1 /* If-conversion support. 2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006 3 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 15 License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING. If not, write to the Free 19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 20 02110-1301, USA. */ 21 22 #include "config.h" 23 #include "system.h" 24 #include "coretypes.h" 25 #include "tm.h" 26 27 #include "rtl.h" 28 #include "regs.h" 29 #include "function.h" 30 #include "flags.h" 31 #include "insn-config.h" 32 #include "recog.h" 33 #include "except.h" 34 #include "hard-reg-set.h" 35 #include "basic-block.h" 36 #include "expr.h" 37 #include "real.h" 38 #include "output.h" 39 #include "optabs.h" 40 #include "toplev.h" 41 #include "tm_p.h" 42 #include "cfgloop.h" 43 #include "target.h" 44 #include "timevar.h" 45 #include "tree-pass.h" 46 47 48 #ifndef HAVE_conditional_execution 49 #define HAVE_conditional_execution 0 50 #endif 51 #ifndef HAVE_conditional_move 52 #define HAVE_conditional_move 0 53 #endif 54 #ifndef HAVE_incscc 55 #define HAVE_incscc 0 56 #endif 57 #ifndef HAVE_decscc 58 #define HAVE_decscc 0 59 #endif 60 #ifndef HAVE_trap 61 #define HAVE_trap 0 62 #endif 63 #ifndef HAVE_conditional_trap 64 #define HAVE_conditional_trap 0 65 #endif 66 67 #ifndef MAX_CONDITIONAL_EXECUTE 68 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1) 69 #endif 70 71 #define NULL_BLOCK ((basic_block) NULL) 72 73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */ 74 static int num_possible_if_blocks; 75 76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional 77 execution. */ 78 static int num_updated_if_blocks; 79 80 /* # of changes made which require life information to be updated. */ 81 static int num_true_changes; 82 83 /* Whether conditional execution changes were made. */ 84 static int cond_exec_changed_p; 85 86 /* True if life data ok at present. */ 87 static bool life_data_ok; 88 89 /* Forward references. */ 90 static int count_bb_insns (basic_block); 91 static bool cheap_bb_rtx_cost_p (basic_block, int); 92 static rtx first_active_insn (basic_block); 93 static rtx last_active_insn (basic_block, int); 94 static basic_block block_fallthru (basic_block); 95 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int); 96 static rtx cond_exec_get_condition (rtx); 97 static int cond_exec_process_if_block (ce_if_block_t *, int); 98 static rtx noce_get_condition (rtx, rtx *); 99 static int noce_operand_ok (rtx); 100 static int noce_process_if_block (ce_if_block_t *); 101 static int process_if_block (ce_if_block_t *); 102 static void merge_if_block (ce_if_block_t *); 103 static int find_cond_trap (basic_block, edge, edge); 104 static basic_block find_if_header (basic_block, int); 105 static int block_jumps_and_fallthru_p (basic_block, basic_block); 106 static int find_if_block (ce_if_block_t *); 107 static int find_if_case_1 (basic_block, edge, edge); 108 static int find_if_case_2 (basic_block, edge, edge); 109 static int find_memory (rtx *, void *); 110 static int dead_or_predicable (basic_block, basic_block, basic_block, 111 basic_block, int); 112 static void noce_emit_move_insn (rtx, rtx); 113 static rtx block_has_only_trap (basic_block); 114 115 /* Count the number of non-jump active insns in BB. */ 116 117 static int 118 count_bb_insns (basic_block bb) 119 { 120 int count = 0; 121 rtx insn = BB_HEAD (bb); 122 123 while (1) 124 { 125 if (CALL_P (insn) || NONJUMP_INSN_P (insn)) 126 count++; 127 128 if (insn == BB_END (bb)) 129 break; 130 insn = NEXT_INSN (insn); 131 } 132 133 return count; 134 } 135 136 /* Determine whether the total insn_rtx_cost on non-jump insns in 137 basic block BB is less than MAX_COST. This function returns 138 false if the cost of any instruction could not be estimated. */ 139 140 static bool 141 cheap_bb_rtx_cost_p (basic_block bb, int max_cost) 142 { 143 int count = 0; 144 rtx insn = BB_HEAD (bb); 145 146 while (1) 147 { 148 if (NONJUMP_INSN_P (insn)) 149 { 150 int cost = insn_rtx_cost (PATTERN (insn)); 151 if (cost == 0) 152 return false; 153 154 /* If this instruction is the load or set of a "stack" register, 155 such as a floating point register on x87, then the cost of 156 speculatively executing this insn may need to include 157 the additional cost of popping its result off of the 158 register stack. Unfortunately, correctly recognizing and 159 accounting for this additional overhead is tricky, so for 160 now we simply prohibit such speculative execution. */ 161 #ifdef STACK_REGS 162 { 163 rtx set = single_set (insn); 164 if (set && STACK_REG_P (SET_DEST (set))) 165 return false; 166 } 167 #endif 168 169 count += cost; 170 if (count >= max_cost) 171 return false; 172 } 173 else if (CALL_P (insn)) 174 return false; 175 176 if (insn == BB_END (bb)) 177 break; 178 insn = NEXT_INSN (insn); 179 } 180 181 return true; 182 } 183 184 /* Return the first non-jump active insn in the basic block. */ 185 186 static rtx 187 first_active_insn (basic_block bb) 188 { 189 rtx insn = BB_HEAD (bb); 190 191 if (LABEL_P (insn)) 192 { 193 if (insn == BB_END (bb)) 194 return NULL_RTX; 195 insn = NEXT_INSN (insn); 196 } 197 198 while (NOTE_P (insn)) 199 { 200 if (insn == BB_END (bb)) 201 return NULL_RTX; 202 insn = NEXT_INSN (insn); 203 } 204 205 if (JUMP_P (insn)) 206 return NULL_RTX; 207 208 return insn; 209 } 210 211 /* Return the last non-jump active (non-jump) insn in the basic block. */ 212 213 static rtx 214 last_active_insn (basic_block bb, int skip_use_p) 215 { 216 rtx insn = BB_END (bb); 217 rtx head = BB_HEAD (bb); 218 219 while (NOTE_P (insn) 220 || JUMP_P (insn) 221 || (skip_use_p 222 && NONJUMP_INSN_P (insn) 223 && GET_CODE (PATTERN (insn)) == USE)) 224 { 225 if (insn == head) 226 return NULL_RTX; 227 insn = PREV_INSN (insn); 228 } 229 230 if (LABEL_P (insn)) 231 return NULL_RTX; 232 233 return insn; 234 } 235 236 /* Return the basic block reached by falling though the basic block BB. */ 237 238 static basic_block 239 block_fallthru (basic_block bb) 240 { 241 edge e; 242 edge_iterator ei; 243 244 FOR_EACH_EDGE (e, ei, bb->succs) 245 if (e->flags & EDGE_FALLTHRU) 246 break; 247 248 return (e) ? e->dest : NULL_BLOCK; 249 } 250 251 /* Go through a bunch of insns, converting them to conditional 252 execution format if possible. Return TRUE if all of the non-note 253 insns were processed. */ 254 255 static int 256 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED, 257 /* if block information */rtx start, 258 /* first insn to look at */rtx end, 259 /* last insn to look at */rtx test, 260 /* conditional execution test */rtx prob_val, 261 /* probability of branch taken. */int mod_ok) 262 { 263 int must_be_last = FALSE; 264 rtx insn; 265 rtx xtest; 266 rtx pattern; 267 268 if (!start || !end) 269 return FALSE; 270 271 for (insn = start; ; insn = NEXT_INSN (insn)) 272 { 273 if (NOTE_P (insn)) 274 goto insn_done; 275 276 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn)); 277 278 /* Remove USE insns that get in the way. */ 279 if (reload_completed && GET_CODE (PATTERN (insn)) == USE) 280 { 281 /* ??? Ug. Actually unlinking the thing is problematic, 282 given what we'd have to coordinate with our callers. */ 283 SET_INSN_DELETED (insn); 284 goto insn_done; 285 } 286 287 /* Last insn wasn't last? */ 288 if (must_be_last) 289 return FALSE; 290 291 if (modified_in_p (test, insn)) 292 { 293 if (!mod_ok) 294 return FALSE; 295 must_be_last = TRUE; 296 } 297 298 /* Now build the conditional form of the instruction. */ 299 pattern = PATTERN (insn); 300 xtest = copy_rtx (test); 301 302 /* If this is already a COND_EXEC, rewrite the test to be an AND of the 303 two conditions. */ 304 if (GET_CODE (pattern) == COND_EXEC) 305 { 306 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern))) 307 return FALSE; 308 309 xtest = gen_rtx_AND (GET_MODE (xtest), xtest, 310 COND_EXEC_TEST (pattern)); 311 pattern = COND_EXEC_CODE (pattern); 312 } 313 314 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern); 315 316 /* If the machine needs to modify the insn being conditionally executed, 317 say for example to force a constant integer operand into a temp 318 register, do so here. */ 319 #ifdef IFCVT_MODIFY_INSN 320 IFCVT_MODIFY_INSN (ce_info, pattern, insn); 321 if (! pattern) 322 return FALSE; 323 #endif 324 325 validate_change (insn, &PATTERN (insn), pattern, 1); 326 327 if (CALL_P (insn) && prob_val) 328 validate_change (insn, ®_NOTES (insn), 329 alloc_EXPR_LIST (REG_BR_PROB, prob_val, 330 REG_NOTES (insn)), 1); 331 332 insn_done: 333 if (insn == end) 334 break; 335 } 336 337 return TRUE; 338 } 339 340 /* Return the condition for a jump. Do not do any special processing. */ 341 342 static rtx 343 cond_exec_get_condition (rtx jump) 344 { 345 rtx test_if, cond; 346 347 if (any_condjump_p (jump)) 348 test_if = SET_SRC (pc_set (jump)); 349 else 350 return NULL_RTX; 351 cond = XEXP (test_if, 0); 352 353 /* If this branches to JUMP_LABEL when the condition is false, 354 reverse the condition. */ 355 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF 356 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump)) 357 { 358 enum rtx_code rev = reversed_comparison_code (cond, jump); 359 if (rev == UNKNOWN) 360 return NULL_RTX; 361 362 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0), 363 XEXP (cond, 1)); 364 } 365 366 return cond; 367 } 368 369 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it 370 to conditional execution. Return TRUE if we were successful at 371 converting the block. */ 372 373 static int 374 cond_exec_process_if_block (ce_if_block_t * ce_info, 375 /* if block information */int do_multiple_p) 376 { 377 basic_block test_bb = ce_info->test_bb; /* last test block */ 378 basic_block then_bb = ce_info->then_bb; /* THEN */ 379 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */ 380 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */ 381 rtx then_start; /* first insn in THEN block */ 382 rtx then_end; /* last insn + 1 in THEN block */ 383 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */ 384 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */ 385 int max; /* max # of insns to convert. */ 386 int then_mod_ok; /* whether conditional mods are ok in THEN */ 387 rtx true_expr; /* test for else block insns */ 388 rtx false_expr; /* test for then block insns */ 389 rtx true_prob_val; /* probability of else block */ 390 rtx false_prob_val; /* probability of then block */ 391 int n_insns; 392 enum rtx_code false_code; 393 394 /* If test is comprised of && or || elements, and we've failed at handling 395 all of them together, just use the last test if it is the special case of 396 && elements without an ELSE block. */ 397 if (!do_multiple_p && ce_info->num_multiple_test_blocks) 398 { 399 if (else_bb || ! ce_info->and_and_p) 400 return FALSE; 401 402 ce_info->test_bb = test_bb = ce_info->last_test_bb; 403 ce_info->num_multiple_test_blocks = 0; 404 ce_info->num_and_and_blocks = 0; 405 ce_info->num_or_or_blocks = 0; 406 } 407 408 /* Find the conditional jump to the ELSE or JOIN part, and isolate 409 the test. */ 410 test_expr = cond_exec_get_condition (BB_END (test_bb)); 411 if (! test_expr) 412 return FALSE; 413 414 /* If the conditional jump is more than just a conditional jump, 415 then we can not do conditional execution conversion on this block. */ 416 if (! onlyjump_p (BB_END (test_bb))) 417 return FALSE; 418 419 /* Collect the bounds of where we're to search, skipping any labels, jumps 420 and notes at the beginning and end of the block. Then count the total 421 number of insns and see if it is small enough to convert. */ 422 then_start = first_active_insn (then_bb); 423 then_end = last_active_insn (then_bb, TRUE); 424 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb); 425 max = MAX_CONDITIONAL_EXECUTE; 426 427 if (else_bb) 428 { 429 max *= 2; 430 else_start = first_active_insn (else_bb); 431 else_end = last_active_insn (else_bb, TRUE); 432 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb); 433 } 434 435 if (n_insns > max) 436 return FALSE; 437 438 /* Map test_expr/test_jump into the appropriate MD tests to use on 439 the conditionally executed code. */ 440 441 true_expr = test_expr; 442 443 false_code = reversed_comparison_code (true_expr, BB_END (test_bb)); 444 if (false_code != UNKNOWN) 445 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr), 446 XEXP (true_expr, 0), XEXP (true_expr, 1)); 447 else 448 false_expr = NULL_RTX; 449 450 #ifdef IFCVT_MODIFY_TESTS 451 /* If the machine description needs to modify the tests, such as setting a 452 conditional execution register from a comparison, it can do so here. */ 453 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr); 454 455 /* See if the conversion failed. */ 456 if (!true_expr || !false_expr) 457 goto fail; 458 #endif 459 460 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX); 461 if (true_prob_val) 462 { 463 true_prob_val = XEXP (true_prob_val, 0); 464 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val)); 465 } 466 else 467 false_prob_val = NULL_RTX; 468 469 /* If we have && or || tests, do them here. These tests are in the adjacent 470 blocks after the first block containing the test. */ 471 if (ce_info->num_multiple_test_blocks > 0) 472 { 473 basic_block bb = test_bb; 474 basic_block last_test_bb = ce_info->last_test_bb; 475 476 if (! false_expr) 477 goto fail; 478 479 do 480 { 481 rtx start, end; 482 rtx t, f; 483 enum rtx_code f_code; 484 485 bb = block_fallthru (bb); 486 start = first_active_insn (bb); 487 end = last_active_insn (bb, TRUE); 488 if (start 489 && ! cond_exec_process_insns (ce_info, start, end, false_expr, 490 false_prob_val, FALSE)) 491 goto fail; 492 493 /* If the conditional jump is more than just a conditional jump, then 494 we can not do conditional execution conversion on this block. */ 495 if (! onlyjump_p (BB_END (bb))) 496 goto fail; 497 498 /* Find the conditional jump and isolate the test. */ 499 t = cond_exec_get_condition (BB_END (bb)); 500 if (! t) 501 goto fail; 502 503 f_code = reversed_comparison_code (t, BB_END (bb)); 504 if (f_code == UNKNOWN) 505 goto fail; 506 507 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1)); 508 if (ce_info->and_and_p) 509 { 510 t = gen_rtx_AND (GET_MODE (t), true_expr, t); 511 f = gen_rtx_IOR (GET_MODE (t), false_expr, f); 512 } 513 else 514 { 515 t = gen_rtx_IOR (GET_MODE (t), true_expr, t); 516 f = gen_rtx_AND (GET_MODE (t), false_expr, f); 517 } 518 519 /* If the machine description needs to modify the tests, such as 520 setting a conditional execution register from a comparison, it can 521 do so here. */ 522 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS 523 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f); 524 525 /* See if the conversion failed. */ 526 if (!t || !f) 527 goto fail; 528 #endif 529 530 true_expr = t; 531 false_expr = f; 532 } 533 while (bb != last_test_bb); 534 } 535 536 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test 537 on then THEN block. */ 538 then_mod_ok = (else_bb == NULL_BLOCK); 539 540 /* Go through the THEN and ELSE blocks converting the insns if possible 541 to conditional execution. */ 542 543 if (then_end 544 && (! false_expr 545 || ! cond_exec_process_insns (ce_info, then_start, then_end, 546 false_expr, false_prob_val, 547 then_mod_ok))) 548 goto fail; 549 550 if (else_bb && else_end 551 && ! cond_exec_process_insns (ce_info, else_start, else_end, 552 true_expr, true_prob_val, TRUE)) 553 goto fail; 554 555 /* If we cannot apply the changes, fail. Do not go through the normal fail 556 processing, since apply_change_group will call cancel_changes. */ 557 if (! apply_change_group ()) 558 { 559 #ifdef IFCVT_MODIFY_CANCEL 560 /* Cancel any machine dependent changes. */ 561 IFCVT_MODIFY_CANCEL (ce_info); 562 #endif 563 return FALSE; 564 } 565 566 #ifdef IFCVT_MODIFY_FINAL 567 /* Do any machine dependent final modifications. */ 568 IFCVT_MODIFY_FINAL (ce_info); 569 #endif 570 571 /* Conversion succeeded. */ 572 if (dump_file) 573 fprintf (dump_file, "%d insn%s converted to conditional execution.\n", 574 n_insns, (n_insns == 1) ? " was" : "s were"); 575 576 /* Merge the blocks! */ 577 merge_if_block (ce_info); 578 cond_exec_changed_p = TRUE; 579 return TRUE; 580 581 fail: 582 #ifdef IFCVT_MODIFY_CANCEL 583 /* Cancel any machine dependent changes. */ 584 IFCVT_MODIFY_CANCEL (ce_info); 585 #endif 586 587 cancel_changes (0); 588 return FALSE; 589 } 590 591 /* Used by noce_process_if_block to communicate with its subroutines. 592 593 The subroutines know that A and B may be evaluated freely. They 594 know that X is a register. They should insert new instructions 595 before cond_earliest. */ 596 597 struct noce_if_info 598 { 599 basic_block test_bb; 600 rtx insn_a, insn_b; 601 rtx x, a, b; 602 rtx jump, cond, cond_earliest; 603 /* True if "b" was originally evaluated unconditionally. */ 604 bool b_unconditional; 605 }; 606 607 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int); 608 static int noce_try_move (struct noce_if_info *); 609 static int noce_try_store_flag (struct noce_if_info *); 610 static int noce_try_addcc (struct noce_if_info *); 611 static int noce_try_store_flag_constants (struct noce_if_info *); 612 static int noce_try_store_flag_mask (struct noce_if_info *); 613 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx, 614 rtx, rtx, rtx); 615 static int noce_try_cmove (struct noce_if_info *); 616 static int noce_try_cmove_arith (struct noce_if_info *); 617 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *); 618 static int noce_try_minmax (struct noce_if_info *); 619 static int noce_try_abs (struct noce_if_info *); 620 static int noce_try_sign_mask (struct noce_if_info *); 621 622 /* Helper function for noce_try_store_flag*. */ 623 624 static rtx 625 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep, 626 int normalize) 627 { 628 rtx cond = if_info->cond; 629 int cond_complex; 630 enum rtx_code code; 631 632 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode) 633 || ! general_operand (XEXP (cond, 1), VOIDmode)); 634 635 /* If earliest == jump, or when the condition is complex, try to 636 build the store_flag insn directly. */ 637 638 if (cond_complex) 639 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0); 640 641 if (reversep) 642 code = reversed_comparison_code (cond, if_info->jump); 643 else 644 code = GET_CODE (cond); 645 646 if ((if_info->cond_earliest == if_info->jump || cond_complex) 647 && (normalize == 0 || STORE_FLAG_VALUE == normalize)) 648 { 649 rtx tmp; 650 651 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0), 652 XEXP (cond, 1)); 653 tmp = gen_rtx_SET (VOIDmode, x, tmp); 654 655 start_sequence (); 656 tmp = emit_insn (tmp); 657 658 if (recog_memoized (tmp) >= 0) 659 { 660 tmp = get_insns (); 661 end_sequence (); 662 emit_insn (tmp); 663 664 if_info->cond_earliest = if_info->jump; 665 666 return x; 667 } 668 669 end_sequence (); 670 } 671 672 /* Don't even try if the comparison operands or the mode of X are weird. */ 673 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x))) 674 return NULL_RTX; 675 676 return emit_store_flag (x, code, XEXP (cond, 0), 677 XEXP (cond, 1), VOIDmode, 678 (code == LTU || code == LEU 679 || code == GEU || code == GTU), normalize); 680 } 681 682 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART. 683 X is the destination/target and Y is the value to copy. */ 684 685 static void 686 noce_emit_move_insn (rtx x, rtx y) 687 { 688 enum machine_mode outmode; 689 rtx outer, inner; 690 int bitpos; 691 692 if (GET_CODE (x) != STRICT_LOW_PART) 693 { 694 rtx seq, insn, target; 695 optab ot; 696 697 start_sequence (); 698 /* Check that the SET_SRC is reasonable before calling emit_move_insn, 699 otherwise construct a suitable SET pattern ourselves. */ 700 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG) 701 ? emit_move_insn (x, y) 702 : emit_insn (gen_rtx_SET (VOIDmode, x, y)); 703 seq = get_insns (); 704 end_sequence(); 705 706 if (recog_memoized (insn) <= 0) 707 { 708 if (GET_CODE (x) == ZERO_EXTRACT) 709 { 710 rtx op = XEXP (x, 0); 711 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1)); 712 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2)); 713 714 /* store_bit_field expects START to be relative to 715 BYTES_BIG_ENDIAN and adjusts this value for machines with 716 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to 717 invoke store_bit_field again it is necessary to have the START 718 value from the first call. */ 719 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN) 720 { 721 if (MEM_P (op)) 722 start = BITS_PER_UNIT - start - size; 723 else 724 { 725 gcc_assert (REG_P (op)); 726 start = BITS_PER_WORD - start - size; 727 } 728 } 729 730 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD)); 731 store_bit_field (op, size, start, GET_MODE (x), y); 732 return; 733 } 734 735 switch (GET_RTX_CLASS (GET_CODE (y))) 736 { 737 case RTX_UNARY: 738 ot = code_to_optab[GET_CODE (y)]; 739 if (ot) 740 { 741 start_sequence (); 742 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0); 743 if (target != NULL_RTX) 744 { 745 if (target != x) 746 emit_move_insn (x, target); 747 seq = get_insns (); 748 } 749 end_sequence (); 750 } 751 break; 752 753 case RTX_BIN_ARITH: 754 case RTX_COMM_ARITH: 755 ot = code_to_optab[GET_CODE (y)]; 756 if (ot) 757 { 758 start_sequence (); 759 target = expand_binop (GET_MODE (y), ot, 760 XEXP (y, 0), XEXP (y, 1), 761 x, 0, OPTAB_DIRECT); 762 if (target != NULL_RTX) 763 { 764 if (target != x) 765 emit_move_insn (x, target); 766 seq = get_insns (); 767 } 768 end_sequence (); 769 } 770 break; 771 772 default: 773 break; 774 } 775 } 776 777 emit_insn (seq); 778 return; 779 } 780 781 outer = XEXP (x, 0); 782 inner = XEXP (outer, 0); 783 outmode = GET_MODE (outer); 784 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT; 785 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y); 786 } 787 788 /* Return sequence of instructions generated by if conversion. This 789 function calls end_sequence() to end the current stream, ensures 790 that are instructions are unshared, recognizable non-jump insns. 791 On failure, this function returns a NULL_RTX. */ 792 793 static rtx 794 end_ifcvt_sequence (struct noce_if_info *if_info) 795 { 796 rtx insn; 797 rtx seq = get_insns (); 798 799 set_used_flags (if_info->x); 800 set_used_flags (if_info->cond); 801 unshare_all_rtl_in_chain (seq); 802 end_sequence (); 803 804 /* Make sure that all of the instructions emitted are recognizable, 805 and that we haven't introduced a new jump instruction. 806 As an exercise for the reader, build a general mechanism that 807 allows proper placement of required clobbers. */ 808 for (insn = seq; insn; insn = NEXT_INSN (insn)) 809 if (JUMP_P (insn) 810 || recog_memoized (insn) == -1) 811 return NULL_RTX; 812 813 return seq; 814 } 815 816 /* Convert "if (a != b) x = a; else x = b" into "x = a" and 817 "if (a == b) x = a; else x = b" into "x = b". */ 818 819 static int 820 noce_try_move (struct noce_if_info *if_info) 821 { 822 rtx cond = if_info->cond; 823 enum rtx_code code = GET_CODE (cond); 824 rtx y, seq; 825 826 if (code != NE && code != EQ) 827 return FALSE; 828 829 /* This optimization isn't valid if either A or B could be a NaN 830 or a signed zero. */ 831 if (HONOR_NANS (GET_MODE (if_info->x)) 832 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))) 833 return FALSE; 834 835 /* Check whether the operands of the comparison are A and in 836 either order. */ 837 if ((rtx_equal_p (if_info->a, XEXP (cond, 0)) 838 && rtx_equal_p (if_info->b, XEXP (cond, 1))) 839 || (rtx_equal_p (if_info->a, XEXP (cond, 1)) 840 && rtx_equal_p (if_info->b, XEXP (cond, 0)))) 841 { 842 y = (code == EQ) ? if_info->a : if_info->b; 843 844 /* Avoid generating the move if the source is the destination. */ 845 if (! rtx_equal_p (if_info->x, y)) 846 { 847 start_sequence (); 848 noce_emit_move_insn (if_info->x, y); 849 seq = end_ifcvt_sequence (if_info); 850 if (!seq) 851 return FALSE; 852 853 emit_insn_before_setloc (seq, if_info->jump, 854 INSN_LOCATOR (if_info->insn_a)); 855 } 856 return TRUE; 857 } 858 return FALSE; 859 } 860 861 /* Convert "if (test) x = 1; else x = 0". 862 863 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be 864 tried in noce_try_store_flag_constants after noce_try_cmove has had 865 a go at the conversion. */ 866 867 static int 868 noce_try_store_flag (struct noce_if_info *if_info) 869 { 870 int reversep; 871 rtx target, seq; 872 873 if (GET_CODE (if_info->b) == CONST_INT 874 && INTVAL (if_info->b) == STORE_FLAG_VALUE 875 && if_info->a == const0_rtx) 876 reversep = 0; 877 else if (if_info->b == const0_rtx 878 && GET_CODE (if_info->a) == CONST_INT 879 && INTVAL (if_info->a) == STORE_FLAG_VALUE 880 && (reversed_comparison_code (if_info->cond, if_info->jump) 881 != UNKNOWN)) 882 reversep = 1; 883 else 884 return FALSE; 885 886 start_sequence (); 887 888 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0); 889 if (target) 890 { 891 if (target != if_info->x) 892 noce_emit_move_insn (if_info->x, target); 893 894 seq = end_ifcvt_sequence (if_info); 895 if (! seq) 896 return FALSE; 897 898 emit_insn_before_setloc (seq, if_info->jump, 899 INSN_LOCATOR (if_info->insn_a)); 900 return TRUE; 901 } 902 else 903 { 904 end_sequence (); 905 return FALSE; 906 } 907 } 908 909 /* Convert "if (test) x = a; else x = b", for A and B constant. */ 910 911 static int 912 noce_try_store_flag_constants (struct noce_if_info *if_info) 913 { 914 rtx target, seq; 915 int reversep; 916 HOST_WIDE_INT itrue, ifalse, diff, tmp; 917 int normalize, can_reverse; 918 enum machine_mode mode; 919 920 if (! no_new_pseudos 921 && GET_CODE (if_info->a) == CONST_INT 922 && GET_CODE (if_info->b) == CONST_INT) 923 { 924 mode = GET_MODE (if_info->x); 925 ifalse = INTVAL (if_info->a); 926 itrue = INTVAL (if_info->b); 927 928 /* Make sure we can represent the difference between the two values. */ 929 if ((itrue - ifalse > 0) 930 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue)) 931 return FALSE; 932 933 diff = trunc_int_for_mode (itrue - ifalse, mode); 934 935 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump) 936 != UNKNOWN); 937 938 reversep = 0; 939 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE) 940 normalize = 0; 941 else if (ifalse == 0 && exact_log2 (itrue) >= 0 942 && (STORE_FLAG_VALUE == 1 943 || BRANCH_COST >= 2)) 944 normalize = 1; 945 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse 946 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2)) 947 normalize = 1, reversep = 1; 948 else if (itrue == -1 949 && (STORE_FLAG_VALUE == -1 950 || BRANCH_COST >= 2)) 951 normalize = -1; 952 else if (ifalse == -1 && can_reverse 953 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2)) 954 normalize = -1, reversep = 1; 955 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1) 956 || BRANCH_COST >= 3) 957 normalize = -1; 958 else 959 return FALSE; 960 961 if (reversep) 962 { 963 tmp = itrue; itrue = ifalse; ifalse = tmp; 964 diff = trunc_int_for_mode (-diff, mode); 965 } 966 967 start_sequence (); 968 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize); 969 if (! target) 970 { 971 end_sequence (); 972 return FALSE; 973 } 974 975 /* if (test) x = 3; else x = 4; 976 => x = 3 + (test == 0); */ 977 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE) 978 { 979 target = expand_simple_binop (mode, 980 (diff == STORE_FLAG_VALUE 981 ? PLUS : MINUS), 982 GEN_INT (ifalse), target, if_info->x, 0, 983 OPTAB_WIDEN); 984 } 985 986 /* if (test) x = 8; else x = 0; 987 => x = (test != 0) << 3; */ 988 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0) 989 { 990 target = expand_simple_binop (mode, ASHIFT, 991 target, GEN_INT (tmp), if_info->x, 0, 992 OPTAB_WIDEN); 993 } 994 995 /* if (test) x = -1; else x = b; 996 => x = -(test != 0) | b; */ 997 else if (itrue == -1) 998 { 999 target = expand_simple_binop (mode, IOR, 1000 target, GEN_INT (ifalse), if_info->x, 0, 1001 OPTAB_WIDEN); 1002 } 1003 1004 /* if (test) x = a; else x = b; 1005 => x = (-(test != 0) & (b - a)) + a; */ 1006 else 1007 { 1008 target = expand_simple_binop (mode, AND, 1009 target, GEN_INT (diff), if_info->x, 0, 1010 OPTAB_WIDEN); 1011 if (target) 1012 target = expand_simple_binop (mode, PLUS, 1013 target, GEN_INT (ifalse), 1014 if_info->x, 0, OPTAB_WIDEN); 1015 } 1016 1017 if (! target) 1018 { 1019 end_sequence (); 1020 return FALSE; 1021 } 1022 1023 if (target != if_info->x) 1024 noce_emit_move_insn (if_info->x, target); 1025 1026 seq = end_ifcvt_sequence (if_info); 1027 if (!seq) 1028 return FALSE; 1029 1030 emit_insn_before_setloc (seq, if_info->jump, 1031 INSN_LOCATOR (if_info->insn_a)); 1032 return TRUE; 1033 } 1034 1035 return FALSE; 1036 } 1037 1038 /* Convert "if (test) foo++" into "foo += (test != 0)", and 1039 similarly for "foo--". */ 1040 1041 static int 1042 noce_try_addcc (struct noce_if_info *if_info) 1043 { 1044 rtx target, seq; 1045 int subtract, normalize; 1046 1047 if (! no_new_pseudos 1048 && GET_CODE (if_info->a) == PLUS 1049 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b) 1050 && (reversed_comparison_code (if_info->cond, if_info->jump) 1051 != UNKNOWN)) 1052 { 1053 rtx cond = if_info->cond; 1054 enum rtx_code code = reversed_comparison_code (cond, if_info->jump); 1055 1056 /* First try to use addcc pattern. */ 1057 if (general_operand (XEXP (cond, 0), VOIDmode) 1058 && general_operand (XEXP (cond, 1), VOIDmode)) 1059 { 1060 start_sequence (); 1061 target = emit_conditional_add (if_info->x, code, 1062 XEXP (cond, 0), 1063 XEXP (cond, 1), 1064 VOIDmode, 1065 if_info->b, 1066 XEXP (if_info->a, 1), 1067 GET_MODE (if_info->x), 1068 (code == LTU || code == GEU 1069 || code == LEU || code == GTU)); 1070 if (target) 1071 { 1072 if (target != if_info->x) 1073 noce_emit_move_insn (if_info->x, target); 1074 1075 seq = end_ifcvt_sequence (if_info); 1076 if (!seq) 1077 return FALSE; 1078 1079 emit_insn_before_setloc (seq, if_info->jump, 1080 INSN_LOCATOR (if_info->insn_a)); 1081 return TRUE; 1082 } 1083 end_sequence (); 1084 } 1085 1086 /* If that fails, construct conditional increment or decrement using 1087 setcc. */ 1088 if (BRANCH_COST >= 2 1089 && (XEXP (if_info->a, 1) == const1_rtx 1090 || XEXP (if_info->a, 1) == constm1_rtx)) 1091 { 1092 start_sequence (); 1093 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1))) 1094 subtract = 0, normalize = 0; 1095 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1))) 1096 subtract = 1, normalize = 0; 1097 else 1098 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1)); 1099 1100 1101 target = noce_emit_store_flag (if_info, 1102 gen_reg_rtx (GET_MODE (if_info->x)), 1103 1, normalize); 1104 1105 if (target) 1106 target = expand_simple_binop (GET_MODE (if_info->x), 1107 subtract ? MINUS : PLUS, 1108 if_info->b, target, if_info->x, 1109 0, OPTAB_WIDEN); 1110 if (target) 1111 { 1112 if (target != if_info->x) 1113 noce_emit_move_insn (if_info->x, target); 1114 1115 seq = end_ifcvt_sequence (if_info); 1116 if (!seq) 1117 return FALSE; 1118 1119 emit_insn_before_setloc (seq, if_info->jump, 1120 INSN_LOCATOR (if_info->insn_a)); 1121 return TRUE; 1122 } 1123 end_sequence (); 1124 } 1125 } 1126 1127 return FALSE; 1128 } 1129 1130 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */ 1131 1132 static int 1133 noce_try_store_flag_mask (struct noce_if_info *if_info) 1134 { 1135 rtx target, seq; 1136 int reversep; 1137 1138 reversep = 0; 1139 if (! no_new_pseudos 1140 && (BRANCH_COST >= 2 1141 || STORE_FLAG_VALUE == -1) 1142 && ((if_info->a == const0_rtx 1143 && rtx_equal_p (if_info->b, if_info->x)) 1144 || ((reversep = (reversed_comparison_code (if_info->cond, 1145 if_info->jump) 1146 != UNKNOWN)) 1147 && if_info->b == const0_rtx 1148 && rtx_equal_p (if_info->a, if_info->x)))) 1149 { 1150 start_sequence (); 1151 target = noce_emit_store_flag (if_info, 1152 gen_reg_rtx (GET_MODE (if_info->x)), 1153 reversep, -1); 1154 if (target) 1155 target = expand_simple_binop (GET_MODE (if_info->x), AND, 1156 if_info->x, 1157 target, if_info->x, 0, 1158 OPTAB_WIDEN); 1159 1160 if (target) 1161 { 1162 if (target != if_info->x) 1163 noce_emit_move_insn (if_info->x, target); 1164 1165 seq = end_ifcvt_sequence (if_info); 1166 if (!seq) 1167 return FALSE; 1168 1169 emit_insn_before_setloc (seq, if_info->jump, 1170 INSN_LOCATOR (if_info->insn_a)); 1171 return TRUE; 1172 } 1173 1174 end_sequence (); 1175 } 1176 1177 return FALSE; 1178 } 1179 1180 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */ 1181 1182 static rtx 1183 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code, 1184 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue) 1185 { 1186 /* If earliest == jump, try to build the cmove insn directly. 1187 This is helpful when combine has created some complex condition 1188 (like for alpha's cmovlbs) that we can't hope to regenerate 1189 through the normal interface. */ 1190 1191 if (if_info->cond_earliest == if_info->jump) 1192 { 1193 rtx tmp; 1194 1195 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b); 1196 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse); 1197 tmp = gen_rtx_SET (VOIDmode, x, tmp); 1198 1199 start_sequence (); 1200 tmp = emit_insn (tmp); 1201 1202 if (recog_memoized (tmp) >= 0) 1203 { 1204 tmp = get_insns (); 1205 end_sequence (); 1206 emit_insn (tmp); 1207 1208 return x; 1209 } 1210 1211 end_sequence (); 1212 } 1213 1214 /* Don't even try if the comparison operands are weird. */ 1215 if (! general_operand (cmp_a, GET_MODE (cmp_a)) 1216 || ! general_operand (cmp_b, GET_MODE (cmp_b))) 1217 return NULL_RTX; 1218 1219 #if HAVE_conditional_move 1220 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode, 1221 vtrue, vfalse, GET_MODE (x), 1222 (code == LTU || code == GEU 1223 || code == LEU || code == GTU)); 1224 #else 1225 /* We'll never get here, as noce_process_if_block doesn't call the 1226 functions involved. Ifdef code, however, should be discouraged 1227 because it leads to typos in the code not selected. However, 1228 emit_conditional_move won't exist either. */ 1229 return NULL_RTX; 1230 #endif 1231 } 1232 1233 /* Try only simple constants and registers here. More complex cases 1234 are handled in noce_try_cmove_arith after noce_try_store_flag_arith 1235 has had a go at it. */ 1236 1237 static int 1238 noce_try_cmove (struct noce_if_info *if_info) 1239 { 1240 enum rtx_code code; 1241 rtx target, seq; 1242 1243 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode)) 1244 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode))) 1245 { 1246 start_sequence (); 1247 1248 code = GET_CODE (if_info->cond); 1249 target = noce_emit_cmove (if_info, if_info->x, code, 1250 XEXP (if_info->cond, 0), 1251 XEXP (if_info->cond, 1), 1252 if_info->a, if_info->b); 1253 1254 if (target) 1255 { 1256 if (target != if_info->x) 1257 noce_emit_move_insn (if_info->x, target); 1258 1259 seq = end_ifcvt_sequence (if_info); 1260 if (!seq) 1261 return FALSE; 1262 1263 emit_insn_before_setloc (seq, if_info->jump, 1264 INSN_LOCATOR (if_info->insn_a)); 1265 return TRUE; 1266 } 1267 else 1268 { 1269 end_sequence (); 1270 return FALSE; 1271 } 1272 } 1273 1274 return FALSE; 1275 } 1276 1277 /* Try more complex cases involving conditional_move. */ 1278 1279 static int 1280 noce_try_cmove_arith (struct noce_if_info *if_info) 1281 { 1282 rtx a = if_info->a; 1283 rtx b = if_info->b; 1284 rtx x = if_info->x; 1285 rtx orig_a, orig_b; 1286 rtx insn_a, insn_b; 1287 rtx tmp, target; 1288 int is_mem = 0; 1289 int insn_cost; 1290 enum rtx_code code; 1291 1292 /* A conditional move from two memory sources is equivalent to a 1293 conditional on their addresses followed by a load. Don't do this 1294 early because it'll screw alias analysis. Note that we've 1295 already checked for no side effects. */ 1296 if (! no_new_pseudos && cse_not_expected 1297 && MEM_P (a) && MEM_P (b) 1298 && BRANCH_COST >= 5) 1299 { 1300 a = XEXP (a, 0); 1301 b = XEXP (b, 0); 1302 x = gen_reg_rtx (Pmode); 1303 is_mem = 1; 1304 } 1305 1306 /* ??? We could handle this if we knew that a load from A or B could 1307 not fault. This is also true if we've already loaded 1308 from the address along the path from ENTRY. */ 1309 else if (may_trap_p (a) || may_trap_p (b)) 1310 return FALSE; 1311 1312 /* if (test) x = a + b; else x = c - d; 1313 => y = a + b; 1314 x = c - d; 1315 if (test) 1316 x = y; 1317 */ 1318 1319 code = GET_CODE (if_info->cond); 1320 insn_a = if_info->insn_a; 1321 insn_b = if_info->insn_b; 1322 1323 /* Total insn_rtx_cost should be smaller than branch cost. Exit 1324 if insn_rtx_cost can't be estimated. */ 1325 if (insn_a) 1326 { 1327 insn_cost = insn_rtx_cost (PATTERN (insn_a)); 1328 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST)) 1329 return FALSE; 1330 } 1331 else 1332 { 1333 insn_cost = 0; 1334 } 1335 1336 if (insn_b) { 1337 insn_cost += insn_rtx_cost (PATTERN (insn_b)); 1338 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST)) 1339 return FALSE; 1340 } 1341 1342 /* Possibly rearrange operands to make things come out more natural. */ 1343 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN) 1344 { 1345 int reversep = 0; 1346 if (rtx_equal_p (b, x)) 1347 reversep = 1; 1348 else if (general_operand (b, GET_MODE (b))) 1349 reversep = 1; 1350 1351 if (reversep) 1352 { 1353 code = reversed_comparison_code (if_info->cond, if_info->jump); 1354 tmp = a, a = b, b = tmp; 1355 tmp = insn_a, insn_a = insn_b, insn_b = tmp; 1356 } 1357 } 1358 1359 start_sequence (); 1360 1361 orig_a = a; 1362 orig_b = b; 1363 1364 /* If either operand is complex, load it into a register first. 1365 The best way to do this is to copy the original insn. In this 1366 way we preserve any clobbers etc that the insn may have had. 1367 This is of course not possible in the IS_MEM case. */ 1368 if (! general_operand (a, GET_MODE (a))) 1369 { 1370 rtx set; 1371 1372 if (no_new_pseudos) 1373 goto end_seq_and_fail; 1374 1375 if (is_mem) 1376 { 1377 tmp = gen_reg_rtx (GET_MODE (a)); 1378 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a)); 1379 } 1380 else if (! insn_a) 1381 goto end_seq_and_fail; 1382 else 1383 { 1384 a = gen_reg_rtx (GET_MODE (a)); 1385 tmp = copy_rtx (insn_a); 1386 set = single_set (tmp); 1387 SET_DEST (set) = a; 1388 tmp = emit_insn (PATTERN (tmp)); 1389 } 1390 if (recog_memoized (tmp) < 0) 1391 goto end_seq_and_fail; 1392 } 1393 if (! general_operand (b, GET_MODE (b))) 1394 { 1395 rtx set, last; 1396 1397 if (no_new_pseudos) 1398 goto end_seq_and_fail; 1399 1400 if (is_mem) 1401 { 1402 tmp = gen_reg_rtx (GET_MODE (b)); 1403 tmp = gen_rtx_SET (VOIDmode, tmp, b); 1404 } 1405 else if (! insn_b) 1406 goto end_seq_and_fail; 1407 else 1408 { 1409 b = gen_reg_rtx (GET_MODE (b)); 1410 tmp = copy_rtx (insn_b); 1411 set = single_set (tmp); 1412 SET_DEST (set) = b; 1413 tmp = PATTERN (tmp); 1414 } 1415 1416 /* If insn to set up A clobbers any registers B depends on, try to 1417 swap insn that sets up A with the one that sets up B. If even 1418 that doesn't help, punt. */ 1419 last = get_last_insn (); 1420 if (last && modified_in_p (orig_b, last)) 1421 { 1422 tmp = emit_insn_before (tmp, get_insns ()); 1423 if (modified_in_p (orig_a, tmp)) 1424 goto end_seq_and_fail; 1425 } 1426 else 1427 tmp = emit_insn (tmp); 1428 1429 if (recog_memoized (tmp) < 0) 1430 goto end_seq_and_fail; 1431 } 1432 1433 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0), 1434 XEXP (if_info->cond, 1), a, b); 1435 1436 if (! target) 1437 goto end_seq_and_fail; 1438 1439 /* If we're handling a memory for above, emit the load now. */ 1440 if (is_mem) 1441 { 1442 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target); 1443 1444 /* Copy over flags as appropriate. */ 1445 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b)) 1446 MEM_VOLATILE_P (tmp) = 1; 1447 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b)) 1448 MEM_IN_STRUCT_P (tmp) = 1; 1449 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b)) 1450 MEM_SCALAR_P (tmp) = 1; 1451 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b)) 1452 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a)); 1453 set_mem_align (tmp, 1454 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b))); 1455 1456 noce_emit_move_insn (if_info->x, tmp); 1457 } 1458 else if (target != x) 1459 noce_emit_move_insn (x, target); 1460 1461 tmp = end_ifcvt_sequence (if_info); 1462 if (!tmp) 1463 return FALSE; 1464 1465 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a)); 1466 return TRUE; 1467 1468 end_seq_and_fail: 1469 end_sequence (); 1470 return FALSE; 1471 } 1472 1473 /* For most cases, the simplified condition we found is the best 1474 choice, but this is not the case for the min/max/abs transforms. 1475 For these we wish to know that it is A or B in the condition. */ 1476 1477 static rtx 1478 noce_get_alt_condition (struct noce_if_info *if_info, rtx target, 1479 rtx *earliest) 1480 { 1481 rtx cond, set, insn; 1482 int reverse; 1483 1484 /* If target is already mentioned in the known condition, return it. */ 1485 if (reg_mentioned_p (target, if_info->cond)) 1486 { 1487 *earliest = if_info->cond_earliest; 1488 return if_info->cond; 1489 } 1490 1491 set = pc_set (if_info->jump); 1492 cond = XEXP (SET_SRC (set), 0); 1493 reverse 1494 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF 1495 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump); 1496 1497 /* If we're looking for a constant, try to make the conditional 1498 have that constant in it. There are two reasons why it may 1499 not have the constant we want: 1500 1501 1. GCC may have needed to put the constant in a register, because 1502 the target can't compare directly against that constant. For 1503 this case, we look for a SET immediately before the comparison 1504 that puts a constant in that register. 1505 1506 2. GCC may have canonicalized the conditional, for example 1507 replacing "if x < 4" with "if x <= 3". We can undo that (or 1508 make equivalent types of changes) to get the constants we need 1509 if they're off by one in the right direction. */ 1510 1511 if (GET_CODE (target) == CONST_INT) 1512 { 1513 enum rtx_code code = GET_CODE (if_info->cond); 1514 rtx op_a = XEXP (if_info->cond, 0); 1515 rtx op_b = XEXP (if_info->cond, 1); 1516 rtx prev_insn; 1517 1518 /* First, look to see if we put a constant in a register. */ 1519 prev_insn = prev_nonnote_insn (if_info->cond_earliest); 1520 if (prev_insn 1521 && INSN_P (prev_insn) 1522 && GET_CODE (PATTERN (prev_insn)) == SET) 1523 { 1524 rtx src = find_reg_equal_equiv_note (prev_insn); 1525 if (!src) 1526 src = SET_SRC (PATTERN (prev_insn)); 1527 if (GET_CODE (src) == CONST_INT) 1528 { 1529 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn)))) 1530 op_a = src; 1531 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn)))) 1532 op_b = src; 1533 1534 if (GET_CODE (op_a) == CONST_INT) 1535 { 1536 rtx tmp = op_a; 1537 op_a = op_b; 1538 op_b = tmp; 1539 code = swap_condition (code); 1540 } 1541 } 1542 } 1543 1544 /* Now, look to see if we can get the right constant by 1545 adjusting the conditional. */ 1546 if (GET_CODE (op_b) == CONST_INT) 1547 { 1548 HOST_WIDE_INT desired_val = INTVAL (target); 1549 HOST_WIDE_INT actual_val = INTVAL (op_b); 1550 1551 switch (code) 1552 { 1553 case LT: 1554 if (actual_val == desired_val + 1) 1555 { 1556 code = LE; 1557 op_b = GEN_INT (desired_val); 1558 } 1559 break; 1560 case LE: 1561 if (actual_val == desired_val - 1) 1562 { 1563 code = LT; 1564 op_b = GEN_INT (desired_val); 1565 } 1566 break; 1567 case GT: 1568 if (actual_val == desired_val - 1) 1569 { 1570 code = GE; 1571 op_b = GEN_INT (desired_val); 1572 } 1573 break; 1574 case GE: 1575 if (actual_val == desired_val + 1) 1576 { 1577 code = GT; 1578 op_b = GEN_INT (desired_val); 1579 } 1580 break; 1581 default: 1582 break; 1583 } 1584 } 1585 1586 /* If we made any changes, generate a new conditional that is 1587 equivalent to what we started with, but has the right 1588 constants in it. */ 1589 if (code != GET_CODE (if_info->cond) 1590 || op_a != XEXP (if_info->cond, 0) 1591 || op_b != XEXP (if_info->cond, 1)) 1592 { 1593 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b); 1594 *earliest = if_info->cond_earliest; 1595 return cond; 1596 } 1597 } 1598 1599 cond = canonicalize_condition (if_info->jump, cond, reverse, 1600 earliest, target, false, true); 1601 if (! cond || ! reg_mentioned_p (target, cond)) 1602 return NULL; 1603 1604 /* We almost certainly searched back to a different place. 1605 Need to re-verify correct lifetimes. */ 1606 1607 /* X may not be mentioned in the range (cond_earliest, jump]. */ 1608 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn)) 1609 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn))) 1610 return NULL; 1611 1612 /* A and B may not be modified in the range [cond_earliest, jump). */ 1613 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn)) 1614 if (INSN_P (insn) 1615 && (modified_in_p (if_info->a, insn) 1616 || modified_in_p (if_info->b, insn))) 1617 return NULL; 1618 1619 return cond; 1620 } 1621 1622 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */ 1623 1624 static int 1625 noce_try_minmax (struct noce_if_info *if_info) 1626 { 1627 rtx cond, earliest, target, seq; 1628 enum rtx_code code, op; 1629 int unsignedp; 1630 1631 /* ??? Can't guarantee that expand_binop won't create pseudos. */ 1632 if (no_new_pseudos) 1633 return FALSE; 1634 1635 /* ??? Reject modes with NaNs or signed zeros since we don't know how 1636 they will be resolved with an SMIN/SMAX. It wouldn't be too hard 1637 to get the target to tell us... */ 1638 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)) 1639 || HONOR_NANS (GET_MODE (if_info->x))) 1640 return FALSE; 1641 1642 cond = noce_get_alt_condition (if_info, if_info->a, &earliest); 1643 if (!cond) 1644 return FALSE; 1645 1646 /* Verify the condition is of the form we expect, and canonicalize 1647 the comparison code. */ 1648 code = GET_CODE (cond); 1649 if (rtx_equal_p (XEXP (cond, 0), if_info->a)) 1650 { 1651 if (! rtx_equal_p (XEXP (cond, 1), if_info->b)) 1652 return FALSE; 1653 } 1654 else if (rtx_equal_p (XEXP (cond, 1), if_info->a)) 1655 { 1656 if (! rtx_equal_p (XEXP (cond, 0), if_info->b)) 1657 return FALSE; 1658 code = swap_condition (code); 1659 } 1660 else 1661 return FALSE; 1662 1663 /* Determine what sort of operation this is. Note that the code is for 1664 a taken branch, so the code->operation mapping appears backwards. */ 1665 switch (code) 1666 { 1667 case LT: 1668 case LE: 1669 case UNLT: 1670 case UNLE: 1671 op = SMAX; 1672 unsignedp = 0; 1673 break; 1674 case GT: 1675 case GE: 1676 case UNGT: 1677 case UNGE: 1678 op = SMIN; 1679 unsignedp = 0; 1680 break; 1681 case LTU: 1682 case LEU: 1683 op = UMAX; 1684 unsignedp = 1; 1685 break; 1686 case GTU: 1687 case GEU: 1688 op = UMIN; 1689 unsignedp = 1; 1690 break; 1691 default: 1692 return FALSE; 1693 } 1694 1695 start_sequence (); 1696 1697 target = expand_simple_binop (GET_MODE (if_info->x), op, 1698 if_info->a, if_info->b, 1699 if_info->x, unsignedp, OPTAB_WIDEN); 1700 if (! target) 1701 { 1702 end_sequence (); 1703 return FALSE; 1704 } 1705 if (target != if_info->x) 1706 noce_emit_move_insn (if_info->x, target); 1707 1708 seq = end_ifcvt_sequence (if_info); 1709 if (!seq) 1710 return FALSE; 1711 1712 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a)); 1713 if_info->cond = cond; 1714 if_info->cond_earliest = earliest; 1715 1716 return TRUE; 1717 } 1718 1719 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */ 1720 1721 static int 1722 noce_try_abs (struct noce_if_info *if_info) 1723 { 1724 rtx cond, earliest, target, seq, a, b, c; 1725 int negate; 1726 1727 /* ??? Can't guarantee that expand_binop won't create pseudos. */ 1728 if (no_new_pseudos) 1729 return FALSE; 1730 1731 /* Recognize A and B as constituting an ABS or NABS. The canonical 1732 form is a branch around the negation, taken when the object is the 1733 first operand of a comparison against 0 that evaluates to true. */ 1734 a = if_info->a; 1735 b = if_info->b; 1736 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b)) 1737 negate = 0; 1738 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a)) 1739 { 1740 c = a; a = b; b = c; 1741 negate = 1; 1742 } 1743 else 1744 return FALSE; 1745 1746 cond = noce_get_alt_condition (if_info, b, &earliest); 1747 if (!cond) 1748 return FALSE; 1749 1750 /* Verify the condition is of the form we expect. */ 1751 if (rtx_equal_p (XEXP (cond, 0), b)) 1752 c = XEXP (cond, 1); 1753 else if (rtx_equal_p (XEXP (cond, 1), b)) 1754 { 1755 c = XEXP (cond, 0); 1756 negate = !negate; 1757 } 1758 else 1759 return FALSE; 1760 1761 /* Verify that C is zero. Search one step backward for a 1762 REG_EQUAL note or a simple source if necessary. */ 1763 if (REG_P (c)) 1764 { 1765 rtx set, insn = prev_nonnote_insn (earliest); 1766 if (insn 1767 && (set = single_set (insn)) 1768 && rtx_equal_p (SET_DEST (set), c)) 1769 { 1770 rtx note = find_reg_equal_equiv_note (insn); 1771 if (note) 1772 c = XEXP (note, 0); 1773 else 1774 c = SET_SRC (set); 1775 } 1776 else 1777 return FALSE; 1778 } 1779 if (MEM_P (c) 1780 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF 1781 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0))) 1782 c = get_pool_constant (XEXP (c, 0)); 1783 1784 /* Work around funny ideas get_condition has wrt canonicalization. 1785 Note that these rtx constants are known to be CONST_INT, and 1786 therefore imply integer comparisons. */ 1787 if (c == constm1_rtx && GET_CODE (cond) == GT) 1788 ; 1789 else if (c == const1_rtx && GET_CODE (cond) == LT) 1790 ; 1791 else if (c != CONST0_RTX (GET_MODE (b))) 1792 return FALSE; 1793 1794 /* Determine what sort of operation this is. */ 1795 switch (GET_CODE (cond)) 1796 { 1797 case LT: 1798 case LE: 1799 case UNLT: 1800 case UNLE: 1801 negate = !negate; 1802 break; 1803 case GT: 1804 case GE: 1805 case UNGT: 1806 case UNGE: 1807 break; 1808 default: 1809 return FALSE; 1810 } 1811 1812 start_sequence (); 1813 1814 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1); 1815 1816 /* ??? It's a quandary whether cmove would be better here, especially 1817 for integers. Perhaps combine will clean things up. */ 1818 if (target && negate) 1819 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0); 1820 1821 if (! target) 1822 { 1823 end_sequence (); 1824 return FALSE; 1825 } 1826 1827 if (target != if_info->x) 1828 noce_emit_move_insn (if_info->x, target); 1829 1830 seq = end_ifcvt_sequence (if_info); 1831 if (!seq) 1832 return FALSE; 1833 1834 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a)); 1835 if_info->cond = cond; 1836 if_info->cond_earliest = earliest; 1837 1838 return TRUE; 1839 } 1840 1841 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */ 1842 1843 static int 1844 noce_try_sign_mask (struct noce_if_info *if_info) 1845 { 1846 rtx cond, t, m, c, seq; 1847 enum machine_mode mode; 1848 enum rtx_code code; 1849 1850 if (no_new_pseudos) 1851 return FALSE; 1852 1853 cond = if_info->cond; 1854 code = GET_CODE (cond); 1855 m = XEXP (cond, 0); 1856 c = XEXP (cond, 1); 1857 1858 t = NULL_RTX; 1859 if (if_info->a == const0_rtx) 1860 { 1861 if ((code == LT && c == const0_rtx) 1862 || (code == LE && c == constm1_rtx)) 1863 t = if_info->b; 1864 } 1865 else if (if_info->b == const0_rtx) 1866 { 1867 if ((code == GE && c == const0_rtx) 1868 || (code == GT && c == constm1_rtx)) 1869 t = if_info->a; 1870 } 1871 1872 if (! t || side_effects_p (t)) 1873 return FALSE; 1874 1875 /* We currently don't handle different modes. */ 1876 mode = GET_MODE (t); 1877 if (GET_MODE (m) != mode) 1878 return FALSE; 1879 1880 /* This is only profitable if T is cheap, or T is unconditionally 1881 executed/evaluated in the original insn sequence. */ 1882 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2) 1883 && (!if_info->b_unconditional 1884 || t != if_info->b)) 1885 return FALSE; 1886 1887 start_sequence (); 1888 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding 1889 "(signed) m >> 31" directly. This benefits targets with specialized 1890 insns to obtain the signmask, but still uses ashr_optab otherwise. */ 1891 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1); 1892 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT) 1893 : NULL_RTX; 1894 1895 if (!t) 1896 { 1897 end_sequence (); 1898 return FALSE; 1899 } 1900 1901 noce_emit_move_insn (if_info->x, t); 1902 1903 seq = end_ifcvt_sequence (if_info); 1904 if (!seq) 1905 return FALSE; 1906 1907 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a)); 1908 return TRUE; 1909 } 1910 1911 1912 /* Optimize away "if (x & C) x |= C" and similar bit manipulation 1913 transformations. */ 1914 1915 static int 1916 noce_try_bitop (struct noce_if_info *if_info) 1917 { 1918 rtx cond, x, a, result, seq; 1919 enum machine_mode mode; 1920 enum rtx_code code; 1921 int bitnum; 1922 1923 x = if_info->x; 1924 cond = if_info->cond; 1925 code = GET_CODE (cond); 1926 1927 /* Check for no else condition. */ 1928 if (! rtx_equal_p (x, if_info->b)) 1929 return FALSE; 1930 1931 /* Check for a suitable condition. */ 1932 if (code != NE && code != EQ) 1933 return FALSE; 1934 if (XEXP (cond, 1) != const0_rtx) 1935 return FALSE; 1936 cond = XEXP (cond, 0); 1937 1938 /* ??? We could also handle AND here. */ 1939 if (GET_CODE (cond) == ZERO_EXTRACT) 1940 { 1941 if (XEXP (cond, 1) != const1_rtx 1942 || GET_CODE (XEXP (cond, 2)) != CONST_INT 1943 || ! rtx_equal_p (x, XEXP (cond, 0))) 1944 return FALSE; 1945 bitnum = INTVAL (XEXP (cond, 2)); 1946 mode = GET_MODE (x); 1947 if (BITS_BIG_ENDIAN) 1948 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum; 1949 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT) 1950 return FALSE; 1951 } 1952 else 1953 return FALSE; 1954 1955 a = if_info->a; 1956 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR) 1957 { 1958 /* Check for "if (X & C) x = x op C". */ 1959 if (! rtx_equal_p (x, XEXP (a, 0)) 1960 || GET_CODE (XEXP (a, 1)) != CONST_INT 1961 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode)) 1962 != (unsigned HOST_WIDE_INT) 1 << bitnum) 1963 return FALSE; 1964 1965 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */ 1966 /* if ((x & C) != 0) x |= C; is transformed to nothing. */ 1967 if (GET_CODE (a) == IOR) 1968 result = (code == NE) ? a : NULL_RTX; 1969 else if (code == NE) 1970 { 1971 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */ 1972 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode); 1973 result = simplify_gen_binary (IOR, mode, x, result); 1974 } 1975 else 1976 { 1977 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */ 1978 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode); 1979 result = simplify_gen_binary (AND, mode, x, result); 1980 } 1981 } 1982 else if (GET_CODE (a) == AND) 1983 { 1984 /* Check for "if (X & C) x &= ~C". */ 1985 if (! rtx_equal_p (x, XEXP (a, 0)) 1986 || GET_CODE (XEXP (a, 1)) != CONST_INT 1987 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode)) 1988 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode))) 1989 return FALSE; 1990 1991 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */ 1992 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */ 1993 result = (code == EQ) ? a : NULL_RTX; 1994 } 1995 else 1996 return FALSE; 1997 1998 if (result) 1999 { 2000 start_sequence (); 2001 noce_emit_move_insn (x, result); 2002 seq = end_ifcvt_sequence (if_info); 2003 if (!seq) 2004 return FALSE; 2005 2006 emit_insn_before_setloc (seq, if_info->jump, 2007 INSN_LOCATOR (if_info->insn_a)); 2008 } 2009 return TRUE; 2010 } 2011 2012 2013 /* Similar to get_condition, only the resulting condition must be 2014 valid at JUMP, instead of at EARLIEST. */ 2015 2016 static rtx 2017 noce_get_condition (rtx jump, rtx *earliest) 2018 { 2019 rtx cond, set, tmp; 2020 bool reverse; 2021 2022 if (! any_condjump_p (jump)) 2023 return NULL_RTX; 2024 2025 set = pc_set (jump); 2026 2027 /* If this branches to JUMP_LABEL when the condition is false, 2028 reverse the condition. */ 2029 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF 2030 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump)); 2031 2032 /* If the condition variable is a register and is MODE_INT, accept it. */ 2033 2034 cond = XEXP (SET_SRC (set), 0); 2035 tmp = XEXP (cond, 0); 2036 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT) 2037 { 2038 *earliest = jump; 2039 2040 if (reverse) 2041 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)), 2042 GET_MODE (cond), tmp, XEXP (cond, 1)); 2043 return cond; 2044 } 2045 2046 /* Otherwise, fall back on canonicalize_condition to do the dirty 2047 work of manipulating MODE_CC values and COMPARE rtx codes. */ 2048 return canonicalize_condition (jump, cond, reverse, earliest, 2049 NULL_RTX, false, true); 2050 } 2051 2052 /* Initialize for a simple IF-THEN or IF-THEN-ELSE block. We will not 2053 be using conditional execution. Set some fields of IF_INFO based 2054 on CE_INFO: test_bb, cond, jump, cond_earliest. Return TRUE if 2055 things look OK. */ 2056 2057 static int 2058 noce_init_if_info (struct ce_if_block *ce_info, struct noce_if_info *if_info) 2059 { 2060 basic_block test_bb = ce_info->test_bb; 2061 rtx cond, jump; 2062 2063 /* If test is comprised of && or || elements, don't handle it unless 2064 it is the special case of && elements without an ELSE block. */ 2065 if (ce_info->num_multiple_test_blocks) 2066 { 2067 if (ce_info->else_bb || !ce_info->and_and_p) 2068 return FALSE; 2069 2070 ce_info->test_bb = test_bb = ce_info->last_test_bb; 2071 ce_info->num_multiple_test_blocks = 0; 2072 ce_info->num_and_and_blocks = 0; 2073 ce_info->num_or_or_blocks = 0; 2074 } 2075 2076 /* If this is not a standard conditional jump, we can't parse it. */ 2077 jump = BB_END (test_bb); 2078 cond = noce_get_condition (jump, &if_info->cond_earliest); 2079 if (!cond) 2080 return FALSE; 2081 2082 /* If the conditional jump is more than just a conditional 2083 jump, then we can not do if-conversion on this block. */ 2084 if (! onlyjump_p (jump)) 2085 return FALSE; 2086 2087 /* We must be comparing objects whose modes imply the size. */ 2088 if (GET_MODE (XEXP (cond, 0)) == BLKmode) 2089 return FALSE; 2090 2091 if_info->test_bb = test_bb; 2092 if_info->cond = cond; 2093 if_info->jump = jump; 2094 2095 return TRUE; 2096 } 2097 2098 /* Return true if OP is ok for if-then-else processing. */ 2099 2100 static int 2101 noce_operand_ok (rtx op) 2102 { 2103 /* We special-case memories, so handle any of them with 2104 no address side effects. */ 2105 if (MEM_P (op)) 2106 return ! side_effects_p (XEXP (op, 0)); 2107 2108 if (side_effects_p (op)) 2109 return FALSE; 2110 2111 return ! may_trap_p (op); 2112 } 2113 2114 /* Return true if a write into MEM may trap or fault. */ 2115 2116 static bool 2117 noce_mem_write_may_trap_or_fault_p (rtx mem) 2118 { 2119 rtx addr; 2120 2121 if (MEM_READONLY_P (mem)) 2122 return true; 2123 2124 if (may_trap_or_fault_p (mem)) 2125 return true; 2126 2127 addr = XEXP (mem, 0); 2128 2129 /* Call target hook to avoid the effects of -fpic etc.... */ 2130 addr = targetm.delegitimize_address (addr); 2131 2132 while (addr) 2133 switch (GET_CODE (addr)) 2134 { 2135 case CONST: 2136 case PRE_DEC: 2137 case PRE_INC: 2138 case POST_DEC: 2139 case POST_INC: 2140 case POST_MODIFY: 2141 addr = XEXP (addr, 0); 2142 break; 2143 case LO_SUM: 2144 case PRE_MODIFY: 2145 addr = XEXP (addr, 1); 2146 break; 2147 case PLUS: 2148 if (GET_CODE (XEXP (addr, 1)) == CONST_INT) 2149 addr = XEXP (addr, 0); 2150 else 2151 return false; 2152 break; 2153 case LABEL_REF: 2154 return true; 2155 case SYMBOL_REF: 2156 if (SYMBOL_REF_DECL (addr) 2157 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0)) 2158 return true; 2159 return false; 2160 default: 2161 return false; 2162 } 2163 2164 return false; 2165 } 2166 2167 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it 2168 without using conditional execution. Return TRUE if we were 2169 successful at converting the block. */ 2170 2171 static int 2172 noce_process_if_block (struct ce_if_block * ce_info) 2173 { 2174 basic_block test_bb = ce_info->test_bb; /* test block */ 2175 basic_block then_bb = ce_info->then_bb; /* THEN */ 2176 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */ 2177 struct noce_if_info if_info; 2178 rtx insn_a, insn_b; 2179 rtx set_a, set_b; 2180 rtx orig_x, x, a, b; 2181 rtx jump, cond; 2182 2183 /* We're looking for patterns of the form 2184 2185 (1) if (...) x = a; else x = b; 2186 (2) x = b; if (...) x = a; 2187 (3) if (...) x = a; // as if with an initial x = x. 2188 2189 The later patterns require jumps to be more expensive. 2190 2191 ??? For future expansion, look for multiple X in such patterns. */ 2192 2193 if (!noce_init_if_info (ce_info, &if_info)) 2194 return FALSE; 2195 2196 cond = if_info.cond; 2197 jump = if_info.jump; 2198 2199 /* Look for one of the potential sets. */ 2200 insn_a = first_active_insn (then_bb); 2201 if (! insn_a 2202 || insn_a != last_active_insn (then_bb, FALSE) 2203 || (set_a = single_set (insn_a)) == NULL_RTX) 2204 return FALSE; 2205 2206 x = SET_DEST (set_a); 2207 a = SET_SRC (set_a); 2208 2209 /* Look for the other potential set. Make sure we've got equivalent 2210 destinations. */ 2211 /* ??? This is overconservative. Storing to two different mems is 2212 as easy as conditionally computing the address. Storing to a 2213 single mem merely requires a scratch memory to use as one of the 2214 destination addresses; often the memory immediately below the 2215 stack pointer is available for this. */ 2216 set_b = NULL_RTX; 2217 if (else_bb) 2218 { 2219 insn_b = first_active_insn (else_bb); 2220 if (! insn_b 2221 || insn_b != last_active_insn (else_bb, FALSE) 2222 || (set_b = single_set (insn_b)) == NULL_RTX 2223 || ! rtx_equal_p (x, SET_DEST (set_b))) 2224 return FALSE; 2225 } 2226 else 2227 { 2228 insn_b = prev_nonnote_insn (if_info.cond_earliest); 2229 /* We're going to be moving the evaluation of B down from above 2230 COND_EARLIEST to JUMP. Make sure the relevant data is still 2231 intact. */ 2232 if (! insn_b 2233 || !NONJUMP_INSN_P (insn_b) 2234 || (set_b = single_set (insn_b)) == NULL_RTX 2235 || ! rtx_equal_p (x, SET_DEST (set_b)) 2236 || reg_overlap_mentioned_p (x, SET_SRC (set_b)) 2237 || modified_between_p (SET_SRC (set_b), 2238 PREV_INSN (if_info.cond_earliest), jump) 2239 /* Likewise with X. In particular this can happen when 2240 noce_get_condition looks farther back in the instruction 2241 stream than one might expect. */ 2242 || reg_overlap_mentioned_p (x, cond) 2243 || reg_overlap_mentioned_p (x, a) 2244 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump)) 2245 insn_b = set_b = NULL_RTX; 2246 } 2247 2248 /* If x has side effects then only the if-then-else form is safe to 2249 convert. But even in that case we would need to restore any notes 2250 (such as REG_INC) at then end. That can be tricky if 2251 noce_emit_move_insn expands to more than one insn, so disable the 2252 optimization entirely for now if there are side effects. */ 2253 if (side_effects_p (x)) 2254 return FALSE; 2255 2256 b = (set_b ? SET_SRC (set_b) : x); 2257 2258 /* Only operate on register destinations, and even then avoid extending 2259 the lifetime of hard registers on small register class machines. */ 2260 orig_x = x; 2261 if (!REG_P (x) 2262 || (SMALL_REGISTER_CLASSES 2263 && REGNO (x) < FIRST_PSEUDO_REGISTER)) 2264 { 2265 if (no_new_pseudos || GET_MODE (x) == BLKmode) 2266 return FALSE; 2267 2268 if (GET_MODE (x) == ZERO_EXTRACT 2269 && (GET_CODE (XEXP (x, 1)) != CONST_INT 2270 || GET_CODE (XEXP (x, 2)) != CONST_INT)) 2271 return FALSE; 2272 2273 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART 2274 ? XEXP (x, 0) : x)); 2275 } 2276 2277 /* Don't operate on sources that may trap or are volatile. */ 2278 if (! noce_operand_ok (a) || ! noce_operand_ok (b)) 2279 return FALSE; 2280 2281 /* Set up the info block for our subroutines. */ 2282 if_info.insn_a = insn_a; 2283 if_info.insn_b = insn_b; 2284 if_info.x = x; 2285 if_info.a = a; 2286 if_info.b = b; 2287 if_info.b_unconditional = else_bb == 0; 2288 2289 /* Try optimizations in some approximation of a useful order. */ 2290 /* ??? Should first look to see if X is live incoming at all. If it 2291 isn't, we don't need anything but an unconditional set. */ 2292 2293 /* Look and see if A and B are really the same. Avoid creating silly 2294 cmove constructs that no one will fix up later. */ 2295 if (rtx_equal_p (a, b)) 2296 { 2297 /* If we have an INSN_B, we don't have to create any new rtl. Just 2298 move the instruction that we already have. If we don't have an 2299 INSN_B, that means that A == X, and we've got a noop move. In 2300 that case don't do anything and let the code below delete INSN_A. */ 2301 if (insn_b && else_bb) 2302 { 2303 rtx note; 2304 2305 if (else_bb && insn_b == BB_END (else_bb)) 2306 BB_END (else_bb) = PREV_INSN (insn_b); 2307 reorder_insns (insn_b, insn_b, PREV_INSN (jump)); 2308 2309 /* If there was a REG_EQUAL note, delete it since it may have been 2310 true due to this insn being after a jump. */ 2311 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0) 2312 remove_note (insn_b, note); 2313 2314 insn_b = NULL_RTX; 2315 } 2316 /* If we have "x = b; if (...) x = a;", and x has side-effects, then 2317 x must be executed twice. */ 2318 else if (insn_b && side_effects_p (orig_x)) 2319 return FALSE; 2320 2321 x = orig_x; 2322 goto success; 2323 } 2324 2325 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;") 2326 for optimizations if writing to x may trap or fault, i.e. it's a memory 2327 other than a static var or a stack slot, is misaligned on strict 2328 aligned machines or is read-only. 2329 If x is a read-only memory, then the program is valid only if we 2330 avoid the store into it. If there are stores on both the THEN and 2331 ELSE arms, then we can go ahead with the conversion; either the 2332 program is broken, or the condition is always false such that the 2333 other memory is selected. */ 2334 if (!set_b && MEM_P (orig_x) && noce_mem_write_may_trap_or_fault_p (orig_x)) 2335 return FALSE; 2336 2337 if (noce_try_move (&if_info)) 2338 goto success; 2339 if (noce_try_store_flag (&if_info)) 2340 goto success; 2341 if (noce_try_bitop (&if_info)) 2342 goto success; 2343 if (noce_try_minmax (&if_info)) 2344 goto success; 2345 if (noce_try_abs (&if_info)) 2346 goto success; 2347 if (HAVE_conditional_move 2348 && noce_try_cmove (&if_info)) 2349 goto success; 2350 if (! HAVE_conditional_execution) 2351 { 2352 if (noce_try_store_flag_constants (&if_info)) 2353 goto success; 2354 if (noce_try_addcc (&if_info)) 2355 goto success; 2356 if (noce_try_store_flag_mask (&if_info)) 2357 goto success; 2358 if (HAVE_conditional_move 2359 && noce_try_cmove_arith (&if_info)) 2360 goto success; 2361 if (noce_try_sign_mask (&if_info)) 2362 goto success; 2363 } 2364 2365 return FALSE; 2366 2367 success: 2368 /* The original sets may now be killed. */ 2369 delete_insn (insn_a); 2370 2371 /* Several special cases here: First, we may have reused insn_b above, 2372 in which case insn_b is now NULL. Second, we want to delete insn_b 2373 if it came from the ELSE block, because follows the now correct 2374 write that appears in the TEST block. However, if we got insn_b from 2375 the TEST block, it may in fact be loading data needed for the comparison. 2376 We'll let life_analysis remove the insn if it's really dead. */ 2377 if (insn_b && else_bb) 2378 delete_insn (insn_b); 2379 2380 /* The new insns will have been inserted immediately before the jump. We 2381 should be able to remove the jump with impunity, but the condition itself 2382 may have been modified by gcse to be shared across basic blocks. */ 2383 delete_insn (jump); 2384 2385 /* If we used a temporary, fix it up now. */ 2386 if (orig_x != x) 2387 { 2388 start_sequence (); 2389 noce_emit_move_insn (orig_x, x); 2390 insn_b = get_insns (); 2391 set_used_flags (orig_x); 2392 unshare_all_rtl_in_chain (insn_b); 2393 end_sequence (); 2394 2395 emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a)); 2396 } 2397 2398 /* Merge the blocks! */ 2399 merge_if_block (ce_info); 2400 2401 return TRUE; 2402 } 2403 2404 /* Check whether a block is suitable for conditional move conversion. 2405 Every insn must be a simple set of a register to a constant or a 2406 register. For each assignment, store the value in the array VALS, 2407 indexed by register number. COND is the condition we will 2408 test. */ 2409 2410 static int 2411 check_cond_move_block (basic_block bb, rtx *vals, rtx cond) 2412 { 2413 rtx insn; 2414 2415 FOR_BB_INSNS (bb, insn) 2416 { 2417 rtx set, dest, src; 2418 2419 if (!INSN_P (insn) || JUMP_P (insn)) 2420 continue; 2421 set = single_set (insn); 2422 if (!set) 2423 return FALSE; 2424 2425 dest = SET_DEST (set); 2426 src = SET_SRC (set); 2427 if (!REG_P (dest) 2428 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest))) 2429 return FALSE; 2430 2431 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode)) 2432 return FALSE; 2433 2434 if (side_effects_p (src) || side_effects_p (dest)) 2435 return FALSE; 2436 2437 if (may_trap_p (src) || may_trap_p (dest)) 2438 return FALSE; 2439 2440 /* Don't try to handle this if the source register was 2441 modified earlier in the block. */ 2442 if ((REG_P (src) 2443 && vals[REGNO (src)] != NULL) 2444 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src)) 2445 && vals[REGNO (SUBREG_REG (src))] != NULL)) 2446 return FALSE; 2447 2448 /* Don't try to handle this if the destination register was 2449 modified earlier in the block. */ 2450 if (vals[REGNO (dest)] != NULL) 2451 return FALSE; 2452 2453 /* Don't try to handle this if the condition uses the 2454 destination register. */ 2455 if (reg_overlap_mentioned_p (dest, cond)) 2456 return FALSE; 2457 2458 vals[REGNO (dest)] = src; 2459 2460 /* Don't try to handle this if the source register is modified 2461 later in the block. */ 2462 if (!CONSTANT_P (src) 2463 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb)))) 2464 return FALSE; 2465 } 2466 2467 return TRUE; 2468 } 2469 2470 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it 2471 using only conditional moves. Return TRUE if we were successful at 2472 converting the block. */ 2473 2474 static int 2475 cond_move_process_if_block (struct ce_if_block *ce_info) 2476 { 2477 basic_block then_bb = ce_info->then_bb; 2478 basic_block else_bb = ce_info->else_bb; 2479 struct noce_if_info if_info; 2480 rtx jump, cond, insn, seq, cond_arg0, cond_arg1, loc_insn; 2481 int max_reg, size, c, i; 2482 rtx *then_vals; 2483 rtx *else_vals; 2484 enum rtx_code code; 2485 2486 if (!HAVE_conditional_move || no_new_pseudos) 2487 return FALSE; 2488 2489 memset (&if_info, 0, sizeof if_info); 2490 2491 if (!noce_init_if_info (ce_info, &if_info)) 2492 return FALSE; 2493 2494 cond = if_info.cond; 2495 jump = if_info.jump; 2496 2497 /* Build a mapping for each block to the value used for each 2498 register. */ 2499 max_reg = max_reg_num (); 2500 size = (max_reg + 1) * sizeof (rtx); 2501 then_vals = (rtx *) alloca (size); 2502 else_vals = (rtx *) alloca (size); 2503 memset (then_vals, 0, size); 2504 memset (else_vals, 0, size); 2505 2506 /* Make sure the blocks are suitable. */ 2507 if (!check_cond_move_block (then_bb, then_vals, cond) 2508 || (else_bb && !check_cond_move_block (else_bb, else_vals, cond))) 2509 return FALSE; 2510 2511 /* Make sure the blocks can be used together. If the same register 2512 is set in both blocks, and is not set to a constant in both 2513 cases, then both blocks must set it to the same register. We 2514 have already verified that if it is set to a register, that the 2515 source register does not change after the assignment. Also count 2516 the number of registers set in only one of the blocks. */ 2517 c = 0; 2518 for (i = 0; i <= max_reg; ++i) 2519 { 2520 if (!then_vals[i] && !else_vals[i]) 2521 continue; 2522 2523 if (!then_vals[i] || !else_vals[i]) 2524 ++c; 2525 else 2526 { 2527 if (!CONSTANT_P (then_vals[i]) 2528 && !CONSTANT_P (else_vals[i]) 2529 && !rtx_equal_p (then_vals[i], else_vals[i])) 2530 return FALSE; 2531 } 2532 } 2533 2534 /* Make sure it is reasonable to convert this block. What matters 2535 is the number of assignments currently made in only one of the 2536 branches, since if we convert we are going to always execute 2537 them. */ 2538 if (c > MAX_CONDITIONAL_EXECUTE) 2539 return FALSE; 2540 2541 /* Emit the conditional moves. First do the then block, then do 2542 anything left in the else blocks. */ 2543 2544 code = GET_CODE (cond); 2545 cond_arg0 = XEXP (cond, 0); 2546 cond_arg1 = XEXP (cond, 1); 2547 2548 start_sequence (); 2549 2550 FOR_BB_INSNS (then_bb, insn) 2551 { 2552 rtx set, target, dest, t, e; 2553 unsigned int regno; 2554 2555 if (!INSN_P (insn) || JUMP_P (insn)) 2556 continue; 2557 set = single_set (insn); 2558 gcc_assert (set && REG_P (SET_DEST (set))); 2559 2560 dest = SET_DEST (set); 2561 regno = REGNO (dest); 2562 t = then_vals[regno]; 2563 e = else_vals[regno]; 2564 gcc_assert (t); 2565 if (!e) 2566 e = dest; 2567 target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1, 2568 t, e); 2569 if (!target) 2570 { 2571 end_sequence (); 2572 return FALSE; 2573 } 2574 2575 if (target != dest) 2576 noce_emit_move_insn (dest, target); 2577 } 2578 2579 if (else_bb) 2580 { 2581 FOR_BB_INSNS (else_bb, insn) 2582 { 2583 rtx set, target, dest; 2584 unsigned int regno; 2585 2586 if (!INSN_P (insn) || JUMP_P (insn)) 2587 continue; 2588 set = single_set (insn); 2589 gcc_assert (set && REG_P (SET_DEST (set))); 2590 2591 dest = SET_DEST (set); 2592 regno = REGNO (dest); 2593 2594 /* If this register was set in the then block, we already 2595 handled this case above. */ 2596 if (then_vals[regno]) 2597 continue; 2598 gcc_assert (else_vals[regno]); 2599 2600 target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1, 2601 dest, else_vals[regno]); 2602 if (!target) 2603 { 2604 end_sequence (); 2605 return FALSE; 2606 } 2607 2608 if (target != dest) 2609 noce_emit_move_insn (dest, target); 2610 } 2611 } 2612 2613 seq = end_ifcvt_sequence (&if_info); 2614 if (!seq) 2615 return FALSE; 2616 2617 loc_insn = first_active_insn (then_bb); 2618 if (!loc_insn) 2619 { 2620 loc_insn = first_active_insn (else_bb); 2621 gcc_assert (loc_insn); 2622 } 2623 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn)); 2624 2625 FOR_BB_INSNS (then_bb, insn) 2626 if (INSN_P (insn) && !JUMP_P (insn)) 2627 delete_insn (insn); 2628 if (else_bb) 2629 { 2630 FOR_BB_INSNS (else_bb, insn) 2631 if (INSN_P (insn) && !JUMP_P (insn)) 2632 delete_insn (insn); 2633 } 2634 delete_insn (jump); 2635 2636 merge_if_block (ce_info); 2637 2638 return TRUE; 2639 } 2640 2641 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into 2642 straight line code. Return true if successful. */ 2643 2644 static int 2645 process_if_block (struct ce_if_block * ce_info) 2646 { 2647 if (! reload_completed 2648 && noce_process_if_block (ce_info)) 2649 return TRUE; 2650 2651 if (HAVE_conditional_move 2652 && cond_move_process_if_block (ce_info)) 2653 return TRUE; 2654 2655 if (HAVE_conditional_execution && reload_completed) 2656 { 2657 /* If we have && and || tests, try to first handle combining the && and 2658 || tests into the conditional code, and if that fails, go back and 2659 handle it without the && and ||, which at present handles the && case 2660 if there was no ELSE block. */ 2661 if (cond_exec_process_if_block (ce_info, TRUE)) 2662 return TRUE; 2663 2664 if (ce_info->num_multiple_test_blocks) 2665 { 2666 cancel_changes (0); 2667 2668 if (cond_exec_process_if_block (ce_info, FALSE)) 2669 return TRUE; 2670 } 2671 } 2672 2673 return FALSE; 2674 } 2675 2676 /* Merge the blocks and mark for local life update. */ 2677 2678 static void 2679 merge_if_block (struct ce_if_block * ce_info) 2680 { 2681 basic_block test_bb = ce_info->test_bb; /* last test block */ 2682 basic_block then_bb = ce_info->then_bb; /* THEN */ 2683 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */ 2684 basic_block join_bb = ce_info->join_bb; /* join block */ 2685 basic_block combo_bb; 2686 2687 /* All block merging is done into the lower block numbers. */ 2688 2689 combo_bb = test_bb; 2690 2691 /* Merge any basic blocks to handle && and || subtests. Each of 2692 the blocks are on the fallthru path from the predecessor block. */ 2693 if (ce_info->num_multiple_test_blocks > 0) 2694 { 2695 basic_block bb = test_bb; 2696 basic_block last_test_bb = ce_info->last_test_bb; 2697 basic_block fallthru = block_fallthru (bb); 2698 2699 do 2700 { 2701 bb = fallthru; 2702 fallthru = block_fallthru (bb); 2703 merge_blocks (combo_bb, bb); 2704 num_true_changes++; 2705 } 2706 while (bb != last_test_bb); 2707 } 2708 2709 /* Merge TEST block into THEN block. Normally the THEN block won't have a 2710 label, but it might if there were || tests. That label's count should be 2711 zero, and it normally should be removed. */ 2712 2713 if (then_bb) 2714 { 2715 if (combo_bb->il.rtl->global_live_at_end) 2716 COPY_REG_SET (combo_bb->il.rtl->global_live_at_end, 2717 then_bb->il.rtl->global_live_at_end); 2718 merge_blocks (combo_bb, then_bb); 2719 num_true_changes++; 2720 } 2721 2722 /* The ELSE block, if it existed, had a label. That label count 2723 will almost always be zero, but odd things can happen when labels 2724 get their addresses taken. */ 2725 if (else_bb) 2726 { 2727 merge_blocks (combo_bb, else_bb); 2728 num_true_changes++; 2729 } 2730 2731 /* If there was no join block reported, that means it was not adjacent 2732 to the others, and so we cannot merge them. */ 2733 2734 if (! join_bb) 2735 { 2736 rtx last = BB_END (combo_bb); 2737 2738 /* The outgoing edge for the current COMBO block should already 2739 be correct. Verify this. */ 2740 if (EDGE_COUNT (combo_bb->succs) == 0) 2741 gcc_assert (find_reg_note (last, REG_NORETURN, NULL) 2742 || (NONJUMP_INSN_P (last) 2743 && GET_CODE (PATTERN (last)) == TRAP_IF 2744 && (TRAP_CONDITION (PATTERN (last)) 2745 == const_true_rtx))); 2746 2747 else 2748 /* There should still be something at the end of the THEN or ELSE 2749 blocks taking us to our final destination. */ 2750 gcc_assert (JUMP_P (last) 2751 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR 2752 && CALL_P (last) 2753 && SIBLING_CALL_P (last)) 2754 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH) 2755 && can_throw_internal (last))); 2756 } 2757 2758 /* The JOIN block may have had quite a number of other predecessors too. 2759 Since we've already merged the TEST, THEN and ELSE blocks, we should 2760 have only one remaining edge from our if-then-else diamond. If there 2761 is more than one remaining edge, it must come from elsewhere. There 2762 may be zero incoming edges if the THEN block didn't actually join 2763 back up (as with a call to a non-return function). */ 2764 else if (EDGE_COUNT (join_bb->preds) < 2 2765 && join_bb != EXIT_BLOCK_PTR) 2766 { 2767 /* We can merge the JOIN. */ 2768 if (combo_bb->il.rtl->global_live_at_end) 2769 COPY_REG_SET (combo_bb->il.rtl->global_live_at_end, 2770 join_bb->il.rtl->global_live_at_end); 2771 2772 merge_blocks (combo_bb, join_bb); 2773 num_true_changes++; 2774 } 2775 else 2776 { 2777 /* We cannot merge the JOIN. */ 2778 2779 /* The outgoing edge for the current COMBO block should already 2780 be correct. Verify this. */ 2781 gcc_assert (single_succ_p (combo_bb) 2782 && single_succ (combo_bb) == join_bb); 2783 2784 /* Remove the jump and cruft from the end of the COMBO block. */ 2785 if (join_bb != EXIT_BLOCK_PTR) 2786 tidy_fallthru_edge (single_succ_edge (combo_bb)); 2787 } 2788 2789 num_updated_if_blocks++; 2790 } 2791 2792 /* Find a block ending in a simple IF condition and try to transform it 2793 in some way. When converting a multi-block condition, put the new code 2794 in the first such block and delete the rest. Return a pointer to this 2795 first block if some transformation was done. Return NULL otherwise. */ 2796 2797 static basic_block 2798 find_if_header (basic_block test_bb, int pass) 2799 { 2800 ce_if_block_t ce_info; 2801 edge then_edge; 2802 edge else_edge; 2803 2804 /* The kind of block we're looking for has exactly two successors. */ 2805 if (EDGE_COUNT (test_bb->succs) != 2) 2806 return NULL; 2807 2808 then_edge = EDGE_SUCC (test_bb, 0); 2809 else_edge = EDGE_SUCC (test_bb, 1); 2810 2811 /* Neither edge should be abnormal. */ 2812 if ((then_edge->flags & EDGE_COMPLEX) 2813 || (else_edge->flags & EDGE_COMPLEX)) 2814 return NULL; 2815 2816 /* Nor exit the loop. */ 2817 if ((then_edge->flags & EDGE_LOOP_EXIT) 2818 || (else_edge->flags & EDGE_LOOP_EXIT)) 2819 return NULL; 2820 2821 /* The THEN edge is canonically the one that falls through. */ 2822 if (then_edge->flags & EDGE_FALLTHRU) 2823 ; 2824 else if (else_edge->flags & EDGE_FALLTHRU) 2825 { 2826 edge e = else_edge; 2827 else_edge = then_edge; 2828 then_edge = e; 2829 } 2830 else 2831 /* Otherwise this must be a multiway branch of some sort. */ 2832 return NULL; 2833 2834 memset (&ce_info, '\0', sizeof (ce_info)); 2835 ce_info.test_bb = test_bb; 2836 ce_info.then_bb = then_edge->dest; 2837 ce_info.else_bb = else_edge->dest; 2838 ce_info.pass = pass; 2839 2840 #ifdef IFCVT_INIT_EXTRA_FIELDS 2841 IFCVT_INIT_EXTRA_FIELDS (&ce_info); 2842 #endif 2843 2844 if (find_if_block (&ce_info)) 2845 goto success; 2846 2847 if (HAVE_trap && HAVE_conditional_trap 2848 && find_cond_trap (test_bb, then_edge, else_edge)) 2849 goto success; 2850 2851 if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY 2852 && (! HAVE_conditional_execution || reload_completed)) 2853 { 2854 if (find_if_case_1 (test_bb, then_edge, else_edge)) 2855 goto success; 2856 if (find_if_case_2 (test_bb, then_edge, else_edge)) 2857 goto success; 2858 } 2859 2860 return NULL; 2861 2862 success: 2863 if (dump_file) 2864 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass); 2865 return ce_info.test_bb; 2866 } 2867 2868 /* Return true if a block has two edges, one of which falls through to the next 2869 block, and the other jumps to a specific block, so that we can tell if the 2870 block is part of an && test or an || test. Returns either -1 or the number 2871 of non-note, non-jump, non-USE/CLOBBER insns in the block. */ 2872 2873 static int 2874 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb) 2875 { 2876 edge cur_edge; 2877 int fallthru_p = FALSE; 2878 int jump_p = FALSE; 2879 rtx insn; 2880 rtx end; 2881 int n_insns = 0; 2882 edge_iterator ei; 2883 2884 if (!cur_bb || !target_bb) 2885 return -1; 2886 2887 /* If no edges, obviously it doesn't jump or fallthru. */ 2888 if (EDGE_COUNT (cur_bb->succs) == 0) 2889 return FALSE; 2890 2891 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs) 2892 { 2893 if (cur_edge->flags & EDGE_COMPLEX) 2894 /* Anything complex isn't what we want. */ 2895 return -1; 2896 2897 else if (cur_edge->flags & EDGE_FALLTHRU) 2898 fallthru_p = TRUE; 2899 2900 else if (cur_edge->dest == target_bb) 2901 jump_p = TRUE; 2902 2903 else 2904 return -1; 2905 } 2906 2907 if ((jump_p & fallthru_p) == 0) 2908 return -1; 2909 2910 /* Don't allow calls in the block, since this is used to group && and || 2911 together for conditional execution support. ??? we should support 2912 conditional execution support across calls for IA-64 some day, but 2913 for now it makes the code simpler. */ 2914 end = BB_END (cur_bb); 2915 insn = BB_HEAD (cur_bb); 2916 2917 while (insn != NULL_RTX) 2918 { 2919 if (CALL_P (insn)) 2920 return -1; 2921 2922 if (INSN_P (insn) 2923 && !JUMP_P (insn) 2924 && GET_CODE (PATTERN (insn)) != USE 2925 && GET_CODE (PATTERN (insn)) != CLOBBER) 2926 n_insns++; 2927 2928 if (insn == end) 2929 break; 2930 2931 insn = NEXT_INSN (insn); 2932 } 2933 2934 return n_insns; 2935 } 2936 2937 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE 2938 block. If so, we'll try to convert the insns to not require the branch. 2939 Return TRUE if we were successful at converting the block. */ 2940 2941 static int 2942 find_if_block (struct ce_if_block * ce_info) 2943 { 2944 basic_block test_bb = ce_info->test_bb; 2945 basic_block then_bb = ce_info->then_bb; 2946 basic_block else_bb = ce_info->else_bb; 2947 basic_block join_bb = NULL_BLOCK; 2948 edge cur_edge; 2949 basic_block next; 2950 edge_iterator ei; 2951 2952 ce_info->last_test_bb = test_bb; 2953 2954 /* Discover if any fall through predecessors of the current test basic block 2955 were && tests (which jump to the else block) or || tests (which jump to 2956 the then block). */ 2957 if (HAVE_conditional_execution && reload_completed 2958 && single_pred_p (test_bb) 2959 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU) 2960 { 2961 basic_block bb = single_pred (test_bb); 2962 basic_block target_bb; 2963 int max_insns = MAX_CONDITIONAL_EXECUTE; 2964 int n_insns; 2965 2966 /* Determine if the preceding block is an && or || block. */ 2967 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0) 2968 { 2969 ce_info->and_and_p = TRUE; 2970 target_bb = else_bb; 2971 } 2972 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0) 2973 { 2974 ce_info->and_and_p = FALSE; 2975 target_bb = then_bb; 2976 } 2977 else 2978 target_bb = NULL_BLOCK; 2979 2980 if (target_bb && n_insns <= max_insns) 2981 { 2982 int total_insns = 0; 2983 int blocks = 0; 2984 2985 ce_info->last_test_bb = test_bb; 2986 2987 /* Found at least one && or || block, look for more. */ 2988 do 2989 { 2990 ce_info->test_bb = test_bb = bb; 2991 total_insns += n_insns; 2992 blocks++; 2993 2994 if (!single_pred_p (bb)) 2995 break; 2996 2997 bb = single_pred (bb); 2998 n_insns = block_jumps_and_fallthru_p (bb, target_bb); 2999 } 3000 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns); 3001 3002 ce_info->num_multiple_test_blocks = blocks; 3003 ce_info->num_multiple_test_insns = total_insns; 3004 3005 if (ce_info->and_and_p) 3006 ce_info->num_and_and_blocks = blocks; 3007 else 3008 ce_info->num_or_or_blocks = blocks; 3009 } 3010 } 3011 3012 /* The THEN block of an IF-THEN combo must have exactly one predecessor, 3013 other than any || blocks which jump to the THEN block. */ 3014 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1) 3015 return FALSE; 3016 3017 /* The edges of the THEN and ELSE blocks cannot have complex edges. */ 3018 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds) 3019 { 3020 if (cur_edge->flags & EDGE_COMPLEX) 3021 return FALSE; 3022 } 3023 3024 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds) 3025 { 3026 if (cur_edge->flags & EDGE_COMPLEX) 3027 return FALSE; 3028 } 3029 3030 /* The THEN block of an IF-THEN combo must have zero or one successors. */ 3031 if (EDGE_COUNT (then_bb->succs) > 0 3032 && (!single_succ_p (then_bb) 3033 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX) 3034 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL)))) 3035 return FALSE; 3036 3037 /* If the THEN block has no successors, conditional execution can still 3038 make a conditional call. Don't do this unless the ELSE block has 3039 only one incoming edge -- the CFG manipulation is too ugly otherwise. 3040 Check for the last insn of the THEN block being an indirect jump, which 3041 is listed as not having any successors, but confuses the rest of the CE 3042 code processing. ??? we should fix this in the future. */ 3043 if (EDGE_COUNT (then_bb->succs) == 0) 3044 { 3045 if (single_pred_p (else_bb)) 3046 { 3047 rtx last_insn = BB_END (then_bb); 3048 3049 while (last_insn 3050 && NOTE_P (last_insn) 3051 && last_insn != BB_HEAD (then_bb)) 3052 last_insn = PREV_INSN (last_insn); 3053 3054 if (last_insn 3055 && JUMP_P (last_insn) 3056 && ! simplejump_p (last_insn)) 3057 return FALSE; 3058 3059 join_bb = else_bb; 3060 else_bb = NULL_BLOCK; 3061 } 3062 else 3063 return FALSE; 3064 } 3065 3066 /* If the THEN block's successor is the other edge out of the TEST block, 3067 then we have an IF-THEN combo without an ELSE. */ 3068 else if (single_succ (then_bb) == else_bb) 3069 { 3070 join_bb = else_bb; 3071 else_bb = NULL_BLOCK; 3072 } 3073 3074 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE 3075 has exactly one predecessor and one successor, and the outgoing edge 3076 is not complex, then we have an IF-THEN-ELSE combo. */ 3077 else if (single_succ_p (else_bb) 3078 && single_succ (then_bb) == single_succ (else_bb) 3079 && single_pred_p (else_bb) 3080 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX) 3081 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL))) 3082 join_bb = single_succ (else_bb); 3083 3084 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */ 3085 else 3086 return FALSE; 3087 3088 num_possible_if_blocks++; 3089 3090 if (dump_file) 3091 { 3092 fprintf (dump_file, 3093 "\nIF-THEN%s block found, pass %d, start block %d " 3094 "[insn %d], then %d [%d]", 3095 (else_bb) ? "-ELSE" : "", 3096 ce_info->pass, 3097 test_bb->index, 3098 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1, 3099 then_bb->index, 3100 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1); 3101 3102 if (else_bb) 3103 fprintf (dump_file, ", else %d [%d]", 3104 else_bb->index, 3105 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1); 3106 3107 fprintf (dump_file, ", join %d [%d]", 3108 join_bb->index, 3109 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1); 3110 3111 if (ce_info->num_multiple_test_blocks > 0) 3112 fprintf (dump_file, ", %d %s block%s last test %d [%d]", 3113 ce_info->num_multiple_test_blocks, 3114 (ce_info->and_and_p) ? "&&" : "||", 3115 (ce_info->num_multiple_test_blocks == 1) ? "" : "s", 3116 ce_info->last_test_bb->index, 3117 ((BB_HEAD (ce_info->last_test_bb)) 3118 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb)) 3119 : -1)); 3120 3121 fputc ('\n', dump_file); 3122 } 3123 3124 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the 3125 first condition for free, since we've already asserted that there's a 3126 fallthru edge from IF to THEN. Likewise for the && and || blocks, since 3127 we checked the FALLTHRU flag, those are already adjacent to the last IF 3128 block. */ 3129 /* ??? As an enhancement, move the ELSE block. Have to deal with 3130 BLOCK notes, if by no other means than backing out the merge if they 3131 exist. Sticky enough I don't want to think about it now. */ 3132 next = then_bb; 3133 if (else_bb && (next = next->next_bb) != else_bb) 3134 return FALSE; 3135 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR) 3136 { 3137 if (else_bb) 3138 join_bb = NULL; 3139 else 3140 return FALSE; 3141 } 3142 3143 /* Do the real work. */ 3144 ce_info->else_bb = else_bb; 3145 ce_info->join_bb = join_bb; 3146 3147 return process_if_block (ce_info); 3148 } 3149 3150 /* Convert a branch over a trap, or a branch 3151 to a trap, into a conditional trap. */ 3152 3153 static int 3154 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge) 3155 { 3156 basic_block then_bb = then_edge->dest; 3157 basic_block else_bb = else_edge->dest; 3158 basic_block other_bb, trap_bb; 3159 rtx trap, jump, cond, cond_earliest, seq; 3160 enum rtx_code code; 3161 3162 /* Locate the block with the trap instruction. */ 3163 /* ??? While we look for no successors, we really ought to allow 3164 EH successors. Need to fix merge_if_block for that to work. */ 3165 if ((trap = block_has_only_trap (then_bb)) != NULL) 3166 trap_bb = then_bb, other_bb = else_bb; 3167 else if ((trap = block_has_only_trap (else_bb)) != NULL) 3168 trap_bb = else_bb, other_bb = then_bb; 3169 else 3170 return FALSE; 3171 3172 if (dump_file) 3173 { 3174 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n", 3175 test_bb->index, trap_bb->index); 3176 } 3177 3178 /* If this is not a standard conditional jump, we can't parse it. */ 3179 jump = BB_END (test_bb); 3180 cond = noce_get_condition (jump, &cond_earliest); 3181 if (! cond) 3182 return FALSE; 3183 3184 /* If the conditional jump is more than just a conditional jump, then 3185 we can not do if-conversion on this block. */ 3186 if (! onlyjump_p (jump)) 3187 return FALSE; 3188 3189 /* We must be comparing objects whose modes imply the size. */ 3190 if (GET_MODE (XEXP (cond, 0)) == BLKmode) 3191 return FALSE; 3192 3193 /* Reverse the comparison code, if necessary. */ 3194 code = GET_CODE (cond); 3195 if (then_bb == trap_bb) 3196 { 3197 code = reversed_comparison_code (cond, jump); 3198 if (code == UNKNOWN) 3199 return FALSE; 3200 } 3201 3202 /* Attempt to generate the conditional trap. */ 3203 seq = gen_cond_trap (code, XEXP (cond, 0), 3204 XEXP (cond, 1), 3205 TRAP_CODE (PATTERN (trap))); 3206 if (seq == NULL) 3207 return FALSE; 3208 3209 num_true_changes++; 3210 3211 /* Emit the new insns before cond_earliest. */ 3212 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap)); 3213 3214 /* Delete the trap block if possible. */ 3215 remove_edge (trap_bb == then_bb ? then_edge : else_edge); 3216 if (EDGE_COUNT (trap_bb->preds) == 0) 3217 delete_basic_block (trap_bb); 3218 3219 /* If the non-trap block and the test are now adjacent, merge them. 3220 Otherwise we must insert a direct branch. */ 3221 if (test_bb->next_bb == other_bb) 3222 { 3223 struct ce_if_block new_ce_info; 3224 delete_insn (jump); 3225 memset (&new_ce_info, '\0', sizeof (new_ce_info)); 3226 new_ce_info.test_bb = test_bb; 3227 new_ce_info.then_bb = NULL; 3228 new_ce_info.else_bb = NULL; 3229 new_ce_info.join_bb = other_bb; 3230 merge_if_block (&new_ce_info); 3231 } 3232 else 3233 { 3234 rtx lab, newjump; 3235 3236 lab = JUMP_LABEL (jump); 3237 newjump = emit_jump_insn_after (gen_jump (lab), jump); 3238 LABEL_NUSES (lab) += 1; 3239 JUMP_LABEL (newjump) = lab; 3240 emit_barrier_after (newjump); 3241 3242 delete_insn (jump); 3243 } 3244 3245 return TRUE; 3246 } 3247 3248 /* Subroutine of find_cond_trap: if BB contains only a trap insn, 3249 return it. */ 3250 3251 static rtx 3252 block_has_only_trap (basic_block bb) 3253 { 3254 rtx trap; 3255 3256 /* We're not the exit block. */ 3257 if (bb == EXIT_BLOCK_PTR) 3258 return NULL_RTX; 3259 3260 /* The block must have no successors. */ 3261 if (EDGE_COUNT (bb->succs) > 0) 3262 return NULL_RTX; 3263 3264 /* The only instruction in the THEN block must be the trap. */ 3265 trap = first_active_insn (bb); 3266 if (! (trap == BB_END (bb) 3267 && GET_CODE (PATTERN (trap)) == TRAP_IF 3268 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx)) 3269 return NULL_RTX; 3270 3271 return trap; 3272 } 3273 3274 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is 3275 transformable, but not necessarily the other. There need be no 3276 JOIN block. 3277 3278 Return TRUE if we were successful at converting the block. 3279 3280 Cases we'd like to look at: 3281 3282 (1) 3283 if (test) goto over; // x not live 3284 x = a; 3285 goto label; 3286 over: 3287 3288 becomes 3289 3290 x = a; 3291 if (! test) goto label; 3292 3293 (2) 3294 if (test) goto E; // x not live 3295 x = big(); 3296 goto L; 3297 E: 3298 x = b; 3299 goto M; 3300 3301 becomes 3302 3303 x = b; 3304 if (test) goto M; 3305 x = big(); 3306 goto L; 3307 3308 (3) // This one's really only interesting for targets that can do 3309 // multiway branching, e.g. IA-64 BBB bundles. For other targets 3310 // it results in multiple branches on a cache line, which often 3311 // does not sit well with predictors. 3312 3313 if (test1) goto E; // predicted not taken 3314 x = a; 3315 if (test2) goto F; 3316 ... 3317 E: 3318 x = b; 3319 J: 3320 3321 becomes 3322 3323 x = a; 3324 if (test1) goto E; 3325 if (test2) goto F; 3326 3327 Notes: 3328 3329 (A) Don't do (2) if the branch is predicted against the block we're 3330 eliminating. Do it anyway if we can eliminate a branch; this requires 3331 that the sole successor of the eliminated block postdominate the other 3332 side of the if. 3333 3334 (B) With CE, on (3) we can steal from both sides of the if, creating 3335 3336 if (test1) x = a; 3337 if (!test1) x = b; 3338 if (test1) goto J; 3339 if (test2) goto F; 3340 ... 3341 J: 3342 3343 Again, this is most useful if J postdominates. 3344 3345 (C) CE substitutes for helpful life information. 3346 3347 (D) These heuristics need a lot of work. */ 3348 3349 /* Tests for case 1 above. */ 3350 3351 static int 3352 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge) 3353 { 3354 basic_block then_bb = then_edge->dest; 3355 basic_block else_bb = else_edge->dest, new_bb; 3356 int then_bb_index; 3357 3358 /* If we are partitioning hot/cold basic blocks, we don't want to 3359 mess up unconditional or indirect jumps that cross between hot 3360 and cold sections. 3361 3362 Basic block partitioning may result in some jumps that appear to 3363 be optimizable (or blocks that appear to be mergeable), but which really 3364 must be left untouched (they are required to make it safely across 3365 partition boundaries). See the comments at the top of 3366 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */ 3367 3368 if ((BB_END (then_bb) 3369 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX)) 3370 || (BB_END (test_bb) 3371 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX)) 3372 || (BB_END (else_bb) 3373 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP, 3374 NULL_RTX))) 3375 return FALSE; 3376 3377 /* THEN has one successor. */ 3378 if (!single_succ_p (then_bb)) 3379 return FALSE; 3380 3381 /* THEN does not fall through, but is not strange either. */ 3382 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)) 3383 return FALSE; 3384 3385 /* THEN has one predecessor. */ 3386 if (!single_pred_p (then_bb)) 3387 return FALSE; 3388 3389 /* THEN must do something. */ 3390 if (forwarder_block_p (then_bb)) 3391 return FALSE; 3392 3393 num_possible_if_blocks++; 3394 if (dump_file) 3395 fprintf (dump_file, 3396 "\nIF-CASE-1 found, start %d, then %d\n", 3397 test_bb->index, then_bb->index); 3398 3399 /* THEN is small. */ 3400 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST))) 3401 return FALSE; 3402 3403 /* Registers set are dead, or are predicable. */ 3404 if (! dead_or_predicable (test_bb, then_bb, else_bb, 3405 single_succ (then_bb), 1)) 3406 return FALSE; 3407 3408 /* Conversion went ok, including moving the insns and fixing up the 3409 jump. Adjust the CFG to match. */ 3410 3411 bitmap_ior (test_bb->il.rtl->global_live_at_end, 3412 else_bb->il.rtl->global_live_at_start, 3413 then_bb->il.rtl->global_live_at_end); 3414 3415 3416 /* We can avoid creating a new basic block if then_bb is immediately 3417 followed by else_bb, i.e. deleting then_bb allows test_bb to fall 3418 thru to else_bb. */ 3419 3420 if (then_bb->next_bb == else_bb 3421 && then_bb->prev_bb == test_bb 3422 && else_bb != EXIT_BLOCK_PTR) 3423 { 3424 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb); 3425 new_bb = 0; 3426 } 3427 else 3428 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb), 3429 else_bb); 3430 3431 then_bb_index = then_bb->index; 3432 delete_basic_block (then_bb); 3433 3434 /* Make rest of code believe that the newly created block is the THEN_BB 3435 block we removed. */ 3436 if (new_bb) 3437 { 3438 new_bb->index = then_bb_index; 3439 SET_BASIC_BLOCK (then_bb_index, new_bb); 3440 /* Since the fallthru edge was redirected from test_bb to new_bb, 3441 we need to ensure that new_bb is in the same partition as 3442 test bb (you can not fall through across section boundaries). */ 3443 BB_COPY_PARTITION (new_bb, test_bb); 3444 } 3445 /* We've possibly created jump to next insn, cleanup_cfg will solve that 3446 later. */ 3447 3448 num_true_changes++; 3449 num_updated_if_blocks++; 3450 3451 return TRUE; 3452 } 3453 3454 /* Test for case 2 above. */ 3455 3456 static int 3457 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge) 3458 { 3459 basic_block then_bb = then_edge->dest; 3460 basic_block else_bb = else_edge->dest; 3461 edge else_succ; 3462 rtx note; 3463 3464 /* If we are partitioning hot/cold basic blocks, we don't want to 3465 mess up unconditional or indirect jumps that cross between hot 3466 and cold sections. 3467 3468 Basic block partitioning may result in some jumps that appear to 3469 be optimizable (or blocks that appear to be mergeable), but which really 3470 must be left untouched (they are required to make it safely across 3471 partition boundaries). See the comments at the top of 3472 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */ 3473 3474 if ((BB_END (then_bb) 3475 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX)) 3476 || (BB_END (test_bb) 3477 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX)) 3478 || (BB_END (else_bb) 3479 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP, 3480 NULL_RTX))) 3481 return FALSE; 3482 3483 /* ELSE has one successor. */ 3484 if (!single_succ_p (else_bb)) 3485 return FALSE; 3486 else 3487 else_succ = single_succ_edge (else_bb); 3488 3489 /* ELSE outgoing edge is not complex. */ 3490 if (else_succ->flags & EDGE_COMPLEX) 3491 return FALSE; 3492 3493 /* ELSE has one predecessor. */ 3494 if (!single_pred_p (else_bb)) 3495 return FALSE; 3496 3497 /* THEN is not EXIT. */ 3498 if (then_bb->index < NUM_FIXED_BLOCKS) 3499 return FALSE; 3500 3501 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */ 3502 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX); 3503 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2) 3504 ; 3505 else if (else_succ->dest->index < NUM_FIXED_BLOCKS 3506 || dominated_by_p (CDI_POST_DOMINATORS, then_bb, 3507 else_succ->dest)) 3508 ; 3509 else 3510 return FALSE; 3511 3512 num_possible_if_blocks++; 3513 if (dump_file) 3514 fprintf (dump_file, 3515 "\nIF-CASE-2 found, start %d, else %d\n", 3516 test_bb->index, else_bb->index); 3517 3518 /* ELSE is small. */ 3519 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST))) 3520 return FALSE; 3521 3522 /* Registers set are dead, or are predicable. */ 3523 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0)) 3524 return FALSE; 3525 3526 /* Conversion went ok, including moving the insns and fixing up the 3527 jump. Adjust the CFG to match. */ 3528 3529 bitmap_ior (test_bb->il.rtl->global_live_at_end, 3530 then_bb->il.rtl->global_live_at_start, 3531 else_bb->il.rtl->global_live_at_end); 3532 3533 delete_basic_block (else_bb); 3534 3535 num_true_changes++; 3536 num_updated_if_blocks++; 3537 3538 /* ??? We may now fallthru from one of THEN's successors into a join 3539 block. Rerun cleanup_cfg? Examine things manually? Wait? */ 3540 3541 return TRUE; 3542 } 3543 3544 /* A subroutine of dead_or_predicable called through for_each_rtx. 3545 Return 1 if a memory is found. */ 3546 3547 static int 3548 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED) 3549 { 3550 return MEM_P (*px); 3551 } 3552 3553 /* Used by the code above to perform the actual rtl transformations. 3554 Return TRUE if successful. 3555 3556 TEST_BB is the block containing the conditional branch. MERGE_BB 3557 is the block containing the code to manipulate. NEW_DEST is the 3558 label TEST_BB should be branching to after the conversion. 3559 REVERSEP is true if the sense of the branch should be reversed. */ 3560 3561 static int 3562 dead_or_predicable (basic_block test_bb, basic_block merge_bb, 3563 basic_block other_bb, basic_block new_dest, int reversep) 3564 { 3565 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX; 3566 3567 jump = BB_END (test_bb); 3568 3569 /* Find the extent of the real code in the merge block. */ 3570 head = BB_HEAD (merge_bb); 3571 end = BB_END (merge_bb); 3572 3573 /* If merge_bb ends with a tablejump, predicating/moving insn's 3574 into test_bb and then deleting merge_bb will result in the jumptable 3575 that follows merge_bb being removed along with merge_bb and then we 3576 get an unresolved reference to the jumptable. */ 3577 if (tablejump_p (end, NULL, NULL)) 3578 return FALSE; 3579 3580 if (LABEL_P (head)) 3581 head = NEXT_INSN (head); 3582 if (NOTE_P (head)) 3583 { 3584 if (head == end) 3585 { 3586 head = end = NULL_RTX; 3587 goto no_body; 3588 } 3589 head = NEXT_INSN (head); 3590 } 3591 3592 if (JUMP_P (end)) 3593 { 3594 if (head == end) 3595 { 3596 head = end = NULL_RTX; 3597 goto no_body; 3598 } 3599 end = PREV_INSN (end); 3600 } 3601 3602 /* Disable handling dead code by conditional execution if the machine needs 3603 to do anything funny with the tests, etc. */ 3604 #ifndef IFCVT_MODIFY_TESTS 3605 if (HAVE_conditional_execution) 3606 { 3607 /* In the conditional execution case, we have things easy. We know 3608 the condition is reversible. We don't have to check life info 3609 because we're going to conditionally execute the code anyway. 3610 All that's left is making sure the insns involved can actually 3611 be predicated. */ 3612 3613 rtx cond, prob_val; 3614 3615 cond = cond_exec_get_condition (jump); 3616 if (! cond) 3617 return FALSE; 3618 3619 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX); 3620 if (prob_val) 3621 prob_val = XEXP (prob_val, 0); 3622 3623 if (reversep) 3624 { 3625 enum rtx_code rev = reversed_comparison_code (cond, jump); 3626 if (rev == UNKNOWN) 3627 return FALSE; 3628 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0), 3629 XEXP (cond, 1)); 3630 if (prob_val) 3631 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val)); 3632 } 3633 3634 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond, 3635 prob_val, 0)) 3636 goto cancel; 3637 3638 earliest = jump; 3639 } 3640 else 3641 #endif 3642 { 3643 /* In the non-conditional execution case, we have to verify that there 3644 are no trapping operations, no calls, no references to memory, and 3645 that any registers modified are dead at the branch site. */ 3646 3647 rtx insn, cond, prev; 3648 regset merge_set, tmp, test_live, test_set; 3649 struct propagate_block_info *pbi; 3650 unsigned i, fail = 0; 3651 bitmap_iterator bi; 3652 3653 /* Check for no calls or trapping operations. */ 3654 for (insn = head; ; insn = NEXT_INSN (insn)) 3655 { 3656 if (CALL_P (insn)) 3657 return FALSE; 3658 if (INSN_P (insn)) 3659 { 3660 if (may_trap_p (PATTERN (insn))) 3661 return FALSE; 3662 3663 /* ??? Even non-trapping memories such as stack frame 3664 references must be avoided. For stores, we collect 3665 no lifetime info; for reads, we'd have to assert 3666 true_dependence false against every store in the 3667 TEST range. */ 3668 if (for_each_rtx (&PATTERN (insn), find_memory, NULL)) 3669 return FALSE; 3670 } 3671 if (insn == end) 3672 break; 3673 } 3674 3675 if (! any_condjump_p (jump)) 3676 return FALSE; 3677 3678 /* Find the extent of the conditional. */ 3679 cond = noce_get_condition (jump, &earliest); 3680 if (! cond) 3681 return FALSE; 3682 3683 /* Collect: 3684 MERGE_SET = set of registers set in MERGE_BB 3685 TEST_LIVE = set of registers live at EARLIEST 3686 TEST_SET = set of registers set between EARLIEST and the 3687 end of the block. */ 3688 3689 tmp = ALLOC_REG_SET (®_obstack); 3690 merge_set = ALLOC_REG_SET (®_obstack); 3691 test_live = ALLOC_REG_SET (®_obstack); 3692 test_set = ALLOC_REG_SET (®_obstack); 3693 3694 /* ??? bb->local_set is only valid during calculate_global_regs_live, 3695 so we must recompute usage for MERGE_BB. Not so bad, I suppose, 3696 since we've already asserted that MERGE_BB is small. */ 3697 /* If we allocated new pseudos (e.g. in the conditional move 3698 expander called from noce_emit_cmove), we must resize the 3699 array first. */ 3700 if (max_regno < max_reg_num ()) 3701 { 3702 max_regno = max_reg_num (); 3703 allocate_reg_info (max_regno, FALSE, FALSE); 3704 } 3705 propagate_block (merge_bb, tmp, merge_set, merge_set, 0); 3706 3707 /* For small register class machines, don't lengthen lifetimes of 3708 hard registers before reload. */ 3709 if (SMALL_REGISTER_CLASSES && ! reload_completed) 3710 { 3711 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi) 3712 { 3713 if (i < FIRST_PSEUDO_REGISTER 3714 && ! fixed_regs[i] 3715 && ! global_regs[i]) 3716 fail = 1; 3717 } 3718 } 3719 3720 /* For TEST, we're interested in a range of insns, not a whole block. 3721 Moreover, we're interested in the insns live from OTHER_BB. */ 3722 3723 COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start); 3724 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set, 3725 0); 3726 3727 for (insn = jump; ; insn = prev) 3728 { 3729 prev = propagate_one_insn (pbi, insn); 3730 if (insn == earliest) 3731 break; 3732 } 3733 3734 free_propagate_block_info (pbi); 3735 3736 /* We can perform the transformation if 3737 MERGE_SET & (TEST_SET | TEST_LIVE) 3738 and 3739 TEST_SET & merge_bb->il.rtl->global_live_at_start 3740 are empty. */ 3741 3742 if (bitmap_intersect_p (test_set, merge_set) 3743 || bitmap_intersect_p (test_live, merge_set) 3744 || bitmap_intersect_p (test_set, 3745 merge_bb->il.rtl->global_live_at_start)) 3746 fail = 1; 3747 3748 FREE_REG_SET (tmp); 3749 FREE_REG_SET (merge_set); 3750 FREE_REG_SET (test_live); 3751 FREE_REG_SET (test_set); 3752 3753 if (fail) 3754 return FALSE; 3755 } 3756 3757 no_body: 3758 /* We don't want to use normal invert_jump or redirect_jump because 3759 we don't want to delete_insn called. Also, we want to do our own 3760 change group management. */ 3761 3762 old_dest = JUMP_LABEL (jump); 3763 if (other_bb != new_dest) 3764 { 3765 new_label = block_label (new_dest); 3766 if (reversep 3767 ? ! invert_jump_1 (jump, new_label) 3768 : ! redirect_jump_1 (jump, new_label)) 3769 goto cancel; 3770 } 3771 3772 if (! apply_change_group ()) 3773 return FALSE; 3774 3775 if (other_bb != new_dest) 3776 { 3777 redirect_jump_2 (jump, old_dest, new_label, -1, reversep); 3778 3779 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest); 3780 if (reversep) 3781 { 3782 gcov_type count, probability; 3783 count = BRANCH_EDGE (test_bb)->count; 3784 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count; 3785 FALLTHRU_EDGE (test_bb)->count = count; 3786 probability = BRANCH_EDGE (test_bb)->probability; 3787 BRANCH_EDGE (test_bb)->probability 3788 = FALLTHRU_EDGE (test_bb)->probability; 3789 FALLTHRU_EDGE (test_bb)->probability = probability; 3790 update_br_prob_note (test_bb); 3791 } 3792 } 3793 3794 /* Move the insns out of MERGE_BB to before the branch. */ 3795 if (head != NULL) 3796 { 3797 rtx insn; 3798 3799 if (end == BB_END (merge_bb)) 3800 BB_END (merge_bb) = PREV_INSN (head); 3801 3802 if (squeeze_notes (&head, &end)) 3803 return TRUE; 3804 3805 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL 3806 notes might become invalid. */ 3807 insn = head; 3808 do 3809 { 3810 rtx note, set; 3811 3812 if (! INSN_P (insn)) 3813 continue; 3814 note = find_reg_note (insn, REG_EQUAL, NULL_RTX); 3815 if (! note) 3816 continue; 3817 set = single_set (insn); 3818 if (!set || !function_invariant_p (SET_SRC (set))) 3819 remove_note (insn, note); 3820 } while (insn != end && (insn = NEXT_INSN (insn))); 3821 3822 reorder_insns (head, end, PREV_INSN (earliest)); 3823 } 3824 3825 /* Remove the jump and edge if we can. */ 3826 if (other_bb == new_dest) 3827 { 3828 delete_insn (jump); 3829 remove_edge (BRANCH_EDGE (test_bb)); 3830 /* ??? Can't merge blocks here, as then_bb is still in use. 3831 At minimum, the merge will get done just before bb-reorder. */ 3832 } 3833 3834 return TRUE; 3835 3836 cancel: 3837 cancel_changes (0); 3838 return FALSE; 3839 } 3840 3841 /* Main entry point for all if-conversion. */ 3842 3843 static void 3844 if_convert (int x_life_data_ok) 3845 { 3846 basic_block bb; 3847 int pass; 3848 3849 num_possible_if_blocks = 0; 3850 num_updated_if_blocks = 0; 3851 num_true_changes = 0; 3852 life_data_ok = (x_life_data_ok != 0); 3853 3854 if ((! targetm.cannot_modify_jumps_p ()) 3855 && (!flag_reorder_blocks_and_partition || !no_new_pseudos 3856 || !targetm.have_named_sections)) 3857 { 3858 struct loops loops; 3859 3860 flow_loops_find (&loops); 3861 mark_loop_exit_edges (&loops); 3862 flow_loops_free (&loops); 3863 free_dominance_info (CDI_DOMINATORS); 3864 } 3865 3866 /* Compute postdominators if we think we'll use them. */ 3867 if (HAVE_conditional_execution || life_data_ok) 3868 calculate_dominance_info (CDI_POST_DOMINATORS); 3869 3870 if (life_data_ok) 3871 clear_bb_flags (); 3872 3873 /* Go through each of the basic blocks looking for things to convert. If we 3874 have conditional execution, we make multiple passes to allow us to handle 3875 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */ 3876 pass = 0; 3877 do 3878 { 3879 cond_exec_changed_p = FALSE; 3880 pass++; 3881 3882 #ifdef IFCVT_MULTIPLE_DUMPS 3883 if (dump_file && pass > 1) 3884 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass); 3885 #endif 3886 3887 FOR_EACH_BB (bb) 3888 { 3889 basic_block new_bb; 3890 while ((new_bb = find_if_header (bb, pass))) 3891 bb = new_bb; 3892 } 3893 3894 #ifdef IFCVT_MULTIPLE_DUMPS 3895 if (dump_file && cond_exec_changed_p) 3896 print_rtl_with_bb (dump_file, get_insns ()); 3897 #endif 3898 } 3899 while (cond_exec_changed_p); 3900 3901 #ifdef IFCVT_MULTIPLE_DUMPS 3902 if (dump_file) 3903 fprintf (dump_file, "\n\n========== no more changes\n"); 3904 #endif 3905 3906 free_dominance_info (CDI_POST_DOMINATORS); 3907 3908 if (dump_file) 3909 fflush (dump_file); 3910 3911 clear_aux_for_blocks (); 3912 3913 /* Rebuild life info for basic blocks that require it. */ 3914 if (num_true_changes && life_data_ok) 3915 { 3916 /* If we allocated new pseudos, we must resize the array for sched1. */ 3917 if (max_regno < max_reg_num ()) 3918 { 3919 max_regno = max_reg_num (); 3920 allocate_reg_info (max_regno, FALSE, FALSE); 3921 } 3922 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES, 3923 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE 3924 | PROP_KILL_DEAD_CODE); 3925 } 3926 3927 /* Write the final stats. */ 3928 if (dump_file && num_possible_if_blocks > 0) 3929 { 3930 fprintf (dump_file, 3931 "\n%d possible IF blocks searched.\n", 3932 num_possible_if_blocks); 3933 fprintf (dump_file, 3934 "%d IF blocks converted.\n", 3935 num_updated_if_blocks); 3936 fprintf (dump_file, 3937 "%d true changes made.\n\n\n", 3938 num_true_changes); 3939 } 3940 3941 #ifdef ENABLE_CHECKING 3942 verify_flow_info (); 3943 #endif 3944 } 3945 3946 static bool 3947 gate_handle_if_conversion (void) 3948 { 3949 return (optimize > 0); 3950 } 3951 3952 /* If-conversion and CFG cleanup. */ 3953 static unsigned int 3954 rest_of_handle_if_conversion (void) 3955 { 3956 if (flag_if_conversion) 3957 { 3958 if (dump_file) 3959 dump_flow_info (dump_file, dump_flags); 3960 cleanup_cfg (CLEANUP_EXPENSIVE); 3961 reg_scan (get_insns (), max_reg_num ()); 3962 if_convert (0); 3963 } 3964 3965 timevar_push (TV_JUMP); 3966 cleanup_cfg (CLEANUP_EXPENSIVE); 3967 reg_scan (get_insns (), max_reg_num ()); 3968 timevar_pop (TV_JUMP); 3969 return 0; 3970 } 3971 3972 struct tree_opt_pass pass_rtl_ifcvt = 3973 { 3974 "ce1", /* name */ 3975 gate_handle_if_conversion, /* gate */ 3976 rest_of_handle_if_conversion, /* execute */ 3977 NULL, /* sub */ 3978 NULL, /* next */ 3979 0, /* static_pass_number */ 3980 TV_IFCVT, /* tv_id */ 3981 0, /* properties_required */ 3982 0, /* properties_provided */ 3983 0, /* properties_destroyed */ 3984 0, /* todo_flags_start */ 3985 TODO_dump_func, /* todo_flags_finish */ 3986 'C' /* letter */ 3987 }; 3988 3989 static bool 3990 gate_handle_if_after_combine (void) 3991 { 3992 return (optimize > 0 && flag_if_conversion); 3993 } 3994 3995 3996 /* Rerun if-conversion, as combine may have simplified things enough 3997 to now meet sequence length restrictions. */ 3998 static unsigned int 3999 rest_of_handle_if_after_combine (void) 4000 { 4001 no_new_pseudos = 0; 4002 if_convert (1); 4003 no_new_pseudos = 1; 4004 return 0; 4005 } 4006 4007 struct tree_opt_pass pass_if_after_combine = 4008 { 4009 "ce2", /* name */ 4010 gate_handle_if_after_combine, /* gate */ 4011 rest_of_handle_if_after_combine, /* execute */ 4012 NULL, /* sub */ 4013 NULL, /* next */ 4014 0, /* static_pass_number */ 4015 TV_IFCVT, /* tv_id */ 4016 0, /* properties_required */ 4017 0, /* properties_provided */ 4018 0, /* properties_destroyed */ 4019 0, /* todo_flags_start */ 4020 TODO_dump_func | 4021 TODO_ggc_collect, /* todo_flags_finish */ 4022 'C' /* letter */ 4023 }; 4024 4025 4026 static bool 4027 gate_handle_if_after_reload (void) 4028 { 4029 return (optimize > 0); 4030 } 4031 4032 static unsigned int 4033 rest_of_handle_if_after_reload (void) 4034 { 4035 /* Last attempt to optimize CFG, as scheduling, peepholing and insn 4036 splitting possibly introduced more crossjumping opportunities. */ 4037 cleanup_cfg (CLEANUP_EXPENSIVE 4038 | CLEANUP_UPDATE_LIFE 4039 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0)); 4040 if (flag_if_conversion2) 4041 if_convert (1); 4042 return 0; 4043 } 4044 4045 4046 struct tree_opt_pass pass_if_after_reload = 4047 { 4048 "ce3", /* name */ 4049 gate_handle_if_after_reload, /* gate */ 4050 rest_of_handle_if_after_reload, /* execute */ 4051 NULL, /* sub */ 4052 NULL, /* next */ 4053 0, /* static_pass_number */ 4054 TV_IFCVT2, /* tv_id */ 4055 0, /* properties_required */ 4056 0, /* properties_provided */ 4057 0, /* properties_destroyed */ 4058 0, /* todo_flags_start */ 4059 TODO_dump_func | 4060 TODO_ggc_collect, /* todo_flags_finish */ 4061 'E' /* letter */ 4062 }; 4063 4064 4065