
2950 	pktlen = frm - (uint8_t *)cmd;
2951 
2952 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2953 	    BUS_DMA_NOWAIT);
2954 	if (error != 0) {
2955 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2956 		m_freem(data->m);
2957 		data->m = NULL;
2958 		return error;
2959 	}
2960 
2961 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2962 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2963 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2964 
2965 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2966 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2967 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2968 	    BUS_DMASYNC_PREWRITE);
2969 
2970 	/* kick cmd ring */
2971 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2972 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2973 
2974 	return 0;	/* will be notified async. of failure/success */
2975 }
2976 
2977 static int
2978 wpi_config(struct wpi_softc *sc)
2979 {
2980 	struct ieee80211com *ic = &sc->sc_ic;
2981 	struct ifnet *ifp = ic->ic_ifp;
2982 	struct wpi_power power;
2983 	struct wpi_bluetooth bluetooth;
2984 	struct wpi_node_info node;
2985 	int error;
2986 
2987 	memset(&power, 0, sizeof power);
2988 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2989 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2990 	if (error != 0) {
2991 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2992 		return error;
2993 	}
2994 
2995 	/* configure bluetooth coexistence */
2996 	memset(&bluetooth, 0, sizeof bluetooth);
2997 	bluetooth.flags = 3;
2998 	bluetooth.lead = 0xaa;
2999 	bluetooth.kill = 1;
3000 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3001 	    0);
3002 	if (error != 0) {
3003 		aprint_error_dev(sc->sc_dev,
3004 			"could not configure bluetooth coexistence\n");
3005 		return error;
3006 	}
3007 
3008 	/* configure adapter */
3009 	memset(&sc->config, 0, sizeof (struct wpi_config));
3010 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3011 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3012 	/* set default channel */
3013 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3014 	sc->config.flags = htole32(WPI_CONFIG_TSF);
3015 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3016 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
3017 		    WPI_CONFIG_24GHZ);
3018 	}
3019 	sc->config.filter = 0;
3020 	switch (ic->ic_opmode) {
3021 	case IEEE80211_M_STA:
3022 		sc->config.mode = WPI_MODE_STA;
3023 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
3024 		break;
3025 	case IEEE80211_M_IBSS:
3026 	case IEEE80211_M_AHDEMO:
3027 		sc->config.mode = WPI_MODE_IBSS;
3028 		break;
3029 	case IEEE80211_M_HOSTAP:
3030 		sc->config.mode = WPI_MODE_HOSTAP;
3031 		break;
3032 	case IEEE80211_M_MONITOR:
3033 		sc->config.mode = WPI_MODE_MONITOR;
3034 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
3035 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3036 		break;
3037 	}
3038 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3039 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3040 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
3041 	    sizeof (struct wpi_config), 0);
3042 	if (error != 0) {
3043 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
3044 		return error;
3045 	}
3046 
3047 	/* configuration has changed, set Tx power accordingly */
3048 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
3049 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3050 		return error;
3051 	}
3052 
3053 	/* add broadcast node */
3054 	memset(&node, 0, sizeof node);
3055 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
3056 	node.id = WPI_ID_BROADCAST;
3057 	node.rate = wpi_plcp_signal(2);
3058 	node.action = htole32(WPI_ACTION_SET_RATE);
3059 	node.antenna = WPI_ANTENNA_BOTH;
3060 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3061 	if (error != 0) {
3062 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3063 		return error;
3064 	}
3065 
3066 	if ((error = wpi_mrr_setup(sc)) != 0) {
3067 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3068 		return error;
3069 	}
3070 
3071 	return 0;
3072 }
3073 
3074 static void
3075 wpi_stop_master(struct wpi_softc *sc)
3076 {
3077 	uint32_t tmp;
3078 	int ntries;
3079 
3080 	tmp = WPI_READ(sc, WPI_RESET);
3081 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3082 
3083 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3084 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3085 		return;	/* already asleep */
3086 
3087 	for (ntries = 0; ntries < 100; ntries++) {
3088 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3089 			break;
3090 		DELAY(10);
3091 	}
3092 	if (ntries == 100) {
3093 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3094 	}
3095 }
3096 
3097 static int
3098 wpi_power_up(struct wpi_softc *sc)
3099 {
3100 	uint32_t tmp;
3101 	int ntries;
3102 
3103 	wpi_mem_lock(sc);
3104 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3105 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3106 	wpi_mem_unlock(sc);
3107 
3108 	for (ntries = 0; ntries < 5000; ntries++) {
3109 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3110 			break;
3111 		DELAY(10);
3112 	}
3113 	if (ntries == 5000) {
3114 		aprint_error_dev(sc->sc_dev,
3115 		    "timeout waiting for NIC to power up\n");
3116 		return ETIMEDOUT;
3117 	}
3118 	return 0;
3119 }
3120 
3121 static int
3122 wpi_reset(struct wpi_softc *sc)
3123 {
3124 	uint32_t tmp;
3125 	int ntries;
3126 
3127 	/* clear any pending interrupts */
3128 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3129 
3130 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3131 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3132 
3133 	tmp = WPI_READ(sc, WPI_CHICKEN);
3134 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3135 
3136 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3137 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3138 
3139 	/* wait for clock stabilization */
3140 	for (ntries = 0; ntries < 1000; ntries++) {
3141 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3142 			break;
3143 		DELAY(10);
3144 	}
3145 	if (ntries == 1000) {
3146 		aprint_error_dev(sc->sc_dev,
3147 		    "timeout waiting for clock stabilization\n");
3148 		return ETIMEDOUT;
3149 	}
3150 
3151 	/* initialize EEPROM */
3152 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3153 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3154 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3155 		return EIO;
3156 	}
3157 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3158 
3159 	return 0;
3160 }
3161 
3162 static void
3163 wpi_hw_config(struct wpi_softc *sc)
3164 {
3165 	uint32_t rev, hw;
3166 
3167 	/* voodoo from the reference driver */
3168 	hw = WPI_READ(sc, WPI_HWCONFIG);
3169 
3170 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3171 	rev = PCI_REVISION(rev);
3172 	if ((rev & 0xc0) == 0x40)
3173 		hw |= WPI_HW_ALM_MB;
3174 	else if (!(rev & 0x80))
3175 		hw |= WPI_HW_ALM_MM;
3176 
3177 	if (sc->cap == 0x80)
3178 		hw |= WPI_HW_SKU_MRC;
3179 
3180 	hw &= ~WPI_HW_REV_D;
3181 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3182 		hw |= WPI_HW_REV_D;
3183 
3184 	if (sc->type > 1)
3185 		hw |= WPI_HW_TYPE_B;
3186 
3187 	DPRINTF(("setting h/w config %x\n", hw));
3188 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3189 }
3190 
3191 static int
3192 wpi_init(struct ifnet *ifp)
3193 {
3194 	struct wpi_softc *sc = ifp->if_softc;
3195 	struct ieee80211com *ic = &sc->sc_ic;
3196 	uint32_t tmp;
3197 	int qid, ntries, error;
3198 
3199 	wpi_stop(ifp, 1);
3200 	(void)wpi_reset(sc);
3201 
3202 	wpi_mem_lock(sc);
3203 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3204 	DELAY(20);
3205 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3206 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3207 	wpi_mem_unlock(sc);
3208 
3209 	(void)wpi_power_up(sc);
3210 	wpi_hw_config(sc);
3211 
3212 	/* init Rx ring */
3213 	wpi_mem_lock(sc);
3214 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3215 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3216 	    offsetof(struct wpi_shared, next));
3217 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3218 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3219 	wpi_mem_unlock(sc);
3220 
3221 	/* init Tx rings */
3222 	wpi_mem_lock(sc);
3223 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3224 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3225 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3226 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3227 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3228 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3229 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3230 
3231 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3232 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3233 
3234 	for (qid = 0; qid < 6; qid++) {
3235 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3236 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3237 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3238 	}
3239 	wpi_mem_unlock(sc);
3240 
3241 	/* clear "radio off" and "disable command" bits (reversed logic) */
3242 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3243 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3244 
3245 	/* clear any pending interrupts */
3246 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3247 	/* enable interrupts */
3248 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3249 
3250 	/* not sure why/if this is necessary... */
3251 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3252 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3253 
3254 	if ((error = wpi_load_firmware(sc)) != 0)
3255 		/* wpi_load_firmware prints error messages for us.  */
3256 		goto fail1;
3257 
3258 	/* Check the status of the radio switch */
3259 	mutex_enter(&sc->sc_rsw_mtx);
3260 	if (wpi_getrfkill(sc)) {
3261 		mutex_exit(&sc->sc_rsw_mtx);
3262 		aprint_error_dev(sc->sc_dev,
3263 		    "radio is disabled by hardware switch\n");
3264 		ifp->if_flags &= ~IFF_UP;
3265 		error = EBUSY;
3266 		goto fail1;
3267 	}
3268 	sc->sc_rsw_suspend = false;
3269 	cv_broadcast(&sc->sc_rsw_cv);
3270 	while (sc->sc_rsw_suspend)
3271 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3272 	mutex_exit(&sc->sc_rsw_mtx);
3273 
3274 	/* wait for thermal sensors to calibrate */
3275 	for (ntries = 0; ntries < 1000; ntries++) {
3276 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3277 			break;
3278 		DELAY(10);
3279 	}
3280 	if (ntries == 1000) {
3281 		aprint_error_dev(sc->sc_dev,
3282 		    "timeout waiting for thermal sensors calibration\n");
3283 		error = ETIMEDOUT;
3284 		goto fail1;
3285 	}
3286 	DPRINTF(("temperature %d\n", sc->temp));
3287 
3288 	if ((error = wpi_config(sc)) != 0) {
3289 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3290 		goto fail1;
3291 	}
3292 
3293 	ifp->if_flags &= ~IFF_OACTIVE;
3294 	ifp->if_flags |= IFF_RUNNING;
3295 
3296 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3297 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3298 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3299 	}
3300 	else
3301 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3302 
3303 	return 0;
3304 
3305 fail1:	wpi_stop(ifp, 1);
3306 	return error;
3307 }
3308 
3309 static void
3310 wpi_stop1(struct ifnet *ifp, int disable, bool fromintr)
3311 {
3312 	struct wpi_softc *sc = ifp->if_softc;
3313 	struct ieee80211com *ic = &sc->sc_ic;
3314 	uint32_t tmp;
3315 	int ac;
3316 
3317 	ifp->if_timer = sc->sc_tx_timer = 0;
3318 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3319 
3320 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3321 
3322 	if (fromintr) {
3323 		sc->sc_rsw_suspend = true; // XXX: without mutex or wait
3324 	} else {
3325 		wpi_rsw_suspend(sc);
3326 	}
3327 
3328 	/* disable interrupts */
3329 	WPI_WRITE(sc, WPI_MASK, 0);
3330 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3331 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3332 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3333 
3334 	wpi_mem_lock(sc);
3335 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3336 	wpi_mem_unlock(sc);
3337 
3338 	/* reset all Tx rings */
3339 	for (ac = 0; ac < 4; ac++)
3340 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3341 	wpi_reset_tx_ring(sc, &sc->cmdq);
3342 
3343 	/* reset Rx ring */
3344 	wpi_reset_rx_ring(sc, &sc->rxq);
3345 
3346 	wpi_mem_lock(sc);
3347 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3348 	wpi_mem_unlock(sc);
3349 
3350 	DELAY(5);
3351 
3352 	wpi_stop_master(sc);
3353 
3354 	tmp = WPI_READ(sc, WPI_RESET);
3355 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3356 }
3357 
3358 static void
3359 wpi_stop(struct ifnet *ifp, int disable)
3360 {
3361 	wpi_stop1(ifp, disable, false);
3362 }
3363 
3364 static void
3365 wpi_stop_intr(struct ifnet *ifp, int disable)
3366 {
3367 	wpi_stop1(ifp, disable, true);
3368 }
3369 
3370 static bool
3371 wpi_resume(device_t dv, const pmf_qual_t *qual)
3372 {
3373 	struct wpi_softc *sc = device_private(dv);
3374 
3375 	(void)wpi_reset(sc);
3376 
3377 	return true;
3378 }
3379 
3380 /*
3381  * Return whether or not the radio is enabled in hardware
3382  * (i.e. the rfkill switch is "off").
3383  */
3384 static int
3385 wpi_getrfkill(struct wpi_softc *sc)
3386 {
3387 	uint32_t tmp;
3388 
3389 	wpi_mem_lock(sc);
3390 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3391 	wpi_mem_unlock(sc);
3392 
3393 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3394 	if (tmp & 0x01) {
3395 		/* switch is on */
3396 		if (sc->sc_rsw_status != WPI_RSW_ON) {
3397 			sc->sc_rsw_status = WPI_RSW_ON;
3398 			sysmon_pswitch_event(&sc->sc_rsw,
3399 			    PSWITCH_EVENT_PRESSED);
3400 		}
3401 	} else {
3402 		/* switch is off */
3403 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
3404 			sc->sc_rsw_status = WPI_RSW_OFF;
3405 			sysmon_pswitch_event(&sc->sc_rsw,
3406 			    PSWITCH_EVENT_RELEASED);
3407 		}
3408 	}
3409 
3410 	return !(tmp & 0x01);
3411 }
3412 
3413 static int
3414 wpi_sysctl_radio(SYSCTLFN_ARGS)
3415 {
3416 	struct sysctlnode node;
3417 	struct wpi_softc *sc;
3418 	int val, error;
3419 
3420 	node = *rnode;
3421 	sc = (struct wpi_softc *)node.sysctl_data;
3422 
3423 	mutex_enter(&sc->sc_rsw_mtx);
3424 	val = !wpi_getrfkill(sc);
3425 	mutex_exit(&sc->sc_rsw_mtx);
3426 
3427 	node.sysctl_data = &val;
3428 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3429 
3430 	if (error || newp == NULL)
3431 		return error;
3432 
3433 	return 0;
3434 }
3435 
3436 static void
3437 wpi_sysctlattach(struct wpi_softc *sc)
3438 {
3439 	int rc;
3440 	const struct sysctlnode *rnode;
3441 	const struct sysctlnode *cnode;
3442 
3443 	struct sysctllog **clog = &sc->sc_sysctllog;
3444 
3445 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3446 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3447 	    SYSCTL_DESCR("wpi controls and statistics"),
3448 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3449 		goto err;
3450 
3451 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3452 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3453 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3454 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3455 		goto err;
3456 
3457 #ifdef WPI_DEBUG
3458 	/* control debugging printfs */
3459 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3460 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3461 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3462 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3463 		goto err;
3464 #endif
3465 
3466 	return;
3467 err:
3468 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3469 }
3470 
3471 static void
3472 wpi_rsw_suspend(struct wpi_softc *sc)
3473 {
3474 	/* suspend rfkill test thread */
3475 	mutex_enter(&sc->sc_rsw_mtx);
3476 	sc->sc_rsw_suspend = true;
3477 	cv_broadcast(&sc->sc_rsw_cv);
3478 	while (!sc->sc_rsw_suspended)
3479 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3480 	mutex_exit(&sc->sc_rsw_mtx);
3481 }
3482 
3483 static void
3484 wpi_rsw_thread(void *arg)
3485 {
3486 	struct wpi_softc *sc = (struct wpi_softc *)arg;
3487 
3488 	mutex_enter(&sc->sc_rsw_mtx);
3489 	for (;;) {
3490 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3491 		if (sc->sc_dying) {
3492 			sc->sc_rsw_lwp = NULL;
3493 			cv_broadcast(&sc->sc_rsw_cv);
3494 			mutex_exit(&sc->sc_rsw_mtx);
3495 			kthread_exit(0);
3496 		}
3497 		if (sc->sc_rsw_suspend) {
3498 			sc->sc_rsw_suspended = true;
3499 			cv_broadcast(&sc->sc_rsw_cv);
3500 			while (sc->sc_rsw_suspend || sc->sc_dying)
3501 				cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3502 			sc->sc_rsw_suspended = false;
3503 			cv_broadcast(&sc->sc_rsw_cv);
3504 		}
3505 		wpi_getrfkill(sc);
3506 	}
3507 }
3508