xref: /netbsd/sys/dev/pci/if_wpi.c (revision e46c1902)
1 /*	$NetBSD: if_wpi.c,v 1.71 2015/01/09 15:25:23 bouyer Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.71 2015/01/09 15:25:23 bouyer Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51 
52 #include <dev/sysmon/sysmonvar.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70 
71 #include <dev/firmload.h>
72 
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75 
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82 
83 static int	wpi_match(device_t, cfdata_t, void *);
84 static void	wpi_attach(device_t, device_t, void *);
85 static int	wpi_detach(device_t , int);
86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
89 static int	wpi_alloc_shared(struct wpi_softc *);
90 static void	wpi_free_shared(struct wpi_softc *);
91 static int	wpi_alloc_fwmem(struct wpi_softc *);
92 static void	wpi_free_fwmem(struct wpi_softc *);
93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int	wpi_alloc_rpool(struct wpi_softc *);
96 static void	wpi_free_rpool(struct wpi_softc *);
97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 		    int, int);
102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void	wpi_newassoc(struct ieee80211_node *, int);
106 static int	wpi_media_change(struct ifnet *);
107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void	wpi_mem_lock(struct wpi_softc *);
109 static void	wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 		    const uint32_t *, int);
114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
116 static int	wpi_cache_firmware(struct wpi_softc *);
117 static void	wpi_release_firmware(void);
118 static int	wpi_load_firmware(struct wpi_softc *);
119 static void	wpi_calib_timeout(void *);
120 static void	wpi_iter_func(void *, struct ieee80211_node *);
121 static void	wpi_power_calibration(struct wpi_softc *, int);
122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 		    struct wpi_rx_data *);
124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void	wpi_notif_intr(struct wpi_softc *);
127 static int	wpi_intr(void *);
128 static void	wpi_read_eeprom(struct wpi_softc *);
129 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
130 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
131 static uint8_t	wpi_plcp_signal(int);
132 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
133 		    struct ieee80211_node *, int);
134 static void	wpi_start(struct ifnet *);
135 static void	wpi_watchdog(struct ifnet *);
136 static int	wpi_ioctl(struct ifnet *, u_long, void *);
137 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
138 static int	wpi_wme_update(struct ieee80211com *);
139 static int	wpi_mrr_setup(struct wpi_softc *);
140 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
141 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
142 static int	wpi_set_txpower(struct wpi_softc *,
143 		    struct ieee80211_channel *, int);
144 static int	wpi_get_power_index(struct wpi_softc *,
145 		    struct wpi_power_group *, struct ieee80211_channel *, int);
146 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
147 static int	wpi_auth(struct wpi_softc *);
148 static int	wpi_scan(struct wpi_softc *);
149 static int	wpi_config(struct wpi_softc *);
150 static void	wpi_stop_master(struct wpi_softc *);
151 static int	wpi_power_up(struct wpi_softc *);
152 static int	wpi_reset(struct wpi_softc *);
153 static void	wpi_hw_config(struct wpi_softc *);
154 static int	wpi_init(struct ifnet *);
155 static void	wpi_stop(struct ifnet *, int);
156 static bool	wpi_resume(device_t, const pmf_qual_t *);
157 static int	wpi_getrfkill(struct wpi_softc *);
158 static void	wpi_sysctlattach(struct wpi_softc *);
159 static void	wpi_rsw_thread(void *);
160 
161 #ifdef WPI_DEBUG
162 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
163 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
164 int wpi_debug = 1;
165 #else
166 #define DPRINTF(x)
167 #define DPRINTFN(n, x)
168 #endif
169 
170 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
171 	wpi_detach, NULL);
172 
173 static int
174 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
175 {
176 	struct pci_attach_args *pa = aux;
177 
178 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
179 		return 0;
180 
181 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
182 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
183 		return 1;
184 
185 	return 0;
186 }
187 
188 /* Base Address Register */
189 #define WPI_PCI_BAR0	0x10
190 
191 static int
192 wpi_attach_once(void)
193 {
194 
195 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
196 	return 0;
197 }
198 
199 static void
200 wpi_attach(device_t parent __unused, device_t self, void *aux)
201 {
202 	struct wpi_softc *sc = device_private(self);
203 	struct ieee80211com *ic = &sc->sc_ic;
204 	struct ifnet *ifp = &sc->sc_ec.ec_if;
205 	struct pci_attach_args *pa = aux;
206 	const char *intrstr;
207 	bus_space_tag_t memt;
208 	bus_space_handle_t memh;
209 	pci_intr_handle_t ih;
210 	pcireg_t data;
211 	int ac, error;
212 	char intrbuf[PCI_INTRSTR_LEN];
213 
214 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 	sc->fw_used = false;
216 
217 	sc->sc_dev = self;
218 	sc->sc_pct = pa->pa_pc;
219 	sc->sc_pcitag = pa->pa_tag;
220 
221 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 	sc->sc_rsw.smpsw_name = device_xname(self);
223 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 	error = sysmon_pswitch_register(&sc->sc_rsw);
225 	if (error) {
226 		aprint_error_dev(self,
227 		    "unable to register radio switch with sysmon\n");
228 		return;
229 	}
230 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 	cv_init(&sc->sc_rsw_cv, "wpirsw");
232 	if (kthread_create(PRI_NONE, 0, NULL,
233 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
234 		aprint_error_dev(self, "couldn't create switch thread\n");
235 	}
236 
237 	callout_init(&sc->calib_to, 0);
238 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
239 
240 	pci_aprint_devinfo(pa, NULL);
241 
242 	/* enable bus-mastering */
243 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
244 	data |= PCI_COMMAND_MASTER_ENABLE;
245 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
246 
247 	/* map the register window */
248 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
249 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
250 	if (error != 0) {
251 		aprint_error_dev(self, "could not map memory space\n");
252 		return;
253 	}
254 
255 	sc->sc_st = memt;
256 	sc->sc_sh = memh;
257 	sc->sc_dmat = pa->pa_dmat;
258 
259 	if (pci_intr_map(pa, &ih) != 0) {
260 		aprint_error_dev(self, "could not map interrupt\n");
261 		return;
262 	}
263 
264 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
265 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
266 	if (sc->sc_ih == NULL) {
267 		aprint_error_dev(self, "could not establish interrupt");
268 		if (intrstr != NULL)
269 			aprint_error(" at %s", intrstr);
270 		aprint_error("\n");
271 		return;
272 	}
273 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
274 
275 	/*
276 	 * Put adapter into a known state.
277 	 */
278 	if ((error = wpi_reset(sc)) != 0) {
279 		aprint_error_dev(self, "could not reset adapter\n");
280 		return;
281 	}
282 
283 	/*
284 	 * Allocate DMA memory for firmware transfers.
285 	 */
286 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
287 		aprint_error_dev(self, "could not allocate firmware memory\n");
288 		return;
289 	}
290 
291 	/*
292 	 * Allocate shared page and Tx/Rx rings.
293 	 */
294 	if ((error = wpi_alloc_shared(sc)) != 0) {
295 		aprint_error_dev(self, "could not allocate shared area\n");
296 		goto fail1;
297 	}
298 
299 	if ((error = wpi_alloc_rpool(sc)) != 0) {
300 		aprint_error_dev(self, "could not allocate Rx buffers\n");
301 		goto fail2;
302 	}
303 
304 	for (ac = 0; ac < 4; ac++) {
305 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
306 		    ac);
307 		if (error != 0) {
308 			aprint_error_dev(self,
309 			    "could not allocate Tx ring %d\n", ac);
310 			goto fail3;
311 		}
312 	}
313 
314 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
315 	if (error != 0) {
316 		aprint_error_dev(self, "could not allocate command ring\n");
317 		goto fail3;
318 	}
319 
320 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
321 	if (error != 0) {
322 		aprint_error_dev(self, "could not allocate Rx ring\n");
323 		goto fail4;
324 	}
325 
326 	ic->ic_ifp = ifp;
327 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
328 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
329 	ic->ic_state = IEEE80211_S_INIT;
330 
331 	/* set device capabilities */
332 	ic->ic_caps =
333 	    IEEE80211_C_WPA |		/* 802.11i */
334 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
335 	    IEEE80211_C_TXPMGT |	/* tx power management */
336 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
337 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
338 	    IEEE80211_C_WME;		/* 802.11e */
339 
340 	/* read supported channels and MAC address from EEPROM */
341 	wpi_read_eeprom(sc);
342 
343 	/* set supported .11a, .11b and .11g rates */
344 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
345 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
346 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
347 
348 	/* IBSS channel undefined for now */
349 	ic->ic_ibss_chan = &ic->ic_channels[0];
350 
351 	ifp->if_softc = sc;
352 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
353 	ifp->if_init = wpi_init;
354 	ifp->if_stop = wpi_stop;
355 	ifp->if_ioctl = wpi_ioctl;
356 	ifp->if_start = wpi_start;
357 	ifp->if_watchdog = wpi_watchdog;
358 	IFQ_SET_READY(&ifp->if_snd);
359 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
360 
361 	if_attach(ifp);
362 	ieee80211_ifattach(ic);
363 	/* override default methods */
364 	ic->ic_node_alloc = wpi_node_alloc;
365 	ic->ic_newassoc = wpi_newassoc;
366 	ic->ic_wme.wme_update = wpi_wme_update;
367 
368 	/* override state transition machine */
369 	sc->sc_newstate = ic->ic_newstate;
370 	ic->ic_newstate = wpi_newstate;
371 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
372 
373 	sc->amrr.amrr_min_success_threshold =  1;
374 	sc->amrr.amrr_max_success_threshold = 15;
375 
376 	wpi_sysctlattach(sc);
377 
378 	if (pmf_device_register(self, NULL, wpi_resume))
379 		pmf_class_network_register(self, ifp);
380 	else
381 		aprint_error_dev(self, "couldn't establish power handler\n");
382 
383 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
384 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
385 	    &sc->sc_drvbpf);
386 
387 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
388 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
389 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
390 
391 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
392 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
393 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
394 
395 	ieee80211_announce(ic);
396 
397 	return;
398 
399 	/* free allocated memory if something failed during attachment */
400 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
401 fail3:	while (--ac >= 0)
402 		wpi_free_tx_ring(sc, &sc->txq[ac]);
403 	wpi_free_rpool(sc);
404 fail2:	wpi_free_shared(sc);
405 fail1:	wpi_free_fwmem(sc);
406 }
407 
408 static int
409 wpi_detach(device_t self, int flags __unused)
410 {
411 	struct wpi_softc *sc = device_private(self);
412 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
413 	int ac;
414 
415 	wpi_stop(ifp, 1);
416 
417 	if (ifp != NULL)
418 		bpf_detach(ifp);
419 	ieee80211_ifdetach(&sc->sc_ic);
420 	if (ifp != NULL)
421 		if_detach(ifp);
422 
423 	for (ac = 0; ac < 4; ac++)
424 		wpi_free_tx_ring(sc, &sc->txq[ac]);
425 	wpi_free_tx_ring(sc, &sc->cmdq);
426 	wpi_free_rx_ring(sc, &sc->rxq);
427 	wpi_free_rpool(sc);
428 	wpi_free_shared(sc);
429 
430 	if (sc->sc_ih != NULL) {
431 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
432 		sc->sc_ih = NULL;
433 	}
434 	mutex_enter(&sc->sc_rsw_mtx);
435 	sc->sc_dying = 1;
436 	cv_signal(&sc->sc_rsw_cv);
437 	while (sc->sc_rsw_lwp != NULL)
438 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
439 	mutex_exit(&sc->sc_rsw_mtx);
440 	sysmon_pswitch_unregister(&sc->sc_rsw);
441 
442 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
443 
444 	if (sc->fw_used) {
445 		sc->fw_used = false;
446 		wpi_release_firmware();
447 	}
448 	cv_destroy(&sc->sc_rsw_cv);
449 	mutex_destroy(&sc->sc_rsw_mtx);
450 	return 0;
451 }
452 
453 static int
454 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
455     bus_size_t size, bus_size_t alignment, int flags)
456 {
457 	int nsegs, error;
458 
459 	dma->tag = tag;
460 	dma->size = size;
461 
462 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
463 	if (error != 0)
464 		goto fail;
465 
466 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
467 	    flags);
468 	if (error != 0)
469 		goto fail;
470 
471 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
472 	if (error != 0)
473 		goto fail;
474 
475 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
476 	if (error != 0)
477 		goto fail;
478 
479 	memset(dma->vaddr, 0, size);
480 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
481 
482 	dma->paddr = dma->map->dm_segs[0].ds_addr;
483 	if (kvap != NULL)
484 		*kvap = dma->vaddr;
485 
486 	return 0;
487 
488 fail:	wpi_dma_contig_free(dma);
489 	return error;
490 }
491 
492 static void
493 wpi_dma_contig_free(struct wpi_dma_info *dma)
494 {
495 	if (dma->map != NULL) {
496 		if (dma->vaddr != NULL) {
497 			bus_dmamap_unload(dma->tag, dma->map);
498 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
499 			bus_dmamem_free(dma->tag, &dma->seg, 1);
500 			dma->vaddr = NULL;
501 		}
502 		bus_dmamap_destroy(dma->tag, dma->map);
503 		dma->map = NULL;
504 	}
505 }
506 
507 /*
508  * Allocate a shared page between host and NIC.
509  */
510 static int
511 wpi_alloc_shared(struct wpi_softc *sc)
512 {
513 	int error;
514 
515 	/* must be aligned on a 4K-page boundary */
516 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
517 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
518 	    BUS_DMA_NOWAIT);
519 	if (error != 0)
520 		aprint_error_dev(sc->sc_dev,
521 		    "could not allocate shared area DMA memory\n");
522 
523 	return error;
524 }
525 
526 static void
527 wpi_free_shared(struct wpi_softc *sc)
528 {
529 	wpi_dma_contig_free(&sc->shared_dma);
530 }
531 
532 /*
533  * Allocate DMA-safe memory for firmware transfer.
534  */
535 static int
536 wpi_alloc_fwmem(struct wpi_softc *sc)
537 {
538 	int error;
539 
540 	/* allocate enough contiguous space to store text and data */
541 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
542 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
543 	    BUS_DMA_NOWAIT);
544 
545 	if (error != 0)
546 		aprint_error_dev(sc->sc_dev,
547 		    "could not allocate firmware transfer area DMA memory\n");
548 	return error;
549 }
550 
551 static void
552 wpi_free_fwmem(struct wpi_softc *sc)
553 {
554 	wpi_dma_contig_free(&sc->fw_dma);
555 }
556 
557 static struct wpi_rbuf *
558 wpi_alloc_rbuf(struct wpi_softc *sc)
559 {
560 	struct wpi_rbuf *rbuf;
561 
562 	mutex_enter(&sc->rxq.freelist_mtx);
563 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
564 	if (rbuf != NULL) {
565 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
566 	}
567 	mutex_exit(&sc->rxq.freelist_mtx);
568 
569 	return rbuf;
570 }
571 
572 /*
573  * This is called automatically by the network stack when the mbuf to which our
574  * Rx buffer is attached is freed.
575  */
576 static void
577 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
578 {
579 	struct wpi_rbuf *rbuf = arg;
580 	struct wpi_softc *sc = rbuf->sc;
581 
582 	/* put the buffer back in the free list */
583 
584 	mutex_enter(&sc->rxq.freelist_mtx);
585 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
586 	mutex_exit(&sc->rxq.freelist_mtx);
587 
588 	if (__predict_true(m != NULL))
589 		pool_cache_put(mb_cache, m);
590 }
591 
592 static int
593 wpi_alloc_rpool(struct wpi_softc *sc)
594 {
595 	struct wpi_rx_ring *ring = &sc->rxq;
596 	int i, error;
597 
598 	/* allocate a big chunk of DMA'able memory.. */
599 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
600 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
601 	if (error != 0) {
602 		aprint_normal_dev(sc->sc_dev,
603 		    "could not allocate Rx buffers DMA memory\n");
604 		return error;
605 	}
606 
607 	/* ..and split it into 3KB chunks */
608 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
609 	SLIST_INIT(&ring->freelist);
610 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
611 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
612 
613 		rbuf->sc = sc;	/* backpointer for callbacks */
614 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
615 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
616 
617 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
618 	}
619 
620 	return 0;
621 }
622 
623 static void
624 wpi_free_rpool(struct wpi_softc *sc)
625 {
626 	wpi_dma_contig_free(&sc->rxq.buf_dma);
627 }
628 
629 static int
630 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
631 {
632 	bus_size_t size;
633 	int i, error;
634 
635 	ring->cur = 0;
636 
637 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
638 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
639 	    (void **)&ring->desc, size,
640 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
641 	if (error != 0) {
642 		aprint_error_dev(sc->sc_dev,
643 		    "could not allocate rx ring DMA memory\n");
644 		goto fail;
645 	}
646 
647 	/*
648 	 * Setup Rx buffers.
649 	 */
650 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
651 		struct wpi_rx_data *data = &ring->data[i];
652 		struct wpi_rbuf *rbuf;
653 
654 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
655 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
656 		if (error) {
657 			aprint_error_dev(sc->sc_dev,
658 			    "could not allocate rx dma map\n");
659 			goto fail;
660 		}
661 
662 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
663 		if (data->m == NULL) {
664 			aprint_error_dev(sc->sc_dev,
665 			    "could not allocate rx mbuf\n");
666 			error = ENOMEM;
667 			goto fail;
668 		}
669 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
670 			m_freem(data->m);
671 			data->m = NULL;
672 			aprint_error_dev(sc->sc_dev,
673 			    "could not allocate rx cluster\n");
674 			error = ENOMEM;
675 			goto fail;
676 		}
677 		/* attach Rx buffer to mbuf */
678 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
679 		    rbuf);
680 		data->m->m_flags |= M_EXT_RW;
681 
682 		error = bus_dmamap_load(sc->sc_dmat, data->map,
683 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
684 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
685 		if (error) {
686 			aprint_error_dev(sc->sc_dev,
687 			    "could not load mbuf: %d\n", error);
688 			goto fail;
689 		}
690 
691 		ring->desc[i] = htole32(rbuf->paddr);
692 	}
693 
694 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
695 	    BUS_DMASYNC_PREWRITE);
696 
697 	return 0;
698 
699 fail:	wpi_free_rx_ring(sc, ring);
700 	return error;
701 }
702 
703 static void
704 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
705 {
706 	int ntries;
707 
708 	wpi_mem_lock(sc);
709 
710 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
711 	for (ntries = 0; ntries < 100; ntries++) {
712 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
713 			break;
714 		DELAY(10);
715 	}
716 #ifdef WPI_DEBUG
717 	if (ntries == 100 && wpi_debug > 0)
718 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
719 #endif
720 	wpi_mem_unlock(sc);
721 
722 	ring->cur = 0;
723 }
724 
725 static void
726 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
727 {
728 	int i;
729 
730 	wpi_dma_contig_free(&ring->desc_dma);
731 
732 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
733 		if (ring->data[i].m != NULL) {
734 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
735 			m_freem(ring->data[i].m);
736 		}
737 		if (ring->data[i].map != NULL) {
738 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
739 		}
740 	}
741 }
742 
743 static int
744 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
745     int qid)
746 {
747 	int i, error;
748 
749 	ring->qid = qid;
750 	ring->count = count;
751 	ring->queued = 0;
752 	ring->cur = 0;
753 
754 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
755 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
756 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
757 	if (error != 0) {
758 		aprint_error_dev(sc->sc_dev,
759 		    "could not allocate tx ring DMA memory\n");
760 		goto fail;
761 	}
762 
763 	/* update shared page with ring's base address */
764 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
765 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
766 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
767 
768 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
769 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
770 	    BUS_DMA_NOWAIT);
771 	if (error != 0) {
772 		aprint_error_dev(sc->sc_dev,
773 		    "could not allocate tx cmd DMA memory\n");
774 		goto fail;
775 	}
776 
777 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
778 	    M_NOWAIT | M_ZERO);
779 	if (ring->data == NULL) {
780 		aprint_error_dev(sc->sc_dev,
781 		    "could not allocate tx data slots\n");
782 		goto fail;
783 	}
784 
785 	for (i = 0; i < count; i++) {
786 		struct wpi_tx_data *data = &ring->data[i];
787 
788 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
789 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
790 		    &data->map);
791 		if (error != 0) {
792 			aprint_error_dev(sc->sc_dev,
793 			    "could not create tx buf DMA map\n");
794 			goto fail;
795 		}
796 	}
797 
798 	return 0;
799 
800 fail:	wpi_free_tx_ring(sc, ring);
801 	return error;
802 }
803 
804 static void
805 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
806 {
807 	int i, ntries;
808 
809 	wpi_mem_lock(sc);
810 
811 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
812 	for (ntries = 0; ntries < 100; ntries++) {
813 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
814 			break;
815 		DELAY(10);
816 	}
817 #ifdef WPI_DEBUG
818 	if (ntries == 100 && wpi_debug > 0) {
819 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
820 		    ring->qid);
821 	}
822 #endif
823 	wpi_mem_unlock(sc);
824 
825 	for (i = 0; i < ring->count; i++) {
826 		struct wpi_tx_data *data = &ring->data[i];
827 
828 		if (data->m != NULL) {
829 			bus_dmamap_unload(sc->sc_dmat, data->map);
830 			m_freem(data->m);
831 			data->m = NULL;
832 		}
833 	}
834 
835 	ring->queued = 0;
836 	ring->cur = 0;
837 }
838 
839 static void
840 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
841 {
842 	int i;
843 
844 	wpi_dma_contig_free(&ring->desc_dma);
845 	wpi_dma_contig_free(&ring->cmd_dma);
846 
847 	if (ring->data != NULL) {
848 		for (i = 0; i < ring->count; i++) {
849 			struct wpi_tx_data *data = &ring->data[i];
850 
851 			if (data->m != NULL) {
852 				bus_dmamap_unload(sc->sc_dmat, data->map);
853 				m_freem(data->m);
854 			}
855 		}
856 		free(ring->data, M_DEVBUF);
857 	}
858 }
859 
860 /*ARGUSED*/
861 static struct ieee80211_node *
862 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
863 {
864 	struct wpi_node *wn;
865 
866 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
867 
868 	return (struct ieee80211_node *)wn;
869 }
870 
871 static void
872 wpi_newassoc(struct ieee80211_node *ni, int isnew)
873 {
874 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
875 	int i;
876 
877 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
878 
879 	/* set rate to some reasonable initial value */
880 	for (i = ni->ni_rates.rs_nrates - 1;
881 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
882 	     i--);
883 	ni->ni_txrate = i;
884 }
885 
886 static int
887 wpi_media_change(struct ifnet *ifp)
888 {
889 	int error;
890 
891 	error = ieee80211_media_change(ifp);
892 	if (error != ENETRESET)
893 		return error;
894 
895 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
896 		wpi_init(ifp);
897 
898 	return 0;
899 }
900 
901 static int
902 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
903 {
904 	struct ifnet *ifp = ic->ic_ifp;
905 	struct wpi_softc *sc = ifp->if_softc;
906 	struct ieee80211_node *ni;
907 	enum ieee80211_state ostate = ic->ic_state;
908 	int error;
909 
910 	callout_stop(&sc->calib_to);
911 
912 	switch (nstate) {
913 	case IEEE80211_S_SCAN:
914 
915 		if (sc->is_scanning)
916 			break;
917 
918 		sc->is_scanning = true;
919 
920 		if (ostate != IEEE80211_S_SCAN) {
921 			/* make the link LED blink while we're scanning */
922 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
923 		}
924 
925 		if ((error = wpi_scan(sc)) != 0) {
926 			aprint_error_dev(sc->sc_dev,
927 			    "could not initiate scan\n");
928 			return error;
929 		}
930 		break;
931 
932 	case IEEE80211_S_ASSOC:
933 		if (ic->ic_state != IEEE80211_S_RUN)
934 			break;
935 		/* FALLTHROUGH */
936 	case IEEE80211_S_AUTH:
937 		/* reset state to handle reassociations correctly */
938 		sc->config.associd = 0;
939 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
940 
941 		if ((error = wpi_auth(sc)) != 0) {
942 			aprint_error_dev(sc->sc_dev,
943 			    "could not send authentication request\n");
944 			return error;
945 		}
946 		break;
947 
948 	case IEEE80211_S_RUN:
949 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
950 			/* link LED blinks while monitoring */
951 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
952 			break;
953 		}
954 		ni = ic->ic_bss;
955 
956 		if (ic->ic_opmode != IEEE80211_M_STA) {
957 			(void) wpi_auth(sc);    /* XXX */
958 			wpi_setup_beacon(sc, ni);
959 		}
960 
961 		wpi_enable_tsf(sc, ni);
962 
963 		/* update adapter's configuration */
964 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
965 		/* short preamble/slot time are negotiated when associating */
966 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
967 		    WPI_CONFIG_SHSLOT);
968 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
969 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
970 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
971 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
972 		sc->config.filter |= htole32(WPI_FILTER_BSS);
973 		if (ic->ic_opmode != IEEE80211_M_STA)
974 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
975 
976 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
977 
978 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
979 		    sc->config.flags));
980 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
981 		    sizeof (struct wpi_config), 1);
982 		if (error != 0) {
983 			aprint_error_dev(sc->sc_dev,
984 			    "could not update configuration\n");
985 			return error;
986 		}
987 
988 		/* configuration has changed, set Tx power accordingly */
989 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
990 			aprint_error_dev(sc->sc_dev,
991 			    "could not set Tx power\n");
992 			return error;
993 		}
994 
995 		if (ic->ic_opmode == IEEE80211_M_STA) {
996 			/* fake a join to init the tx rate */
997 			wpi_newassoc(ni, 1);
998 		}
999 
1000 		/* start periodic calibration timer */
1001 		sc->calib_cnt = 0;
1002 		callout_schedule(&sc->calib_to, hz/2);
1003 
1004 		/* link LED always on while associated */
1005 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1006 		break;
1007 
1008 	case IEEE80211_S_INIT:
1009 		sc->is_scanning = false;
1010 		break;
1011 	}
1012 
1013 	return sc->sc_newstate(ic, nstate, arg);
1014 }
1015 
1016 /*
1017  * Grab exclusive access to NIC memory.
1018  */
1019 static void
1020 wpi_mem_lock(struct wpi_softc *sc)
1021 {
1022 	uint32_t tmp;
1023 	int ntries;
1024 
1025 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1026 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1027 
1028 	/* spin until we actually get the lock */
1029 	for (ntries = 0; ntries < 1000; ntries++) {
1030 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1031 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1032 			break;
1033 		DELAY(10);
1034 	}
1035 	if (ntries == 1000)
1036 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1037 }
1038 
1039 /*
1040  * Release lock on NIC memory.
1041  */
1042 static void
1043 wpi_mem_unlock(struct wpi_softc *sc)
1044 {
1045 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1046 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1047 }
1048 
1049 static uint32_t
1050 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1051 {
1052 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1053 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1054 }
1055 
1056 static void
1057 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1058 {
1059 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1060 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1061 }
1062 
1063 static void
1064 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1065     const uint32_t *data, int wlen)
1066 {
1067 	for (; wlen > 0; wlen--, data++, addr += 4)
1068 		wpi_mem_write(sc, addr, *data);
1069 }
1070 
1071 /*
1072  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1073  * instead of using the traditional bit-bang method.
1074  */
1075 static int
1076 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1077 {
1078 	uint8_t *out = data;
1079 	uint32_t val;
1080 	int ntries;
1081 
1082 	wpi_mem_lock(sc);
1083 	for (; len > 0; len -= 2, addr++) {
1084 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1085 
1086 		for (ntries = 0; ntries < 10; ntries++) {
1087 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1088 			    WPI_EEPROM_READY)
1089 				break;
1090 			DELAY(5);
1091 		}
1092 		if (ntries == 10) {
1093 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1094 			return ETIMEDOUT;
1095 		}
1096 		*out++ = val >> 16;
1097 		if (len > 1)
1098 			*out++ = val >> 24;
1099 	}
1100 	wpi_mem_unlock(sc);
1101 
1102 	return 0;
1103 }
1104 
1105 /*
1106  * The firmware boot code is small and is intended to be copied directly into
1107  * the NIC internal memory.
1108  */
1109 int
1110 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1111 {
1112 	int ntries;
1113 
1114 	size /= sizeof (uint32_t);
1115 
1116 	wpi_mem_lock(sc);
1117 
1118 	/* copy microcode image into NIC memory */
1119 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1120 	    (const uint32_t *)ucode, size);
1121 
1122 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1123 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1124 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1125 
1126 	/* run microcode */
1127 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1128 
1129 	/* wait for transfer to complete */
1130 	for (ntries = 0; ntries < 1000; ntries++) {
1131 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1132 			break;
1133 		DELAY(10);
1134 	}
1135 	if (ntries == 1000) {
1136 		wpi_mem_unlock(sc);
1137 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1138 		return ETIMEDOUT;
1139 	}
1140 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1141 
1142 	wpi_mem_unlock(sc);
1143 
1144 	return 0;
1145 }
1146 
1147 static int
1148 wpi_cache_firmware(struct wpi_softc *sc)
1149 {
1150 	const char *const fwname = wpi_firmware_name;
1151 	firmware_handle_t fw;
1152 	int error;
1153 
1154 	/* sc is used here only to report error messages.  */
1155 
1156 	mutex_enter(&wpi_firmware_mutex);
1157 
1158 	if (wpi_firmware_users == SIZE_MAX) {
1159 		mutex_exit(&wpi_firmware_mutex);
1160 		return ENFILE;	/* Too many of something in the system...  */
1161 	}
1162 	if (wpi_firmware_users++) {
1163 		KASSERT(wpi_firmware_image != NULL);
1164 		KASSERT(wpi_firmware_size > 0);
1165 		mutex_exit(&wpi_firmware_mutex);
1166 		return 0;	/* Already good to go.  */
1167 	}
1168 
1169 	KASSERT(wpi_firmware_image == NULL);
1170 	KASSERT(wpi_firmware_size == 0);
1171 
1172 	/* load firmware image from disk */
1173 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1174 		aprint_error_dev(sc->sc_dev,
1175 		    "could not open firmware file %s: %d\n", fwname, error);
1176 		goto fail0;
1177 	}
1178 
1179 	wpi_firmware_size = firmware_get_size(fw);
1180 
1181 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1182 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1183 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1184 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1185 		aprint_error_dev(sc->sc_dev,
1186 		    "firmware file %s too large: %zu bytes\n",
1187 		    fwname, wpi_firmware_size);
1188 		error = EFBIG;
1189 		goto fail1;
1190 	}
1191 
1192 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1193 		aprint_error_dev(sc->sc_dev,
1194 		    "firmware file %s too small: %zu bytes\n",
1195 		    fwname, wpi_firmware_size);
1196 		error = EINVAL;
1197 		goto fail1;
1198 	}
1199 
1200 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1201 	if (wpi_firmware_image == NULL) {
1202 		aprint_error_dev(sc->sc_dev,
1203 		    "not enough memory for firmware file %s\n", fwname);
1204 		error = ENOMEM;
1205 		goto fail1;
1206 	}
1207 
1208 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1209 	if (error != 0) {
1210 		aprint_error_dev(sc->sc_dev,
1211 		    "error reading firmware file %s: %d\n", fwname, error);
1212 		goto fail2;
1213 	}
1214 
1215 	/* Success!  */
1216 	firmware_close(fw);
1217 	mutex_exit(&wpi_firmware_mutex);
1218 	return 0;
1219 
1220 fail2:
1221 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1222 	wpi_firmware_image = NULL;
1223 fail1:
1224 	wpi_firmware_size = 0;
1225 	firmware_close(fw);
1226 fail0:
1227 	KASSERT(wpi_firmware_users == 1);
1228 	wpi_firmware_users = 0;
1229 	KASSERT(wpi_firmware_image == NULL);
1230 	KASSERT(wpi_firmware_size == 0);
1231 
1232 	mutex_exit(&wpi_firmware_mutex);
1233 	return error;
1234 }
1235 
1236 static void
1237 wpi_release_firmware(void)
1238 {
1239 
1240 	mutex_enter(&wpi_firmware_mutex);
1241 
1242 	KASSERT(wpi_firmware_users > 0);
1243 	KASSERT(wpi_firmware_image != NULL);
1244 	KASSERT(wpi_firmware_size != 0);
1245 
1246 	if (--wpi_firmware_users == 0) {
1247 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1248 		wpi_firmware_image = NULL;
1249 		wpi_firmware_size = 0;
1250 	}
1251 
1252 	mutex_exit(&wpi_firmware_mutex);
1253 }
1254 
1255 static int
1256 wpi_load_firmware(struct wpi_softc *sc)
1257 {
1258 	struct wpi_dma_info *dma = &sc->fw_dma;
1259 	struct wpi_firmware_hdr hdr;
1260 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1261 	const uint8_t *boot_text;
1262 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1263 	uint32_t boot_textsz;
1264 	size_t size;
1265 	int error;
1266 
1267 	if (!sc->fw_used) {
1268 		if ((error = wpi_cache_firmware(sc)) != 0)
1269 			return error;
1270 		sc->fw_used = true;
1271 	}
1272 
1273 	KASSERT(sc->fw_used);
1274 	KASSERT(wpi_firmware_image != NULL);
1275 	KASSERT(wpi_firmware_size > sizeof(hdr));
1276 
1277 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1278 
1279 	main_textsz = le32toh(hdr.main_textsz);
1280 	main_datasz = le32toh(hdr.main_datasz);
1281 	init_textsz = le32toh(hdr.init_textsz);
1282 	init_datasz = le32toh(hdr.init_datasz);
1283 	boot_textsz = le32toh(hdr.boot_textsz);
1284 
1285 	/* sanity-check firmware segments sizes */
1286 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1287 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1288 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1289 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1290 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1291 	    (boot_textsz & 3) != 0) {
1292 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1293 		error = EINVAL;
1294 		goto free_firmware;
1295 	}
1296 
1297 	/* check that all firmware segments are present */
1298 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1299 	    main_datasz + init_textsz + init_datasz + boot_textsz;
1300 	if (wpi_firmware_size < size) {
1301 		aprint_error_dev(sc->sc_dev,
1302 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1303 		    wpi_firmware_size, size);
1304 		error = EINVAL;
1305 		goto free_firmware;
1306 	}
1307 
1308 	/* get pointers to firmware segments */
1309 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1310 	main_data = main_text + main_textsz;
1311 	init_text = main_data + main_datasz;
1312 	init_data = init_text + init_textsz;
1313 	boot_text = init_data + init_datasz;
1314 
1315 	/* copy initialization images into pre-allocated DMA-safe memory */
1316 	memcpy(dma->vaddr, init_data, init_datasz);
1317 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1318 	    init_textsz);
1319 
1320 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1321 
1322 	/* tell adapter where to find initialization images */
1323 	wpi_mem_lock(sc);
1324 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1325 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1326 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1327 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1328 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1329 	wpi_mem_unlock(sc);
1330 
1331 	/* load firmware boot code */
1332 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1333 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1334 		return error;
1335 	}
1336 
1337 	/* now press "execute" ;-) */
1338 	WPI_WRITE(sc, WPI_RESET, 0);
1339 
1340 	/* wait at most one second for first alive notification */
1341 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1342 		/* this isn't what was supposed to happen.. */
1343 		aprint_error_dev(sc->sc_dev,
1344 		    "timeout waiting for adapter to initialize\n");
1345 	}
1346 
1347 	/* copy runtime images into pre-allocated DMA-safe memory */
1348 	memcpy(dma->vaddr, main_data, main_datasz);
1349 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1350 	    main_textsz);
1351 
1352 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1353 
1354 	/* tell adapter where to find runtime images */
1355 	wpi_mem_lock(sc);
1356 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1357 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1358 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1359 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1360 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1361 	wpi_mem_unlock(sc);
1362 
1363 	/* wait at most one second for second alive notification */
1364 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1365 		/* this isn't what was supposed to happen.. */
1366 		aprint_error_dev(sc->sc_dev,
1367 		    "timeout waiting for adapter to initialize\n");
1368 	}
1369 
1370 	return error;
1371 
1372 free_firmware:
1373 	sc->fw_used = false;
1374 	wpi_release_firmware();
1375 	return error;
1376 }
1377 
1378 static void
1379 wpi_calib_timeout(void *arg)
1380 {
1381 	struct wpi_softc *sc = arg;
1382 	struct ieee80211com *ic = &sc->sc_ic;
1383 	int temp, s;
1384 
1385 	/* automatic rate control triggered every 500ms */
1386 	if (ic->ic_fixed_rate == -1) {
1387 		s = splnet();
1388 		if (ic->ic_opmode == IEEE80211_M_STA)
1389 			wpi_iter_func(sc, ic->ic_bss);
1390 		else
1391 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1392 		splx(s);
1393 	}
1394 
1395 	/* update sensor data */
1396 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1397 
1398 	/* automatic power calibration every 60s */
1399 	if (++sc->calib_cnt >= 120) {
1400 		wpi_power_calibration(sc, temp);
1401 		sc->calib_cnt = 0;
1402 	}
1403 
1404 	callout_schedule(&sc->calib_to, hz/2);
1405 }
1406 
1407 static void
1408 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1409 {
1410 	struct wpi_softc *sc = arg;
1411 	struct wpi_node *wn = (struct wpi_node *)ni;
1412 
1413 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1414 }
1415 
1416 /*
1417  * This function is called periodically (every 60 seconds) to adjust output
1418  * power to temperature changes.
1419  */
1420 void
1421 wpi_power_calibration(struct wpi_softc *sc, int temp)
1422 {
1423 	/* sanity-check read value */
1424 	if (temp < -260 || temp > 25) {
1425 		/* this can't be correct, ignore */
1426 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1427 		return;
1428 	}
1429 
1430 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1431 
1432 	/* adjust Tx power if need be */
1433 	if (abs(temp - sc->temp) <= 6)
1434 		return;
1435 
1436 	sc->temp = temp;
1437 
1438 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1439 		/* just warn, too bad for the automatic calibration... */
1440 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1441 	}
1442 }
1443 
1444 static void
1445 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1446     struct wpi_rx_data *data)
1447 {
1448 	struct ieee80211com *ic = &sc->sc_ic;
1449 	struct ifnet *ifp = ic->ic_ifp;
1450 	struct wpi_rx_ring *ring = &sc->rxq;
1451 	struct wpi_rx_stat *stat;
1452 	struct wpi_rx_head *head;
1453 	struct wpi_rx_tail *tail;
1454 	struct wpi_rbuf *rbuf;
1455 	struct ieee80211_frame *wh;
1456 	struct ieee80211_node *ni;
1457 	struct mbuf *m, *mnew;
1458 	int data_off, error;
1459 
1460 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1461 	    BUS_DMASYNC_POSTREAD);
1462 	stat = (struct wpi_rx_stat *)(desc + 1);
1463 
1464 	if (stat->len > WPI_STAT_MAXLEN) {
1465 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1466 		ifp->if_ierrors++;
1467 		return;
1468 	}
1469 
1470 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1471 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1472 
1473 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1474 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1475 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1476 	    le64toh(tail->tstamp)));
1477 
1478 	/*
1479 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1480 	 * to radiotap in monitor mode).
1481 	 */
1482 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1483 		DPRINTF(("rx tail flags error %x\n",
1484 		    le32toh(tail->flags)));
1485 		ifp->if_ierrors++;
1486 		return;
1487 	}
1488 
1489 	/* Compute where are the useful datas */
1490 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1491 
1492 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1493 	if (mnew == NULL) {
1494 		ifp->if_ierrors++;
1495 		return;
1496 	}
1497 
1498 	rbuf = wpi_alloc_rbuf(sc);
1499 	if (rbuf == NULL) {
1500 		m_freem(mnew);
1501 		ifp->if_ierrors++;
1502 		return;
1503 	}
1504 
1505 	/* attach Rx buffer to mbuf */
1506 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1507 		rbuf);
1508 	mnew->m_flags |= M_EXT_RW;
1509 
1510 	bus_dmamap_unload(sc->sc_dmat, data->map);
1511 
1512 	error = bus_dmamap_load(sc->sc_dmat, data->map,
1513 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1514 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
1515 	if (error) {
1516 		device_printf(sc->sc_dev,
1517 		    "couldn't load rx mbuf: %d\n", error);
1518 		m_freem(mnew);
1519 		ifp->if_ierrors++;
1520 
1521 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1522 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1523 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1524 		if (error)
1525 			panic("%s: bus_dmamap_load failed: %d\n",
1526 			    device_xname(sc->sc_dev), error);
1527 		return;
1528 	}
1529 
1530 	/* new mbuf loaded successfully */
1531 	m = data->m;
1532 	data->m = mnew;
1533 
1534 	/* update Rx descriptor */
1535 	ring->desc[ring->cur] = htole32(rbuf->paddr);
1536 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1537 	    ring->desc_dma.size,
1538 	    BUS_DMASYNC_PREWRITE);
1539 
1540 	m->m_data = (char*)m->m_data + data_off;
1541 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1542 
1543 	/* finalize mbuf */
1544 	m->m_pkthdr.rcvif = ifp;
1545 
1546 	if (sc->sc_drvbpf != NULL) {
1547 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1548 
1549 		tap->wr_flags = 0;
1550 		tap->wr_chan_freq =
1551 		    htole16(ic->ic_channels[head->chan].ic_freq);
1552 		tap->wr_chan_flags =
1553 		    htole16(ic->ic_channels[head->chan].ic_flags);
1554 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1555 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1556 		tap->wr_tsft = tail->tstamp;
1557 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1558 		switch (head->rate) {
1559 		/* CCK rates */
1560 		case  10: tap->wr_rate =   2; break;
1561 		case  20: tap->wr_rate =   4; break;
1562 		case  55: tap->wr_rate =  11; break;
1563 		case 110: tap->wr_rate =  22; break;
1564 		/* OFDM rates */
1565 		case 0xd: tap->wr_rate =  12; break;
1566 		case 0xf: tap->wr_rate =  18; break;
1567 		case 0x5: tap->wr_rate =  24; break;
1568 		case 0x7: tap->wr_rate =  36; break;
1569 		case 0x9: tap->wr_rate =  48; break;
1570 		case 0xb: tap->wr_rate =  72; break;
1571 		case 0x1: tap->wr_rate =  96; break;
1572 		case 0x3: tap->wr_rate = 108; break;
1573 		/* unknown rate: should not happen */
1574 		default:  tap->wr_rate =   0;
1575 		}
1576 		if (le16toh(head->flags) & 0x4)
1577 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1578 
1579 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1580 	}
1581 
1582 	/* grab a reference to the source node */
1583 	wh = mtod(m, struct ieee80211_frame *);
1584 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1585 
1586 	/* send the frame to the 802.11 layer */
1587 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1588 
1589 	/* release node reference */
1590 	ieee80211_free_node(ni);
1591 }
1592 
1593 static void
1594 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1595 {
1596 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1597 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1598 	struct wpi_tx_data *data = &ring->data[desc->idx];
1599 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1600 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1601 
1602 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1603 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1604 	    stat->nkill, stat->rate, le32toh(stat->duration),
1605 	    le32toh(stat->status)));
1606 
1607 	/*
1608 	 * Update rate control statistics for the node.
1609 	 * XXX we should not count mgmt frames since they're always sent at
1610 	 * the lowest available bit-rate.
1611 	 */
1612 	wn->amn.amn_txcnt++;
1613 	if (stat->ntries > 0) {
1614 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1615 		wn->amn.amn_retrycnt++;
1616 	}
1617 
1618 	if ((le32toh(stat->status) & 0xff) != 1)
1619 		ifp->if_oerrors++;
1620 	else
1621 		ifp->if_opackets++;
1622 
1623 	bus_dmamap_unload(sc->sc_dmat, data->map);
1624 	m_freem(data->m);
1625 	data->m = NULL;
1626 	ieee80211_free_node(data->ni);
1627 	data->ni = NULL;
1628 
1629 	ring->queued--;
1630 
1631 	sc->sc_tx_timer = 0;
1632 	ifp->if_flags &= ~IFF_OACTIVE;
1633 	wpi_start(ifp);
1634 }
1635 
1636 static void
1637 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1638 {
1639 	struct wpi_tx_ring *ring = &sc->cmdq;
1640 	struct wpi_tx_data *data;
1641 
1642 	if ((desc->qid & 7) != 4)
1643 		return;	/* not a command ack */
1644 
1645 	data = &ring->data[desc->idx];
1646 
1647 	/* if the command was mapped in a mbuf, free it */
1648 	if (data->m != NULL) {
1649 		bus_dmamap_unload(sc->sc_dmat, data->map);
1650 		m_freem(data->m);
1651 		data->m = NULL;
1652 	}
1653 
1654 	wakeup(&ring->cmd[desc->idx]);
1655 }
1656 
1657 static void
1658 wpi_notif_intr(struct wpi_softc *sc)
1659 {
1660 	struct ieee80211com *ic = &sc->sc_ic;
1661 	struct ifnet *ifp =  ic->ic_ifp;
1662 	uint32_t hw;
1663 
1664 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1665 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1666 
1667 	hw = le32toh(sc->shared->next);
1668 	while (sc->rxq.cur != hw) {
1669 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1670 		struct wpi_rx_desc *desc;
1671 
1672 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1673 		    BUS_DMASYNC_POSTREAD);
1674 		desc = mtod(data->m, struct wpi_rx_desc *);
1675 
1676 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1677 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
1678 		    desc->type, le32toh(desc->len)));
1679 
1680 		if (!(desc->qid & 0x80))	/* reply to a command */
1681 			wpi_cmd_intr(sc, desc);
1682 
1683 		switch (desc->type) {
1684 		case WPI_RX_DONE:
1685 			/* a 802.11 frame was received */
1686 			wpi_rx_intr(sc, desc, data);
1687 			break;
1688 
1689 		case WPI_TX_DONE:
1690 			/* a 802.11 frame has been transmitted */
1691 			wpi_tx_intr(sc, desc);
1692 			break;
1693 
1694 		case WPI_UC_READY:
1695 		{
1696 			struct wpi_ucode_info *uc =
1697 			    (struct wpi_ucode_info *)(desc + 1);
1698 
1699 			/* the microcontroller is ready */
1700 			DPRINTF(("microcode alive notification version %x "
1701 			    "alive %x\n", le32toh(uc->version),
1702 			    le32toh(uc->valid)));
1703 
1704 			if (le32toh(uc->valid) != 1) {
1705 				aprint_error_dev(sc->sc_dev,
1706 				    "microcontroller initialization failed\n");
1707 			}
1708 			break;
1709 		}
1710 		case WPI_STATE_CHANGED:
1711 		{
1712 			uint32_t *status = (uint32_t *)(desc + 1);
1713 
1714 			/* enabled/disabled notification */
1715 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1716 
1717 			if (le32toh(*status) & 1) {
1718 				/* the radio button has to be pushed */
1719 				/* wake up thread to signal powerd */
1720 				cv_signal(&sc->sc_rsw_cv);
1721 				aprint_error_dev(sc->sc_dev,
1722 				    "Radio transmitter is off\n");
1723 				/* turn the interface down */
1724 				ifp->if_flags &= ~IFF_UP;
1725 				wpi_stop(ifp, 1);
1726 				return;	/* no further processing */
1727 			}
1728 			break;
1729 		}
1730 		case WPI_START_SCAN:
1731 		{
1732 #if 0
1733 			struct wpi_start_scan *scan =
1734 			    (struct wpi_start_scan *)(desc + 1);
1735 
1736 			DPRINTFN(2, ("scanning channel %d status %x\n",
1737 			    scan->chan, le32toh(scan->status)));
1738 
1739 			/* fix current channel */
1740 			ic->ic_curchan = &ic->ic_channels[scan->chan];
1741 #endif
1742 			break;
1743 		}
1744 		case WPI_STOP_SCAN:
1745 		{
1746 #ifdef WPI_DEBUG
1747 			struct wpi_stop_scan *scan =
1748 			    (struct wpi_stop_scan *)(desc + 1);
1749 #endif
1750 
1751 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1752 			    scan->nchan, scan->status, scan->chan));
1753 
1754 			sc->is_scanning = false;
1755 			if (ic->ic_state == IEEE80211_S_SCAN)
1756 				ieee80211_next_scan(ic);
1757 
1758 			break;
1759 		}
1760 		}
1761 
1762 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1763 	}
1764 
1765 	/* tell the firmware what we have processed */
1766 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1767 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1768 }
1769 
1770 static int
1771 wpi_intr(void *arg)
1772 {
1773 	struct wpi_softc *sc = arg;
1774 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1775 	uint32_t r;
1776 
1777 	r = WPI_READ(sc, WPI_INTR);
1778 	if (r == 0 || r == 0xffffffff)
1779 		return 0;	/* not for us */
1780 
1781 	DPRINTFN(6, ("interrupt reg %x\n", r));
1782 
1783 	/* disable interrupts */
1784 	WPI_WRITE(sc, WPI_MASK, 0);
1785 	/* ack interrupts */
1786 	WPI_WRITE(sc, WPI_INTR, r);
1787 
1788 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1789 		/* SYSTEM FAILURE, SYSTEM FAILURE */
1790 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1791 		ifp->if_flags &= ~IFF_UP;
1792 		wpi_stop(ifp, 1);
1793 		return 1;
1794 	}
1795 
1796 	if (r & WPI_RX_INTR)
1797 		wpi_notif_intr(sc);
1798 
1799 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1800 		wakeup(sc);
1801 
1802 	/* re-enable interrupts */
1803 	if (ifp->if_flags & IFF_UP)
1804 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1805 
1806 	return 1;
1807 }
1808 
1809 static uint8_t
1810 wpi_plcp_signal(int rate)
1811 {
1812 	switch (rate) {
1813 	/* CCK rates (returned values are device-dependent) */
1814 	case 2:		return 10;
1815 	case 4:		return 20;
1816 	case 11:	return 55;
1817 	case 22:	return 110;
1818 
1819 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1820 	/* R1-R4, (u)ral is R4-R1 */
1821 	case 12:	return 0xd;
1822 	case 18:	return 0xf;
1823 	case 24:	return 0x5;
1824 	case 36:	return 0x7;
1825 	case 48:	return 0x9;
1826 	case 72:	return 0xb;
1827 	case 96:	return 0x1;
1828 	case 108:	return 0x3;
1829 
1830 	/* unsupported rates (should not get there) */
1831 	default:	return 0;
1832 	}
1833 }
1834 
1835 /* quickly determine if a given rate is CCK or OFDM */
1836 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1837 
1838 static int
1839 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1840     int ac)
1841 {
1842 	struct ieee80211com *ic = &sc->sc_ic;
1843 	struct wpi_tx_ring *ring = &sc->txq[ac];
1844 	struct wpi_tx_desc *desc;
1845 	struct wpi_tx_data *data;
1846 	struct wpi_tx_cmd *cmd;
1847 	struct wpi_cmd_data *tx;
1848 	struct ieee80211_frame *wh;
1849 	struct ieee80211_key *k;
1850 	const struct chanAccParams *cap;
1851 	struct mbuf *mnew;
1852 	int i, rate, error, hdrlen, noack = 0;
1853 
1854 	desc = &ring->desc[ring->cur];
1855 	data = &ring->data[ring->cur];
1856 
1857 	wh = mtod(m0, struct ieee80211_frame *);
1858 
1859 	if (ieee80211_has_qos(wh)) {
1860 		cap = &ic->ic_wme.wme_chanParams;
1861 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1862 	}
1863 
1864 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1865 		k = ieee80211_crypto_encap(ic, ni, m0);
1866 		if (k == NULL) {
1867 			m_freem(m0);
1868 			return ENOBUFS;
1869 		}
1870 
1871 		/* packet header may have moved, reset our local pointer */
1872 		wh = mtod(m0, struct ieee80211_frame *);
1873 	}
1874 
1875 	hdrlen = ieee80211_anyhdrsize(wh);
1876 
1877 	/* pickup a rate */
1878 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1879 	    IEEE80211_FC0_TYPE_MGT) {
1880 		/* mgmt frames are sent at the lowest available bit-rate */
1881 		rate = ni->ni_rates.rs_rates[0];
1882 	} else {
1883 		if (ic->ic_fixed_rate != -1) {
1884 			rate = ic->ic_sup_rates[ic->ic_curmode].
1885 			    rs_rates[ic->ic_fixed_rate];
1886 		} else
1887 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1888 	}
1889 	rate &= IEEE80211_RATE_VAL;
1890 
1891 	if (sc->sc_drvbpf != NULL) {
1892 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1893 
1894 		tap->wt_flags = 0;
1895 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1896 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1897 		tap->wt_rate = rate;
1898 		tap->wt_hwqueue = ac;
1899 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1900 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1901 
1902 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1903 	}
1904 
1905 	cmd = &ring->cmd[ring->cur];
1906 	cmd->code = WPI_CMD_TX_DATA;
1907 	cmd->flags = 0;
1908 	cmd->qid = ring->qid;
1909 	cmd->idx = ring->cur;
1910 
1911 	tx = (struct wpi_cmd_data *)cmd->data;
1912 	/* no need to zero tx, all fields are reinitialized here */
1913 	tx->flags = 0;
1914 
1915 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1916 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1917 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1918 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1919 
1920 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1921 
1922 	/* retrieve destination node's id */
1923 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1924 		WPI_ID_BSS;
1925 
1926 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1927 	    IEEE80211_FC0_TYPE_MGT) {
1928 		/* tell h/w to set timestamp in probe responses */
1929 		if ((wh->i_fc[0] &
1930 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1931 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1932 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1933 
1934 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1935 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1936 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1937 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1938 			tx->timeout = htole16(3);
1939 		else
1940 			tx->timeout = htole16(2);
1941 	} else
1942 		tx->timeout = htole16(0);
1943 
1944 	tx->rate = wpi_plcp_signal(rate);
1945 
1946 	/* be very persistant at sending frames out */
1947 	tx->rts_ntries = 7;
1948 	tx->data_ntries = 15;
1949 
1950 	tx->ofdm_mask = 0xff;
1951 	tx->cck_mask = 0x0f;
1952 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1953 
1954 	tx->len = htole16(m0->m_pkthdr.len);
1955 
1956 	/* save and trim IEEE802.11 header */
1957 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1958 	m_adj(m0, hdrlen);
1959 
1960 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1961 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1962 	if (error != 0 && error != EFBIG) {
1963 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1964 		    error);
1965 		m_freem(m0);
1966 		return error;
1967 	}
1968 	if (error != 0) {
1969 		/* too many fragments, linearize */
1970 
1971 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1972 		if (mnew == NULL) {
1973 			m_freem(m0);
1974 			return ENOMEM;
1975 		}
1976 		M_COPY_PKTHDR(mnew, m0);
1977 		if (m0->m_pkthdr.len > MHLEN) {
1978 			MCLGET(mnew, M_DONTWAIT);
1979 			if (!(mnew->m_flags & M_EXT)) {
1980 				m_freem(m0);
1981 				m_freem(mnew);
1982 				return ENOMEM;
1983 			}
1984 		}
1985 
1986 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1987 		m_freem(m0);
1988 		mnew->m_len = mnew->m_pkthdr.len;
1989 		m0 = mnew;
1990 
1991 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1992 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1993 		if (error != 0) {
1994 			aprint_error_dev(sc->sc_dev,
1995 			    "could not map mbuf (error %d)\n", error);
1996 			m_freem(m0);
1997 			return error;
1998 		}
1999 	}
2000 
2001 	data->m = m0;
2002 	data->ni = ni;
2003 
2004 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2005 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2006 
2007 	/* first scatter/gather segment is used by the tx data command */
2008 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2009 	    (1 + data->map->dm_nsegs) << 24);
2010 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2011 	    ring->cur * sizeof (struct wpi_tx_cmd));
2012 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
2013 	    ((hdrlen + 3) & ~3));
2014 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2015 		desc->segs[i].addr =
2016 		    htole32(data->map->dm_segs[i - 1].ds_addr);
2017 		desc->segs[i].len  =
2018 		    htole32(data->map->dm_segs[i - 1].ds_len);
2019 	}
2020 
2021 	ring->queued++;
2022 
2023 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2024 	    data->map->dm_mapsize,
2025 	    BUS_DMASYNC_PREWRITE);
2026 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2027 	    ring->cmd_dma.size,
2028 	    BUS_DMASYNC_PREWRITE);
2029 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2030 	    ring->desc_dma.size,
2031 	    BUS_DMASYNC_PREWRITE);
2032 
2033 	/* kick ring */
2034 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2035 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2036 
2037 	return 0;
2038 }
2039 
2040 static void
2041 wpi_start(struct ifnet *ifp)
2042 {
2043 	struct wpi_softc *sc = ifp->if_softc;
2044 	struct ieee80211com *ic = &sc->sc_ic;
2045 	struct ieee80211_node *ni;
2046 	struct ether_header *eh;
2047 	struct mbuf *m0;
2048 	int ac;
2049 
2050 	/*
2051 	 * net80211 may still try to send management frames even if the
2052 	 * IFF_RUNNING flag is not set...
2053 	 */
2054 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2055 		return;
2056 
2057 	for (;;) {
2058 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2059 		if (m0 != NULL) {
2060 
2061 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2062 			m0->m_pkthdr.rcvif = NULL;
2063 
2064 			/* management frames go into ring 0 */
2065 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2066 				ifp->if_oerrors++;
2067 				continue;
2068 			}
2069 			bpf_mtap3(ic->ic_rawbpf, m0);
2070 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2071 				ifp->if_oerrors++;
2072 				break;
2073 			}
2074 		} else {
2075 			if (ic->ic_state != IEEE80211_S_RUN)
2076 				break;
2077 			IFQ_POLL(&ifp->if_snd, m0);
2078 			if (m0 == NULL)
2079 				break;
2080 
2081 			if (m0->m_len < sizeof (*eh) &&
2082 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2083 				ifp->if_oerrors++;
2084 				continue;
2085 			}
2086 			eh = mtod(m0, struct ether_header *);
2087 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2088 			if (ni == NULL) {
2089 				m_freem(m0);
2090 				ifp->if_oerrors++;
2091 				continue;
2092 			}
2093 
2094 			/* classify mbuf so we can find which tx ring to use */
2095 			if (ieee80211_classify(ic, m0, ni) != 0) {
2096 				m_freem(m0);
2097 				ieee80211_free_node(ni);
2098 				ifp->if_oerrors++;
2099 				continue;
2100 			}
2101 
2102 			/* no QoS encapsulation for EAPOL frames */
2103 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2104 			    M_WME_GETAC(m0) : WME_AC_BE;
2105 
2106 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2107 				/* there is no place left in this ring */
2108 				ifp->if_flags |= IFF_OACTIVE;
2109 				break;
2110 			}
2111 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2112 			bpf_mtap(ifp, m0);
2113 			m0 = ieee80211_encap(ic, m0, ni);
2114 			if (m0 == NULL) {
2115 				ieee80211_free_node(ni);
2116 				ifp->if_oerrors++;
2117 				continue;
2118 			}
2119 			bpf_mtap3(ic->ic_rawbpf, m0);
2120 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2121 				ieee80211_free_node(ni);
2122 				ifp->if_oerrors++;
2123 				break;
2124 			}
2125 		}
2126 
2127 		sc->sc_tx_timer = 5;
2128 		ifp->if_timer = 1;
2129 	}
2130 }
2131 
2132 static void
2133 wpi_watchdog(struct ifnet *ifp)
2134 {
2135 	struct wpi_softc *sc = ifp->if_softc;
2136 
2137 	ifp->if_timer = 0;
2138 
2139 	if (sc->sc_tx_timer > 0) {
2140 		if (--sc->sc_tx_timer == 0) {
2141 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2142 			ifp->if_flags &= ~IFF_UP;
2143 			wpi_stop(ifp, 1);
2144 			ifp->if_oerrors++;
2145 			return;
2146 		}
2147 		ifp->if_timer = 1;
2148 	}
2149 
2150 	ieee80211_watchdog(&sc->sc_ic);
2151 }
2152 
2153 static int
2154 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2155 {
2156 #define IS_RUNNING(ifp) \
2157 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2158 
2159 	struct wpi_softc *sc = ifp->if_softc;
2160 	struct ieee80211com *ic = &sc->sc_ic;
2161 	int s, error = 0;
2162 
2163 	s = splnet();
2164 
2165 	switch (cmd) {
2166 	case SIOCSIFFLAGS:
2167 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2168 			break;
2169 		if (ifp->if_flags & IFF_UP) {
2170 			if (!(ifp->if_flags & IFF_RUNNING))
2171 				wpi_init(ifp);
2172 		} else {
2173 			if (ifp->if_flags & IFF_RUNNING)
2174 				wpi_stop(ifp, 1);
2175 		}
2176 		break;
2177 
2178 	case SIOCADDMULTI:
2179 	case SIOCDELMULTI:
2180 		/* XXX no h/w multicast filter? --dyoung */
2181 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2182 			/* setup multicast filter, etc */
2183 			error = 0;
2184 		}
2185 		break;
2186 
2187 	default:
2188 		error = ieee80211_ioctl(ic, cmd, data);
2189 	}
2190 
2191 	if (error == ENETRESET) {
2192 		if (IS_RUNNING(ifp) &&
2193 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2194 			wpi_init(ifp);
2195 		error = 0;
2196 	}
2197 
2198 	splx(s);
2199 	return error;
2200 
2201 #undef IS_RUNNING
2202 }
2203 
2204 /*
2205  * Extract various information from EEPROM.
2206  */
2207 static void
2208 wpi_read_eeprom(struct wpi_softc *sc)
2209 {
2210 	struct ieee80211com *ic = &sc->sc_ic;
2211 	char domain[4];
2212 	int i;
2213 
2214 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2215 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2216 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2217 
2218 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2219 	    sc->type));
2220 
2221 	/* read and print regulatory domain */
2222 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2223 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2224 
2225 	/* read and print MAC address */
2226 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2227 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2228 
2229 	/* read the list of authorized channels */
2230 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2231 		wpi_read_eeprom_channels(sc, i);
2232 
2233 	/* read the list of power groups */
2234 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2235 		wpi_read_eeprom_group(sc, i);
2236 }
2237 
2238 static void
2239 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2240 {
2241 	struct ieee80211com *ic = &sc->sc_ic;
2242 	const struct wpi_chan_band *band = &wpi_bands[n];
2243 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2244 	int chan, i;
2245 
2246 	wpi_read_prom_data(sc, band->addr, channels,
2247 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2248 
2249 	for (i = 0; i < band->nchan; i++) {
2250 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2251 			continue;
2252 
2253 		chan = band->chan[i];
2254 
2255 		if (n == 0) {	/* 2GHz band */
2256 			ic->ic_channels[chan].ic_freq =
2257 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2258 			ic->ic_channels[chan].ic_flags =
2259 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2260 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2261 
2262 		} else {	/* 5GHz band */
2263 			/*
2264 			 * Some 3945ABG adapters support channels 7, 8, 11
2265 			 * and 12 in the 2GHz *and* 5GHz bands.
2266 			 * Because of limitations in our net80211(9) stack,
2267 			 * we can't support these channels in 5GHz band.
2268 			 */
2269 			if (chan <= 14)
2270 				continue;
2271 
2272 			ic->ic_channels[chan].ic_freq =
2273 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2274 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2275 		}
2276 
2277 		/* is active scan allowed on this channel? */
2278 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2279 			ic->ic_channels[chan].ic_flags |=
2280 			    IEEE80211_CHAN_PASSIVE;
2281 		}
2282 
2283 		/* save maximum allowed power for this channel */
2284 		sc->maxpwr[chan] = channels[i].maxpwr;
2285 
2286 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2287 		    chan, channels[i].flags, sc->maxpwr[chan]));
2288 	}
2289 }
2290 
2291 static void
2292 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2293 {
2294 	struct wpi_power_group *group = &sc->groups[n];
2295 	struct wpi_eeprom_group rgroup;
2296 	int i;
2297 
2298 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2299 	    sizeof rgroup);
2300 
2301 	/* save power group information */
2302 	group->chan   = rgroup.chan;
2303 	group->maxpwr = rgroup.maxpwr;
2304 	/* temperature at which the samples were taken */
2305 	group->temp   = (int16_t)le16toh(rgroup.temp);
2306 
2307 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2308 	    group->chan, group->maxpwr, group->temp));
2309 
2310 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2311 		group->samples[i].index = rgroup.samples[i].index;
2312 		group->samples[i].power = rgroup.samples[i].power;
2313 
2314 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2315 		    group->samples[i].index, group->samples[i].power));
2316 	}
2317 }
2318 
2319 /*
2320  * Send a command to the firmware.
2321  */
2322 static int
2323 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2324 {
2325 	struct wpi_tx_ring *ring = &sc->cmdq;
2326 	struct wpi_tx_desc *desc;
2327 	struct wpi_tx_cmd *cmd;
2328 	struct wpi_dma_info *dma;
2329 
2330 	KASSERT(size <= sizeof cmd->data);
2331 
2332 	desc = &ring->desc[ring->cur];
2333 	cmd = &ring->cmd[ring->cur];
2334 
2335 	cmd->code = code;
2336 	cmd->flags = 0;
2337 	cmd->qid = ring->qid;
2338 	cmd->idx = ring->cur;
2339 	memcpy(cmd->data, buf, size);
2340 
2341 	dma = &ring->cmd_dma;
2342 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2343 
2344 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2345 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2346 	    ring->cur * sizeof (struct wpi_tx_cmd));
2347 	desc->segs[0].len  = htole32(4 + size);
2348 
2349 	dma = &ring->desc_dma;
2350 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2351 
2352 	/* kick cmd ring */
2353 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2354 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2355 
2356 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2357 }
2358 
2359 static int
2360 wpi_wme_update(struct ieee80211com *ic)
2361 {
2362 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2363 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2364 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2365 	const struct wmeParams *wmep;
2366 	struct wpi_wme_setup wme;
2367 	int ac;
2368 
2369 	/* don't override default WME values if WME is not actually enabled */
2370 	if (!(ic->ic_flags & IEEE80211_F_WME))
2371 		return 0;
2372 
2373 	wme.flags = 0;
2374 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2375 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2376 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2377 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2378 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2379 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2380 
2381 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2382 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2383 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2384 	}
2385 
2386 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2387 #undef WPI_USEC
2388 #undef WPI_EXP2
2389 }
2390 
2391 /*
2392  * Configure h/w multi-rate retries.
2393  */
2394 static int
2395 wpi_mrr_setup(struct wpi_softc *sc)
2396 {
2397 	struct ieee80211com *ic = &sc->sc_ic;
2398 	struct wpi_mrr_setup mrr;
2399 	int i, error;
2400 
2401 	/* CCK rates (not used with 802.11a) */
2402 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2403 		mrr.rates[i].flags = 0;
2404 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2405 		/* fallback to the immediate lower CCK rate (if any) */
2406 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2407 		/* try one time at this rate before falling back to "next" */
2408 		mrr.rates[i].ntries = 1;
2409 	}
2410 
2411 	/* OFDM rates (not used with 802.11b) */
2412 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2413 		mrr.rates[i].flags = 0;
2414 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2415 		/* fallback to the immediate lower rate (if any) */
2416 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2417 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2418 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2419 			WPI_OFDM6 : WPI_CCK2) :
2420 		    i - 1;
2421 		/* try one time at this rate before falling back to "next" */
2422 		mrr.rates[i].ntries = 1;
2423 	}
2424 
2425 	/* setup MRR for control frames */
2426 	mrr.which = htole32(WPI_MRR_CTL);
2427 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2428 	if (error != 0) {
2429 		aprint_error_dev(sc->sc_dev,
2430 		    "could not setup MRR for control frames\n");
2431 		return error;
2432 	}
2433 
2434 	/* setup MRR for data frames */
2435 	mrr.which = htole32(WPI_MRR_DATA);
2436 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2437 	if (error != 0) {
2438 		aprint_error_dev(sc->sc_dev,
2439 		    "could not setup MRR for data frames\n");
2440 		return error;
2441 	}
2442 
2443 	return 0;
2444 }
2445 
2446 static void
2447 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2448 {
2449 	struct wpi_cmd_led led;
2450 
2451 	led.which = which;
2452 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2453 	led.off = off;
2454 	led.on = on;
2455 
2456 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2457 }
2458 
2459 static void
2460 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2461 {
2462 	struct wpi_cmd_tsf tsf;
2463 	uint64_t val, mod;
2464 
2465 	memset(&tsf, 0, sizeof tsf);
2466 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2467 	tsf.bintval = htole16(ni->ni_intval);
2468 	tsf.lintval = htole16(10);
2469 
2470 	/* compute remaining time until next beacon */
2471 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2472 	mod = le64toh(tsf.tstamp) % val;
2473 	tsf.binitval = htole32((uint32_t)(val - mod));
2474 
2475 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2476 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2477 
2478 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2479 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2480 }
2481 
2482 /*
2483  * Update Tx power to match what is defined for channel `c'.
2484  */
2485 static int
2486 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2487 {
2488 	struct ieee80211com *ic = &sc->sc_ic;
2489 	struct wpi_power_group *group;
2490 	struct wpi_cmd_txpower txpower;
2491 	u_int chan;
2492 	int i;
2493 
2494 	/* get channel number */
2495 	chan = ieee80211_chan2ieee(ic, c);
2496 
2497 	/* find the power group to which this channel belongs */
2498 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2499 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2500 			if (chan <= group->chan)
2501 				break;
2502 	} else
2503 		group = &sc->groups[0];
2504 
2505 	memset(&txpower, 0, sizeof txpower);
2506 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2507 	txpower.chan = htole16(chan);
2508 
2509 	/* set Tx power for all OFDM and CCK rates */
2510 	for (i = 0; i <= 11 ; i++) {
2511 		/* retrieve Tx power for this channel/rate combination */
2512 		int idx = wpi_get_power_index(sc, group, c,
2513 		    wpi_ridx_to_rate[i]);
2514 
2515 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2516 
2517 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2518 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2519 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2520 		} else {
2521 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2522 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2523 		}
2524 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2525 		    wpi_ridx_to_rate[i], idx));
2526 	}
2527 
2528 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2529 }
2530 
2531 /*
2532  * Determine Tx power index for a given channel/rate combination.
2533  * This takes into account the regulatory information from EEPROM and the
2534  * current temperature.
2535  */
2536 static int
2537 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2538     struct ieee80211_channel *c, int rate)
2539 {
2540 /* fixed-point arithmetic division using a n-bit fractional part */
2541 #define fdivround(a, b, n)	\
2542 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2543 
2544 /* linear interpolation */
2545 #define interpolate(x, x1, y1, x2, y2, n)	\
2546 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2547 
2548 	struct ieee80211com *ic = &sc->sc_ic;
2549 	struct wpi_power_sample *sample;
2550 	int pwr, idx;
2551 	u_int chan;
2552 
2553 	/* get channel number */
2554 	chan = ieee80211_chan2ieee(ic, c);
2555 
2556 	/* default power is group's maximum power - 3dB */
2557 	pwr = group->maxpwr / 2;
2558 
2559 	/* decrease power for highest OFDM rates to reduce distortion */
2560 	switch (rate) {
2561 	case 72:	/* 36Mb/s */
2562 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2563 		break;
2564 	case 96:	/* 48Mb/s */
2565 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2566 		break;
2567 	case 108:	/* 54Mb/s */
2568 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2569 		break;
2570 	}
2571 
2572 	/* never exceed channel's maximum allowed Tx power */
2573 	pwr = min(pwr, sc->maxpwr[chan]);
2574 
2575 	/* retrieve power index into gain tables from samples */
2576 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2577 		if (pwr > sample[1].power)
2578 			break;
2579 	/* fixed-point linear interpolation using a 19-bit fractional part */
2580 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2581 	    sample[1].power, sample[1].index, 19);
2582 
2583 	/*-
2584 	 * Adjust power index based on current temperature:
2585 	 * - if cooler than factory-calibrated: decrease output power
2586 	 * - if warmer than factory-calibrated: increase output power
2587 	 */
2588 	idx -= (sc->temp - group->temp) * 11 / 100;
2589 
2590 	/* decrease power for CCK rates (-5dB) */
2591 	if (!WPI_RATE_IS_OFDM(rate))
2592 		idx += 10;
2593 
2594 	/* keep power index in a valid range */
2595 	if (idx < 0)
2596 		return 0;
2597 	if (idx > WPI_MAX_PWR_INDEX)
2598 		return WPI_MAX_PWR_INDEX;
2599 	return idx;
2600 
2601 #undef interpolate
2602 #undef fdivround
2603 }
2604 
2605 /*
2606  * Build a beacon frame that the firmware will broadcast periodically in
2607  * IBSS or HostAP modes.
2608  */
2609 static int
2610 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2611 {
2612 	struct ieee80211com *ic = &sc->sc_ic;
2613 	struct wpi_tx_ring *ring = &sc->cmdq;
2614 	struct wpi_tx_desc *desc;
2615 	struct wpi_tx_data *data;
2616 	struct wpi_tx_cmd *cmd;
2617 	struct wpi_cmd_beacon *bcn;
2618 	struct ieee80211_beacon_offsets bo;
2619 	struct mbuf *m0;
2620 	int error;
2621 
2622 	desc = &ring->desc[ring->cur];
2623 	data = &ring->data[ring->cur];
2624 
2625 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2626 	if (m0 == NULL) {
2627 		aprint_error_dev(sc->sc_dev,
2628 		    "could not allocate beacon frame\n");
2629 		return ENOMEM;
2630 	}
2631 
2632 	cmd = &ring->cmd[ring->cur];
2633 	cmd->code = WPI_CMD_SET_BEACON;
2634 	cmd->flags = 0;
2635 	cmd->qid = ring->qid;
2636 	cmd->idx = ring->cur;
2637 
2638 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2639 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2640 	bcn->id = WPI_ID_BROADCAST;
2641 	bcn->ofdm_mask = 0xff;
2642 	bcn->cck_mask = 0x0f;
2643 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2644 	bcn->len = htole16(m0->m_pkthdr.len);
2645 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2646 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2647 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2648 
2649 	/* save and trim IEEE802.11 header */
2650 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2651 	m_adj(m0, sizeof (struct ieee80211_frame));
2652 
2653 	/* assume beacon frame is contiguous */
2654 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2655 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2656 	if (error != 0) {
2657 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2658 		m_freem(m0);
2659 		return error;
2660 	}
2661 
2662 	data->m = m0;
2663 
2664 	/* first scatter/gather segment is used by the beacon command */
2665 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2666 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2667 	    ring->cur * sizeof (struct wpi_tx_cmd));
2668 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2669 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2670 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2671 
2672 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2673 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2674 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2675 	    BUS_DMASYNC_PREWRITE);
2676 
2677 	/* kick cmd ring */
2678 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2679 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2680 
2681 	return 0;
2682 }
2683 
2684 static int
2685 wpi_auth(struct wpi_softc *sc)
2686 {
2687 	struct ieee80211com *ic = &sc->sc_ic;
2688 	struct ieee80211_node *ni = ic->ic_bss;
2689 	struct wpi_node_info node;
2690 	int error;
2691 
2692 	/* update adapter's configuration */
2693 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2694 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2695 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2696 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2697 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2698 		    WPI_CONFIG_24GHZ);
2699 	}
2700 	switch (ic->ic_curmode) {
2701 	case IEEE80211_MODE_11A:
2702 		sc->config.cck_mask  = 0;
2703 		sc->config.ofdm_mask = 0x15;
2704 		break;
2705 	case IEEE80211_MODE_11B:
2706 		sc->config.cck_mask  = 0x03;
2707 		sc->config.ofdm_mask = 0;
2708 		break;
2709 	default:	/* assume 802.11b/g */
2710 		sc->config.cck_mask  = 0x0f;
2711 		sc->config.ofdm_mask = 0x15;
2712 	}
2713 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2714 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2715 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2716 	    sizeof (struct wpi_config), 1);
2717 	if (error != 0) {
2718 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2719 		return error;
2720 	}
2721 
2722 	/* configuration has changed, set Tx power accordingly */
2723 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2724 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2725 		return error;
2726 	}
2727 
2728 	/* add default node */
2729 	memset(&node, 0, sizeof node);
2730 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2731 	node.id = WPI_ID_BSS;
2732 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2733 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2734 	node.action = htole32(WPI_ACTION_SET_RATE);
2735 	node.antenna = WPI_ANTENNA_BOTH;
2736 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2737 	if (error != 0) {
2738 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2739 		return error;
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 /*
2746  * Send a scan request to the firmware.  Since this command is huge, we map it
2747  * into a mbuf instead of using the pre-allocated set of commands.
2748  */
2749 static int
2750 wpi_scan(struct wpi_softc *sc)
2751 {
2752 	struct ieee80211com *ic = &sc->sc_ic;
2753 	struct wpi_tx_ring *ring = &sc->cmdq;
2754 	struct wpi_tx_desc *desc;
2755 	struct wpi_tx_data *data;
2756 	struct wpi_tx_cmd *cmd;
2757 	struct wpi_scan_hdr *hdr;
2758 	struct wpi_scan_chan *chan;
2759 	struct ieee80211_frame *wh;
2760 	struct ieee80211_rateset *rs;
2761 	struct ieee80211_channel *c;
2762 	uint8_t *frm;
2763 	int pktlen, error, nrates;
2764 
2765 	if (ic->ic_curchan == NULL)
2766 		return EIO;
2767 
2768 	desc = &ring->desc[ring->cur];
2769 	data = &ring->data[ring->cur];
2770 
2771 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2772 	if (data->m == NULL) {
2773 		aprint_error_dev(sc->sc_dev,
2774 		    "could not allocate mbuf for scan command\n");
2775 		return ENOMEM;
2776 	}
2777 	MCLGET(data->m, M_DONTWAIT);
2778 	if (!(data->m->m_flags & M_EXT)) {
2779 		m_freem(data->m);
2780 		data->m = NULL;
2781 		aprint_error_dev(sc->sc_dev,
2782 		    "could not allocate mbuf for scan command\n");
2783 		return ENOMEM;
2784 	}
2785 
2786 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2787 	cmd->code = WPI_CMD_SCAN;
2788 	cmd->flags = 0;
2789 	cmd->qid = ring->qid;
2790 	cmd->idx = ring->cur;
2791 
2792 	hdr = (struct wpi_scan_hdr *)cmd->data;
2793 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2794 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2795 	hdr->cmd.id = WPI_ID_BROADCAST;
2796 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2797 	/*
2798 	 * Move to the next channel if no packets are received within 5 msecs
2799 	 * after sending the probe request (this helps to reduce the duration
2800 	 * of active scans).
2801 	 */
2802 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
2803 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2804 
2805 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2806 		hdr->crc_threshold = htole16(1);
2807 		/* send probe requests at 6Mbps */
2808 		hdr->cmd.rate = wpi_plcp_signal(12);
2809 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2810 	} else {
2811 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2812 		/* send probe requests at 1Mbps */
2813 		hdr->cmd.rate = wpi_plcp_signal(2);
2814 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2815 	}
2816 
2817 	/* for directed scans, firmware inserts the essid IE itself */
2818 	if (ic->ic_des_esslen != 0) {
2819 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2820 		hdr->essid[0].len = ic->ic_des_esslen;
2821 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2822 	}
2823 
2824 	/*
2825 	 * Build a probe request frame.  Most of the following code is a
2826 	 * copy & paste of what is done in net80211.
2827 	 */
2828 	wh = (struct ieee80211_frame *)(hdr + 1);
2829 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2830 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2831 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2832 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2833 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2834 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2835 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2836 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2837 
2838 	frm = (uint8_t *)(wh + 1);
2839 
2840 	/* add empty essid IE (firmware generates it for directed scans) */
2841 	*frm++ = IEEE80211_ELEMID_SSID;
2842 	*frm++ = 0;
2843 
2844 	/* add supported rates IE */
2845 	*frm++ = IEEE80211_ELEMID_RATES;
2846 	nrates = rs->rs_nrates;
2847 	if (nrates > IEEE80211_RATE_SIZE)
2848 		nrates = IEEE80211_RATE_SIZE;
2849 	*frm++ = nrates;
2850 	memcpy(frm, rs->rs_rates, nrates);
2851 	frm += nrates;
2852 
2853 	/* add supported xrates IE */
2854 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2855 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2856 		*frm++ = IEEE80211_ELEMID_XRATES;
2857 		*frm++ = nrates;
2858 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2859 		frm += nrates;
2860 	}
2861 
2862 	/* setup length of probe request */
2863 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2864 
2865 	chan = (struct wpi_scan_chan *)frm;
2866 	c = ic->ic_curchan;
2867 
2868 	chan->chan = ieee80211_chan2ieee(ic, c);
2869 	chan->flags = 0;
2870 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2871 		chan->flags |= WPI_CHAN_ACTIVE;
2872 		if (ic->ic_des_esslen != 0)
2873 			chan->flags |= WPI_CHAN_DIRECT;
2874 	}
2875 	chan->dsp_gain = 0x6e;
2876 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2877 		chan->rf_gain = 0x3b;
2878 		chan->active  = htole16(10);
2879 		chan->passive = htole16(110);
2880 	} else {
2881 		chan->rf_gain = 0x28;
2882 		chan->active  = htole16(20);
2883 		chan->passive = htole16(120);
2884 	}
2885 	hdr->nchan++;
2886 	chan++;
2887 
2888 	frm += sizeof (struct wpi_scan_chan);
2889 
2890 	hdr->len = htole16(frm - (uint8_t *)hdr);
2891 	pktlen = frm - (uint8_t *)cmd;
2892 
2893 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2894 	    BUS_DMA_NOWAIT);
2895 	if (error != 0) {
2896 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2897 		m_freem(data->m);
2898 		data->m = NULL;
2899 		return error;
2900 	}
2901 
2902 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2903 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2904 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2905 
2906 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2907 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2908 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2909 	    BUS_DMASYNC_PREWRITE);
2910 
2911 	/* kick cmd ring */
2912 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2913 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2914 
2915 	return 0;	/* will be notified async. of failure/success */
2916 }
2917 
2918 static int
2919 wpi_config(struct wpi_softc *sc)
2920 {
2921 	struct ieee80211com *ic = &sc->sc_ic;
2922 	struct ifnet *ifp = ic->ic_ifp;
2923 	struct wpi_power power;
2924 	struct wpi_bluetooth bluetooth;
2925 	struct wpi_node_info node;
2926 	int error;
2927 
2928 	memset(&power, 0, sizeof power);
2929 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2930 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2931 	if (error != 0) {
2932 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2933 		return error;
2934 	}
2935 
2936 	/* configure bluetooth coexistence */
2937 	memset(&bluetooth, 0, sizeof bluetooth);
2938 	bluetooth.flags = 3;
2939 	bluetooth.lead = 0xaa;
2940 	bluetooth.kill = 1;
2941 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2942 	    0);
2943 	if (error != 0) {
2944 		aprint_error_dev(sc->sc_dev,
2945 			"could not configure bluetooth coexistence\n");
2946 		return error;
2947 	}
2948 
2949 	/* configure adapter */
2950 	memset(&sc->config, 0, sizeof (struct wpi_config));
2951 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2952 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2953 	/* set default channel */
2954 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2955 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2956 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2957 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2958 		    WPI_CONFIG_24GHZ);
2959 	}
2960 	sc->config.filter = 0;
2961 	switch (ic->ic_opmode) {
2962 	case IEEE80211_M_STA:
2963 		sc->config.mode = WPI_MODE_STA;
2964 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2965 		break;
2966 	case IEEE80211_M_IBSS:
2967 	case IEEE80211_M_AHDEMO:
2968 		sc->config.mode = WPI_MODE_IBSS;
2969 		break;
2970 	case IEEE80211_M_HOSTAP:
2971 		sc->config.mode = WPI_MODE_HOSTAP;
2972 		break;
2973 	case IEEE80211_M_MONITOR:
2974 		sc->config.mode = WPI_MODE_MONITOR;
2975 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2976 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2977 		break;
2978 	}
2979 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2980 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2981 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2982 	    sizeof (struct wpi_config), 0);
2983 	if (error != 0) {
2984 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2985 		return error;
2986 	}
2987 
2988 	/* configuration has changed, set Tx power accordingly */
2989 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2990 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2991 		return error;
2992 	}
2993 
2994 	/* add broadcast node */
2995 	memset(&node, 0, sizeof node);
2996 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2997 	node.id = WPI_ID_BROADCAST;
2998 	node.rate = wpi_plcp_signal(2);
2999 	node.action = htole32(WPI_ACTION_SET_RATE);
3000 	node.antenna = WPI_ANTENNA_BOTH;
3001 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3002 	if (error != 0) {
3003 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3004 		return error;
3005 	}
3006 
3007 	if ((error = wpi_mrr_setup(sc)) != 0) {
3008 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3009 		return error;
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 static void
3016 wpi_stop_master(struct wpi_softc *sc)
3017 {
3018 	uint32_t tmp;
3019 	int ntries;
3020 
3021 	tmp = WPI_READ(sc, WPI_RESET);
3022 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3023 
3024 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3025 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3026 		return;	/* already asleep */
3027 
3028 	for (ntries = 0; ntries < 100; ntries++) {
3029 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3030 			break;
3031 		DELAY(10);
3032 	}
3033 	if (ntries == 100) {
3034 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3035 	}
3036 }
3037 
3038 static int
3039 wpi_power_up(struct wpi_softc *sc)
3040 {
3041 	uint32_t tmp;
3042 	int ntries;
3043 
3044 	wpi_mem_lock(sc);
3045 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3046 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3047 	wpi_mem_unlock(sc);
3048 
3049 	for (ntries = 0; ntries < 5000; ntries++) {
3050 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3051 			break;
3052 		DELAY(10);
3053 	}
3054 	if (ntries == 5000) {
3055 		aprint_error_dev(sc->sc_dev,
3056 		    "timeout waiting for NIC to power up\n");
3057 		return ETIMEDOUT;
3058 	}
3059 	return 0;
3060 }
3061 
3062 static int
3063 wpi_reset(struct wpi_softc *sc)
3064 {
3065 	uint32_t tmp;
3066 	int ntries;
3067 
3068 	/* clear any pending interrupts */
3069 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3070 
3071 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3072 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3073 
3074 	tmp = WPI_READ(sc, WPI_CHICKEN);
3075 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3076 
3077 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3078 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3079 
3080 	/* wait for clock stabilization */
3081 	for (ntries = 0; ntries < 1000; ntries++) {
3082 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3083 			break;
3084 		DELAY(10);
3085 	}
3086 	if (ntries == 1000) {
3087 		aprint_error_dev(sc->sc_dev,
3088 		    "timeout waiting for clock stabilization\n");
3089 		return ETIMEDOUT;
3090 	}
3091 
3092 	/* initialize EEPROM */
3093 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3094 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3095 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3096 		return EIO;
3097 	}
3098 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3099 
3100 	return 0;
3101 }
3102 
3103 static void
3104 wpi_hw_config(struct wpi_softc *sc)
3105 {
3106 	uint32_t rev, hw;
3107 
3108 	/* voodoo from the reference driver */
3109 	hw = WPI_READ(sc, WPI_HWCONFIG);
3110 
3111 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3112 	rev = PCI_REVISION(rev);
3113 	if ((rev & 0xc0) == 0x40)
3114 		hw |= WPI_HW_ALM_MB;
3115 	else if (!(rev & 0x80))
3116 		hw |= WPI_HW_ALM_MM;
3117 
3118 	if (sc->cap == 0x80)
3119 		hw |= WPI_HW_SKU_MRC;
3120 
3121 	hw &= ~WPI_HW_REV_D;
3122 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3123 		hw |= WPI_HW_REV_D;
3124 
3125 	if (sc->type > 1)
3126 		hw |= WPI_HW_TYPE_B;
3127 
3128 	DPRINTF(("setting h/w config %x\n", hw));
3129 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3130 }
3131 
3132 static int
3133 wpi_init(struct ifnet *ifp)
3134 {
3135 	struct wpi_softc *sc = ifp->if_softc;
3136 	struct ieee80211com *ic = &sc->sc_ic;
3137 	uint32_t tmp;
3138 	int qid, ntries, error;
3139 
3140 	wpi_stop(ifp,1);
3141 	(void)wpi_reset(sc);
3142 
3143 	wpi_mem_lock(sc);
3144 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3145 	DELAY(20);
3146 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3147 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3148 	wpi_mem_unlock(sc);
3149 
3150 	(void)wpi_power_up(sc);
3151 	wpi_hw_config(sc);
3152 
3153 	/* init Rx ring */
3154 	wpi_mem_lock(sc);
3155 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3156 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3157 	    offsetof(struct wpi_shared, next));
3158 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3159 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3160 	wpi_mem_unlock(sc);
3161 
3162 	/* init Tx rings */
3163 	wpi_mem_lock(sc);
3164 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3165 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3166 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3167 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3168 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3169 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3170 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3171 
3172 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3173 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3174 
3175 	for (qid = 0; qid < 6; qid++) {
3176 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3177 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3178 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3179 	}
3180 	wpi_mem_unlock(sc);
3181 
3182 	/* clear "radio off" and "disable command" bits (reversed logic) */
3183 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3184 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3185 
3186 	/* clear any pending interrupts */
3187 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3188 	/* enable interrupts */
3189 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3190 
3191 	/* not sure why/if this is necessary... */
3192 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3193 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3194 
3195 	if ((error = wpi_load_firmware(sc)) != 0)
3196 		/* wpi_load_firmware prints error messages for us.  */
3197 		goto fail1;
3198 
3199 	/* Check the status of the radio switch */
3200 	mutex_enter(&sc->sc_rsw_mtx);
3201 	if (wpi_getrfkill(sc)) {
3202 		mutex_exit(&sc->sc_rsw_mtx);
3203 		aprint_error_dev(sc->sc_dev,
3204 		    "radio is disabled by hardware switch\n");
3205 		ifp->if_flags &= ~IFF_UP;
3206 		error = EBUSY;
3207 		goto fail1;
3208 	}
3209 	mutex_exit(&sc->sc_rsw_mtx);
3210 
3211 	/* wait for thermal sensors to calibrate */
3212 	for (ntries = 0; ntries < 1000; ntries++) {
3213 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3214 			break;
3215 		DELAY(10);
3216 	}
3217 	if (ntries == 1000) {
3218 		aprint_error_dev(sc->sc_dev,
3219 		    "timeout waiting for thermal sensors calibration\n");
3220 		error = ETIMEDOUT;
3221 		goto fail1;
3222 	}
3223 	DPRINTF(("temperature %d\n", sc->temp));
3224 
3225 	if ((error = wpi_config(sc)) != 0) {
3226 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3227 		goto fail1;
3228 	}
3229 
3230 	ifp->if_flags &= ~IFF_OACTIVE;
3231 	ifp->if_flags |= IFF_RUNNING;
3232 
3233 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3234 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3235 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3236 	}
3237 	else
3238 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3239 
3240 	return 0;
3241 
3242 fail1:	wpi_stop(ifp, 1);
3243 	return error;
3244 }
3245 
3246 static void
3247 wpi_stop(struct ifnet *ifp, int disable)
3248 {
3249 	struct wpi_softc *sc = ifp->if_softc;
3250 	struct ieee80211com *ic = &sc->sc_ic;
3251 	uint32_t tmp;
3252 	int ac;
3253 
3254 	ifp->if_timer = sc->sc_tx_timer = 0;
3255 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3256 
3257 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3258 
3259 	/* disable interrupts */
3260 	WPI_WRITE(sc, WPI_MASK, 0);
3261 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3262 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3263 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3264 
3265 	wpi_mem_lock(sc);
3266 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3267 	wpi_mem_unlock(sc);
3268 
3269 	/* reset all Tx rings */
3270 	for (ac = 0; ac < 4; ac++)
3271 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3272 	wpi_reset_tx_ring(sc, &sc->cmdq);
3273 
3274 	/* reset Rx ring */
3275 	wpi_reset_rx_ring(sc, &sc->rxq);
3276 
3277 	wpi_mem_lock(sc);
3278 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3279 	wpi_mem_unlock(sc);
3280 
3281 	DELAY(5);
3282 
3283 	wpi_stop_master(sc);
3284 
3285 	tmp = WPI_READ(sc, WPI_RESET);
3286 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3287 }
3288 
3289 static bool
3290 wpi_resume(device_t dv, const pmf_qual_t *qual)
3291 {
3292 	struct wpi_softc *sc = device_private(dv);
3293 
3294 	(void)wpi_reset(sc);
3295 
3296 	return true;
3297 }
3298 
3299 /*
3300  * Return whether or not the radio is enabled in hardware
3301  * (i.e. the rfkill switch is "off").
3302  */
3303 static int
3304 wpi_getrfkill(struct wpi_softc *sc)
3305 {
3306 	uint32_t tmp;
3307 
3308 	wpi_mem_lock(sc);
3309 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3310 	wpi_mem_unlock(sc);
3311 
3312 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3313 	if (tmp & 0x01) {
3314 		/* switch is on */
3315 		if (sc->sc_rsw_status != WPI_RSW_ON) {
3316 			sc->sc_rsw_status = WPI_RSW_ON;
3317 			sysmon_pswitch_event(&sc->sc_rsw,
3318 			    PSWITCH_EVENT_PRESSED);
3319 		}
3320 	} else {
3321 		/* switch is off */
3322 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
3323 			sc->sc_rsw_status = WPI_RSW_OFF;
3324 			sysmon_pswitch_event(&sc->sc_rsw,
3325 			    PSWITCH_EVENT_RELEASED);
3326 		}
3327 	}
3328 
3329 	return !(tmp & 0x01);
3330 }
3331 
3332 static int
3333 wpi_sysctl_radio(SYSCTLFN_ARGS)
3334 {
3335 	struct sysctlnode node;
3336 	struct wpi_softc *sc;
3337 	int val, error;
3338 
3339 	node = *rnode;
3340 	sc = (struct wpi_softc *)node.sysctl_data;
3341 
3342 	mutex_enter(&sc->sc_rsw_mtx);
3343 	val = !wpi_getrfkill(sc);
3344 	mutex_exit(&sc->sc_rsw_mtx);
3345 
3346 	node.sysctl_data = &val;
3347 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3348 
3349 	if (error || newp == NULL)
3350 		return error;
3351 
3352 	return 0;
3353 }
3354 
3355 static void
3356 wpi_sysctlattach(struct wpi_softc *sc)
3357 {
3358 	int rc;
3359 	const struct sysctlnode *rnode;
3360 	const struct sysctlnode *cnode;
3361 
3362 	struct sysctllog **clog = &sc->sc_sysctllog;
3363 
3364 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3365 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3366 	    SYSCTL_DESCR("wpi controls and statistics"),
3367 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3368 		goto err;
3369 
3370 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3371 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3372 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3373 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3374 		goto err;
3375 
3376 #ifdef WPI_DEBUG
3377 	/* control debugging printfs */
3378 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3379 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3380 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3381 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3382 		goto err;
3383 #endif
3384 
3385 	return;
3386 err:
3387 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3388 }
3389 
3390 static void
3391 wpi_rsw_thread(void *arg)
3392 {
3393 	struct wpi_softc *sc = (struct wpi_softc *)arg;
3394 
3395 	mutex_enter(&sc->sc_rsw_mtx);
3396 	for (;;) {
3397 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3398 		if (sc->sc_dying) {
3399 			sc->sc_rsw_lwp = NULL;
3400 			cv_broadcast(&sc->sc_rsw_cv);
3401 			mutex_exit(&sc->sc_rsw_mtx);
3402 			kthread_exit(0);
3403 		}
3404 		wpi_getrfkill(sc);
3405 	}
3406 }
3407 
3408