xref: /openbsd/games/primes/primes.c (revision 3cab2bb3)
1 /*	$OpenBSD: primes.c,v 1.24 2017/11/02 10:37:11 tb Exp $	*/
2 /*	$NetBSD: primes.c,v 1.5 1995/04/24 12:24:47 cgd Exp $	*/
3 
4 /*
5  * Copyright (c) 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Landon Curt Noll.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /*
37  * primes - generate a table of primes between two values
38  *
39  * By: Landon Curt Noll chongo@toad.com, ...!{sun,tolsoft}!hoptoad!chongo
40  *
41  * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
42  *
43  * usage:
44  *	primes [start [stop]]
45  *
46  *	Print primes >= start and < stop.  If stop is omitted,
47  *	the value 4294967295 (2^32-1) is assumed.  If start is
48  *	omitted, start is read from standard input.
49  *
50  * validation check: there are 664579 primes between 0 and 10^7
51  */
52 
53 #include <ctype.h>
54 #include <err.h>
55 #include <math.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <unistd.h>
60 
61 #include "primes.h"
62 
63 /*
64  * Eratosthenes sieve table
65  *
66  * We only sieve the odd numbers.  The base of our sieve windows is always odd.
67  * If the base of the table is 1, table[i] represents 2*i-1.  After the sieve,
68  * table[i] == 1 if and only if 2*i-1 is prime.
69  *
70  * We make TABSIZE large to reduce the overhead of inner loop setup.
71  */
72 char table[TABSIZE];	 /* Eratosthenes sieve of odd numbers */
73 
74 /*
75  * prime[i] is the (i+1)th prime.
76  *
77  * We are able to sieve 2^32-1 because this byte table yields all primes
78  * up to 65537 and 65537^2 > 2^32-1.
79  */
80 extern const ubig prime[];
81 extern const ubig *pr_limit;		/* largest prime in the prime array */
82 
83 /*
84  * To avoid excessive sieves for small factors, we use the table below to
85  * setup our sieve blocks.  Each element represents an odd number starting
86  * with 1.  All non-zero elements are coprime to 3, 5, 7, 11 and 13.
87  */
88 extern const char pattern[];
89 extern const int pattern_size;	/* length of pattern array */
90 
91 void	primes(ubig, ubig);
92 ubig	read_num_buf(void);
93 __dead void	usage(void);
94 
95 int
96 main(int argc, char *argv[])
97 {
98 	const char *errstr;
99 	ubig start;		/* where to start generating */
100 	ubig stop;		/* don't generate at or above this value */
101 	int ch;
102 
103 	if (pledge("stdio", NULL) == -1)
104 		err(1, "pledge");
105 
106 	while ((ch = getopt(argc, argv, "h")) != -1) {
107 		switch (ch) {
108 		case 'h':
109 		default:
110 			usage();
111 		}
112 	}
113 	argc -= optind;
114 	argv += optind;
115 
116 	start = 0;
117 	stop = BIG;
118 
119 	switch (argc) {
120 	case 2:
121 		stop = strtonum(argv[1], 0, BIG, &errstr);
122 		if (errstr)
123 			errx(1, "stop is %s: %s", errstr, argv[1]);
124 	case 1:	/* FALLTHROUGH */
125 		start = strtonum(argv[0], 0, BIG, &errstr);
126 		if (errstr)
127 			errx(1, "start is %s: %s", errstr, argv[0]);
128 		break;
129 	case 0:
130 		start = read_num_buf();
131 		break;
132 	default:
133 		usage();
134 	}
135 
136 	if (start > stop)
137 		errx(1, "start value must be less than stop value.");
138 	primes(start, stop);
139 	return 0;
140 }
141 
142 /*
143  * read_num_buf --
144  *	This routine returns a number n, where 0 <= n && n <= BIG.
145  */
146 ubig
147 read_num_buf(void)
148 {
149 	const char *errstr;
150 	ubig val;
151 	char *p, buf[100];		/* > max number of digits. */
152 
153 	for (;;) {
154 		if (fgets(buf, sizeof(buf), stdin) == NULL) {
155 			if (ferror(stdin))
156 				err(1, "stdin");
157 			exit(0);
158 		}
159 		buf[strcspn(buf, "\n")] = '\0';
160 		for (p = buf; isblank((unsigned char)*p); ++p)
161 			;
162 		if (*p == '\0')
163 			continue;
164 		val = strtonum(buf, 0, BIG, &errstr);
165 		if (errstr)
166 			errx(1, "start is %s: %s", errstr, buf);
167 		return (val);
168 	}
169 }
170 
171 /*
172  * primes - sieve and print primes from start up to and but not including stop
173  * start: where to start generating
174  * stop : don't generate at or above this value
175  */
176 void
177 primes(ubig start, ubig stop)
178 {
179 	char *q;		/* sieve spot */
180 	ubig factor;		/* index and factor */
181 	char *tab_lim;		/* the limit to sieve on the table */
182 	const ubig *p;		/* prime table pointer */
183 	ubig fact_lim;		/* highest prime for current block */
184 	ubig mod;
185 
186 	/*
187 	 * A number of systems can not convert double values into unsigned
188 	 * longs when the values are larger than the largest signed value.
189 	 * We don't have this problem, so we can go all the way to BIG.
190 	 */
191 	if (start < 3) {
192 		start = (ubig)2;
193 	}
194 	if (stop < 3) {
195 		stop = (ubig)2;
196 	}
197 	if (stop <= start) {
198 		return;
199 	}
200 
201 	/*
202 	 * be sure that the values are odd, or 2
203 	 */
204 	if (start != 2 && (start&0x1) == 0) {
205 		++start;
206 	}
207 	if (stop != 2 && (stop&0x1) == 0) {
208 		++stop;
209 	}
210 
211 	/*
212 	 * quick list of primes <= pr_limit
213 	 */
214 	if (start <= *pr_limit) {
215 		/* skip primes up to the start value */
216 		for (p = &prime[0], factor = prime[0];
217 		    factor < stop && p <= pr_limit; factor = *(++p)) {
218 			if (factor >= start) {
219 				printf("%lu\n", (unsigned long) factor);
220 			}
221 		}
222 		/* return early if we are done */
223 		if (p <= pr_limit) {
224 			return;
225 		}
226 		start = *pr_limit+2;
227 	}
228 
229 	/*
230 	 * we shall sieve a bytemap window, note primes and move the window
231 	 * upward until we pass the stop point
232 	 */
233 	while (start < stop) {
234 		/*
235 		 * factor out 3, 5, 7, 11 and 13
236 		 */
237 		/* initial pattern copy */
238 		factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
239 		memcpy(table, &pattern[factor], pattern_size-factor);
240 		/* main block pattern copies */
241 		for (fact_lim=pattern_size-factor;
242 		    fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
243 			memcpy(&table[fact_lim], pattern, pattern_size);
244 		}
245 		/* final block pattern copy */
246 		memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
247 
248 		/*
249 		 * sieve for primes 17 and higher
250 		 */
251 		/* note highest useful factor and sieve spot */
252 		if (stop-start > TABSIZE+TABSIZE) {
253 			tab_lim = &table[TABSIZE]; /* sieve it all */
254 			fact_lim = (int)sqrt(
255 					(double)(start)+TABSIZE+TABSIZE+1.0);
256 		} else {
257 			tab_lim = &table[(stop-start)/2]; /* partial sieve */
258 			fact_lim = (int)sqrt((double)(stop)+1.0);
259 		}
260 		/* sieve for factors >= 17 */
261 		factor = 17;	/* 17 is first prime to use */
262 		p = &prime[7];	/* 19 is next prime, pi(19)=7 */
263 		do {
264 			/* determine the factor's initial sieve point */
265 			mod = start % factor;
266 			if (mod & 0x1)
267 				q = &table[(factor - mod)/2];
268 			else
269 				q = &table[mod ? factor-(mod/2) : 0];
270 			/* sieve for our current factor */
271 			for ( ; q < tab_lim; q += factor) {
272 				*q = '\0'; /* sieve out a spot */
273 			}
274 		} while ((factor=(ubig)(*(p++))) <= fact_lim);
275 
276 		/*
277 		 * print generated primes
278 		 */
279 		for (q = table; q < tab_lim; ++q, start+=2) {
280 			if (*q) {
281 				printf("%lu\n", (unsigned long) start);
282 			}
283 		}
284 	}
285 }
286 
287 void
288 usage(void)
289 {
290 	(void)fprintf(stderr, "usage: %s [start [stop]]\n", getprogname());
291 	exit(1);
292 }
293