1 /* Natural loop analysis code for GNU compiler. 2 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 2, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING. If not, write to the Free 18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 19 02110-1301, USA. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "rtl.h" 26 #include "hard-reg-set.h" 27 #include "obstack.h" 28 #include "basic-block.h" 29 #include "cfgloop.h" 30 #include "expr.h" 31 #include "output.h" 32 33 /* Checks whether BB is executed exactly once in each LOOP iteration. */ 34 35 bool 36 just_once_each_iteration_p (const struct loop *loop, basic_block bb) 37 { 38 /* It must be executed at least once each iteration. */ 39 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) 40 return false; 41 42 /* And just once. */ 43 if (bb->loop_father != loop) 44 return false; 45 46 /* But this was not enough. We might have some irreducible loop here. */ 47 if (bb->flags & BB_IRREDUCIBLE_LOOP) 48 return false; 49 50 return true; 51 } 52 53 /* Structure representing edge of a graph. */ 54 55 struct edge 56 { 57 int src, dest; /* Source and destination. */ 58 struct edge *pred_next, *succ_next; 59 /* Next edge in predecessor and successor lists. */ 60 void *data; /* Data attached to the edge. */ 61 }; 62 63 /* Structure representing vertex of a graph. */ 64 65 struct vertex 66 { 67 struct edge *pred, *succ; 68 /* Lists of predecessors and successors. */ 69 int component; /* Number of dfs restarts before reaching the 70 vertex. */ 71 int post; /* Postorder number. */ 72 }; 73 74 /* Structure representing a graph. */ 75 76 struct graph 77 { 78 int n_vertices; /* Number of vertices. */ 79 struct vertex *vertices; 80 /* The vertices. */ 81 }; 82 83 /* Dumps graph G into F. */ 84 85 extern void dump_graph (FILE *, struct graph *); 86 87 void 88 dump_graph (FILE *f, struct graph *g) 89 { 90 int i; 91 struct edge *e; 92 93 for (i = 0; i < g->n_vertices; i++) 94 { 95 if (!g->vertices[i].pred 96 && !g->vertices[i].succ) 97 continue; 98 99 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component); 100 for (e = g->vertices[i].pred; e; e = e->pred_next) 101 fprintf (f, " %d", e->src); 102 fprintf (f, "\n"); 103 104 fprintf (f, "\t->"); 105 for (e = g->vertices[i].succ; e; e = e->succ_next) 106 fprintf (f, " %d", e->dest); 107 fprintf (f, "\n"); 108 } 109 } 110 111 /* Creates a new graph with N_VERTICES vertices. */ 112 113 static struct graph * 114 new_graph (int n_vertices) 115 { 116 struct graph *g = XNEW (struct graph); 117 118 g->n_vertices = n_vertices; 119 g->vertices = XCNEWVEC (struct vertex, n_vertices); 120 121 return g; 122 } 123 124 /* Adds an edge from F to T to graph G, with DATA attached. */ 125 126 static void 127 add_edge (struct graph *g, int f, int t, void *data) 128 { 129 struct edge *e = xmalloc (sizeof (struct edge)); 130 131 e->src = f; 132 e->dest = t; 133 e->data = data; 134 135 e->pred_next = g->vertices[t].pred; 136 g->vertices[t].pred = e; 137 138 e->succ_next = g->vertices[f].succ; 139 g->vertices[f].succ = e; 140 } 141 142 /* Runs dfs search over vertices of G, from NQ vertices in queue QS. 143 The vertices in postorder are stored into QT. If FORWARD is false, 144 backward dfs is run. */ 145 146 static void 147 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward) 148 { 149 int i, tick = 0, v, comp = 0, top; 150 struct edge *e; 151 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices); 152 153 for (i = 0; i < g->n_vertices; i++) 154 { 155 g->vertices[i].component = -1; 156 g->vertices[i].post = -1; 157 } 158 159 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred) 160 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next) 161 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest) 162 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src) 163 164 for (i = 0; i < nq; i++) 165 { 166 v = qs[i]; 167 if (g->vertices[v].post != -1) 168 continue; 169 170 g->vertices[v].component = comp++; 171 e = FST_EDGE (v); 172 top = 0; 173 174 while (1) 175 { 176 while (e && g->vertices[EDGE_DEST (e)].component != -1) 177 e = NEXT_EDGE (e); 178 179 if (!e) 180 { 181 if (qt) 182 qt[tick] = v; 183 g->vertices[v].post = tick++; 184 185 if (!top) 186 break; 187 188 e = stack[--top]; 189 v = EDGE_SRC (e); 190 e = NEXT_EDGE (e); 191 continue; 192 } 193 194 stack[top++] = e; 195 v = EDGE_DEST (e); 196 e = FST_EDGE (v); 197 g->vertices[v].component = comp - 1; 198 } 199 } 200 201 free (stack); 202 } 203 204 /* Marks the edge E in graph G irreducible if it connects two vertices in the 205 same scc. */ 206 207 static void 208 check_irred (struct graph *g, struct edge *e) 209 { 210 edge real = e->data; 211 212 /* All edges should lead from a component with higher number to the 213 one with lower one. */ 214 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component); 215 216 if (g->vertices[e->src].component != g->vertices[e->dest].component) 217 return; 218 219 real->flags |= EDGE_IRREDUCIBLE_LOOP; 220 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest)) 221 real->src->flags |= BB_IRREDUCIBLE_LOOP; 222 } 223 224 /* Runs CALLBACK for all edges in G. */ 225 226 static void 227 for_each_edge (struct graph *g, 228 void (callback) (struct graph *, struct edge *)) 229 { 230 struct edge *e; 231 int i; 232 233 for (i = 0; i < g->n_vertices; i++) 234 for (e = g->vertices[i].succ; e; e = e->succ_next) 235 callback (g, e); 236 } 237 238 /* Releases the memory occupied by G. */ 239 240 static void 241 free_graph (struct graph *g) 242 { 243 struct edge *e, *n; 244 int i; 245 246 for (i = 0; i < g->n_vertices; i++) 247 for (e = g->vertices[i].succ; e; e = n) 248 { 249 n = e->succ_next; 250 free (e); 251 } 252 free (g->vertices); 253 free (g); 254 } 255 256 /* Marks blocks and edges that are part of non-recognized loops; i.e. we 257 throw away all latch edges and mark blocks inside any remaining cycle. 258 Everything is a bit complicated due to fact we do not want to do this 259 for parts of cycles that only "pass" through some loop -- i.e. for 260 each cycle, we want to mark blocks that belong directly to innermost 261 loop containing the whole cycle. 262 263 LOOPS is the loop tree. */ 264 265 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block) 266 #define BB_REPR(BB) ((BB)->index + 1) 267 268 void 269 mark_irreducible_loops (struct loops *loops) 270 { 271 basic_block act; 272 edge e; 273 edge_iterator ei; 274 int i, src, dest; 275 struct graph *g; 276 int *queue1 = XNEWVEC (int, last_basic_block + loops->num); 277 int *queue2 = XNEWVEC (int, last_basic_block + loops->num); 278 int nq, depth; 279 struct loop *cloop; 280 281 /* Reset the flags. */ 282 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) 283 { 284 act->flags &= ~BB_IRREDUCIBLE_LOOP; 285 FOR_EACH_EDGE (e, ei, act->succs) 286 e->flags &= ~EDGE_IRREDUCIBLE_LOOP; 287 } 288 289 /* Create the edge lists. */ 290 g = new_graph (last_basic_block + loops->num); 291 292 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) 293 FOR_EACH_EDGE (e, ei, act->succs) 294 { 295 /* Ignore edges to exit. */ 296 if (e->dest == EXIT_BLOCK_PTR) 297 continue; 298 299 /* And latch edges. */ 300 if (e->dest->loop_father->header == e->dest 301 && e->dest->loop_father->latch == act) 302 continue; 303 304 /* Edges inside a single loop should be left where they are. Edges 305 to subloop headers should lead to representative of the subloop, 306 but from the same place. 307 308 Edges exiting loops should lead from representative 309 of the son of nearest common ancestor of the loops in that 310 act lays. */ 311 312 src = BB_REPR (act); 313 dest = BB_REPR (e->dest); 314 315 if (e->dest->loop_father->header == e->dest) 316 dest = LOOP_REPR (e->dest->loop_father); 317 318 if (!flow_bb_inside_loop_p (act->loop_father, e->dest)) 319 { 320 depth = find_common_loop (act->loop_father, 321 e->dest->loop_father)->depth + 1; 322 if (depth == act->loop_father->depth) 323 cloop = act->loop_father; 324 else 325 cloop = act->loop_father->pred[depth]; 326 327 src = LOOP_REPR (cloop); 328 } 329 330 add_edge (g, src, dest, e); 331 } 332 333 /* Find the strongly connected components. Use the algorithm of Tarjan -- 334 first determine the postorder dfs numbering in reversed graph, then 335 run the dfs on the original graph in the order given by decreasing 336 numbers assigned by the previous pass. */ 337 nq = 0; 338 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) 339 { 340 queue1[nq++] = BB_REPR (act); 341 } 342 for (i = 1; i < (int) loops->num; i++) 343 if (loops->parray[i]) 344 queue1[nq++] = LOOP_REPR (loops->parray[i]); 345 dfs (g, queue1, nq, queue2, false); 346 for (i = 0; i < nq; i++) 347 queue1[i] = queue2[nq - i - 1]; 348 dfs (g, queue1, nq, NULL, true); 349 350 /* Mark the irreducible loops. */ 351 for_each_edge (g, check_irred); 352 353 free_graph (g); 354 free (queue1); 355 free (queue2); 356 357 loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS; 358 } 359 360 /* Counts number of insns inside LOOP. */ 361 int 362 num_loop_insns (struct loop *loop) 363 { 364 basic_block *bbs, bb; 365 unsigned i, ninsns = 0; 366 rtx insn; 367 368 bbs = get_loop_body (loop); 369 for (i = 0; i < loop->num_nodes; i++) 370 { 371 bb = bbs[i]; 372 ninsns++; 373 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn)) 374 if (INSN_P (insn)) 375 ninsns++; 376 } 377 free(bbs); 378 379 return ninsns; 380 } 381 382 /* Counts number of insns executed on average per iteration LOOP. */ 383 int 384 average_num_loop_insns (struct loop *loop) 385 { 386 basic_block *bbs, bb; 387 unsigned i, binsns, ninsns, ratio; 388 rtx insn; 389 390 ninsns = 0; 391 bbs = get_loop_body (loop); 392 for (i = 0; i < loop->num_nodes; i++) 393 { 394 bb = bbs[i]; 395 396 binsns = 1; 397 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn)) 398 if (INSN_P (insn)) 399 binsns++; 400 401 ratio = loop->header->frequency == 0 402 ? BB_FREQ_MAX 403 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency; 404 ninsns += binsns * ratio; 405 } 406 free(bbs); 407 408 ninsns /= BB_FREQ_MAX; 409 if (!ninsns) 410 ninsns = 1; /* To avoid division by zero. */ 411 412 return ninsns; 413 } 414 415 /* Returns expected number of LOOP iterations. 416 Compute upper bound on number of iterations in case they do not fit integer 417 to help loop peeling heuristics. Use exact counts if at all possible. */ 418 unsigned 419 expected_loop_iterations (const struct loop *loop) 420 { 421 edge e; 422 edge_iterator ei; 423 424 if (loop->latch->count || loop->header->count) 425 { 426 gcov_type count_in, count_latch, expected; 427 428 count_in = 0; 429 count_latch = 0; 430 431 FOR_EACH_EDGE (e, ei, loop->header->preds) 432 if (e->src == loop->latch) 433 count_latch = e->count; 434 else 435 count_in += e->count; 436 437 if (count_in == 0) 438 expected = count_latch * 2; 439 else 440 expected = (count_latch + count_in - 1) / count_in; 441 442 /* Avoid overflows. */ 443 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected); 444 } 445 else 446 { 447 int freq_in, freq_latch; 448 449 freq_in = 0; 450 freq_latch = 0; 451 452 FOR_EACH_EDGE (e, ei, loop->header->preds) 453 if (e->src == loop->latch) 454 freq_latch = EDGE_FREQUENCY (e); 455 else 456 freq_in += EDGE_FREQUENCY (e); 457 458 if (freq_in == 0) 459 return freq_latch * 2; 460 461 return (freq_latch + freq_in - 1) / freq_in; 462 } 463 } 464 465 /* Returns the maximum level of nesting of subloops of LOOP. */ 466 467 unsigned 468 get_loop_level (const struct loop *loop) 469 { 470 const struct loop *ploop; 471 unsigned mx = 0, l; 472 473 for (ploop = loop->inner; ploop; ploop = ploop->next) 474 { 475 l = get_loop_level (ploop); 476 if (l >= mx) 477 mx = l + 1; 478 } 479 return mx; 480 } 481 482 /* Returns estimate on cost of computing SEQ. */ 483 484 static unsigned 485 seq_cost (rtx seq) 486 { 487 unsigned cost = 0; 488 rtx set; 489 490 for (; seq; seq = NEXT_INSN (seq)) 491 { 492 set = single_set (seq); 493 if (set) 494 cost += rtx_cost (set, SET); 495 else 496 cost++; 497 } 498 499 return cost; 500 } 501 502 /* The properties of the target. */ 503 504 unsigned target_avail_regs; /* Number of available registers. */ 505 unsigned target_res_regs; /* Number of reserved registers. */ 506 unsigned target_small_cost; /* The cost for register when there is a free one. */ 507 unsigned target_pres_cost; /* The cost for register when there are not too many 508 free ones. */ 509 unsigned target_spill_cost; /* The cost for register when we need to spill. */ 510 511 /* Initialize the constants for computing set costs. */ 512 513 void 514 init_set_costs (void) 515 { 516 rtx seq; 517 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER); 518 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1); 519 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2); 520 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr)); 521 unsigned i; 522 523 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 524 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i) 525 && !fixed_regs[i]) 526 target_avail_regs++; 527 528 target_res_regs = 3; 529 530 /* These are really just heuristic values. */ 531 532 start_sequence (); 533 emit_move_insn (reg1, reg2); 534 seq = get_insns (); 535 end_sequence (); 536 target_small_cost = seq_cost (seq); 537 target_pres_cost = 2 * target_small_cost; 538 539 start_sequence (); 540 emit_move_insn (mem, reg1); 541 emit_move_insn (reg2, mem); 542 seq = get_insns (); 543 end_sequence (); 544 target_spill_cost = seq_cost (seq); 545 } 546 547 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the 548 number of global registers used in loop. N_USES is the number of relevant 549 variable uses. */ 550 551 unsigned 552 global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses) 553 { 554 unsigned regs_needed = regs_used + size; 555 unsigned cost = 0; 556 557 if (regs_needed + target_res_regs <= target_avail_regs) 558 cost += target_small_cost * size; 559 else if (regs_needed <= target_avail_regs) 560 cost += target_pres_cost * size; 561 else 562 { 563 cost += target_pres_cost * size; 564 cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed; 565 } 566 567 return cost; 568 } 569 570 /* Sets EDGE_LOOP_EXIT flag for all exits of LOOPS. */ 571 572 void 573 mark_loop_exit_edges (struct loops *loops) 574 { 575 basic_block bb; 576 edge e; 577 578 if (loops->num <= 1) 579 return; 580 581 FOR_EACH_BB (bb) 582 { 583 edge_iterator ei; 584 585 FOR_EACH_EDGE (e, ei, bb->succs) 586 { 587 if (bb->loop_father->outer 588 && loop_exit_edge_p (bb->loop_father, e)) 589 e->flags |= EDGE_LOOP_EXIT; 590 else 591 e->flags &= ~EDGE_LOOP_EXIT; 592 } 593 } 594 } 595 596