xref: /openbsd/bin/pax/tables.c (revision cecf84d4)
1 /*	$OpenBSD: tables.c,v 1.47 2015/03/19 05:14:24 guenther Exp $	*/
2 /*	$NetBSD: tables.c,v 1.4 1995/03/21 09:07:45 cgd Exp $	*/
3 
4 /*-
5  * Copyright (c) 1992 Keith Muller.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * Keith Muller of the University of California, San Diego.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/types.h>
38 #include <sys/time.h>
39 #include <sys/stat.h>
40 #include <fcntl.h>
41 #include <limits.h>
42 #include <signal.h>
43 #include <stdio.h>
44 #include <string.h>
45 #include <unistd.h>
46 #include <errno.h>
47 #include <stdlib.h>
48 #include "pax.h"
49 #include "tables.h"
50 #include "extern.h"
51 
52 /*
53  * Routines for controlling the contents of all the different databases pax
54  * keeps. Tables are dynamically created only when they are needed. The
55  * goal was speed and the ability to work with HUGE archives. The databases
56  * were kept simple, but do have complex rules for when the contents change.
57  * As of this writing, the posix library functions were more complex than
58  * needed for this application (pax databases have very short lifetimes and
59  * do not survive after pax is finished). Pax is required to handle very
60  * large archives. These database routines carefully combine memory usage and
61  * temporary file storage in ways which will not significantly impact runtime
62  * performance while allowing the largest possible archives to be handled.
63  * Trying to force the fit to the posix database routines was not considered
64  * time well spent.
65  */
66 
67 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
68 static FTM **ftab = NULL;	/* file time table for updating arch */
69 static NAMT **ntab = NULL;	/* interactive rename storage table */
70 static DEVT **dtab = NULL;	/* device/inode mapping tables */
71 static ATDIR **atab = NULL;	/* file tree directory time reset table */
72 static DIRDATA *dirp = NULL;	/* storage for setting created dir time/mode */
73 static size_t dirsize;		/* size of dirp table */
74 static size_t dircnt = 0;	/* entries in dir time/mode storage */
75 static int ffd = -1;		/* tmp file for file time table name storage */
76 
77 /*
78  * hard link table routines
79  *
80  * The hard link table tries to detect hard links to files using the device and
81  * inode values. We do this when writing an archive, so we can tell the format
82  * write routine that this file is a hard link to another file. The format
83  * write routine then can store this file in whatever way it wants (as a hard
84  * link if the format supports that like tar, or ignore this info like cpio).
85  * (Actually a field in the format driver table tells us if the format wants
86  * hard link info. if not, we do not waste time looking for them). We also use
87  * the same table when reading an archive. In that situation, this table is
88  * used by the format read routine to detect hard links from stored dev and
89  * inode numbers (like cpio). This will allow pax to create a link when one
90  * can be detected by the archive format.
91  */
92 
93 /*
94  * lnk_start
95  *	Creates the hard link table.
96  * Return:
97  *	0 if created, -1 if failure
98  */
99 
100 int
101 lnk_start(void)
102 {
103 	if (ltab != NULL)
104 		return(0);
105 	if ((ltab = calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
106 		paxwarn(1, "Cannot allocate memory for hard link table");
107 		return(-1);
108 	}
109 	return(0);
110 }
111 
112 /*
113  * chk_lnk()
114  *	Looks up entry in hard link hash table. If found, it copies the name
115  *	of the file it is linked to (we already saw that file) into ln_name.
116  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
117  *	database. (We have seen all the links to this file). If not found,
118  *	we add the file to the database if it has the potential for having
119  *	hard links to other files we may process (it has a link count > 1)
120  * Return:
121  *	if found returns 1; if not found returns 0; -1 on error
122  */
123 
124 int
125 chk_lnk(ARCHD *arcn)
126 {
127 	HRDLNK *pt;
128 	HRDLNK **ppt;
129 	u_int indx;
130 
131 	if (ltab == NULL)
132 		return(-1);
133 	/*
134 	 * ignore those nodes that cannot have hard links
135 	 */
136 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
137 		return(0);
138 
139 	/*
140 	 * hash inode number and look for this file
141 	 */
142 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
143 	if ((pt = ltab[indx]) != NULL) {
144 		/*
145 		 * its hash chain in not empty, walk down looking for it
146 		 */
147 		ppt = &(ltab[indx]);
148 		while (pt != NULL) {
149 			if ((pt->ino == arcn->sb.st_ino) &&
150 			    (pt->dev == arcn->sb.st_dev))
151 				break;
152 			ppt = &(pt->fow);
153 			pt = pt->fow;
154 		}
155 
156 		if (pt != NULL) {
157 			/*
158 			 * found a link. set the node type and copy in the
159 			 * name of the file it is to link to. we need to
160 			 * handle hardlinks to regular files differently than
161 			 * other links.
162 			 */
163 			arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
164 				sizeof(arcn->ln_name));
165 			/* XXX truncate? */
166 			if (arcn->nlen >= sizeof(arcn->name))
167 				arcn->nlen = sizeof(arcn->name) - 1;
168 			if (arcn->type == PAX_REG)
169 				arcn->type = PAX_HRG;
170 			else
171 				arcn->type = PAX_HLK;
172 
173 			/*
174 			 * if we have found all the links to this file, remove
175 			 * it from the database
176 			 */
177 			if (--pt->nlink <= 1) {
178 				*ppt = pt->fow;
179 				free(pt->name);
180 				free(pt);
181 			}
182 			return(1);
183 		}
184 	}
185 
186 	/*
187 	 * we never saw this file before. It has links so we add it to the
188 	 * front of this hash chain
189 	 */
190 	if ((pt = malloc(sizeof(HRDLNK))) != NULL) {
191 		if ((pt->name = strdup(arcn->name)) != NULL) {
192 			pt->dev = arcn->sb.st_dev;
193 			pt->ino = arcn->sb.st_ino;
194 			pt->nlink = arcn->sb.st_nlink;
195 			pt->fow = ltab[indx];
196 			ltab[indx] = pt;
197 			return(0);
198 		}
199 		free(pt);
200 	}
201 
202 	paxwarn(1, "Hard link table out of memory");
203 	return(-1);
204 }
205 
206 /*
207  * purg_lnk
208  *	remove reference for a file that we may have added to the data base as
209  *	a potential source for hard links. We ended up not using the file, so
210  *	we do not want to accidently point another file at it later on.
211  */
212 
213 void
214 purg_lnk(ARCHD *arcn)
215 {
216 	HRDLNK *pt;
217 	HRDLNK **ppt;
218 	u_int indx;
219 
220 	if (ltab == NULL)
221 		return;
222 	/*
223 	 * do not bother to look if it could not be in the database
224 	 */
225 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
226 	    PAX_IS_HARDLINK(arcn->type))
227 		return;
228 
229 	/*
230 	 * find the hash chain for this inode value, if empty return
231 	 */
232 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
233 	if ((pt = ltab[indx]) == NULL)
234 		return;
235 
236 	/*
237 	 * walk down the list looking for the inode/dev pair, unlink and
238 	 * free if found
239 	 */
240 	ppt = &(ltab[indx]);
241 	while (pt != NULL) {
242 		if ((pt->ino == arcn->sb.st_ino) &&
243 		    (pt->dev == arcn->sb.st_dev))
244 			break;
245 		ppt = &(pt->fow);
246 		pt = pt->fow;
247 	}
248 	if (pt == NULL)
249 		return;
250 
251 	/*
252 	 * remove and free it
253 	 */
254 	*ppt = pt->fow;
255 	free(pt->name);
256 	free(pt);
257 }
258 
259 /*
260  * lnk_end()
261  *	pull apart a existing link table so we can reuse it. We do this between
262  *	read and write phases of append with update. (The format may have
263  *	used the link table, and we need to start with a fresh table for the
264  *	write phase
265  */
266 
267 void
268 lnk_end(void)
269 {
270 	int i;
271 	HRDLNK *pt;
272 	HRDLNK *ppt;
273 
274 	if (ltab == NULL)
275 		return;
276 
277 	for (i = 0; i < L_TAB_SZ; ++i) {
278 		if (ltab[i] == NULL)
279 			continue;
280 		pt = ltab[i];
281 		ltab[i] = NULL;
282 
283 		/*
284 		 * free up each entry on this chain
285 		 */
286 		while (pt != NULL) {
287 			ppt = pt;
288 			pt = ppt->fow;
289 			free(ppt->name);
290 			free(ppt);
291 		}
292 	}
293 }
294 
295 /*
296  * modification time table routines
297  *
298  * The modification time table keeps track of last modification times for all
299  * files stored in an archive during a write phase when -u is set. We only
300  * add a file to the archive if it is newer than a file with the same name
301  * already stored on the archive (if there is no other file with the same
302  * name on the archive it is added). This applies to writes and appends.
303  * An append with an -u must read the archive and store the modification time
304  * for every file on that archive before starting the write phase. It is clear
305  * that this is one HUGE database. To save memory space, the actual file names
306  * are stored in a scratch file and indexed by an in-memory hash table. The
307  * hash table is indexed by hashing the file path. The nodes in the table store
308  * the length of the filename and the lseek offset within the scratch file
309  * where the actual name is stored. Since there are never any deletions from
310  * this table, fragmentation of the scratch file is never a issue. Lookups
311  * seem to not exhibit any locality at all (files in the database are rarely
312  * looked up more than once...), so caching is just a waste of memory. The
313  * only limitation is the amount of scratch file space available to store the
314  * path names.
315  */
316 
317 /*
318  * ftime_start()
319  *	create the file time hash table and open for read/write the scratch
320  *	file. (after created it is unlinked, so when we exit we leave
321  *	no witnesses).
322  * Return:
323  *	0 if the table and file was created ok, -1 otherwise
324  */
325 
326 int
327 ftime_start(void)
328 {
329 
330 	if (ftab != NULL)
331 		return(0);
332 	if ((ftab = calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
333 		paxwarn(1, "Cannot allocate memory for file time table");
334 		return(-1);
335 	}
336 
337 	/*
338 	 * get random name and create temporary scratch file, unlink name
339 	 * so it will get removed on exit
340 	 */
341 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
342 	if ((ffd = mkstemp(tempfile)) < 0) {
343 		syswarn(1, errno, "Unable to create temporary file: %s",
344 		    tempfile);
345 		return(-1);
346 	}
347 	(void)unlink(tempfile);
348 
349 	return(0);
350 }
351 
352 /*
353  * chk_ftime()
354  *	looks up entry in file time hash table. If not found, the file is
355  *	added to the hash table and the file named stored in the scratch file.
356  *	If a file with the same name is found, the file times are compared and
357  *	the most recent file time is retained. If the new file was younger (or
358  *	was not in the database) the new file is selected for storage.
359  * Return:
360  *	0 if file should be added to the archive, 1 if it should be skipped,
361  *	-1 on error
362  */
363 
364 int
365 chk_ftime(ARCHD *arcn)
366 {
367 	FTM *pt;
368 	int namelen;
369 	u_int indx;
370 	char ckname[PAXPATHLEN+1];
371 
372 	/*
373 	 * no info, go ahead and add to archive
374 	 */
375 	if (ftab == NULL)
376 		return(0);
377 
378 	/*
379 	 * hash the pathname and look up in table
380 	 */
381 	namelen = arcn->nlen;
382 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
383 	if ((pt = ftab[indx]) != NULL) {
384 		/*
385 		 * the hash chain is not empty, walk down looking for match
386 		 * only read up the path names if the lengths match, speeds
387 		 * up the search a lot
388 		 */
389 		while (pt != NULL) {
390 			if (pt->namelen == namelen) {
391 				/*
392 				 * potential match, have to read the name
393 				 * from the scratch file.
394 				 */
395 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
396 					syswarn(1, errno,
397 					    "Failed ftime table seek");
398 					return(-1);
399 				}
400 				if (read(ffd, ckname, namelen) != namelen) {
401 					syswarn(1, errno,
402 					    "Failed ftime table read");
403 					return(-1);
404 				}
405 
406 				/*
407 				 * if the names match, we are done
408 				 */
409 				if (!strncmp(ckname, arcn->name, namelen))
410 					break;
411 			}
412 
413 			/*
414 			 * try the next entry on the chain
415 			 */
416 			pt = pt->fow;
417 		}
418 
419 		if (pt != NULL) {
420 			/*
421 			 * found the file, compare the times, save the newer
422 			 */
423 			if (timespeccmp(&arcn->sb.st_mtim, &pt->mtim, >)) {
424 				/*
425 				 * file is newer
426 				 */
427 				pt->mtim = arcn->sb.st_mtim;
428 				return(0);
429 			}
430 			/*
431 			 * file is older
432 			 */
433 			return(1);
434 		}
435 	}
436 
437 	/*
438 	 * not in table, add it
439 	 */
440 	if ((pt = malloc(sizeof(FTM))) != NULL) {
441 		/*
442 		 * add the name at the end of the scratch file, saving the
443 		 * offset. add the file to the head of the hash chain
444 		 */
445 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
446 			if (write(ffd, arcn->name, namelen) == namelen) {
447 				pt->mtim = arcn->sb.st_mtim;
448 				pt->namelen = namelen;
449 				pt->fow = ftab[indx];
450 				ftab[indx] = pt;
451 				return(0);
452 			}
453 			syswarn(1, errno, "Failed write to file time table");
454 		} else
455 			syswarn(1, errno, "Failed seek on file time table");
456 	} else
457 		paxwarn(1, "File time table ran out of memory");
458 
459 	if (pt != NULL)
460 		free(pt);
461 	return(-1);
462 }
463 
464 /*
465  * escaping (absolute or w/"..") symlink table routines
466  *
467  * By default, an archive shouldn't be able extract to outside of the
468  * current directory.  What should we do if the archive contains a symlink
469  * whose value is either absolute or contains ".." components?  What we'll
470  * do is initially create the path as an empty file (to block attempts to
471  * reference _through_ it) and instead record its path and desired
472  * final value and mode.  Then once all the other archive
473  * members are created (but before the pass to set timestamps on
474  * directories) we'll process those records, replacing the placeholder with
475  * the correct symlink and setting them to the correct mode, owner, group,
476  * and timestamps.
477  *
478  * Note: we also need to handle hardlinks to symlinks (barf) as well as
479  * hardlinks whose target is replaced by a later entry in the archive (barf^2).
480  *
481  * So we track things by dev+ino of the placeholder file, associating with
482  * that the value and mode of the final symlink and a list of paths that
483  * should all be hardlinks of that.  We'll 'store' the symlink's desired
484  * timestamps, owner, and group by setting them on the placeholder file.
485  *
486  * The operations are:
487  * a) create an escaping symlink: create the placeholder file and add an entry
488  *    for the new link
489  * b) create a hardlink: do the link.  If the target turns out to be a
490  *    zero-length file whose dev+ino are in the symlink table, then add this
491  *    path to the list of names for that link
492  * c) perform deferred processing: for each entry, check each associated path:
493  *    if it's a zero-length file with the correct dev+ino then recreate it as
494  *    the specified symlink or hardlink to the first such
495  */
496 
497 struct slpath {
498 	char	*sp_path;
499 	struct	slpath *sp_next;
500 };
501 struct slinode {
502 	ino_t	sli_ino;
503 	char	*sli_value;
504 	struct	slpath sli_paths;
505 	struct	slinode *sli_fow;		/* hash table chain */
506 	dev_t	sli_dev;
507 	mode_t	sli_mode;
508 };
509 
510 static struct slinode **slitab = NULL;
511 
512 /*
513  * sltab_start()
514  *	create the hash table
515  * Return:
516  *	0 if the table and file was created ok, -1 otherwise
517  */
518 
519 int
520 sltab_start(void)
521 {
522 
523 	if ((slitab = calloc(SL_TAB_SZ, sizeof *slitab)) == NULL) {
524 		syswarn(1, errno, "symlink table");
525 		return(-1);
526 	}
527 
528 	return(0);
529 }
530 
531 /*
532  * sltab_add_sym()
533  *	Create the placeholder and tracking info for an escaping symlink.
534  * Return:
535  *	0 on success, -1 otherwise
536  */
537 
538 int
539 sltab_add_sym(const char *path0, const char *value0, mode_t mode)
540 {
541 	struct stat sb;
542 	struct slinode *s;
543 	struct slpath *p;
544 	char *path, *value;
545 	u_int indx;
546 	int fd;
547 
548 	/* create the placeholder */
549 	fd = open(path0, O_WRONLY | O_CREAT | O_EXCL | O_CLOEXEC, 0600);
550 	if (fd == -1)
551 		return (-1);
552 	if (fstat(fd, &sb) == -1) {
553 		unlink(path0);
554 		close(fd);
555 		return (-1);
556 	}
557 	close(fd);
558 
559 	if (havechd && *path0 != '/') {
560 		if ((path = realpath(path0, NULL)) == NULL) {
561 			syswarn(1, errno, "Cannot canonicalize %s", path0);
562 			unlink(path0);
563 			return (-1);
564 		}
565 	} else if ((path = strdup(path0)) == NULL) {
566 		syswarn(1, errno, "defered symlink path");
567 		unlink(path0);
568 		return (-1);
569 	}
570 	if ((value = strdup(value0)) == NULL) {
571 		syswarn(1, errno, "defered symlink value");
572 		unlink(path);
573 		free(path);
574 		return (-1);
575 	}
576 
577 	/* now check the hash table for conflicting entry */
578 	indx = (sb.st_ino ^ sb.st_dev) % SL_TAB_SZ;
579 	for (s = slitab[indx]; s != NULL; s = s->sli_fow) {
580 		if (s->sli_ino != sb.st_ino || s->sli_dev != sb.st_dev)
581 			continue;
582 
583 		/*
584 		 * One of our placeholders got removed behind our back and
585 		 * we've reused the inode.  Weird, but clean up the mess.
586 		 */
587 		free(s->sli_value);
588 		free(s->sli_paths.sp_path);
589 		p = s->sli_paths.sp_next;
590 		while (p != NULL) {
591 			struct slpath *next_p = p->sp_next;
592 
593 			free(p->sp_path);
594 			free(p);
595 			p = next_p;
596 		}
597 		goto set_value;
598 	}
599 
600 	/* Normal case: create a new node */
601 	if ((s = malloc(sizeof *s)) == NULL) {
602 		syswarn(1, errno, "defered symlink");
603 		unlink(path);
604 		free(path);
605 		free(value);
606 		return (-1);
607 	}
608 	s->sli_ino = sb.st_ino;
609 	s->sli_dev = sb.st_dev;
610 	s->sli_fow = slitab[indx];
611 	slitab[indx] = s;
612 
613 set_value:
614 	s->sli_paths.sp_path = path;
615 	s->sli_paths.sp_next = NULL;
616 	s->sli_value = value;
617 	s->sli_mode = mode;
618 	return (0);
619 }
620 
621 /*
622  * sltab_add_link()
623  *	A hardlink was created; if it looks like a placeholder, handle the
624  *	tracking.
625  * Return:
626  *	0 if things are ok, -1 if something went wrong
627  */
628 
629 int
630 sltab_add_link(const char *path, const struct stat *sb)
631 {
632 	struct slinode *s;
633 	struct slpath *p;
634 	u_int indx;
635 
636 	if (!S_ISREG(sb->st_mode) || sb->st_size != 0)
637 		return (1);
638 
639 	/* find the hash table entry for this hardlink */
640 	indx = (sb->st_ino ^ sb->st_dev) % SL_TAB_SZ;
641 	for (s = slitab[indx]; s != NULL; s = s->sli_fow) {
642 		if (s->sli_ino != sb->st_ino || s->sli_dev != sb->st_dev)
643 			continue;
644 
645 		if ((p = malloc(sizeof *p)) == NULL) {
646 			syswarn(1, errno, "deferred symlink hardlink");
647 			return (-1);
648 		}
649 		if (havechd && *path != '/') {
650 			if ((p->sp_path = realpath(path, NULL)) == NULL) {
651 				syswarn(1, errno, "Cannot canonicalize %s",
652 				    path);
653 				free(p);
654 				return (-1);
655 			}
656 		} else if ((p->sp_path = strdup(path)) == NULL) {
657 			syswarn(1, errno, "defered symlink hardlink path");
658 			free(p);
659 			return (-1);
660 		}
661 
662 		/* link it in */
663 		p->sp_next = s->sli_paths.sp_next;
664 		s->sli_paths.sp_next = p;
665 		return (0);
666 	}
667 
668 	/* not found */
669 	return (1);
670 }
671 
672 
673 static int
674 sltab_process_one(struct slinode *s, struct slpath *p, const char *first,
675     int in_sig)
676 {
677 	struct stat sb;
678 	char *path = p->sp_path;
679 	mode_t mode;
680 	int err;
681 
682 	/*
683 	 * is it the expected placeholder?  This can fail legimately
684 	 * if the archive overwrote the link with another, later entry,
685 	 * so don't warn.
686 	 */
687 	if (stat(path, &sb) != 0 || !S_ISREG(sb.st_mode) || sb.st_size != 0 ||
688 	    sb.st_ino != s->sli_ino || sb.st_dev != s->sli_dev)
689 		return (0);
690 
691 	if (unlink(path) && errno != ENOENT) {
692 		if (!in_sig)
693 			syswarn(1, errno, "deferred symlink removal");
694 		return (0);
695 	}
696 
697 	err = 0;
698 	if (first != NULL) {
699 		/* add another hardlink to the existing symlink */
700 		if (linkat(AT_FDCWD, first, AT_FDCWD, path, 0) == 0)
701 			return (0);
702 
703 		/*
704 		 * Couldn't hardlink the symlink for some reason, so we'll
705 		 * try creating it as its own symlink, but save the error
706 		 * for reporting if that fails.
707 		 */
708 		err = errno;
709 	}
710 
711 	if (symlink(s->sli_value, path)) {
712 		if (!in_sig) {
713 			const char *qualifier = "";
714 			if (err)
715 				qualifier = " hardlink";
716 			else
717 				err = errno;
718 
719 			syswarn(1, err, "deferred symlink%s: %s",
720 			    qualifier, path);
721 		}
722 		return (0);
723 	}
724 
725 	/* success, so set the id, mode, and times */
726 	mode = s->sli_mode;
727 	if (pids) {
728 		/* if can't set the ids, force the set[ug]id bits off */
729 		if (set_ids(path, sb.st_uid, sb.st_gid))
730 			mode &= ~(SETBITS);
731 	}
732 
733 	if (pmode)
734 		set_pmode(path, mode);
735 
736 	if (patime || pmtime)
737 		set_ftime(path, &sb.st_mtim, &sb.st_atim, 0);
738 
739 	/*
740 	 * If we tried to link to first but failed, then this new symlink
741 	 * might be a better one to try in the future.  Guess from the errno.
742 	 */
743 	if (err == 0 || err == ENOENT || err == EMLINK || err == EOPNOTSUPP)
744 		return (1);
745 	return (0);
746 }
747 
748 /*
749  * sltab_process()
750  *	Do all the delayed process for escape symlinks
751  */
752 
753 void
754 sltab_process(int in_sig)
755 {
756 	struct slinode *s;
757 	struct slpath *p;
758 	char *first;
759 	u_int indx;
760 
761 	if (slitab == NULL)
762 		return;
763 
764 	/* walk across the entire hash table */
765 	for (indx = 0; indx < SL_TAB_SZ; indx++) {
766 		while ((s = slitab[indx]) != NULL) {
767 			/* pop this entry */
768 			slitab[indx] = s->sli_fow;
769 
770 			first = NULL;
771 			p = &s->sli_paths;
772 			while (1) {
773 				struct slpath *next_p;
774 
775 				if (sltab_process_one(s, p, first, in_sig)) {
776 					if (!in_sig)
777 						free(first);
778 					first = p->sp_path;
779 				} else if (!in_sig)
780 					free(p->sp_path);
781 
782 				if ((next_p = p->sp_next) == NULL)
783 					break;
784 				*p = *next_p;
785 				if (!in_sig)
786 					free(next_p);
787 			}
788 			if (!in_sig) {
789 				free(first);
790 				free(s->sli_value);
791 				free(s);
792 			}
793 		}
794 	}
795 	if (!in_sig)
796 		free(slitab);
797 	slitab = NULL;
798 }
799 
800 
801 /*
802  * Interactive rename table routines
803  *
804  * The interactive rename table keeps track of the new names that the user
805  * assigns to files from tty input. Since this map is unique for each file
806  * we must store it in case there is a reference to the file later in archive
807  * (a link). Otherwise we will be unable to find the file we know was
808  * extracted. The remapping of these files is stored in a memory based hash
809  * table (it is assumed since input must come from /dev/tty, it is unlikely to
810  * be a very large table).
811  */
812 
813 /*
814  * name_start()
815  *	create the interactive rename table
816  * Return:
817  *	0 if successful, -1 otherwise
818  */
819 
820 int
821 name_start(void)
822 {
823 	if (ntab != NULL)
824 		return(0);
825 	if ((ntab = calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
826 		paxwarn(1, "Cannot allocate memory for interactive rename table");
827 		return(-1);
828 	}
829 	return(0);
830 }
831 
832 /*
833  * add_name()
834  *	add the new name to old name mapping just created by the user.
835  *	If an old name mapping is found (there may be duplicate names on an
836  *	archive) only the most recent is kept.
837  * Return:
838  *	0 if added, -1 otherwise
839  */
840 
841 int
842 add_name(char *oname, int onamelen, char *nname)
843 {
844 	NAMT *pt;
845 	u_int indx;
846 
847 	if (ntab == NULL) {
848 		/*
849 		 * should never happen
850 		 */
851 		paxwarn(0, "No interactive rename table, links may fail");
852 		return(0);
853 	}
854 
855 	/*
856 	 * look to see if we have already mapped this file, if so we
857 	 * will update it
858 	 */
859 	indx = st_hash(oname, onamelen, N_TAB_SZ);
860 	if ((pt = ntab[indx]) != NULL) {
861 		/*
862 		 * look down the has chain for the file
863 		 */
864 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
865 			pt = pt->fow;
866 
867 		if (pt != NULL) {
868 			/*
869 			 * found an old mapping, replace it with the new one
870 			 * the user just input (if it is different)
871 			 */
872 			if (strcmp(nname, pt->nname) == 0)
873 				return(0);
874 
875 			free(pt->nname);
876 			if ((pt->nname = strdup(nname)) == NULL) {
877 				paxwarn(1, "Cannot update rename table");
878 				return(-1);
879 			}
880 			return(0);
881 		}
882 	}
883 
884 	/*
885 	 * this is a new mapping, add it to the table
886 	 */
887 	if ((pt = malloc(sizeof(NAMT))) != NULL) {
888 		if ((pt->oname = strdup(oname)) != NULL) {
889 			if ((pt->nname = strdup(nname)) != NULL) {
890 				pt->fow = ntab[indx];
891 				ntab[indx] = pt;
892 				return(0);
893 			}
894 			free(pt->oname);
895 		}
896 		free(pt);
897 	}
898 	paxwarn(1, "Interactive rename table out of memory");
899 	return(-1);
900 }
901 
902 /*
903  * sub_name()
904  *	look up a link name to see if it points at a file that has been
905  *	remapped by the user. If found, the link is adjusted to contain the
906  *	new name (oname is the link to name)
907  */
908 
909 void
910 sub_name(char *oname, int *onamelen, size_t onamesize)
911 {
912 	NAMT *pt;
913 	u_int indx;
914 
915 	if (ntab == NULL)
916 		return;
917 	/*
918 	 * look the name up in the hash table
919 	 */
920 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
921 	if ((pt = ntab[indx]) == NULL)
922 		return;
923 
924 	while (pt != NULL) {
925 		/*
926 		 * walk down the hash chain looking for a match
927 		 */
928 		if (strcmp(oname, pt->oname) == 0) {
929 			/*
930 			 * found it, replace it with the new name
931 			 * and return (we know that oname has enough space)
932 			 */
933 			*onamelen = strlcpy(oname, pt->nname, onamesize);
934 			if (*onamelen >= onamesize)
935 				*onamelen = onamesize - 1; /* XXX truncate? */
936 			return;
937 		}
938 		pt = pt->fow;
939 	}
940 
941 	/*
942 	 * no match, just return
943 	 */
944 }
945 
946 #ifndef NOCPIO
947 /*
948  * device/inode mapping table routines
949  * (used with formats that store device and inodes fields)
950  *
951  * device/inode mapping tables remap the device field in a archive header. The
952  * device/inode fields are used to determine when files are hard links to each
953  * other. However these values have very little meaning outside of that. This
954  * database is used to solve one of two different problems.
955  *
956  * 1) when files are appended to an archive, while the new files may have hard
957  * links to each other, you cannot determine if they have hard links to any
958  * file already stored on the archive from a prior run of pax. We must assume
959  * that these inode/device pairs are unique only within a SINGLE run of pax
960  * (which adds a set of files to an archive). So we have to make sure the
961  * inode/dev pairs we add each time are always unique. We do this by observing
962  * while the inode field is very dense, the use of the dev field is fairly
963  * sparse. Within each run of pax, we remap any device number of a new archive
964  * member that has a device number used in a prior run and already stored in a
965  * file on the archive. During the read phase of the append, we store the
966  * device numbers used and mark them to not be used by any file during the
967  * write phase. If during write we go to use one of those old device numbers,
968  * we remap it to a new value.
969  *
970  * 2) Often the fields in the archive header used to store these values are
971  * too small to store the entire value. The result is an inode or device value
972  * which can be truncated. This really can foul up an archive. With truncation
973  * we end up creating links between files that are really not links (after
974  * truncation the inodes are the same value). We address that by detecting
975  * truncation and forcing a remap of the device field to split truncated
976  * inodes away from each other. Each truncation creates a pattern of bits that
977  * are removed. We use this pattern of truncated bits to partition the inodes
978  * on a single device to many different devices (each one represented by the
979  * truncated bit pattern). All inodes on the same device that have the same
980  * truncation pattern are mapped to the same new device. Two inodes that
981  * truncate to the same value clearly will always have different truncation
982  * bit patterns, so they will be split from away each other. When we spot
983  * device truncation we remap the device number to a non truncated value.
984  * (for more info see table.h for the data structures involved).
985  */
986 
987 static DEVT *chk_dev(dev_t, int);
988 
989 /*
990  * dev_start()
991  *	create the device mapping table
992  * Return:
993  *	0 if successful, -1 otherwise
994  */
995 
996 int
997 dev_start(void)
998 {
999 	if (dtab != NULL)
1000 		return(0);
1001 	if ((dtab = calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
1002 		paxwarn(1, "Cannot allocate memory for device mapping table");
1003 		return(-1);
1004 	}
1005 	return(0);
1006 }
1007 
1008 /*
1009  * add_dev()
1010  *	add a device number to the table. this will force the device to be
1011  *	remapped to a new value if it be used during a write phase. This
1012  *	function is called during the read phase of an append to prohibit the
1013  *	use of any device number already in the archive.
1014  * Return:
1015  *	0 if added ok, -1 otherwise
1016  */
1017 
1018 int
1019 add_dev(ARCHD *arcn)
1020 {
1021 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
1022 		return(-1);
1023 	return(0);
1024 }
1025 
1026 /*
1027  * chk_dev()
1028  *	check for a device value in the device table. If not found and the add
1029  *	flag is set, it is added. This does NOT assign any mapping values, just
1030  *	adds the device number as one that need to be remapped. If this device
1031  *	is already mapped, just return with a pointer to that entry.
1032  * Return:
1033  *	pointer to the entry for this device in the device map table. Null
1034  *	if the add flag is not set and the device is not in the table (it is
1035  *	not been seen yet). If add is set and the device cannot be added, null
1036  *	is returned (indicates an error).
1037  */
1038 
1039 static DEVT *
1040 chk_dev(dev_t dev, int add)
1041 {
1042 	DEVT *pt;
1043 	u_int indx;
1044 
1045 	if (dtab == NULL)
1046 		return(NULL);
1047 	/*
1048 	 * look to see if this device is already in the table
1049 	 */
1050 	indx = ((unsigned)dev) % D_TAB_SZ;
1051 	if ((pt = dtab[indx]) != NULL) {
1052 		while ((pt != NULL) && (pt->dev != dev))
1053 			pt = pt->fow;
1054 
1055 		/*
1056 		 * found it, return a pointer to it
1057 		 */
1058 		if (pt != NULL)
1059 			return(pt);
1060 	}
1061 
1062 	/*
1063 	 * not in table, we add it only if told to as this may just be a check
1064 	 * to see if a device number is being used.
1065 	 */
1066 	if (add == 0)
1067 		return(NULL);
1068 
1069 	/*
1070 	 * allocate a node for this device and add it to the front of the hash
1071 	 * chain. Note we do not assign remaps values here, so the pt->list
1072 	 * list must be NULL.
1073 	 */
1074 	if ((pt = malloc(sizeof(DEVT))) == NULL) {
1075 		paxwarn(1, "Device map table out of memory");
1076 		return(NULL);
1077 	}
1078 	pt->dev = dev;
1079 	pt->list = NULL;
1080 	pt->fow = dtab[indx];
1081 	dtab[indx] = pt;
1082 	return(pt);
1083 }
1084 /*
1085  * map_dev()
1086  *	given an inode and device storage mask (the mask has a 1 for each bit
1087  *	the archive format is able to store in a header), we check for inode
1088  *	and device truncation and remap the device as required. Device mapping
1089  *	can also occur when during the read phase of append a device number was
1090  *	seen (and was marked as do not use during the write phase). WE ASSUME
1091  *	that unsigned longs are the same size or bigger than the fields used
1092  *	for ino_t and dev_t. If not the types will have to be changed.
1093  * Return:
1094  *	0 if all ok, -1 otherwise.
1095  */
1096 
1097 int
1098 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
1099 {
1100 	DEVT *pt;
1101 	DLIST *dpt;
1102 	static dev_t lastdev = 0;	/* next device number to try */
1103 	int trc_ino = 0;
1104 	int trc_dev = 0;
1105 	ino_t trunc_bits = 0;
1106 	ino_t nino;
1107 
1108 	if (dtab == NULL)
1109 		return(0);
1110 	/*
1111 	 * check for device and inode truncation, and extract the truncated
1112 	 * bit pattern.
1113 	 */
1114 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
1115 		++trc_dev;
1116 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
1117 		++trc_ino;
1118 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
1119 	}
1120 
1121 	/*
1122 	 * see if this device is already being mapped, look up the device
1123 	 * then find the truncation bit pattern which applies
1124 	 */
1125 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
1126 		/*
1127 		 * this device is already marked to be remapped
1128 		 */
1129 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
1130 			if (dpt->trunc_bits == trunc_bits)
1131 				break;
1132 
1133 		if (dpt != NULL) {
1134 			/*
1135 			 * we are being remapped for this device and pattern
1136 			 * change the device number to be stored and return
1137 			 */
1138 			arcn->sb.st_dev = dpt->dev;
1139 			arcn->sb.st_ino = nino;
1140 			return(0);
1141 		}
1142 	} else {
1143 		/*
1144 		 * this device is not being remapped YET. if we do not have any
1145 		 * form of truncation, we do not need a remap
1146 		 */
1147 		if (!trc_ino && !trc_dev)
1148 			return(0);
1149 
1150 		/*
1151 		 * we have truncation, have to add this as a device to remap
1152 		 */
1153 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
1154 			goto bad;
1155 
1156 		/*
1157 		 * if we just have a truncated inode, we have to make sure that
1158 		 * all future inodes that do not truncate (they have the
1159 		 * truncation pattern of all 0's) continue to map to the same
1160 		 * device number. We probably have already written inodes with
1161 		 * this device number to the archive with the truncation
1162 		 * pattern of all 0's. So we add the mapping for all 0's to the
1163 		 * same device number.
1164 		 */
1165 		if (!trc_dev && (trunc_bits != 0)) {
1166 			if ((dpt = malloc(sizeof(DLIST))) == NULL)
1167 				goto bad;
1168 			dpt->trunc_bits = 0;
1169 			dpt->dev = arcn->sb.st_dev;
1170 			dpt->fow = pt->list;
1171 			pt->list = dpt;
1172 		}
1173 	}
1174 
1175 	/*
1176 	 * look for a device number not being used. We must watch for wrap
1177 	 * around on lastdev (so we do not get stuck looking forever!)
1178 	 */
1179 	while (++lastdev > 0) {
1180 		if (chk_dev(lastdev, 0) != NULL)
1181 			continue;
1182 		/*
1183 		 * found an unused value. If we have reached truncation point
1184 		 * for this format we are hosed, so we give up. Otherwise we
1185 		 * mark it as being used.
1186 		 */
1187 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
1188 		    (chk_dev(lastdev, 1) == NULL))
1189 			goto bad;
1190 		break;
1191 	}
1192 
1193 	if ((lastdev <= 0) || ((dpt = malloc(sizeof(DLIST))) == NULL))
1194 		goto bad;
1195 
1196 	/*
1197 	 * got a new device number, store it under this truncation pattern.
1198 	 * change the device number this file is being stored with.
1199 	 */
1200 	dpt->trunc_bits = trunc_bits;
1201 	dpt->dev = lastdev;
1202 	dpt->fow = pt->list;
1203 	pt->list = dpt;
1204 	arcn->sb.st_dev = lastdev;
1205 	arcn->sb.st_ino = nino;
1206 	return(0);
1207 
1208     bad:
1209 	paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
1210 	    arcn->name);
1211 	paxwarn(0, "Archive may create improper hard links when extracted");
1212 	return(0);
1213 }
1214 #endif /* NOCPIO */
1215 
1216 /*
1217  * directory access/mod time reset table routines (for directories READ by pax)
1218  *
1219  * The pax -t flag requires that access times of archive files be the same
1220  * before being read by pax. For regular files, access time is restored after
1221  * the file has been copied. This database provides the same functionality for
1222  * directories read during file tree traversal. Restoring directory access time
1223  * is more complex than files since directories may be read several times until
1224  * all the descendants in their subtree are visited by fts. Directory access
1225  * and modification times are stored during the fts pre-order visit (done
1226  * before any descendants in the subtree are visited) and restored after the
1227  * fts post-order visit (after all the descendants have been visited). In the
1228  * case of premature exit from a subtree (like from the effects of -n), any
1229  * directory entries left in this database are reset during final cleanup
1230  * operations of pax. Entries are hashed by inode number for fast lookup.
1231  */
1232 
1233 /*
1234  * atdir_start()
1235  *	create the directory access time database for directories READ by pax.
1236  * Return:
1237  *	0 is created ok, -1 otherwise.
1238  */
1239 
1240 int
1241 atdir_start(void)
1242 {
1243 	if (atab != NULL)
1244 		return(0);
1245 	if ((atab = calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
1246 		paxwarn(1,"Cannot allocate space for directory access time table");
1247 		return(-1);
1248 	}
1249 	return(0);
1250 }
1251 
1252 
1253 /*
1254  * atdir_end()
1255  *	walk through the directory access time table and reset the access time
1256  *	of any directory who still has an entry left in the database. These
1257  *	entries are for directories READ by pax
1258  */
1259 
1260 void
1261 atdir_end(void)
1262 {
1263 	ATDIR *pt;
1264 	int i;
1265 
1266 	if (atab == NULL)
1267 		return;
1268 	/*
1269 	 * for each non-empty hash table entry reset all the directories
1270 	 * chained there.
1271 	 */
1272 	for (i = 0; i < A_TAB_SZ; ++i) {
1273 		if ((pt = atab[i]) == NULL)
1274 			continue;
1275 		/*
1276 		 * remember to force the times, set_ftime() looks at pmtime
1277 		 * and patime, which only applies to things CREATED by pax,
1278 		 * not read by pax. Read time reset is controlled by -t.
1279 		 */
1280 		for (; pt != NULL; pt = pt->fow)
1281 			set_attr(&pt->ft, 1, 0, 0, 0);
1282 	}
1283 }
1284 
1285 /*
1286  * add_atdir()
1287  *	add a directory to the directory access time table. Table is hashed
1288  *	and chained by inode number. This is for directories READ by pax
1289  */
1290 
1291 void
1292 add_atdir(char *fname, dev_t dev, ino_t ino, const struct timespec *mtimp,
1293     const struct timespec *atimp)
1294 {
1295 	ATDIR *pt;
1296 	sigset_t allsigs, savedsigs;
1297 	u_int indx;
1298 
1299 	if (atab == NULL)
1300 		return;
1301 
1302 	/*
1303 	 * make sure this directory is not already in the table, if so just
1304 	 * return (the older entry always has the correct time). The only
1305 	 * way this will happen is when the same subtree can be traversed by
1306 	 * different args to pax and the -n option is aborting fts out of a
1307 	 * subtree before all the post-order visits have been made.
1308 	 */
1309 	indx = ((unsigned)ino) % A_TAB_SZ;
1310 	if ((pt = atab[indx]) != NULL) {
1311 		while (pt != NULL) {
1312 			if ((pt->ft.ft_ino == ino) && (pt->ft.ft_dev == dev))
1313 				break;
1314 			pt = pt->fow;
1315 		}
1316 
1317 		/*
1318 		 * oops, already there. Leave it alone.
1319 		 */
1320 		if (pt != NULL)
1321 			return;
1322 	}
1323 
1324 	/*
1325 	 * add it to the front of the hash chain
1326 	 */
1327 	sigfillset(&allsigs);
1328 	sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
1329 	if ((pt = malloc(sizeof *pt)) != NULL) {
1330 		if ((pt->ft.ft_name = strdup(fname)) != NULL) {
1331 			pt->ft.ft_dev = dev;
1332 			pt->ft.ft_ino = ino;
1333 			pt->ft.ft_mtim = *mtimp;
1334 			pt->ft.ft_atim = *atimp;
1335 			pt->fow = atab[indx];
1336 			atab[indx] = pt;
1337 			sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1338 			return;
1339 		}
1340 		free(pt);
1341 	}
1342 
1343 	sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1344 	paxwarn(1, "Directory access time reset table ran out of memory");
1345 }
1346 
1347 /*
1348  * get_atdir()
1349  *	look up a directory by inode and device number to obtain the access
1350  *	and modification time you want to set to. If found, the modification
1351  *	and access time parameters are set and the entry is removed from the
1352  *	table (as it is no longer needed). These are for directories READ by
1353  *	pax
1354  * Return:
1355  *	0 if found, -1 if not found.
1356  */
1357 
1358 int
1359 do_atdir(const char *name, dev_t dev, ino_t ino)
1360 {
1361 	ATDIR *pt;
1362 	ATDIR **ppt;
1363 	sigset_t allsigs, savedsigs;
1364 	u_int indx;
1365 
1366 	if (atab == NULL)
1367 		return(-1);
1368 	/*
1369 	 * hash by inode and search the chain for an inode and device match
1370 	 */
1371 	indx = ((unsigned)ino) % A_TAB_SZ;
1372 	if ((pt = atab[indx]) == NULL)
1373 		return(-1);
1374 
1375 	ppt = &(atab[indx]);
1376 	while (pt != NULL) {
1377 		if ((pt->ft.ft_ino == ino) && (pt->ft.ft_dev == dev))
1378 			break;
1379 		/*
1380 		 * no match, go to next one
1381 		 */
1382 		ppt = &(pt->fow);
1383 		pt = pt->fow;
1384 	}
1385 
1386 	/*
1387 	 * return if we did not find it.
1388 	 */
1389 	if (pt == NULL || pt->ft.ft_name == NULL ||
1390 	    strcmp(name, pt->ft.ft_name) == 0)
1391 		return(-1);
1392 
1393 	/*
1394 	 * found it. set the times and remove the entry from the table.
1395 	 */
1396 	set_attr(&pt->ft, 1, 0, 0, 0);
1397 	sigfillset(&allsigs);
1398 	sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
1399 	*ppt = pt->fow;
1400 	sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1401 	free(pt->ft.ft_name);
1402 	free(pt);
1403 	return(0);
1404 }
1405 
1406 /*
1407  * directory access mode and time storage routines (for directories CREATED
1408  * by pax).
1409  *
1410  * Pax requires that extracted directories, by default, have their access/mod
1411  * times and permissions set to the values specified in the archive. During the
1412  * actions of extracting (and creating the destination subtree during -rw copy)
1413  * directories extracted may be modified after being created. Even worse is
1414  * that these directories may have been created with file permissions which
1415  * prohibits any descendants of these directories from being extracted. When
1416  * directories are created by pax, access rights may be added to permit the
1417  * creation of files in their subtree. Every time pax creates a directory, the
1418  * times and file permissions specified by the archive are stored. After all
1419  * files have been extracted (or copied), these directories have their times
1420  * and file modes reset to the stored values. The directory info is restored in
1421  * reverse order as entries were added from root to leaf: to restore atime
1422  * properly, we must go backwards.
1423  */
1424 
1425 /*
1426  * dir_start()
1427  *	set up the directory time and file mode storage for directories CREATED
1428  *	by pax.
1429  * Return:
1430  *	0 if ok, -1 otherwise
1431  */
1432 
1433 int
1434 dir_start(void)
1435 {
1436 	if (dirp != NULL)
1437 		return(0);
1438 
1439 	dirsize = DIRP_SIZE;
1440 	if ((dirp = reallocarray(NULL, dirsize, sizeof(DIRDATA))) == NULL) {
1441 		paxwarn(1, "Unable to allocate memory for directory times");
1442 		return(-1);
1443 	}
1444 	return(0);
1445 }
1446 
1447 /*
1448  * add_dir()
1449  *	add the mode and times for a newly CREATED directory
1450  *	name is name of the directory, psb the stat buffer with the data in it,
1451  *	frc_mode is a flag that says whether to force the setting of the mode
1452  *	(ignoring the user set values for preserving file mode). Frc_mode is
1453  *	for the case where we created a file and found that the resulting
1454  *	directory was not writeable and the user asked for file modes to NOT
1455  *	be preserved. (we have to preserve what was created by default, so we
1456  *	have to force the setting at the end. this is stated explicitly in the
1457  *	pax spec)
1458  */
1459 
1460 void
1461 add_dir(char *name, struct stat *psb, int frc_mode)
1462 {
1463 	DIRDATA *dblk;
1464 	sigset_t allsigs, savedsigs;
1465 	char realname[PATH_MAX], *rp;
1466 
1467 	if (dirp == NULL)
1468 		return;
1469 
1470 	if (havechd && *name != '/') {
1471 		if ((rp = realpath(name, realname)) == NULL) {
1472 			paxwarn(1, "Cannot canonicalize %s", name);
1473 			return;
1474 		}
1475 		name = rp;
1476 	}
1477 	if (dircnt == dirsize) {
1478 		dblk = reallocarray(dirp, dirsize, 2 * sizeof(DIRDATA));
1479 		if (dblk == NULL) {
1480 			paxwarn(1, "Unable to store mode and times for created"
1481 			    " directory: %s", name);
1482 			return;
1483 		}
1484 		sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
1485 		dirp = dblk;
1486 		dirsize *= 2;
1487 		sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1488 	}
1489 	dblk = &dirp[dircnt];
1490 	if ((dblk->ft.ft_name = strdup(name)) == NULL) {
1491 		paxwarn(1, "Unable to store mode and times for created"
1492 		    " directory: %s", name);
1493 		return;
1494 	}
1495 	dblk->ft.ft_mtim = psb->st_mtim;
1496 	dblk->ft.ft_atim = psb->st_atim;
1497 	dblk->ft.ft_ino = psb->st_ino;
1498 	dblk->ft.ft_dev = psb->st_dev;
1499 	dblk->mode = psb->st_mode & ABITS;
1500 	dblk->frc_mode = frc_mode;
1501 	sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
1502 	++dircnt;
1503 	sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1504 }
1505 
1506 /*
1507  * delete_dir()
1508  *	When we rmdir a directory, we may want to make sure we don't
1509  *	later warn about being unable to set its mode and times.
1510  */
1511 
1512 void
1513 delete_dir(dev_t dev, ino_t ino)
1514 {
1515 	DIRDATA *dblk;
1516 	char *name;
1517 	size_t i;
1518 
1519 	if (dirp == NULL)
1520 		return;
1521 	for (i = 0; i < dircnt; i++) {
1522 		dblk = &dirp[i];
1523 
1524 		if (dblk->ft.ft_name == NULL)
1525 			continue;
1526 		if (dblk->ft.ft_dev == dev && dblk->ft.ft_ino == ino) {
1527 			name = dblk->ft.ft_name;
1528 			dblk->ft.ft_name = NULL;
1529 			free(name);
1530 			break;
1531 		}
1532 	}
1533 }
1534 
1535 /*
1536  * proc_dir(int in_sig)
1537  *	process all file modes and times stored for directories CREATED
1538  *	by pax.  If in_sig is set, we're in a signal handler and can't
1539  *	free stuff.
1540  */
1541 
1542 void
1543 proc_dir(int in_sig)
1544 {
1545 	DIRDATA *dblk;
1546 	size_t cnt;
1547 
1548 	if (dirp == NULL)
1549 		return;
1550 	/*
1551 	 * read backwards through the file and process each directory
1552 	 */
1553 	cnt = dircnt;
1554 	while (cnt-- > 0) {
1555 		dblk = &dirp[cnt];
1556 		/*
1557 		 * If we remove a directory we created, we replace the
1558 		 * ft_name with NULL.  Ignore those.
1559 		 */
1560 		if (dblk->ft.ft_name == NULL)
1561 			continue;
1562 
1563 		/*
1564 		 * frc_mode set, make sure we set the file modes even if
1565 		 * the user didn't ask for it (see file_subs.c for more info)
1566 		 */
1567 		set_attr(&dblk->ft, 0, dblk->mode, pmode || dblk->frc_mode,
1568 		    in_sig);
1569 		if (!in_sig)
1570 			free(dblk->ft.ft_name);
1571 	}
1572 
1573 	if (!in_sig)
1574 		free(dirp);
1575 	dirp = NULL;
1576 	dircnt = 0;
1577 }
1578 
1579 /*
1580  * database independent routines
1581  */
1582 
1583 /*
1584  * st_hash()
1585  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1586  *	end of file, as this provides far better distribution than any other
1587  *	part of the name. For performance reasons we only care about the last
1588  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1589  *	name). Was tested on 500,000 name file tree traversal from the root
1590  *	and gave almost a perfectly uniform distribution of keys when used with
1591  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1592  *	chars at a time and pads with 0 for last addition.
1593  * Return:
1594  *	the hash value of the string MOD (%) the table size.
1595  */
1596 
1597 u_int
1598 st_hash(const char *name, int len, int tabsz)
1599 {
1600 	const char *pt;
1601 	char *dest;
1602 	const char *end;
1603 	int i;
1604 	u_int key = 0;
1605 	int steps;
1606 	int res;
1607 	u_int val;
1608 
1609 	/*
1610 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1611 	 * time here (remember these are pathnames, the tail is what will
1612 	 * spread out the keys)
1613 	 */
1614 	if (len > MAXKEYLEN) {
1615 		pt = &(name[len - MAXKEYLEN]);
1616 		len = MAXKEYLEN;
1617 	} else
1618 		pt = name;
1619 
1620 	/*
1621 	 * calculate the number of u_int size steps in the string and if
1622 	 * there is a runt to deal with
1623 	 */
1624 	steps = len/sizeof(u_int);
1625 	res = len % sizeof(u_int);
1626 
1627 	/*
1628 	 * add up the value of the string in unsigned integer sized pieces
1629 	 * too bad we cannot have unsigned int aligned strings, then we
1630 	 * could avoid the expensive copy.
1631 	 */
1632 	for (i = 0; i < steps; ++i) {
1633 		end = pt + sizeof(u_int);
1634 		dest = (char *)&val;
1635 		while (pt < end)
1636 			*dest++ = *pt++;
1637 		key += val;
1638 	}
1639 
1640 	/*
1641 	 * add in the runt padded with zero to the right
1642 	 */
1643 	if (res) {
1644 		val = 0;
1645 		end = pt + res;
1646 		dest = (char *)&val;
1647 		while (pt < end)
1648 			*dest++ = *pt++;
1649 		key += val;
1650 	}
1651 
1652 	/*
1653 	 * return the result mod the table size
1654 	 */
1655 	return(key % tabsz);
1656 }
1657