1 /* $NetBSD: if_wpi.c,v 1.71 2015/01/09 15:25:23 bouyer Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.71 2015/01/09 15:25:23 bouyer Exp $"); 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 */ 26 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/sysctl.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/mutex.h> 37 #include <sys/once.h> 38 #include <sys/conf.h> 39 #include <sys/kauth.h> 40 #include <sys/callout.h> 41 #include <sys/proc.h> 42 #include <sys/kthread.h> 43 44 #include <sys/bus.h> 45 #include <machine/endian.h> 46 #include <sys/intr.h> 47 48 #include <dev/pci/pcireg.h> 49 #include <dev/pci/pcivar.h> 50 #include <dev/pci/pcidevs.h> 51 52 #include <dev/sysmon/sysmonvar.h> 53 54 #include <net/bpf.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_dl.h> 58 #include <net/if_ether.h> 59 #include <net/if_media.h> 60 #include <net/if_types.h> 61 62 #include <netinet/in.h> 63 #include <netinet/in_systm.h> 64 #include <netinet/in_var.h> 65 #include <netinet/ip.h> 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_amrr.h> 69 #include <net80211/ieee80211_radiotap.h> 70 71 #include <dev/firmload.h> 72 73 #include <dev/pci/if_wpireg.h> 74 #include <dev/pci/if_wpivar.h> 75 76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode"; 77 static once_t wpi_firmware_init; 78 static kmutex_t wpi_firmware_mutex; 79 static size_t wpi_firmware_users; 80 static uint8_t *wpi_firmware_image; 81 static size_t wpi_firmware_size; 82 83 static int wpi_match(device_t, cfdata_t, void *); 84 static void wpi_attach(device_t, device_t, void *); 85 static int wpi_detach(device_t , int); 86 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *, 87 void **, bus_size_t, bus_size_t, int); 88 static void wpi_dma_contig_free(struct wpi_dma_info *); 89 static int wpi_alloc_shared(struct wpi_softc *); 90 static void wpi_free_shared(struct wpi_softc *); 91 static int wpi_alloc_fwmem(struct wpi_softc *); 92 static void wpi_free_fwmem(struct wpi_softc *); 93 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *); 94 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *); 95 static int wpi_alloc_rpool(struct wpi_softc *); 96 static void wpi_free_rpool(struct wpi_softc *); 97 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 98 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 99 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 100 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 101 int, int); 102 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 103 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 104 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *); 105 static void wpi_newassoc(struct ieee80211_node *, int); 106 static int wpi_media_change(struct ifnet *); 107 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int); 108 static void wpi_mem_lock(struct wpi_softc *); 109 static void wpi_mem_unlock(struct wpi_softc *); 110 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 111 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 112 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 113 const uint32_t *, int); 114 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 115 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 116 static int wpi_cache_firmware(struct wpi_softc *); 117 static void wpi_release_firmware(void); 118 static int wpi_load_firmware(struct wpi_softc *); 119 static void wpi_calib_timeout(void *); 120 static void wpi_iter_func(void *, struct ieee80211_node *); 121 static void wpi_power_calibration(struct wpi_softc *, int); 122 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 123 struct wpi_rx_data *); 124 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 125 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 126 static void wpi_notif_intr(struct wpi_softc *); 127 static int wpi_intr(void *); 128 static void wpi_read_eeprom(struct wpi_softc *); 129 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 130 static void wpi_read_eeprom_group(struct wpi_softc *, int); 131 static uint8_t wpi_plcp_signal(int); 132 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 133 struct ieee80211_node *, int); 134 static void wpi_start(struct ifnet *); 135 static void wpi_watchdog(struct ifnet *); 136 static int wpi_ioctl(struct ifnet *, u_long, void *); 137 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 138 static int wpi_wme_update(struct ieee80211com *); 139 static int wpi_mrr_setup(struct wpi_softc *); 140 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 141 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 142 static int wpi_set_txpower(struct wpi_softc *, 143 struct ieee80211_channel *, int); 144 static int wpi_get_power_index(struct wpi_softc *, 145 struct wpi_power_group *, struct ieee80211_channel *, int); 146 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 147 static int wpi_auth(struct wpi_softc *); 148 static int wpi_scan(struct wpi_softc *); 149 static int wpi_config(struct wpi_softc *); 150 static void wpi_stop_master(struct wpi_softc *); 151 static int wpi_power_up(struct wpi_softc *); 152 static int wpi_reset(struct wpi_softc *); 153 static void wpi_hw_config(struct wpi_softc *); 154 static int wpi_init(struct ifnet *); 155 static void wpi_stop(struct ifnet *, int); 156 static bool wpi_resume(device_t, const pmf_qual_t *); 157 static int wpi_getrfkill(struct wpi_softc *); 158 static void wpi_sysctlattach(struct wpi_softc *); 159 static void wpi_rsw_thread(void *); 160 161 #ifdef WPI_DEBUG 162 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0) 163 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0) 164 int wpi_debug = 1; 165 #else 166 #define DPRINTF(x) 167 #define DPRINTFN(n, x) 168 #endif 169 170 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach, 171 wpi_detach, NULL); 172 173 static int 174 wpi_match(device_t parent, cfdata_t match __unused, void *aux) 175 { 176 struct pci_attach_args *pa = aux; 177 178 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 179 return 0; 180 181 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 || 182 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2) 183 return 1; 184 185 return 0; 186 } 187 188 /* Base Address Register */ 189 #define WPI_PCI_BAR0 0x10 190 191 static int 192 wpi_attach_once(void) 193 { 194 195 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE); 196 return 0; 197 } 198 199 static void 200 wpi_attach(device_t parent __unused, device_t self, void *aux) 201 { 202 struct wpi_softc *sc = device_private(self); 203 struct ieee80211com *ic = &sc->sc_ic; 204 struct ifnet *ifp = &sc->sc_ec.ec_if; 205 struct pci_attach_args *pa = aux; 206 const char *intrstr; 207 bus_space_tag_t memt; 208 bus_space_handle_t memh; 209 pci_intr_handle_t ih; 210 pcireg_t data; 211 int ac, error; 212 char intrbuf[PCI_INTRSTR_LEN]; 213 214 RUN_ONCE(&wpi_firmware_init, wpi_attach_once); 215 sc->fw_used = false; 216 217 sc->sc_dev = self; 218 sc->sc_pct = pa->pa_pc; 219 sc->sc_pcitag = pa->pa_tag; 220 221 sc->sc_rsw_status = WPI_RSW_UNKNOWN; 222 sc->sc_rsw.smpsw_name = device_xname(self); 223 sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO; 224 error = sysmon_pswitch_register(&sc->sc_rsw); 225 if (error) { 226 aprint_error_dev(self, 227 "unable to register radio switch with sysmon\n"); 228 return; 229 } 230 mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE); 231 cv_init(&sc->sc_rsw_cv, "wpirsw"); 232 if (kthread_create(PRI_NONE, 0, NULL, 233 wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) { 234 aprint_error_dev(self, "couldn't create switch thread\n"); 235 } 236 237 callout_init(&sc->calib_to, 0); 238 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc); 239 240 pci_aprint_devinfo(pa, NULL); 241 242 /* enable bus-mastering */ 243 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 244 data |= PCI_COMMAND_MASTER_ENABLE; 245 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data); 246 247 /* map the register window */ 248 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM | 249 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz); 250 if (error != 0) { 251 aprint_error_dev(self, "could not map memory space\n"); 252 return; 253 } 254 255 sc->sc_st = memt; 256 sc->sc_sh = memh; 257 sc->sc_dmat = pa->pa_dmat; 258 259 if (pci_intr_map(pa, &ih) != 0) { 260 aprint_error_dev(self, "could not map interrupt\n"); 261 return; 262 } 263 264 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf)); 265 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc); 266 if (sc->sc_ih == NULL) { 267 aprint_error_dev(self, "could not establish interrupt"); 268 if (intrstr != NULL) 269 aprint_error(" at %s", intrstr); 270 aprint_error("\n"); 271 return; 272 } 273 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 274 275 /* 276 * Put adapter into a known state. 277 */ 278 if ((error = wpi_reset(sc)) != 0) { 279 aprint_error_dev(self, "could not reset adapter\n"); 280 return; 281 } 282 283 /* 284 * Allocate DMA memory for firmware transfers. 285 */ 286 if ((error = wpi_alloc_fwmem(sc)) != 0) { 287 aprint_error_dev(self, "could not allocate firmware memory\n"); 288 return; 289 } 290 291 /* 292 * Allocate shared page and Tx/Rx rings. 293 */ 294 if ((error = wpi_alloc_shared(sc)) != 0) { 295 aprint_error_dev(self, "could not allocate shared area\n"); 296 goto fail1; 297 } 298 299 if ((error = wpi_alloc_rpool(sc)) != 0) { 300 aprint_error_dev(self, "could not allocate Rx buffers\n"); 301 goto fail2; 302 } 303 304 for (ac = 0; ac < 4; ac++) { 305 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, 306 ac); 307 if (error != 0) { 308 aprint_error_dev(self, 309 "could not allocate Tx ring %d\n", ac); 310 goto fail3; 311 } 312 } 313 314 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 315 if (error != 0) { 316 aprint_error_dev(self, "could not allocate command ring\n"); 317 goto fail3; 318 } 319 320 error = wpi_alloc_rx_ring(sc, &sc->rxq); 321 if (error != 0) { 322 aprint_error_dev(self, "could not allocate Rx ring\n"); 323 goto fail4; 324 } 325 326 ic->ic_ifp = ifp; 327 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 328 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 329 ic->ic_state = IEEE80211_S_INIT; 330 331 /* set device capabilities */ 332 ic->ic_caps = 333 IEEE80211_C_WPA | /* 802.11i */ 334 IEEE80211_C_MONITOR | /* monitor mode supported */ 335 IEEE80211_C_TXPMGT | /* tx power management */ 336 IEEE80211_C_SHSLOT | /* short slot time supported */ 337 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 338 IEEE80211_C_WME; /* 802.11e */ 339 340 /* read supported channels and MAC address from EEPROM */ 341 wpi_read_eeprom(sc); 342 343 /* set supported .11a, .11b and .11g rates */ 344 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; 345 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 346 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 347 348 /* IBSS channel undefined for now */ 349 ic->ic_ibss_chan = &ic->ic_channels[0]; 350 351 ifp->if_softc = sc; 352 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 353 ifp->if_init = wpi_init; 354 ifp->if_stop = wpi_stop; 355 ifp->if_ioctl = wpi_ioctl; 356 ifp->if_start = wpi_start; 357 ifp->if_watchdog = wpi_watchdog; 358 IFQ_SET_READY(&ifp->if_snd); 359 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 360 361 if_attach(ifp); 362 ieee80211_ifattach(ic); 363 /* override default methods */ 364 ic->ic_node_alloc = wpi_node_alloc; 365 ic->ic_newassoc = wpi_newassoc; 366 ic->ic_wme.wme_update = wpi_wme_update; 367 368 /* override state transition machine */ 369 sc->sc_newstate = ic->ic_newstate; 370 ic->ic_newstate = wpi_newstate; 371 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status); 372 373 sc->amrr.amrr_min_success_threshold = 1; 374 sc->amrr.amrr_max_success_threshold = 15; 375 376 wpi_sysctlattach(sc); 377 378 if (pmf_device_register(self, NULL, wpi_resume)) 379 pmf_class_network_register(self, ifp); 380 else 381 aprint_error_dev(self, "couldn't establish power handler\n"); 382 383 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 384 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 385 &sc->sc_drvbpf); 386 387 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 388 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 389 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 390 391 sc->sc_txtap_len = sizeof sc->sc_txtapu; 392 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 393 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 394 395 ieee80211_announce(ic); 396 397 return; 398 399 /* free allocated memory if something failed during attachment */ 400 fail4: wpi_free_tx_ring(sc, &sc->cmdq); 401 fail3: while (--ac >= 0) 402 wpi_free_tx_ring(sc, &sc->txq[ac]); 403 wpi_free_rpool(sc); 404 fail2: wpi_free_shared(sc); 405 fail1: wpi_free_fwmem(sc); 406 } 407 408 static int 409 wpi_detach(device_t self, int flags __unused) 410 { 411 struct wpi_softc *sc = device_private(self); 412 struct ifnet *ifp = sc->sc_ic.ic_ifp; 413 int ac; 414 415 wpi_stop(ifp, 1); 416 417 if (ifp != NULL) 418 bpf_detach(ifp); 419 ieee80211_ifdetach(&sc->sc_ic); 420 if (ifp != NULL) 421 if_detach(ifp); 422 423 for (ac = 0; ac < 4; ac++) 424 wpi_free_tx_ring(sc, &sc->txq[ac]); 425 wpi_free_tx_ring(sc, &sc->cmdq); 426 wpi_free_rx_ring(sc, &sc->rxq); 427 wpi_free_rpool(sc); 428 wpi_free_shared(sc); 429 430 if (sc->sc_ih != NULL) { 431 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 432 sc->sc_ih = NULL; 433 } 434 mutex_enter(&sc->sc_rsw_mtx); 435 sc->sc_dying = 1; 436 cv_signal(&sc->sc_rsw_cv); 437 while (sc->sc_rsw_lwp != NULL) 438 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx); 439 mutex_exit(&sc->sc_rsw_mtx); 440 sysmon_pswitch_unregister(&sc->sc_rsw); 441 442 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 443 444 if (sc->fw_used) { 445 sc->fw_used = false; 446 wpi_release_firmware(); 447 } 448 cv_destroy(&sc->sc_rsw_cv); 449 mutex_destroy(&sc->sc_rsw_mtx); 450 return 0; 451 } 452 453 static int 454 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap, 455 bus_size_t size, bus_size_t alignment, int flags) 456 { 457 int nsegs, error; 458 459 dma->tag = tag; 460 dma->size = size; 461 462 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map); 463 if (error != 0) 464 goto fail; 465 466 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 467 flags); 468 if (error != 0) 469 goto fail; 470 471 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags); 472 if (error != 0) 473 goto fail; 474 475 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags); 476 if (error != 0) 477 goto fail; 478 479 memset(dma->vaddr, 0, size); 480 bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 481 482 dma->paddr = dma->map->dm_segs[0].ds_addr; 483 if (kvap != NULL) 484 *kvap = dma->vaddr; 485 486 return 0; 487 488 fail: wpi_dma_contig_free(dma); 489 return error; 490 } 491 492 static void 493 wpi_dma_contig_free(struct wpi_dma_info *dma) 494 { 495 if (dma->map != NULL) { 496 if (dma->vaddr != NULL) { 497 bus_dmamap_unload(dma->tag, dma->map); 498 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 499 bus_dmamem_free(dma->tag, &dma->seg, 1); 500 dma->vaddr = NULL; 501 } 502 bus_dmamap_destroy(dma->tag, dma->map); 503 dma->map = NULL; 504 } 505 } 506 507 /* 508 * Allocate a shared page between host and NIC. 509 */ 510 static int 511 wpi_alloc_shared(struct wpi_softc *sc) 512 { 513 int error; 514 515 /* must be aligned on a 4K-page boundary */ 516 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma, 517 (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN, 518 BUS_DMA_NOWAIT); 519 if (error != 0) 520 aprint_error_dev(sc->sc_dev, 521 "could not allocate shared area DMA memory\n"); 522 523 return error; 524 } 525 526 static void 527 wpi_free_shared(struct wpi_softc *sc) 528 { 529 wpi_dma_contig_free(&sc->shared_dma); 530 } 531 532 /* 533 * Allocate DMA-safe memory for firmware transfer. 534 */ 535 static int 536 wpi_alloc_fwmem(struct wpi_softc *sc) 537 { 538 int error; 539 540 /* allocate enough contiguous space to store text and data */ 541 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 542 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0, 543 BUS_DMA_NOWAIT); 544 545 if (error != 0) 546 aprint_error_dev(sc->sc_dev, 547 "could not allocate firmware transfer area DMA memory\n"); 548 return error; 549 } 550 551 static void 552 wpi_free_fwmem(struct wpi_softc *sc) 553 { 554 wpi_dma_contig_free(&sc->fw_dma); 555 } 556 557 static struct wpi_rbuf * 558 wpi_alloc_rbuf(struct wpi_softc *sc) 559 { 560 struct wpi_rbuf *rbuf; 561 562 mutex_enter(&sc->rxq.freelist_mtx); 563 rbuf = SLIST_FIRST(&sc->rxq.freelist); 564 if (rbuf != NULL) { 565 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 566 } 567 mutex_exit(&sc->rxq.freelist_mtx); 568 569 return rbuf; 570 } 571 572 /* 573 * This is called automatically by the network stack when the mbuf to which our 574 * Rx buffer is attached is freed. 575 */ 576 static void 577 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 578 { 579 struct wpi_rbuf *rbuf = arg; 580 struct wpi_softc *sc = rbuf->sc; 581 582 /* put the buffer back in the free list */ 583 584 mutex_enter(&sc->rxq.freelist_mtx); 585 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 586 mutex_exit(&sc->rxq.freelist_mtx); 587 588 if (__predict_true(m != NULL)) 589 pool_cache_put(mb_cache, m); 590 } 591 592 static int 593 wpi_alloc_rpool(struct wpi_softc *sc) 594 { 595 struct wpi_rx_ring *ring = &sc->rxq; 596 int i, error; 597 598 /* allocate a big chunk of DMA'able memory.. */ 599 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 600 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT); 601 if (error != 0) { 602 aprint_normal_dev(sc->sc_dev, 603 "could not allocate Rx buffers DMA memory\n"); 604 return error; 605 } 606 607 /* ..and split it into 3KB chunks */ 608 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 609 SLIST_INIT(&ring->freelist); 610 for (i = 0; i < WPI_RBUF_COUNT; i++) { 611 struct wpi_rbuf *rbuf = &ring->rbuf[i]; 612 613 rbuf->sc = sc; /* backpointer for callbacks */ 614 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE; 615 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE; 616 617 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 618 } 619 620 return 0; 621 } 622 623 static void 624 wpi_free_rpool(struct wpi_softc *sc) 625 { 626 wpi_dma_contig_free(&sc->rxq.buf_dma); 627 } 628 629 static int 630 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 631 { 632 bus_size_t size; 633 int i, error; 634 635 ring->cur = 0; 636 637 size = WPI_RX_RING_COUNT * sizeof (uint32_t); 638 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 639 (void **)&ring->desc, size, 640 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 641 if (error != 0) { 642 aprint_error_dev(sc->sc_dev, 643 "could not allocate rx ring DMA memory\n"); 644 goto fail; 645 } 646 647 /* 648 * Setup Rx buffers. 649 */ 650 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 651 struct wpi_rx_data *data = &ring->data[i]; 652 struct wpi_rbuf *rbuf; 653 654 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1, 655 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map); 656 if (error) { 657 aprint_error_dev(sc->sc_dev, 658 "could not allocate rx dma map\n"); 659 goto fail; 660 } 661 662 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 663 if (data->m == NULL) { 664 aprint_error_dev(sc->sc_dev, 665 "could not allocate rx mbuf\n"); 666 error = ENOMEM; 667 goto fail; 668 } 669 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) { 670 m_freem(data->m); 671 data->m = NULL; 672 aprint_error_dev(sc->sc_dev, 673 "could not allocate rx cluster\n"); 674 error = ENOMEM; 675 goto fail; 676 } 677 /* attach Rx buffer to mbuf */ 678 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 679 rbuf); 680 data->m->m_flags |= M_EXT_RW; 681 682 error = bus_dmamap_load(sc->sc_dmat, data->map, 683 mtod(data->m, void *), WPI_RBUF_SIZE, NULL, 684 BUS_DMA_NOWAIT | BUS_DMA_READ); 685 if (error) { 686 aprint_error_dev(sc->sc_dev, 687 "could not load mbuf: %d\n", error); 688 goto fail; 689 } 690 691 ring->desc[i] = htole32(rbuf->paddr); 692 } 693 694 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 695 BUS_DMASYNC_PREWRITE); 696 697 return 0; 698 699 fail: wpi_free_rx_ring(sc, ring); 700 return error; 701 } 702 703 static void 704 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 705 { 706 int ntries; 707 708 wpi_mem_lock(sc); 709 710 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 711 for (ntries = 0; ntries < 100; ntries++) { 712 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 713 break; 714 DELAY(10); 715 } 716 #ifdef WPI_DEBUG 717 if (ntries == 100 && wpi_debug > 0) 718 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n"); 719 #endif 720 wpi_mem_unlock(sc); 721 722 ring->cur = 0; 723 } 724 725 static void 726 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 727 { 728 int i; 729 730 wpi_dma_contig_free(&ring->desc_dma); 731 732 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 733 if (ring->data[i].m != NULL) { 734 bus_dmamap_unload(sc->sc_dmat, ring->data[i].map); 735 m_freem(ring->data[i].m); 736 } 737 if (ring->data[i].map != NULL) { 738 bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map); 739 } 740 } 741 } 742 743 static int 744 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 745 int qid) 746 { 747 int i, error; 748 749 ring->qid = qid; 750 ring->count = count; 751 ring->queued = 0; 752 ring->cur = 0; 753 754 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 755 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 756 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 757 if (error != 0) { 758 aprint_error_dev(sc->sc_dev, 759 "could not allocate tx ring DMA memory\n"); 760 goto fail; 761 } 762 763 /* update shared page with ring's base address */ 764 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 765 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0, 766 sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE); 767 768 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 769 (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4, 770 BUS_DMA_NOWAIT); 771 if (error != 0) { 772 aprint_error_dev(sc->sc_dev, 773 "could not allocate tx cmd DMA memory\n"); 774 goto fail; 775 } 776 777 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 778 M_NOWAIT | M_ZERO); 779 if (ring->data == NULL) { 780 aprint_error_dev(sc->sc_dev, 781 "could not allocate tx data slots\n"); 782 goto fail; 783 } 784 785 for (i = 0; i < count; i++) { 786 struct wpi_tx_data *data = &ring->data[i]; 787 788 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 789 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 790 &data->map); 791 if (error != 0) { 792 aprint_error_dev(sc->sc_dev, 793 "could not create tx buf DMA map\n"); 794 goto fail; 795 } 796 } 797 798 return 0; 799 800 fail: wpi_free_tx_ring(sc, ring); 801 return error; 802 } 803 804 static void 805 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 806 { 807 int i, ntries; 808 809 wpi_mem_lock(sc); 810 811 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 812 for (ntries = 0; ntries < 100; ntries++) { 813 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 814 break; 815 DELAY(10); 816 } 817 #ifdef WPI_DEBUG 818 if (ntries == 100 && wpi_debug > 0) { 819 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n", 820 ring->qid); 821 } 822 #endif 823 wpi_mem_unlock(sc); 824 825 for (i = 0; i < ring->count; i++) { 826 struct wpi_tx_data *data = &ring->data[i]; 827 828 if (data->m != NULL) { 829 bus_dmamap_unload(sc->sc_dmat, data->map); 830 m_freem(data->m); 831 data->m = NULL; 832 } 833 } 834 835 ring->queued = 0; 836 ring->cur = 0; 837 } 838 839 static void 840 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 841 { 842 int i; 843 844 wpi_dma_contig_free(&ring->desc_dma); 845 wpi_dma_contig_free(&ring->cmd_dma); 846 847 if (ring->data != NULL) { 848 for (i = 0; i < ring->count; i++) { 849 struct wpi_tx_data *data = &ring->data[i]; 850 851 if (data->m != NULL) { 852 bus_dmamap_unload(sc->sc_dmat, data->map); 853 m_freem(data->m); 854 } 855 } 856 free(ring->data, M_DEVBUF); 857 } 858 } 859 860 /*ARGUSED*/ 861 static struct ieee80211_node * 862 wpi_node_alloc(struct ieee80211_node_table *nt __unused) 863 { 864 struct wpi_node *wn; 865 866 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 867 868 return (struct ieee80211_node *)wn; 869 } 870 871 static void 872 wpi_newassoc(struct ieee80211_node *ni, int isnew) 873 { 874 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc; 875 int i; 876 877 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn); 878 879 /* set rate to some reasonable initial value */ 880 for (i = ni->ni_rates.rs_nrates - 1; 881 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 882 i--); 883 ni->ni_txrate = i; 884 } 885 886 static int 887 wpi_media_change(struct ifnet *ifp) 888 { 889 int error; 890 891 error = ieee80211_media_change(ifp); 892 if (error != ENETRESET) 893 return error; 894 895 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 896 wpi_init(ifp); 897 898 return 0; 899 } 900 901 static int 902 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 903 { 904 struct ifnet *ifp = ic->ic_ifp; 905 struct wpi_softc *sc = ifp->if_softc; 906 struct ieee80211_node *ni; 907 enum ieee80211_state ostate = ic->ic_state; 908 int error; 909 910 callout_stop(&sc->calib_to); 911 912 switch (nstate) { 913 case IEEE80211_S_SCAN: 914 915 if (sc->is_scanning) 916 break; 917 918 sc->is_scanning = true; 919 920 if (ostate != IEEE80211_S_SCAN) { 921 /* make the link LED blink while we're scanning */ 922 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 923 } 924 925 if ((error = wpi_scan(sc)) != 0) { 926 aprint_error_dev(sc->sc_dev, 927 "could not initiate scan\n"); 928 return error; 929 } 930 break; 931 932 case IEEE80211_S_ASSOC: 933 if (ic->ic_state != IEEE80211_S_RUN) 934 break; 935 /* FALLTHROUGH */ 936 case IEEE80211_S_AUTH: 937 /* reset state to handle reassociations correctly */ 938 sc->config.associd = 0; 939 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 940 941 if ((error = wpi_auth(sc)) != 0) { 942 aprint_error_dev(sc->sc_dev, 943 "could not send authentication request\n"); 944 return error; 945 } 946 break; 947 948 case IEEE80211_S_RUN: 949 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 950 /* link LED blinks while monitoring */ 951 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 952 break; 953 } 954 ni = ic->ic_bss; 955 956 if (ic->ic_opmode != IEEE80211_M_STA) { 957 (void) wpi_auth(sc); /* XXX */ 958 wpi_setup_beacon(sc, ni); 959 } 960 961 wpi_enable_tsf(sc, ni); 962 963 /* update adapter's configuration */ 964 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 965 /* short preamble/slot time are negotiated when associating */ 966 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 967 WPI_CONFIG_SHSLOT); 968 if (ic->ic_flags & IEEE80211_F_SHSLOT) 969 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 970 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 971 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 972 sc->config.filter |= htole32(WPI_FILTER_BSS); 973 if (ic->ic_opmode != IEEE80211_M_STA) 974 sc->config.filter |= htole32(WPI_FILTER_BEACON); 975 976 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 977 978 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 979 sc->config.flags)); 980 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 981 sizeof (struct wpi_config), 1); 982 if (error != 0) { 983 aprint_error_dev(sc->sc_dev, 984 "could not update configuration\n"); 985 return error; 986 } 987 988 /* configuration has changed, set Tx power accordingly */ 989 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) { 990 aprint_error_dev(sc->sc_dev, 991 "could not set Tx power\n"); 992 return error; 993 } 994 995 if (ic->ic_opmode == IEEE80211_M_STA) { 996 /* fake a join to init the tx rate */ 997 wpi_newassoc(ni, 1); 998 } 999 1000 /* start periodic calibration timer */ 1001 sc->calib_cnt = 0; 1002 callout_schedule(&sc->calib_to, hz/2); 1003 1004 /* link LED always on while associated */ 1005 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 1006 break; 1007 1008 case IEEE80211_S_INIT: 1009 sc->is_scanning = false; 1010 break; 1011 } 1012 1013 return sc->sc_newstate(ic, nstate, arg); 1014 } 1015 1016 /* 1017 * Grab exclusive access to NIC memory. 1018 */ 1019 static void 1020 wpi_mem_lock(struct wpi_softc *sc) 1021 { 1022 uint32_t tmp; 1023 int ntries; 1024 1025 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1026 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1027 1028 /* spin until we actually get the lock */ 1029 for (ntries = 0; ntries < 1000; ntries++) { 1030 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1031 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1032 break; 1033 DELAY(10); 1034 } 1035 if (ntries == 1000) 1036 aprint_error_dev(sc->sc_dev, "could not lock memory\n"); 1037 } 1038 1039 /* 1040 * Release lock on NIC memory. 1041 */ 1042 static void 1043 wpi_mem_unlock(struct wpi_softc *sc) 1044 { 1045 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1046 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1047 } 1048 1049 static uint32_t 1050 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1051 { 1052 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1053 return WPI_READ(sc, WPI_READ_MEM_DATA); 1054 } 1055 1056 static void 1057 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1058 { 1059 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1060 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1061 } 1062 1063 static void 1064 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1065 const uint32_t *data, int wlen) 1066 { 1067 for (; wlen > 0; wlen--, data++, addr += 4) 1068 wpi_mem_write(sc, addr, *data); 1069 } 1070 1071 /* 1072 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC 1073 * instead of using the traditional bit-bang method. 1074 */ 1075 static int 1076 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1077 { 1078 uint8_t *out = data; 1079 uint32_t val; 1080 int ntries; 1081 1082 wpi_mem_lock(sc); 1083 for (; len > 0; len -= 2, addr++) { 1084 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1085 1086 for (ntries = 0; ntries < 10; ntries++) { 1087 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & 1088 WPI_EEPROM_READY) 1089 break; 1090 DELAY(5); 1091 } 1092 if (ntries == 10) { 1093 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 1094 return ETIMEDOUT; 1095 } 1096 *out++ = val >> 16; 1097 if (len > 1) 1098 *out++ = val >> 24; 1099 } 1100 wpi_mem_unlock(sc); 1101 1102 return 0; 1103 } 1104 1105 /* 1106 * The firmware boot code is small and is intended to be copied directly into 1107 * the NIC internal memory. 1108 */ 1109 int 1110 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size) 1111 { 1112 int ntries; 1113 1114 size /= sizeof (uint32_t); 1115 1116 wpi_mem_lock(sc); 1117 1118 /* copy microcode image into NIC memory */ 1119 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1120 (const uint32_t *)ucode, size); 1121 1122 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1123 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1124 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1125 1126 /* run microcode */ 1127 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1128 1129 /* wait for transfer to complete */ 1130 for (ntries = 0; ntries < 1000; ntries++) { 1131 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN)) 1132 break; 1133 DELAY(10); 1134 } 1135 if (ntries == 1000) { 1136 wpi_mem_unlock(sc); 1137 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n"); 1138 return ETIMEDOUT; 1139 } 1140 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1141 1142 wpi_mem_unlock(sc); 1143 1144 return 0; 1145 } 1146 1147 static int 1148 wpi_cache_firmware(struct wpi_softc *sc) 1149 { 1150 const char *const fwname = wpi_firmware_name; 1151 firmware_handle_t fw; 1152 int error; 1153 1154 /* sc is used here only to report error messages. */ 1155 1156 mutex_enter(&wpi_firmware_mutex); 1157 1158 if (wpi_firmware_users == SIZE_MAX) { 1159 mutex_exit(&wpi_firmware_mutex); 1160 return ENFILE; /* Too many of something in the system... */ 1161 } 1162 if (wpi_firmware_users++) { 1163 KASSERT(wpi_firmware_image != NULL); 1164 KASSERT(wpi_firmware_size > 0); 1165 mutex_exit(&wpi_firmware_mutex); 1166 return 0; /* Already good to go. */ 1167 } 1168 1169 KASSERT(wpi_firmware_image == NULL); 1170 KASSERT(wpi_firmware_size == 0); 1171 1172 /* load firmware image from disk */ 1173 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) { 1174 aprint_error_dev(sc->sc_dev, 1175 "could not open firmware file %s: %d\n", fwname, error); 1176 goto fail0; 1177 } 1178 1179 wpi_firmware_size = firmware_get_size(fw); 1180 1181 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) + 1182 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ + 1183 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ + 1184 WPI_FW_BOOT_TEXT_MAXSZ) { 1185 aprint_error_dev(sc->sc_dev, 1186 "firmware file %s too large: %zu bytes\n", 1187 fwname, wpi_firmware_size); 1188 error = EFBIG; 1189 goto fail1; 1190 } 1191 1192 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) { 1193 aprint_error_dev(sc->sc_dev, 1194 "firmware file %s too small: %zu bytes\n", 1195 fwname, wpi_firmware_size); 1196 error = EINVAL; 1197 goto fail1; 1198 } 1199 1200 wpi_firmware_image = firmware_malloc(wpi_firmware_size); 1201 if (wpi_firmware_image == NULL) { 1202 aprint_error_dev(sc->sc_dev, 1203 "not enough memory for firmware file %s\n", fwname); 1204 error = ENOMEM; 1205 goto fail1; 1206 } 1207 1208 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size); 1209 if (error != 0) { 1210 aprint_error_dev(sc->sc_dev, 1211 "error reading firmware file %s: %d\n", fwname, error); 1212 goto fail2; 1213 } 1214 1215 /* Success! */ 1216 firmware_close(fw); 1217 mutex_exit(&wpi_firmware_mutex); 1218 return 0; 1219 1220 fail2: 1221 firmware_free(wpi_firmware_image, wpi_firmware_size); 1222 wpi_firmware_image = NULL; 1223 fail1: 1224 wpi_firmware_size = 0; 1225 firmware_close(fw); 1226 fail0: 1227 KASSERT(wpi_firmware_users == 1); 1228 wpi_firmware_users = 0; 1229 KASSERT(wpi_firmware_image == NULL); 1230 KASSERT(wpi_firmware_size == 0); 1231 1232 mutex_exit(&wpi_firmware_mutex); 1233 return error; 1234 } 1235 1236 static void 1237 wpi_release_firmware(void) 1238 { 1239 1240 mutex_enter(&wpi_firmware_mutex); 1241 1242 KASSERT(wpi_firmware_users > 0); 1243 KASSERT(wpi_firmware_image != NULL); 1244 KASSERT(wpi_firmware_size != 0); 1245 1246 if (--wpi_firmware_users == 0) { 1247 firmware_free(wpi_firmware_image, wpi_firmware_size); 1248 wpi_firmware_image = NULL; 1249 wpi_firmware_size = 0; 1250 } 1251 1252 mutex_exit(&wpi_firmware_mutex); 1253 } 1254 1255 static int 1256 wpi_load_firmware(struct wpi_softc *sc) 1257 { 1258 struct wpi_dma_info *dma = &sc->fw_dma; 1259 struct wpi_firmware_hdr hdr; 1260 const uint8_t *init_text, *init_data, *main_text, *main_data; 1261 const uint8_t *boot_text; 1262 uint32_t init_textsz, init_datasz, main_textsz, main_datasz; 1263 uint32_t boot_textsz; 1264 size_t size; 1265 int error; 1266 1267 if (!sc->fw_used) { 1268 if ((error = wpi_cache_firmware(sc)) != 0) 1269 return error; 1270 sc->fw_used = true; 1271 } 1272 1273 KASSERT(sc->fw_used); 1274 KASSERT(wpi_firmware_image != NULL); 1275 KASSERT(wpi_firmware_size > sizeof(hdr)); 1276 1277 memcpy(&hdr, wpi_firmware_image, sizeof(hdr)); 1278 1279 main_textsz = le32toh(hdr.main_textsz); 1280 main_datasz = le32toh(hdr.main_datasz); 1281 init_textsz = le32toh(hdr.init_textsz); 1282 init_datasz = le32toh(hdr.init_datasz); 1283 boot_textsz = le32toh(hdr.boot_textsz); 1284 1285 /* sanity-check firmware segments sizes */ 1286 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ || 1287 main_datasz > WPI_FW_MAIN_DATA_MAXSZ || 1288 init_textsz > WPI_FW_INIT_TEXT_MAXSZ || 1289 init_datasz > WPI_FW_INIT_DATA_MAXSZ || 1290 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ || 1291 (boot_textsz & 3) != 0) { 1292 aprint_error_dev(sc->sc_dev, "invalid firmware header\n"); 1293 error = EINVAL; 1294 goto free_firmware; 1295 } 1296 1297 /* check that all firmware segments are present */ 1298 size = sizeof (struct wpi_firmware_hdr) + main_textsz + 1299 main_datasz + init_textsz + init_datasz + boot_textsz; 1300 if (wpi_firmware_size < size) { 1301 aprint_error_dev(sc->sc_dev, 1302 "firmware file truncated: %zu bytes, expected %zu bytes\n", 1303 wpi_firmware_size, size); 1304 error = EINVAL; 1305 goto free_firmware; 1306 } 1307 1308 /* get pointers to firmware segments */ 1309 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr); 1310 main_data = main_text + main_textsz; 1311 init_text = main_data + main_datasz; 1312 init_data = init_text + init_textsz; 1313 boot_text = init_data + init_datasz; 1314 1315 /* copy initialization images into pre-allocated DMA-safe memory */ 1316 memcpy(dma->vaddr, init_data, init_datasz); 1317 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, 1318 init_textsz); 1319 1320 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 1321 1322 /* tell adapter where to find initialization images */ 1323 wpi_mem_lock(sc); 1324 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1325 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz); 1326 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1327 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 1328 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz); 1329 wpi_mem_unlock(sc); 1330 1331 /* load firmware boot code */ 1332 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) { 1333 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n"); 1334 return error; 1335 } 1336 1337 /* now press "execute" ;-) */ 1338 WPI_WRITE(sc, WPI_RESET, 0); 1339 1340 /* wait at most one second for first alive notification */ 1341 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1342 /* this isn't what was supposed to happen.. */ 1343 aprint_error_dev(sc->sc_dev, 1344 "timeout waiting for adapter to initialize\n"); 1345 } 1346 1347 /* copy runtime images into pre-allocated DMA-safe memory */ 1348 memcpy(dma->vaddr, main_data, main_datasz); 1349 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, 1350 main_textsz); 1351 1352 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 1353 1354 /* tell adapter where to find runtime images */ 1355 wpi_mem_lock(sc); 1356 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1357 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz); 1358 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1359 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 1360 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz); 1361 wpi_mem_unlock(sc); 1362 1363 /* wait at most one second for second alive notification */ 1364 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1365 /* this isn't what was supposed to happen.. */ 1366 aprint_error_dev(sc->sc_dev, 1367 "timeout waiting for adapter to initialize\n"); 1368 } 1369 1370 return error; 1371 1372 free_firmware: 1373 sc->fw_used = false; 1374 wpi_release_firmware(); 1375 return error; 1376 } 1377 1378 static void 1379 wpi_calib_timeout(void *arg) 1380 { 1381 struct wpi_softc *sc = arg; 1382 struct ieee80211com *ic = &sc->sc_ic; 1383 int temp, s; 1384 1385 /* automatic rate control triggered every 500ms */ 1386 if (ic->ic_fixed_rate == -1) { 1387 s = splnet(); 1388 if (ic->ic_opmode == IEEE80211_M_STA) 1389 wpi_iter_func(sc, ic->ic_bss); 1390 else 1391 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc); 1392 splx(s); 1393 } 1394 1395 /* update sensor data */ 1396 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 1397 1398 /* automatic power calibration every 60s */ 1399 if (++sc->calib_cnt >= 120) { 1400 wpi_power_calibration(sc, temp); 1401 sc->calib_cnt = 0; 1402 } 1403 1404 callout_schedule(&sc->calib_to, hz/2); 1405 } 1406 1407 static void 1408 wpi_iter_func(void *arg, struct ieee80211_node *ni) 1409 { 1410 struct wpi_softc *sc = arg; 1411 struct wpi_node *wn = (struct wpi_node *)ni; 1412 1413 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1414 } 1415 1416 /* 1417 * This function is called periodically (every 60 seconds) to adjust output 1418 * power to temperature changes. 1419 */ 1420 void 1421 wpi_power_calibration(struct wpi_softc *sc, int temp) 1422 { 1423 /* sanity-check read value */ 1424 if (temp < -260 || temp > 25) { 1425 /* this can't be correct, ignore */ 1426 DPRINTF(("out-of-range temperature reported: %d\n", temp)); 1427 return; 1428 } 1429 1430 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 1431 1432 /* adjust Tx power if need be */ 1433 if (abs(temp - sc->temp) <= 6) 1434 return; 1435 1436 sc->temp = temp; 1437 1438 if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) { 1439 /* just warn, too bad for the automatic calibration... */ 1440 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n"); 1441 } 1442 } 1443 1444 static void 1445 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1446 struct wpi_rx_data *data) 1447 { 1448 struct ieee80211com *ic = &sc->sc_ic; 1449 struct ifnet *ifp = ic->ic_ifp; 1450 struct wpi_rx_ring *ring = &sc->rxq; 1451 struct wpi_rx_stat *stat; 1452 struct wpi_rx_head *head; 1453 struct wpi_rx_tail *tail; 1454 struct wpi_rbuf *rbuf; 1455 struct ieee80211_frame *wh; 1456 struct ieee80211_node *ni; 1457 struct mbuf *m, *mnew; 1458 int data_off, error; 1459 1460 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1461 BUS_DMASYNC_POSTREAD); 1462 stat = (struct wpi_rx_stat *)(desc + 1); 1463 1464 if (stat->len > WPI_STAT_MAXLEN) { 1465 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n"); 1466 ifp->if_ierrors++; 1467 return; 1468 } 1469 1470 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len); 1471 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len)); 1472 1473 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x " 1474 "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len), 1475 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1476 le64toh(tail->tstamp))); 1477 1478 /* 1479 * Discard Rx frames with bad CRC early (XXX we may want to pass them 1480 * to radiotap in monitor mode). 1481 */ 1482 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1483 DPRINTF(("rx tail flags error %x\n", 1484 le32toh(tail->flags))); 1485 ifp->if_ierrors++; 1486 return; 1487 } 1488 1489 /* Compute where are the useful datas */ 1490 data_off = (char*)(head + 1) - mtod(data->m, char*); 1491 1492 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1493 if (mnew == NULL) { 1494 ifp->if_ierrors++; 1495 return; 1496 } 1497 1498 rbuf = wpi_alloc_rbuf(sc); 1499 if (rbuf == NULL) { 1500 m_freem(mnew); 1501 ifp->if_ierrors++; 1502 return; 1503 } 1504 1505 /* attach Rx buffer to mbuf */ 1506 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 1507 rbuf); 1508 mnew->m_flags |= M_EXT_RW; 1509 1510 bus_dmamap_unload(sc->sc_dmat, data->map); 1511 1512 error = bus_dmamap_load(sc->sc_dmat, data->map, 1513 mtod(mnew, void *), WPI_RBUF_SIZE, NULL, 1514 BUS_DMA_NOWAIT | BUS_DMA_READ); 1515 if (error) { 1516 device_printf(sc->sc_dev, 1517 "couldn't load rx mbuf: %d\n", error); 1518 m_freem(mnew); 1519 ifp->if_ierrors++; 1520 1521 error = bus_dmamap_load(sc->sc_dmat, data->map, 1522 mtod(data->m, void *), WPI_RBUF_SIZE, NULL, 1523 BUS_DMA_NOWAIT | BUS_DMA_READ); 1524 if (error) 1525 panic("%s: bus_dmamap_load failed: %d\n", 1526 device_xname(sc->sc_dev), error); 1527 return; 1528 } 1529 1530 /* new mbuf loaded successfully */ 1531 m = data->m; 1532 data->m = mnew; 1533 1534 /* update Rx descriptor */ 1535 ring->desc[ring->cur] = htole32(rbuf->paddr); 1536 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1537 ring->desc_dma.size, 1538 BUS_DMASYNC_PREWRITE); 1539 1540 m->m_data = (char*)m->m_data + data_off; 1541 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1542 1543 /* finalize mbuf */ 1544 m->m_pkthdr.rcvif = ifp; 1545 1546 if (sc->sc_drvbpf != NULL) { 1547 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1548 1549 tap->wr_flags = 0; 1550 tap->wr_chan_freq = 1551 htole16(ic->ic_channels[head->chan].ic_freq); 1552 tap->wr_chan_flags = 1553 htole16(ic->ic_channels[head->chan].ic_flags); 1554 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1555 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1556 tap->wr_tsft = tail->tstamp; 1557 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1558 switch (head->rate) { 1559 /* CCK rates */ 1560 case 10: tap->wr_rate = 2; break; 1561 case 20: tap->wr_rate = 4; break; 1562 case 55: tap->wr_rate = 11; break; 1563 case 110: tap->wr_rate = 22; break; 1564 /* OFDM rates */ 1565 case 0xd: tap->wr_rate = 12; break; 1566 case 0xf: tap->wr_rate = 18; break; 1567 case 0x5: tap->wr_rate = 24; break; 1568 case 0x7: tap->wr_rate = 36; break; 1569 case 0x9: tap->wr_rate = 48; break; 1570 case 0xb: tap->wr_rate = 72; break; 1571 case 0x1: tap->wr_rate = 96; break; 1572 case 0x3: tap->wr_rate = 108; break; 1573 /* unknown rate: should not happen */ 1574 default: tap->wr_rate = 0; 1575 } 1576 if (le16toh(head->flags) & 0x4) 1577 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1578 1579 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1580 } 1581 1582 /* grab a reference to the source node */ 1583 wh = mtod(m, struct ieee80211_frame *); 1584 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1585 1586 /* send the frame to the 802.11 layer */ 1587 ieee80211_input(ic, m, ni, stat->rssi, 0); 1588 1589 /* release node reference */ 1590 ieee80211_free_node(ni); 1591 } 1592 1593 static void 1594 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1595 { 1596 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1597 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1598 struct wpi_tx_data *data = &ring->data[desc->idx]; 1599 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1600 struct wpi_node *wn = (struct wpi_node *)data->ni; 1601 1602 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x " 1603 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries, 1604 stat->nkill, stat->rate, le32toh(stat->duration), 1605 le32toh(stat->status))); 1606 1607 /* 1608 * Update rate control statistics for the node. 1609 * XXX we should not count mgmt frames since they're always sent at 1610 * the lowest available bit-rate. 1611 */ 1612 wn->amn.amn_txcnt++; 1613 if (stat->ntries > 0) { 1614 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries)); 1615 wn->amn.amn_retrycnt++; 1616 } 1617 1618 if ((le32toh(stat->status) & 0xff) != 1) 1619 ifp->if_oerrors++; 1620 else 1621 ifp->if_opackets++; 1622 1623 bus_dmamap_unload(sc->sc_dmat, data->map); 1624 m_freem(data->m); 1625 data->m = NULL; 1626 ieee80211_free_node(data->ni); 1627 data->ni = NULL; 1628 1629 ring->queued--; 1630 1631 sc->sc_tx_timer = 0; 1632 ifp->if_flags &= ~IFF_OACTIVE; 1633 wpi_start(ifp); 1634 } 1635 1636 static void 1637 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1638 { 1639 struct wpi_tx_ring *ring = &sc->cmdq; 1640 struct wpi_tx_data *data; 1641 1642 if ((desc->qid & 7) != 4) 1643 return; /* not a command ack */ 1644 1645 data = &ring->data[desc->idx]; 1646 1647 /* if the command was mapped in a mbuf, free it */ 1648 if (data->m != NULL) { 1649 bus_dmamap_unload(sc->sc_dmat, data->map); 1650 m_freem(data->m); 1651 data->m = NULL; 1652 } 1653 1654 wakeup(&ring->cmd[desc->idx]); 1655 } 1656 1657 static void 1658 wpi_notif_intr(struct wpi_softc *sc) 1659 { 1660 struct ieee80211com *ic = &sc->sc_ic; 1661 struct ifnet *ifp = ic->ic_ifp; 1662 uint32_t hw; 1663 1664 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0, 1665 sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD); 1666 1667 hw = le32toh(sc->shared->next); 1668 while (sc->rxq.cur != hw) { 1669 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 1670 struct wpi_rx_desc *desc; 1671 1672 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1673 BUS_DMASYNC_POSTREAD); 1674 desc = mtod(data->m, struct wpi_rx_desc *); 1675 1676 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d " 1677 "len=%d\n", desc->qid, desc->idx, desc->flags, 1678 desc->type, le32toh(desc->len))); 1679 1680 if (!(desc->qid & 0x80)) /* reply to a command */ 1681 wpi_cmd_intr(sc, desc); 1682 1683 switch (desc->type) { 1684 case WPI_RX_DONE: 1685 /* a 802.11 frame was received */ 1686 wpi_rx_intr(sc, desc, data); 1687 break; 1688 1689 case WPI_TX_DONE: 1690 /* a 802.11 frame has been transmitted */ 1691 wpi_tx_intr(sc, desc); 1692 break; 1693 1694 case WPI_UC_READY: 1695 { 1696 struct wpi_ucode_info *uc = 1697 (struct wpi_ucode_info *)(desc + 1); 1698 1699 /* the microcontroller is ready */ 1700 DPRINTF(("microcode alive notification version %x " 1701 "alive %x\n", le32toh(uc->version), 1702 le32toh(uc->valid))); 1703 1704 if (le32toh(uc->valid) != 1) { 1705 aprint_error_dev(sc->sc_dev, 1706 "microcontroller initialization failed\n"); 1707 } 1708 break; 1709 } 1710 case WPI_STATE_CHANGED: 1711 { 1712 uint32_t *status = (uint32_t *)(desc + 1); 1713 1714 /* enabled/disabled notification */ 1715 DPRINTF(("state changed to %x\n", le32toh(*status))); 1716 1717 if (le32toh(*status) & 1) { 1718 /* the radio button has to be pushed */ 1719 /* wake up thread to signal powerd */ 1720 cv_signal(&sc->sc_rsw_cv); 1721 aprint_error_dev(sc->sc_dev, 1722 "Radio transmitter is off\n"); 1723 /* turn the interface down */ 1724 ifp->if_flags &= ~IFF_UP; 1725 wpi_stop(ifp, 1); 1726 return; /* no further processing */ 1727 } 1728 break; 1729 } 1730 case WPI_START_SCAN: 1731 { 1732 #if 0 1733 struct wpi_start_scan *scan = 1734 (struct wpi_start_scan *)(desc + 1); 1735 1736 DPRINTFN(2, ("scanning channel %d status %x\n", 1737 scan->chan, le32toh(scan->status))); 1738 1739 /* fix current channel */ 1740 ic->ic_curchan = &ic->ic_channels[scan->chan]; 1741 #endif 1742 break; 1743 } 1744 case WPI_STOP_SCAN: 1745 { 1746 #ifdef WPI_DEBUG 1747 struct wpi_stop_scan *scan = 1748 (struct wpi_stop_scan *)(desc + 1); 1749 #endif 1750 1751 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 1752 scan->nchan, scan->status, scan->chan)); 1753 1754 sc->is_scanning = false; 1755 if (ic->ic_state == IEEE80211_S_SCAN) 1756 ieee80211_next_scan(ic); 1757 1758 break; 1759 } 1760 } 1761 1762 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1763 } 1764 1765 /* tell the firmware what we have processed */ 1766 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1767 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1768 } 1769 1770 static int 1771 wpi_intr(void *arg) 1772 { 1773 struct wpi_softc *sc = arg; 1774 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1775 uint32_t r; 1776 1777 r = WPI_READ(sc, WPI_INTR); 1778 if (r == 0 || r == 0xffffffff) 1779 return 0; /* not for us */ 1780 1781 DPRINTFN(6, ("interrupt reg %x\n", r)); 1782 1783 /* disable interrupts */ 1784 WPI_WRITE(sc, WPI_MASK, 0); 1785 /* ack interrupts */ 1786 WPI_WRITE(sc, WPI_INTR, r); 1787 1788 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1789 /* SYSTEM FAILURE, SYSTEM FAILURE */ 1790 aprint_error_dev(sc->sc_dev, "fatal firmware error\n"); 1791 ifp->if_flags &= ~IFF_UP; 1792 wpi_stop(ifp, 1); 1793 return 1; 1794 } 1795 1796 if (r & WPI_RX_INTR) 1797 wpi_notif_intr(sc); 1798 1799 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1800 wakeup(sc); 1801 1802 /* re-enable interrupts */ 1803 if (ifp->if_flags & IFF_UP) 1804 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1805 1806 return 1; 1807 } 1808 1809 static uint8_t 1810 wpi_plcp_signal(int rate) 1811 { 1812 switch (rate) { 1813 /* CCK rates (returned values are device-dependent) */ 1814 case 2: return 10; 1815 case 4: return 20; 1816 case 11: return 55; 1817 case 22: return 110; 1818 1819 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1820 /* R1-R4, (u)ral is R4-R1 */ 1821 case 12: return 0xd; 1822 case 18: return 0xf; 1823 case 24: return 0x5; 1824 case 36: return 0x7; 1825 case 48: return 0x9; 1826 case 72: return 0xb; 1827 case 96: return 0x1; 1828 case 108: return 0x3; 1829 1830 /* unsupported rates (should not get there) */ 1831 default: return 0; 1832 } 1833 } 1834 1835 /* quickly determine if a given rate is CCK or OFDM */ 1836 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1837 1838 static int 1839 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1840 int ac) 1841 { 1842 struct ieee80211com *ic = &sc->sc_ic; 1843 struct wpi_tx_ring *ring = &sc->txq[ac]; 1844 struct wpi_tx_desc *desc; 1845 struct wpi_tx_data *data; 1846 struct wpi_tx_cmd *cmd; 1847 struct wpi_cmd_data *tx; 1848 struct ieee80211_frame *wh; 1849 struct ieee80211_key *k; 1850 const struct chanAccParams *cap; 1851 struct mbuf *mnew; 1852 int i, rate, error, hdrlen, noack = 0; 1853 1854 desc = &ring->desc[ring->cur]; 1855 data = &ring->data[ring->cur]; 1856 1857 wh = mtod(m0, struct ieee80211_frame *); 1858 1859 if (ieee80211_has_qos(wh)) { 1860 cap = &ic->ic_wme.wme_chanParams; 1861 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 1862 } 1863 1864 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1865 k = ieee80211_crypto_encap(ic, ni, m0); 1866 if (k == NULL) { 1867 m_freem(m0); 1868 return ENOBUFS; 1869 } 1870 1871 /* packet header may have moved, reset our local pointer */ 1872 wh = mtod(m0, struct ieee80211_frame *); 1873 } 1874 1875 hdrlen = ieee80211_anyhdrsize(wh); 1876 1877 /* pickup a rate */ 1878 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1879 IEEE80211_FC0_TYPE_MGT) { 1880 /* mgmt frames are sent at the lowest available bit-rate */ 1881 rate = ni->ni_rates.rs_rates[0]; 1882 } else { 1883 if (ic->ic_fixed_rate != -1) { 1884 rate = ic->ic_sup_rates[ic->ic_curmode]. 1885 rs_rates[ic->ic_fixed_rate]; 1886 } else 1887 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1888 } 1889 rate &= IEEE80211_RATE_VAL; 1890 1891 if (sc->sc_drvbpf != NULL) { 1892 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1893 1894 tap->wt_flags = 0; 1895 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1896 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1897 tap->wt_rate = rate; 1898 tap->wt_hwqueue = ac; 1899 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1900 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1901 1902 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1903 } 1904 1905 cmd = &ring->cmd[ring->cur]; 1906 cmd->code = WPI_CMD_TX_DATA; 1907 cmd->flags = 0; 1908 cmd->qid = ring->qid; 1909 cmd->idx = ring->cur; 1910 1911 tx = (struct wpi_cmd_data *)cmd->data; 1912 /* no need to zero tx, all fields are reinitialized here */ 1913 tx->flags = 0; 1914 1915 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1916 tx->flags |= htole32(WPI_TX_NEED_ACK); 1917 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) 1918 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP); 1919 1920 tx->flags |= htole32(WPI_TX_AUTO_SEQ); 1921 1922 /* retrieve destination node's id */ 1923 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST : 1924 WPI_ID_BSS; 1925 1926 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1927 IEEE80211_FC0_TYPE_MGT) { 1928 /* tell h/w to set timestamp in probe responses */ 1929 if ((wh->i_fc[0] & 1930 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1931 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1932 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1933 1934 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1935 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) || 1936 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1937 IEEE80211_FC0_SUBTYPE_REASSOC_REQ)) 1938 tx->timeout = htole16(3); 1939 else 1940 tx->timeout = htole16(2); 1941 } else 1942 tx->timeout = htole16(0); 1943 1944 tx->rate = wpi_plcp_signal(rate); 1945 1946 /* be very persistant at sending frames out */ 1947 tx->rts_ntries = 7; 1948 tx->data_ntries = 15; 1949 1950 tx->ofdm_mask = 0xff; 1951 tx->cck_mask = 0x0f; 1952 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1953 1954 tx->len = htole16(m0->m_pkthdr.len); 1955 1956 /* save and trim IEEE802.11 header */ 1957 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 1958 m_adj(m0, hdrlen); 1959 1960 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1961 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1962 if (error != 0 && error != EFBIG) { 1963 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", 1964 error); 1965 m_freem(m0); 1966 return error; 1967 } 1968 if (error != 0) { 1969 /* too many fragments, linearize */ 1970 1971 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1972 if (mnew == NULL) { 1973 m_freem(m0); 1974 return ENOMEM; 1975 } 1976 M_COPY_PKTHDR(mnew, m0); 1977 if (m0->m_pkthdr.len > MHLEN) { 1978 MCLGET(mnew, M_DONTWAIT); 1979 if (!(mnew->m_flags & M_EXT)) { 1980 m_freem(m0); 1981 m_freem(mnew); 1982 return ENOMEM; 1983 } 1984 } 1985 1986 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *)); 1987 m_freem(m0); 1988 mnew->m_len = mnew->m_pkthdr.len; 1989 m0 = mnew; 1990 1991 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1992 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1993 if (error != 0) { 1994 aprint_error_dev(sc->sc_dev, 1995 "could not map mbuf (error %d)\n", error); 1996 m_freem(m0); 1997 return error; 1998 } 1999 } 2000 2001 data->m = m0; 2002 data->ni = ni; 2003 2004 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2005 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs)); 2006 2007 /* first scatter/gather segment is used by the tx data command */ 2008 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2009 (1 + data->map->dm_nsegs) << 24); 2010 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2011 ring->cur * sizeof (struct wpi_tx_cmd)); 2012 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) + 2013 ((hdrlen + 3) & ~3)); 2014 for (i = 1; i <= data->map->dm_nsegs; i++) { 2015 desc->segs[i].addr = 2016 htole32(data->map->dm_segs[i - 1].ds_addr); 2017 desc->segs[i].len = 2018 htole32(data->map->dm_segs[i - 1].ds_len); 2019 } 2020 2021 ring->queued++; 2022 2023 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2024 data->map->dm_mapsize, 2025 BUS_DMASYNC_PREWRITE); 2026 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0, 2027 ring->cmd_dma.size, 2028 BUS_DMASYNC_PREWRITE); 2029 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 2030 ring->desc_dma.size, 2031 BUS_DMASYNC_PREWRITE); 2032 2033 /* kick ring */ 2034 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2035 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2036 2037 return 0; 2038 } 2039 2040 static void 2041 wpi_start(struct ifnet *ifp) 2042 { 2043 struct wpi_softc *sc = ifp->if_softc; 2044 struct ieee80211com *ic = &sc->sc_ic; 2045 struct ieee80211_node *ni; 2046 struct ether_header *eh; 2047 struct mbuf *m0; 2048 int ac; 2049 2050 /* 2051 * net80211 may still try to send management frames even if the 2052 * IFF_RUNNING flag is not set... 2053 */ 2054 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 2055 return; 2056 2057 for (;;) { 2058 IF_DEQUEUE(&ic->ic_mgtq, m0); 2059 if (m0 != NULL) { 2060 2061 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2062 m0->m_pkthdr.rcvif = NULL; 2063 2064 /* management frames go into ring 0 */ 2065 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2066 ifp->if_oerrors++; 2067 continue; 2068 } 2069 bpf_mtap3(ic->ic_rawbpf, m0); 2070 if (wpi_tx_data(sc, m0, ni, 0) != 0) { 2071 ifp->if_oerrors++; 2072 break; 2073 } 2074 } else { 2075 if (ic->ic_state != IEEE80211_S_RUN) 2076 break; 2077 IFQ_POLL(&ifp->if_snd, m0); 2078 if (m0 == NULL) 2079 break; 2080 2081 if (m0->m_len < sizeof (*eh) && 2082 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) { 2083 ifp->if_oerrors++; 2084 continue; 2085 } 2086 eh = mtod(m0, struct ether_header *); 2087 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2088 if (ni == NULL) { 2089 m_freem(m0); 2090 ifp->if_oerrors++; 2091 continue; 2092 } 2093 2094 /* classify mbuf so we can find which tx ring to use */ 2095 if (ieee80211_classify(ic, m0, ni) != 0) { 2096 m_freem(m0); 2097 ieee80211_free_node(ni); 2098 ifp->if_oerrors++; 2099 continue; 2100 } 2101 2102 /* no QoS encapsulation for EAPOL frames */ 2103 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 2104 M_WME_GETAC(m0) : WME_AC_BE; 2105 2106 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2107 /* there is no place left in this ring */ 2108 ifp->if_flags |= IFF_OACTIVE; 2109 break; 2110 } 2111 IFQ_DEQUEUE(&ifp->if_snd, m0); 2112 bpf_mtap(ifp, m0); 2113 m0 = ieee80211_encap(ic, m0, ni); 2114 if (m0 == NULL) { 2115 ieee80211_free_node(ni); 2116 ifp->if_oerrors++; 2117 continue; 2118 } 2119 bpf_mtap3(ic->ic_rawbpf, m0); 2120 if (wpi_tx_data(sc, m0, ni, ac) != 0) { 2121 ieee80211_free_node(ni); 2122 ifp->if_oerrors++; 2123 break; 2124 } 2125 } 2126 2127 sc->sc_tx_timer = 5; 2128 ifp->if_timer = 1; 2129 } 2130 } 2131 2132 static void 2133 wpi_watchdog(struct ifnet *ifp) 2134 { 2135 struct wpi_softc *sc = ifp->if_softc; 2136 2137 ifp->if_timer = 0; 2138 2139 if (sc->sc_tx_timer > 0) { 2140 if (--sc->sc_tx_timer == 0) { 2141 aprint_error_dev(sc->sc_dev, "device timeout\n"); 2142 ifp->if_flags &= ~IFF_UP; 2143 wpi_stop(ifp, 1); 2144 ifp->if_oerrors++; 2145 return; 2146 } 2147 ifp->if_timer = 1; 2148 } 2149 2150 ieee80211_watchdog(&sc->sc_ic); 2151 } 2152 2153 static int 2154 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2155 { 2156 #define IS_RUNNING(ifp) \ 2157 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 2158 2159 struct wpi_softc *sc = ifp->if_softc; 2160 struct ieee80211com *ic = &sc->sc_ic; 2161 int s, error = 0; 2162 2163 s = splnet(); 2164 2165 switch (cmd) { 2166 case SIOCSIFFLAGS: 2167 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2168 break; 2169 if (ifp->if_flags & IFF_UP) { 2170 if (!(ifp->if_flags & IFF_RUNNING)) 2171 wpi_init(ifp); 2172 } else { 2173 if (ifp->if_flags & IFF_RUNNING) 2174 wpi_stop(ifp, 1); 2175 } 2176 break; 2177 2178 case SIOCADDMULTI: 2179 case SIOCDELMULTI: 2180 /* XXX no h/w multicast filter? --dyoung */ 2181 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 2182 /* setup multicast filter, etc */ 2183 error = 0; 2184 } 2185 break; 2186 2187 default: 2188 error = ieee80211_ioctl(ic, cmd, data); 2189 } 2190 2191 if (error == ENETRESET) { 2192 if (IS_RUNNING(ifp) && 2193 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 2194 wpi_init(ifp); 2195 error = 0; 2196 } 2197 2198 splx(s); 2199 return error; 2200 2201 #undef IS_RUNNING 2202 } 2203 2204 /* 2205 * Extract various information from EEPROM. 2206 */ 2207 static void 2208 wpi_read_eeprom(struct wpi_softc *sc) 2209 { 2210 struct ieee80211com *ic = &sc->sc_ic; 2211 char domain[4]; 2212 int i; 2213 2214 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1); 2215 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2); 2216 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2217 2218 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev), 2219 sc->type)); 2220 2221 /* read and print regulatory domain */ 2222 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4); 2223 aprint_normal_dev(sc->sc_dev, "%.4s", domain); 2224 2225 /* read and print MAC address */ 2226 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 2227 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr)); 2228 2229 /* read the list of authorized channels */ 2230 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2231 wpi_read_eeprom_channels(sc, i); 2232 2233 /* read the list of power groups */ 2234 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2235 wpi_read_eeprom_group(sc, i); 2236 } 2237 2238 static void 2239 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 2240 { 2241 struct ieee80211com *ic = &sc->sc_ic; 2242 const struct wpi_chan_band *band = &wpi_bands[n]; 2243 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 2244 int chan, i; 2245 2246 wpi_read_prom_data(sc, band->addr, channels, 2247 band->nchan * sizeof (struct wpi_eeprom_chan)); 2248 2249 for (i = 0; i < band->nchan; i++) { 2250 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) 2251 continue; 2252 2253 chan = band->chan[i]; 2254 2255 if (n == 0) { /* 2GHz band */ 2256 ic->ic_channels[chan].ic_freq = 2257 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 2258 ic->ic_channels[chan].ic_flags = 2259 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 2260 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 2261 2262 } else { /* 5GHz band */ 2263 /* 2264 * Some 3945ABG adapters support channels 7, 8, 11 2265 * and 12 in the 2GHz *and* 5GHz bands. 2266 * Because of limitations in our net80211(9) stack, 2267 * we can't support these channels in 5GHz band. 2268 */ 2269 if (chan <= 14) 2270 continue; 2271 2272 ic->ic_channels[chan].ic_freq = 2273 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 2274 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 2275 } 2276 2277 /* is active scan allowed on this channel? */ 2278 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 2279 ic->ic_channels[chan].ic_flags |= 2280 IEEE80211_CHAN_PASSIVE; 2281 } 2282 2283 /* save maximum allowed power for this channel */ 2284 sc->maxpwr[chan] = channels[i].maxpwr; 2285 2286 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 2287 chan, channels[i].flags, sc->maxpwr[chan])); 2288 } 2289 } 2290 2291 static void 2292 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 2293 { 2294 struct wpi_power_group *group = &sc->groups[n]; 2295 struct wpi_eeprom_group rgroup; 2296 int i; 2297 2298 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 2299 sizeof rgroup); 2300 2301 /* save power group information */ 2302 group->chan = rgroup.chan; 2303 group->maxpwr = rgroup.maxpwr; 2304 /* temperature at which the samples were taken */ 2305 group->temp = (int16_t)le16toh(rgroup.temp); 2306 2307 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 2308 group->chan, group->maxpwr, group->temp)); 2309 2310 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 2311 group->samples[i].index = rgroup.samples[i].index; 2312 group->samples[i].power = rgroup.samples[i].power; 2313 2314 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 2315 group->samples[i].index, group->samples[i].power)); 2316 } 2317 } 2318 2319 /* 2320 * Send a command to the firmware. 2321 */ 2322 static int 2323 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2324 { 2325 struct wpi_tx_ring *ring = &sc->cmdq; 2326 struct wpi_tx_desc *desc; 2327 struct wpi_tx_cmd *cmd; 2328 struct wpi_dma_info *dma; 2329 2330 KASSERT(size <= sizeof cmd->data); 2331 2332 desc = &ring->desc[ring->cur]; 2333 cmd = &ring->cmd[ring->cur]; 2334 2335 cmd->code = code; 2336 cmd->flags = 0; 2337 cmd->qid = ring->qid; 2338 cmd->idx = ring->cur; 2339 memcpy(cmd->data, buf, size); 2340 2341 dma = &ring->cmd_dma; 2342 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 2343 2344 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2345 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2346 ring->cur * sizeof (struct wpi_tx_cmd)); 2347 desc->segs[0].len = htole32(4 + size); 2348 2349 dma = &ring->desc_dma; 2350 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 2351 2352 /* kick cmd ring */ 2353 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2354 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2355 2356 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz); 2357 } 2358 2359 static int 2360 wpi_wme_update(struct ieee80211com *ic) 2361 { 2362 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2363 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2364 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2365 const struct wmeParams *wmep; 2366 struct wpi_wme_setup wme; 2367 int ac; 2368 2369 /* don't override default WME values if WME is not actually enabled */ 2370 if (!(ic->ic_flags & IEEE80211_F_WME)) 2371 return 0; 2372 2373 wme.flags = 0; 2374 for (ac = 0; ac < WME_NUM_AC; ac++) { 2375 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2376 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2377 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2378 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2379 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2380 2381 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2382 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2383 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2384 } 2385 2386 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2387 #undef WPI_USEC 2388 #undef WPI_EXP2 2389 } 2390 2391 /* 2392 * Configure h/w multi-rate retries. 2393 */ 2394 static int 2395 wpi_mrr_setup(struct wpi_softc *sc) 2396 { 2397 struct ieee80211com *ic = &sc->sc_ic; 2398 struct wpi_mrr_setup mrr; 2399 int i, error; 2400 2401 /* CCK rates (not used with 802.11a) */ 2402 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2403 mrr.rates[i].flags = 0; 2404 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2405 /* fallback to the immediate lower CCK rate (if any) */ 2406 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2407 /* try one time at this rate before falling back to "next" */ 2408 mrr.rates[i].ntries = 1; 2409 } 2410 2411 /* OFDM rates (not used with 802.11b) */ 2412 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2413 mrr.rates[i].flags = 0; 2414 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2415 /* fallback to the immediate lower rate (if any) */ 2416 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2417 mrr.rates[i].next = (i == WPI_OFDM6) ? 2418 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2419 WPI_OFDM6 : WPI_CCK2) : 2420 i - 1; 2421 /* try one time at this rate before falling back to "next" */ 2422 mrr.rates[i].ntries = 1; 2423 } 2424 2425 /* setup MRR for control frames */ 2426 mrr.which = htole32(WPI_MRR_CTL); 2427 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2428 if (error != 0) { 2429 aprint_error_dev(sc->sc_dev, 2430 "could not setup MRR for control frames\n"); 2431 return error; 2432 } 2433 2434 /* setup MRR for data frames */ 2435 mrr.which = htole32(WPI_MRR_DATA); 2436 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2437 if (error != 0) { 2438 aprint_error_dev(sc->sc_dev, 2439 "could not setup MRR for data frames\n"); 2440 return error; 2441 } 2442 2443 return 0; 2444 } 2445 2446 static void 2447 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2448 { 2449 struct wpi_cmd_led led; 2450 2451 led.which = which; 2452 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2453 led.off = off; 2454 led.on = on; 2455 2456 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2457 } 2458 2459 static void 2460 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2461 { 2462 struct wpi_cmd_tsf tsf; 2463 uint64_t val, mod; 2464 2465 memset(&tsf, 0, sizeof tsf); 2466 memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 2467 tsf.bintval = htole16(ni->ni_intval); 2468 tsf.lintval = htole16(10); 2469 2470 /* compute remaining time until next beacon */ 2471 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 2472 mod = le64toh(tsf.tstamp) % val; 2473 tsf.binitval = htole32((uint32_t)(val - mod)); 2474 2475 DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n", 2476 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod))); 2477 2478 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2479 aprint_error_dev(sc->sc_dev, "could not enable TSF\n"); 2480 } 2481 2482 /* 2483 * Update Tx power to match what is defined for channel `c'. 2484 */ 2485 static int 2486 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 2487 { 2488 struct ieee80211com *ic = &sc->sc_ic; 2489 struct wpi_power_group *group; 2490 struct wpi_cmd_txpower txpower; 2491 u_int chan; 2492 int i; 2493 2494 /* get channel number */ 2495 chan = ieee80211_chan2ieee(ic, c); 2496 2497 /* find the power group to which this channel belongs */ 2498 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2499 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 2500 if (chan <= group->chan) 2501 break; 2502 } else 2503 group = &sc->groups[0]; 2504 2505 memset(&txpower, 0, sizeof txpower); 2506 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 2507 txpower.chan = htole16(chan); 2508 2509 /* set Tx power for all OFDM and CCK rates */ 2510 for (i = 0; i <= 11 ; i++) { 2511 /* retrieve Tx power for this channel/rate combination */ 2512 int idx = wpi_get_power_index(sc, group, c, 2513 wpi_ridx_to_rate[i]); 2514 2515 txpower.rates[i].plcp = wpi_ridx_to_plcp[i]; 2516 2517 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2518 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 2519 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 2520 } else { 2521 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 2522 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 2523 } 2524 DPRINTF(("chan %d/rate %d: power index %d\n", chan, 2525 wpi_ridx_to_rate[i], idx)); 2526 } 2527 2528 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 2529 } 2530 2531 /* 2532 * Determine Tx power index for a given channel/rate combination. 2533 * This takes into account the regulatory information from EEPROM and the 2534 * current temperature. 2535 */ 2536 static int 2537 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 2538 struct ieee80211_channel *c, int rate) 2539 { 2540 /* fixed-point arithmetic division using a n-bit fractional part */ 2541 #define fdivround(a, b, n) \ 2542 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 2543 2544 /* linear interpolation */ 2545 #define interpolate(x, x1, y1, x2, y2, n) \ 2546 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 2547 2548 struct ieee80211com *ic = &sc->sc_ic; 2549 struct wpi_power_sample *sample; 2550 int pwr, idx; 2551 u_int chan; 2552 2553 /* get channel number */ 2554 chan = ieee80211_chan2ieee(ic, c); 2555 2556 /* default power is group's maximum power - 3dB */ 2557 pwr = group->maxpwr / 2; 2558 2559 /* decrease power for highest OFDM rates to reduce distortion */ 2560 switch (rate) { 2561 case 72: /* 36Mb/s */ 2562 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 2563 break; 2564 case 96: /* 48Mb/s */ 2565 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 2566 break; 2567 case 108: /* 54Mb/s */ 2568 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 2569 break; 2570 } 2571 2572 /* never exceed channel's maximum allowed Tx power */ 2573 pwr = min(pwr, sc->maxpwr[chan]); 2574 2575 /* retrieve power index into gain tables from samples */ 2576 for (sample = group->samples; sample < &group->samples[3]; sample++) 2577 if (pwr > sample[1].power) 2578 break; 2579 /* fixed-point linear interpolation using a 19-bit fractional part */ 2580 idx = interpolate(pwr, sample[0].power, sample[0].index, 2581 sample[1].power, sample[1].index, 19); 2582 2583 /*- 2584 * Adjust power index based on current temperature: 2585 * - if cooler than factory-calibrated: decrease output power 2586 * - if warmer than factory-calibrated: increase output power 2587 */ 2588 idx -= (sc->temp - group->temp) * 11 / 100; 2589 2590 /* decrease power for CCK rates (-5dB) */ 2591 if (!WPI_RATE_IS_OFDM(rate)) 2592 idx += 10; 2593 2594 /* keep power index in a valid range */ 2595 if (idx < 0) 2596 return 0; 2597 if (idx > WPI_MAX_PWR_INDEX) 2598 return WPI_MAX_PWR_INDEX; 2599 return idx; 2600 2601 #undef interpolate 2602 #undef fdivround 2603 } 2604 2605 /* 2606 * Build a beacon frame that the firmware will broadcast periodically in 2607 * IBSS or HostAP modes. 2608 */ 2609 static int 2610 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2611 { 2612 struct ieee80211com *ic = &sc->sc_ic; 2613 struct wpi_tx_ring *ring = &sc->cmdq; 2614 struct wpi_tx_desc *desc; 2615 struct wpi_tx_data *data; 2616 struct wpi_tx_cmd *cmd; 2617 struct wpi_cmd_beacon *bcn; 2618 struct ieee80211_beacon_offsets bo; 2619 struct mbuf *m0; 2620 int error; 2621 2622 desc = &ring->desc[ring->cur]; 2623 data = &ring->data[ring->cur]; 2624 2625 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2626 if (m0 == NULL) { 2627 aprint_error_dev(sc->sc_dev, 2628 "could not allocate beacon frame\n"); 2629 return ENOMEM; 2630 } 2631 2632 cmd = &ring->cmd[ring->cur]; 2633 cmd->code = WPI_CMD_SET_BEACON; 2634 cmd->flags = 0; 2635 cmd->qid = ring->qid; 2636 cmd->idx = ring->cur; 2637 2638 bcn = (struct wpi_cmd_beacon *)cmd->data; 2639 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2640 bcn->id = WPI_ID_BROADCAST; 2641 bcn->ofdm_mask = 0xff; 2642 bcn->cck_mask = 0x0f; 2643 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2644 bcn->len = htole16(m0->m_pkthdr.len); 2645 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2646 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2647 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2648 2649 /* save and trim IEEE802.11 header */ 2650 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh); 2651 m_adj(m0, sizeof (struct ieee80211_frame)); 2652 2653 /* assume beacon frame is contiguous */ 2654 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 2655 BUS_DMA_READ | BUS_DMA_NOWAIT); 2656 if (error != 0) { 2657 aprint_error_dev(sc->sc_dev, "could not map beacon\n"); 2658 m_freem(m0); 2659 return error; 2660 } 2661 2662 data->m = m0; 2663 2664 /* first scatter/gather segment is used by the beacon command */ 2665 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2666 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2667 ring->cur * sizeof (struct wpi_tx_cmd)); 2668 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2669 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr); 2670 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len); 2671 2672 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 2673 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2674 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2675 BUS_DMASYNC_PREWRITE); 2676 2677 /* kick cmd ring */ 2678 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2679 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2680 2681 return 0; 2682 } 2683 2684 static int 2685 wpi_auth(struct wpi_softc *sc) 2686 { 2687 struct ieee80211com *ic = &sc->sc_ic; 2688 struct ieee80211_node *ni = ic->ic_bss; 2689 struct wpi_node_info node; 2690 int error; 2691 2692 /* update adapter's configuration */ 2693 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2694 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2695 sc->config.flags = htole32(WPI_CONFIG_TSF); 2696 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2697 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2698 WPI_CONFIG_24GHZ); 2699 } 2700 switch (ic->ic_curmode) { 2701 case IEEE80211_MODE_11A: 2702 sc->config.cck_mask = 0; 2703 sc->config.ofdm_mask = 0x15; 2704 break; 2705 case IEEE80211_MODE_11B: 2706 sc->config.cck_mask = 0x03; 2707 sc->config.ofdm_mask = 0; 2708 break; 2709 default: /* assume 802.11b/g */ 2710 sc->config.cck_mask = 0x0f; 2711 sc->config.ofdm_mask = 0x15; 2712 } 2713 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2714 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2715 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2716 sizeof (struct wpi_config), 1); 2717 if (error != 0) { 2718 aprint_error_dev(sc->sc_dev, "could not configure\n"); 2719 return error; 2720 } 2721 2722 /* configuration has changed, set Tx power accordingly */ 2723 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2724 aprint_error_dev(sc->sc_dev, "could not set Tx power\n"); 2725 return error; 2726 } 2727 2728 /* add default node */ 2729 memset(&node, 0, sizeof node); 2730 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2731 node.id = WPI_ID_BSS; 2732 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2733 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2734 node.action = htole32(WPI_ACTION_SET_RATE); 2735 node.antenna = WPI_ANTENNA_BOTH; 2736 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2737 if (error != 0) { 2738 aprint_error_dev(sc->sc_dev, "could not add BSS node\n"); 2739 return error; 2740 } 2741 2742 return 0; 2743 } 2744 2745 /* 2746 * Send a scan request to the firmware. Since this command is huge, we map it 2747 * into a mbuf instead of using the pre-allocated set of commands. 2748 */ 2749 static int 2750 wpi_scan(struct wpi_softc *sc) 2751 { 2752 struct ieee80211com *ic = &sc->sc_ic; 2753 struct wpi_tx_ring *ring = &sc->cmdq; 2754 struct wpi_tx_desc *desc; 2755 struct wpi_tx_data *data; 2756 struct wpi_tx_cmd *cmd; 2757 struct wpi_scan_hdr *hdr; 2758 struct wpi_scan_chan *chan; 2759 struct ieee80211_frame *wh; 2760 struct ieee80211_rateset *rs; 2761 struct ieee80211_channel *c; 2762 uint8_t *frm; 2763 int pktlen, error, nrates; 2764 2765 if (ic->ic_curchan == NULL) 2766 return EIO; 2767 2768 desc = &ring->desc[ring->cur]; 2769 data = &ring->data[ring->cur]; 2770 2771 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 2772 if (data->m == NULL) { 2773 aprint_error_dev(sc->sc_dev, 2774 "could not allocate mbuf for scan command\n"); 2775 return ENOMEM; 2776 } 2777 MCLGET(data->m, M_DONTWAIT); 2778 if (!(data->m->m_flags & M_EXT)) { 2779 m_freem(data->m); 2780 data->m = NULL; 2781 aprint_error_dev(sc->sc_dev, 2782 "could not allocate mbuf for scan command\n"); 2783 return ENOMEM; 2784 } 2785 2786 cmd = mtod(data->m, struct wpi_tx_cmd *); 2787 cmd->code = WPI_CMD_SCAN; 2788 cmd->flags = 0; 2789 cmd->qid = ring->qid; 2790 cmd->idx = ring->cur; 2791 2792 hdr = (struct wpi_scan_hdr *)cmd->data; 2793 memset(hdr, 0, sizeof (struct wpi_scan_hdr)); 2794 hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ); 2795 hdr->cmd.id = WPI_ID_BROADCAST; 2796 hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE); 2797 /* 2798 * Move to the next channel if no packets are received within 5 msecs 2799 * after sending the probe request (this helps to reduce the duration 2800 * of active scans). 2801 */ 2802 hdr->quiet = htole16(5); /* timeout in milliseconds */ 2803 hdr->plcp_threshold = htole16(1); /* min # of packets */ 2804 2805 if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) { 2806 hdr->crc_threshold = htole16(1); 2807 /* send probe requests at 6Mbps */ 2808 hdr->cmd.rate = wpi_plcp_signal(12); 2809 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 2810 } else { 2811 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2812 /* send probe requests at 1Mbps */ 2813 hdr->cmd.rate = wpi_plcp_signal(2); 2814 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 2815 } 2816 2817 /* for directed scans, firmware inserts the essid IE itself */ 2818 if (ic->ic_des_esslen != 0) { 2819 hdr->essid[0].id = IEEE80211_ELEMID_SSID; 2820 hdr->essid[0].len = ic->ic_des_esslen; 2821 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 2822 } 2823 2824 /* 2825 * Build a probe request frame. Most of the following code is a 2826 * copy & paste of what is done in net80211. 2827 */ 2828 wh = (struct ieee80211_frame *)(hdr + 1); 2829 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2830 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2831 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2832 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 2833 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2834 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 2835 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2836 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2837 2838 frm = (uint8_t *)(wh + 1); 2839 2840 /* add empty essid IE (firmware generates it for directed scans) */ 2841 *frm++ = IEEE80211_ELEMID_SSID; 2842 *frm++ = 0; 2843 2844 /* add supported rates IE */ 2845 *frm++ = IEEE80211_ELEMID_RATES; 2846 nrates = rs->rs_nrates; 2847 if (nrates > IEEE80211_RATE_SIZE) 2848 nrates = IEEE80211_RATE_SIZE; 2849 *frm++ = nrates; 2850 memcpy(frm, rs->rs_rates, nrates); 2851 frm += nrates; 2852 2853 /* add supported xrates IE */ 2854 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2855 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2856 *frm++ = IEEE80211_ELEMID_XRATES; 2857 *frm++ = nrates; 2858 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2859 frm += nrates; 2860 } 2861 2862 /* setup length of probe request */ 2863 hdr->cmd.len = htole16(frm - (uint8_t *)wh); 2864 2865 chan = (struct wpi_scan_chan *)frm; 2866 c = ic->ic_curchan; 2867 2868 chan->chan = ieee80211_chan2ieee(ic, c); 2869 chan->flags = 0; 2870 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2871 chan->flags |= WPI_CHAN_ACTIVE; 2872 if (ic->ic_des_esslen != 0) 2873 chan->flags |= WPI_CHAN_DIRECT; 2874 } 2875 chan->dsp_gain = 0x6e; 2876 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2877 chan->rf_gain = 0x3b; 2878 chan->active = htole16(10); 2879 chan->passive = htole16(110); 2880 } else { 2881 chan->rf_gain = 0x28; 2882 chan->active = htole16(20); 2883 chan->passive = htole16(120); 2884 } 2885 hdr->nchan++; 2886 chan++; 2887 2888 frm += sizeof (struct wpi_scan_chan); 2889 2890 hdr->len = htole16(frm - (uint8_t *)hdr); 2891 pktlen = frm - (uint8_t *)cmd; 2892 2893 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL, 2894 BUS_DMA_NOWAIT); 2895 if (error != 0) { 2896 aprint_error_dev(sc->sc_dev, "could not map scan command\n"); 2897 m_freem(data->m); 2898 data->m = NULL; 2899 return error; 2900 } 2901 2902 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2903 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr); 2904 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len); 2905 2906 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 2907 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2908 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2909 BUS_DMASYNC_PREWRITE); 2910 2911 /* kick cmd ring */ 2912 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2913 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2914 2915 return 0; /* will be notified async. of failure/success */ 2916 } 2917 2918 static int 2919 wpi_config(struct wpi_softc *sc) 2920 { 2921 struct ieee80211com *ic = &sc->sc_ic; 2922 struct ifnet *ifp = ic->ic_ifp; 2923 struct wpi_power power; 2924 struct wpi_bluetooth bluetooth; 2925 struct wpi_node_info node; 2926 int error; 2927 2928 memset(&power, 0, sizeof power); 2929 power.flags = htole32(WPI_POWER_CAM | 0x8); 2930 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2931 if (error != 0) { 2932 aprint_error_dev(sc->sc_dev, "could not set power mode\n"); 2933 return error; 2934 } 2935 2936 /* configure bluetooth coexistence */ 2937 memset(&bluetooth, 0, sizeof bluetooth); 2938 bluetooth.flags = 3; 2939 bluetooth.lead = 0xaa; 2940 bluetooth.kill = 1; 2941 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2942 0); 2943 if (error != 0) { 2944 aprint_error_dev(sc->sc_dev, 2945 "could not configure bluetooth coexistence\n"); 2946 return error; 2947 } 2948 2949 /* configure adapter */ 2950 memset(&sc->config, 0, sizeof (struct wpi_config)); 2951 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2952 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 2953 /* set default channel */ 2954 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 2955 sc->config.flags = htole32(WPI_CONFIG_TSF); 2956 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2957 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2958 WPI_CONFIG_24GHZ); 2959 } 2960 sc->config.filter = 0; 2961 switch (ic->ic_opmode) { 2962 case IEEE80211_M_STA: 2963 sc->config.mode = WPI_MODE_STA; 2964 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2965 break; 2966 case IEEE80211_M_IBSS: 2967 case IEEE80211_M_AHDEMO: 2968 sc->config.mode = WPI_MODE_IBSS; 2969 break; 2970 case IEEE80211_M_HOSTAP: 2971 sc->config.mode = WPI_MODE_HOSTAP; 2972 break; 2973 case IEEE80211_M_MONITOR: 2974 sc->config.mode = WPI_MODE_MONITOR; 2975 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2976 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2977 break; 2978 } 2979 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2980 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2981 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2982 sizeof (struct wpi_config), 0); 2983 if (error != 0) { 2984 aprint_error_dev(sc->sc_dev, "configure command failed\n"); 2985 return error; 2986 } 2987 2988 /* configuration has changed, set Tx power accordingly */ 2989 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2990 aprint_error_dev(sc->sc_dev, "could not set Tx power\n"); 2991 return error; 2992 } 2993 2994 /* add broadcast node */ 2995 memset(&node, 0, sizeof node); 2996 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr); 2997 node.id = WPI_ID_BROADCAST; 2998 node.rate = wpi_plcp_signal(2); 2999 node.action = htole32(WPI_ACTION_SET_RATE); 3000 node.antenna = WPI_ANTENNA_BOTH; 3001 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 3002 if (error != 0) { 3003 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n"); 3004 return error; 3005 } 3006 3007 if ((error = wpi_mrr_setup(sc)) != 0) { 3008 aprint_error_dev(sc->sc_dev, "could not setup MRR\n"); 3009 return error; 3010 } 3011 3012 return 0; 3013 } 3014 3015 static void 3016 wpi_stop_master(struct wpi_softc *sc) 3017 { 3018 uint32_t tmp; 3019 int ntries; 3020 3021 tmp = WPI_READ(sc, WPI_RESET); 3022 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER); 3023 3024 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3025 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 3026 return; /* already asleep */ 3027 3028 for (ntries = 0; ntries < 100; ntries++) { 3029 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 3030 break; 3031 DELAY(10); 3032 } 3033 if (ntries == 100) { 3034 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n"); 3035 } 3036 } 3037 3038 static int 3039 wpi_power_up(struct wpi_softc *sc) 3040 { 3041 uint32_t tmp; 3042 int ntries; 3043 3044 wpi_mem_lock(sc); 3045 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 3046 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 3047 wpi_mem_unlock(sc); 3048 3049 for (ntries = 0; ntries < 5000; ntries++) { 3050 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 3051 break; 3052 DELAY(10); 3053 } 3054 if (ntries == 5000) { 3055 aprint_error_dev(sc->sc_dev, 3056 "timeout waiting for NIC to power up\n"); 3057 return ETIMEDOUT; 3058 } 3059 return 0; 3060 } 3061 3062 static int 3063 wpi_reset(struct wpi_softc *sc) 3064 { 3065 uint32_t tmp; 3066 int ntries; 3067 3068 /* clear any pending interrupts */ 3069 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3070 3071 tmp = WPI_READ(sc, WPI_PLL_CTL); 3072 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 3073 3074 tmp = WPI_READ(sc, WPI_CHICKEN); 3075 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 3076 3077 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3078 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 3079 3080 /* wait for clock stabilization */ 3081 for (ntries = 0; ntries < 1000; ntries++) { 3082 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 3083 break; 3084 DELAY(10); 3085 } 3086 if (ntries == 1000) { 3087 aprint_error_dev(sc->sc_dev, 3088 "timeout waiting for clock stabilization\n"); 3089 return ETIMEDOUT; 3090 } 3091 3092 /* initialize EEPROM */ 3093 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 3094 if ((tmp & WPI_EEPROM_VERSION) == 0) { 3095 aprint_error_dev(sc->sc_dev, "EEPROM not found\n"); 3096 return EIO; 3097 } 3098 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 3099 3100 return 0; 3101 } 3102 3103 static void 3104 wpi_hw_config(struct wpi_softc *sc) 3105 { 3106 uint32_t rev, hw; 3107 3108 /* voodoo from the reference driver */ 3109 hw = WPI_READ(sc, WPI_HWCONFIG); 3110 3111 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG); 3112 rev = PCI_REVISION(rev); 3113 if ((rev & 0xc0) == 0x40) 3114 hw |= WPI_HW_ALM_MB; 3115 else if (!(rev & 0x80)) 3116 hw |= WPI_HW_ALM_MM; 3117 3118 if (sc->cap == 0x80) 3119 hw |= WPI_HW_SKU_MRC; 3120 3121 hw &= ~WPI_HW_REV_D; 3122 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 3123 hw |= WPI_HW_REV_D; 3124 3125 if (sc->type > 1) 3126 hw |= WPI_HW_TYPE_B; 3127 3128 DPRINTF(("setting h/w config %x\n", hw)); 3129 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3130 } 3131 3132 static int 3133 wpi_init(struct ifnet *ifp) 3134 { 3135 struct wpi_softc *sc = ifp->if_softc; 3136 struct ieee80211com *ic = &sc->sc_ic; 3137 uint32_t tmp; 3138 int qid, ntries, error; 3139 3140 wpi_stop(ifp,1); 3141 (void)wpi_reset(sc); 3142 3143 wpi_mem_lock(sc); 3144 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3145 DELAY(20); 3146 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3147 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3148 wpi_mem_unlock(sc); 3149 3150 (void)wpi_power_up(sc); 3151 wpi_hw_config(sc); 3152 3153 /* init Rx ring */ 3154 wpi_mem_lock(sc); 3155 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3156 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3157 offsetof(struct wpi_shared, next)); 3158 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3159 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3160 wpi_mem_unlock(sc); 3161 3162 /* init Tx rings */ 3163 wpi_mem_lock(sc); 3164 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3165 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3166 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3167 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3168 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3169 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3170 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3171 3172 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3173 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3174 3175 for (qid = 0; qid < 6; qid++) { 3176 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3177 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3178 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3179 } 3180 wpi_mem_unlock(sc); 3181 3182 /* clear "radio off" and "disable command" bits (reversed logic) */ 3183 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3184 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3185 3186 /* clear any pending interrupts */ 3187 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3188 /* enable interrupts */ 3189 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3190 3191 /* not sure why/if this is necessary... */ 3192 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3193 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3194 3195 if ((error = wpi_load_firmware(sc)) != 0) 3196 /* wpi_load_firmware prints error messages for us. */ 3197 goto fail1; 3198 3199 /* Check the status of the radio switch */ 3200 mutex_enter(&sc->sc_rsw_mtx); 3201 if (wpi_getrfkill(sc)) { 3202 mutex_exit(&sc->sc_rsw_mtx); 3203 aprint_error_dev(sc->sc_dev, 3204 "radio is disabled by hardware switch\n"); 3205 ifp->if_flags &= ~IFF_UP; 3206 error = EBUSY; 3207 goto fail1; 3208 } 3209 mutex_exit(&sc->sc_rsw_mtx); 3210 3211 /* wait for thermal sensors to calibrate */ 3212 for (ntries = 0; ntries < 1000; ntries++) { 3213 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3214 break; 3215 DELAY(10); 3216 } 3217 if (ntries == 1000) { 3218 aprint_error_dev(sc->sc_dev, 3219 "timeout waiting for thermal sensors calibration\n"); 3220 error = ETIMEDOUT; 3221 goto fail1; 3222 } 3223 DPRINTF(("temperature %d\n", sc->temp)); 3224 3225 if ((error = wpi_config(sc)) != 0) { 3226 aprint_error_dev(sc->sc_dev, "could not configure device\n"); 3227 goto fail1; 3228 } 3229 3230 ifp->if_flags &= ~IFF_OACTIVE; 3231 ifp->if_flags |= IFF_RUNNING; 3232 3233 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3234 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 3235 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 3236 } 3237 else 3238 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3239 3240 return 0; 3241 3242 fail1: wpi_stop(ifp, 1); 3243 return error; 3244 } 3245 3246 static void 3247 wpi_stop(struct ifnet *ifp, int disable) 3248 { 3249 struct wpi_softc *sc = ifp->if_softc; 3250 struct ieee80211com *ic = &sc->sc_ic; 3251 uint32_t tmp; 3252 int ac; 3253 3254 ifp->if_timer = sc->sc_tx_timer = 0; 3255 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3256 3257 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 3258 3259 /* disable interrupts */ 3260 WPI_WRITE(sc, WPI_MASK, 0); 3261 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3262 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3263 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3264 3265 wpi_mem_lock(sc); 3266 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3267 wpi_mem_unlock(sc); 3268 3269 /* reset all Tx rings */ 3270 for (ac = 0; ac < 4; ac++) 3271 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3272 wpi_reset_tx_ring(sc, &sc->cmdq); 3273 3274 /* reset Rx ring */ 3275 wpi_reset_rx_ring(sc, &sc->rxq); 3276 3277 wpi_mem_lock(sc); 3278 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3279 wpi_mem_unlock(sc); 3280 3281 DELAY(5); 3282 3283 wpi_stop_master(sc); 3284 3285 tmp = WPI_READ(sc, WPI_RESET); 3286 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3287 } 3288 3289 static bool 3290 wpi_resume(device_t dv, const pmf_qual_t *qual) 3291 { 3292 struct wpi_softc *sc = device_private(dv); 3293 3294 (void)wpi_reset(sc); 3295 3296 return true; 3297 } 3298 3299 /* 3300 * Return whether or not the radio is enabled in hardware 3301 * (i.e. the rfkill switch is "off"). 3302 */ 3303 static int 3304 wpi_getrfkill(struct wpi_softc *sc) 3305 { 3306 uint32_t tmp; 3307 3308 wpi_mem_lock(sc); 3309 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL); 3310 wpi_mem_unlock(sc); 3311 3312 KASSERT(mutex_owned(&sc->sc_rsw_mtx)); 3313 if (tmp & 0x01) { 3314 /* switch is on */ 3315 if (sc->sc_rsw_status != WPI_RSW_ON) { 3316 sc->sc_rsw_status = WPI_RSW_ON; 3317 sysmon_pswitch_event(&sc->sc_rsw, 3318 PSWITCH_EVENT_PRESSED); 3319 } 3320 } else { 3321 /* switch is off */ 3322 if (sc->sc_rsw_status != WPI_RSW_OFF) { 3323 sc->sc_rsw_status = WPI_RSW_OFF; 3324 sysmon_pswitch_event(&sc->sc_rsw, 3325 PSWITCH_EVENT_RELEASED); 3326 } 3327 } 3328 3329 return !(tmp & 0x01); 3330 } 3331 3332 static int 3333 wpi_sysctl_radio(SYSCTLFN_ARGS) 3334 { 3335 struct sysctlnode node; 3336 struct wpi_softc *sc; 3337 int val, error; 3338 3339 node = *rnode; 3340 sc = (struct wpi_softc *)node.sysctl_data; 3341 3342 mutex_enter(&sc->sc_rsw_mtx); 3343 val = !wpi_getrfkill(sc); 3344 mutex_exit(&sc->sc_rsw_mtx); 3345 3346 node.sysctl_data = &val; 3347 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 3348 3349 if (error || newp == NULL) 3350 return error; 3351 3352 return 0; 3353 } 3354 3355 static void 3356 wpi_sysctlattach(struct wpi_softc *sc) 3357 { 3358 int rc; 3359 const struct sysctlnode *rnode; 3360 const struct sysctlnode *cnode; 3361 3362 struct sysctllog **clog = &sc->sc_sysctllog; 3363 3364 if ((rc = sysctl_createv(clog, 0, NULL, &rnode, 3365 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev), 3366 SYSCTL_DESCR("wpi controls and statistics"), 3367 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) 3368 goto err; 3369 3370 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 3371 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio", 3372 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"), 3373 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0) 3374 goto err; 3375 3376 #ifdef WPI_DEBUG 3377 /* control debugging printfs */ 3378 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 3379 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 3380 "debug", SYSCTL_DESCR("Enable debugging output"), 3381 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0) 3382 goto err; 3383 #endif 3384 3385 return; 3386 err: 3387 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 3388 } 3389 3390 static void 3391 wpi_rsw_thread(void *arg) 3392 { 3393 struct wpi_softc *sc = (struct wpi_softc *)arg; 3394 3395 mutex_enter(&sc->sc_rsw_mtx); 3396 for (;;) { 3397 cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz); 3398 if (sc->sc_dying) { 3399 sc->sc_rsw_lwp = NULL; 3400 cv_broadcast(&sc->sc_rsw_cv); 3401 mutex_exit(&sc->sc_rsw_mtx); 3402 kthread_exit(0); 3403 } 3404 wpi_getrfkill(sc); 3405 } 3406 } 3407 3408