xref: /openbsd/gnu/gcc/gcc/ifcvt.c (revision 274d7c50)
1 /* If-conversion support.
2    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006
3    Free Software Foundation, Inc.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2, or (at your option)
10    any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING.  If not, write to the Free
19    Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20    02110-1301, USA.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "real.h"
38 #include "output.h"
39 #include "optabs.h"
40 #include "toplev.h"
41 #include "tm_p.h"
42 #include "cfgloop.h"
43 #include "target.h"
44 #include "timevar.h"
45 #include "tree-pass.h"
46 
47 
48 #ifndef HAVE_conditional_execution
49 #define HAVE_conditional_execution 0
50 #endif
51 #ifndef HAVE_conditional_move
52 #define HAVE_conditional_move 0
53 #endif
54 #ifndef HAVE_incscc
55 #define HAVE_incscc 0
56 #endif
57 #ifndef HAVE_decscc
58 #define HAVE_decscc 0
59 #endif
60 #ifndef HAVE_trap
61 #define HAVE_trap 0
62 #endif
63 #ifndef HAVE_conditional_trap
64 #define HAVE_conditional_trap 0
65 #endif
66 
67 #ifndef MAX_CONDITIONAL_EXECUTE
68 #define MAX_CONDITIONAL_EXECUTE   (BRANCH_COST + 1)
69 #endif
70 
71 #define NULL_BLOCK	((basic_block) NULL)
72 
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at  */
74 static int num_possible_if_blocks;
75 
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77    execution.  */
78 static int num_updated_if_blocks;
79 
80 /* # of changes made which require life information to be updated.  */
81 static int num_true_changes;
82 
83 /* Whether conditional execution changes were made.  */
84 static int cond_exec_changed_p;
85 
86 /* True if life data ok at present.  */
87 static bool life_data_ok;
88 
89 /* Forward references.  */
90 static int count_bb_insns (basic_block);
91 static bool cheap_bb_rtx_cost_p (basic_block, int);
92 static rtx first_active_insn (basic_block);
93 static rtx last_active_insn (basic_block, int);
94 static basic_block block_fallthru (basic_block);
95 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
96 static rtx cond_exec_get_condition (rtx);
97 static int cond_exec_process_if_block (ce_if_block_t *, int);
98 static rtx noce_get_condition (rtx, rtx *);
99 static int noce_operand_ok (rtx);
100 static int noce_process_if_block (ce_if_block_t *);
101 static int process_if_block (ce_if_block_t *);
102 static void merge_if_block (ce_if_block_t *);
103 static int find_cond_trap (basic_block, edge, edge);
104 static basic_block find_if_header (basic_block, int);
105 static int block_jumps_and_fallthru_p (basic_block, basic_block);
106 static int find_if_block (ce_if_block_t *);
107 static int find_if_case_1 (basic_block, edge, edge);
108 static int find_if_case_2 (basic_block, edge, edge);
109 static int find_memory (rtx *, void *);
110 static int dead_or_predicable (basic_block, basic_block, basic_block,
111 			       basic_block, int);
112 static void noce_emit_move_insn (rtx, rtx);
113 static rtx block_has_only_trap (basic_block);
114 
115 /* Count the number of non-jump active insns in BB.  */
116 
117 static int
118 count_bb_insns (basic_block bb)
119 {
120   int count = 0;
121   rtx insn = BB_HEAD (bb);
122 
123   while (1)
124     {
125       if (CALL_P (insn) || NONJUMP_INSN_P (insn))
126 	count++;
127 
128       if (insn == BB_END (bb))
129 	break;
130       insn = NEXT_INSN (insn);
131     }
132 
133   return count;
134 }
135 
136 /* Determine whether the total insn_rtx_cost on non-jump insns in
137    basic block BB is less than MAX_COST.  This function returns
138    false if the cost of any instruction could not be estimated.  */
139 
140 static bool
141 cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
142 {
143   int count = 0;
144   rtx insn = BB_HEAD (bb);
145 
146   while (1)
147     {
148       if (NONJUMP_INSN_P (insn))
149 	{
150 	  int cost = insn_rtx_cost (PATTERN (insn));
151 	  if (cost == 0)
152 	    return false;
153 
154 	  /* If this instruction is the load or set of a "stack" register,
155 	     such as a floating point register on x87, then the cost of
156 	     speculatively executing this insn may need to include
157 	     the additional cost of popping its result off of the
158 	     register stack.  Unfortunately, correctly recognizing and
159 	     accounting for this additional overhead is tricky, so for
160 	     now we simply prohibit such speculative execution.  */
161 #ifdef STACK_REGS
162 	  {
163 	    rtx set = single_set (insn);
164 	    if (set && STACK_REG_P (SET_DEST (set)))
165 	      return false;
166 	  }
167 #endif
168 
169 	  count += cost;
170 	  if (count >= max_cost)
171 	    return false;
172 	}
173       else if (CALL_P (insn))
174 	return false;
175 
176       if (insn == BB_END (bb))
177 	break;
178       insn = NEXT_INSN (insn);
179     }
180 
181   return true;
182 }
183 
184 /* Return the first non-jump active insn in the basic block.  */
185 
186 static rtx
187 first_active_insn (basic_block bb)
188 {
189   rtx insn = BB_HEAD (bb);
190 
191   if (LABEL_P (insn))
192     {
193       if (insn == BB_END (bb))
194 	return NULL_RTX;
195       insn = NEXT_INSN (insn);
196     }
197 
198   while (NOTE_P (insn))
199     {
200       if (insn == BB_END (bb))
201 	return NULL_RTX;
202       insn = NEXT_INSN (insn);
203     }
204 
205   if (JUMP_P (insn))
206     return NULL_RTX;
207 
208   return insn;
209 }
210 
211 /* Return the last non-jump active (non-jump) insn in the basic block.  */
212 
213 static rtx
214 last_active_insn (basic_block bb, int skip_use_p)
215 {
216   rtx insn = BB_END (bb);
217   rtx head = BB_HEAD (bb);
218 
219   while (NOTE_P (insn)
220 	 || JUMP_P (insn)
221 	 || (skip_use_p
222 	     && NONJUMP_INSN_P (insn)
223 	     && GET_CODE (PATTERN (insn)) == USE))
224     {
225       if (insn == head)
226 	return NULL_RTX;
227       insn = PREV_INSN (insn);
228     }
229 
230   if (LABEL_P (insn))
231     return NULL_RTX;
232 
233   return insn;
234 }
235 
236 /* Return the basic block reached by falling though the basic block BB.  */
237 
238 static basic_block
239 block_fallthru (basic_block bb)
240 {
241   edge e;
242   edge_iterator ei;
243 
244   FOR_EACH_EDGE (e, ei, bb->succs)
245     if (e->flags & EDGE_FALLTHRU)
246       break;
247 
248   return (e) ? e->dest : NULL_BLOCK;
249 }
250 
251 /* Go through a bunch of insns, converting them to conditional
252    execution format if possible.  Return TRUE if all of the non-note
253    insns were processed.  */
254 
255 static int
256 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
257 			 /* if block information */rtx start,
258 			 /* first insn to look at */rtx end,
259 			 /* last insn to look at */rtx test,
260 			 /* conditional execution test */rtx prob_val,
261 			 /* probability of branch taken. */int mod_ok)
262 {
263   int must_be_last = FALSE;
264   rtx insn;
265   rtx xtest;
266   rtx pattern;
267 
268   if (!start || !end)
269     return FALSE;
270 
271   for (insn = start; ; insn = NEXT_INSN (insn))
272     {
273       if (NOTE_P (insn))
274 	goto insn_done;
275 
276       gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
277 
278       /* Remove USE insns that get in the way.  */
279       if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
280 	{
281 	  /* ??? Ug.  Actually unlinking the thing is problematic,
282 	     given what we'd have to coordinate with our callers.  */
283 	  SET_INSN_DELETED (insn);
284 	  goto insn_done;
285 	}
286 
287       /* Last insn wasn't last?  */
288       if (must_be_last)
289 	return FALSE;
290 
291       if (modified_in_p (test, insn))
292 	{
293 	  if (!mod_ok)
294 	    return FALSE;
295 	  must_be_last = TRUE;
296 	}
297 
298       /* Now build the conditional form of the instruction.  */
299       pattern = PATTERN (insn);
300       xtest = copy_rtx (test);
301 
302       /* If this is already a COND_EXEC, rewrite the test to be an AND of the
303          two conditions.  */
304       if (GET_CODE (pattern) == COND_EXEC)
305 	{
306 	  if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
307 	    return FALSE;
308 
309 	  xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
310 			       COND_EXEC_TEST (pattern));
311 	  pattern = COND_EXEC_CODE (pattern);
312 	}
313 
314       pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
315 
316       /* If the machine needs to modify the insn being conditionally executed,
317          say for example to force a constant integer operand into a temp
318          register, do so here.  */
319 #ifdef IFCVT_MODIFY_INSN
320       IFCVT_MODIFY_INSN (ce_info, pattern, insn);
321       if (! pattern)
322 	return FALSE;
323 #endif
324 
325       validate_change (insn, &PATTERN (insn), pattern, 1);
326 
327       if (CALL_P (insn) && prob_val)
328 	validate_change (insn, &REG_NOTES (insn),
329 			 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
330 					  REG_NOTES (insn)), 1);
331 
332     insn_done:
333       if (insn == end)
334 	break;
335     }
336 
337   return TRUE;
338 }
339 
340 /* Return the condition for a jump.  Do not do any special processing.  */
341 
342 static rtx
343 cond_exec_get_condition (rtx jump)
344 {
345   rtx test_if, cond;
346 
347   if (any_condjump_p (jump))
348     test_if = SET_SRC (pc_set (jump));
349   else
350     return NULL_RTX;
351   cond = XEXP (test_if, 0);
352 
353   /* If this branches to JUMP_LABEL when the condition is false,
354      reverse the condition.  */
355   if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
356       && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
357     {
358       enum rtx_code rev = reversed_comparison_code (cond, jump);
359       if (rev == UNKNOWN)
360 	return NULL_RTX;
361 
362       cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
363 			     XEXP (cond, 1));
364     }
365 
366   return cond;
367 }
368 
369 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
370    to conditional execution.  Return TRUE if we were successful at
371    converting the block.  */
372 
373 static int
374 cond_exec_process_if_block (ce_if_block_t * ce_info,
375 			    /* if block information */int do_multiple_p)
376 {
377   basic_block test_bb = ce_info->test_bb;	/* last test block */
378   basic_block then_bb = ce_info->then_bb;	/* THEN */
379   basic_block else_bb = ce_info->else_bb;	/* ELSE or NULL */
380   rtx test_expr;		/* expression in IF_THEN_ELSE that is tested */
381   rtx then_start;		/* first insn in THEN block */
382   rtx then_end;			/* last insn + 1 in THEN block */
383   rtx else_start = NULL_RTX;	/* first insn in ELSE block or NULL */
384   rtx else_end = NULL_RTX;	/* last insn + 1 in ELSE block */
385   int max;			/* max # of insns to convert.  */
386   int then_mod_ok;		/* whether conditional mods are ok in THEN */
387   rtx true_expr;		/* test for else block insns */
388   rtx false_expr;		/* test for then block insns */
389   rtx true_prob_val;		/* probability of else block */
390   rtx false_prob_val;		/* probability of then block */
391   int n_insns;
392   enum rtx_code false_code;
393 
394   /* If test is comprised of && or || elements, and we've failed at handling
395      all of them together, just use the last test if it is the special case of
396      && elements without an ELSE block.  */
397   if (!do_multiple_p && ce_info->num_multiple_test_blocks)
398     {
399       if (else_bb || ! ce_info->and_and_p)
400 	return FALSE;
401 
402       ce_info->test_bb = test_bb = ce_info->last_test_bb;
403       ce_info->num_multiple_test_blocks = 0;
404       ce_info->num_and_and_blocks = 0;
405       ce_info->num_or_or_blocks = 0;
406     }
407 
408   /* Find the conditional jump to the ELSE or JOIN part, and isolate
409      the test.  */
410   test_expr = cond_exec_get_condition (BB_END (test_bb));
411   if (! test_expr)
412     return FALSE;
413 
414   /* If the conditional jump is more than just a conditional jump,
415      then we can not do conditional execution conversion on this block.  */
416   if (! onlyjump_p (BB_END (test_bb)))
417     return FALSE;
418 
419   /* Collect the bounds of where we're to search, skipping any labels, jumps
420      and notes at the beginning and end of the block.  Then count the total
421      number of insns and see if it is small enough to convert.  */
422   then_start = first_active_insn (then_bb);
423   then_end = last_active_insn (then_bb, TRUE);
424   n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
425   max = MAX_CONDITIONAL_EXECUTE;
426 
427   if (else_bb)
428     {
429       max *= 2;
430       else_start = first_active_insn (else_bb);
431       else_end = last_active_insn (else_bb, TRUE);
432       n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
433     }
434 
435   if (n_insns > max)
436     return FALSE;
437 
438   /* Map test_expr/test_jump into the appropriate MD tests to use on
439      the conditionally executed code.  */
440 
441   true_expr = test_expr;
442 
443   false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
444   if (false_code != UNKNOWN)
445     false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
446 				 XEXP (true_expr, 0), XEXP (true_expr, 1));
447   else
448     false_expr = NULL_RTX;
449 
450 #ifdef IFCVT_MODIFY_TESTS
451   /* If the machine description needs to modify the tests, such as setting a
452      conditional execution register from a comparison, it can do so here.  */
453   IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
454 
455   /* See if the conversion failed.  */
456   if (!true_expr || !false_expr)
457     goto fail;
458 #endif
459 
460   true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
461   if (true_prob_val)
462     {
463       true_prob_val = XEXP (true_prob_val, 0);
464       false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
465     }
466   else
467     false_prob_val = NULL_RTX;
468 
469   /* If we have && or || tests, do them here.  These tests are in the adjacent
470      blocks after the first block containing the test.  */
471   if (ce_info->num_multiple_test_blocks > 0)
472     {
473       basic_block bb = test_bb;
474       basic_block last_test_bb = ce_info->last_test_bb;
475 
476       if (! false_expr)
477 	goto fail;
478 
479       do
480 	{
481 	  rtx start, end;
482 	  rtx t, f;
483 	  enum rtx_code f_code;
484 
485 	  bb = block_fallthru (bb);
486 	  start = first_active_insn (bb);
487 	  end = last_active_insn (bb, TRUE);
488 	  if (start
489 	      && ! cond_exec_process_insns (ce_info, start, end, false_expr,
490 					    false_prob_val, FALSE))
491 	    goto fail;
492 
493 	  /* If the conditional jump is more than just a conditional jump, then
494 	     we can not do conditional execution conversion on this block.  */
495 	  if (! onlyjump_p (BB_END (bb)))
496 	    goto fail;
497 
498 	  /* Find the conditional jump and isolate the test.  */
499 	  t = cond_exec_get_condition (BB_END (bb));
500 	  if (! t)
501 	    goto fail;
502 
503 	  f_code = reversed_comparison_code (t, BB_END (bb));
504 	  if (f_code == UNKNOWN)
505 	    goto fail;
506 
507 	  f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
508 	  if (ce_info->and_and_p)
509 	    {
510 	      t = gen_rtx_AND (GET_MODE (t), true_expr, t);
511 	      f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
512 	    }
513 	  else
514 	    {
515 	      t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
516 	      f = gen_rtx_AND (GET_MODE (t), false_expr, f);
517 	    }
518 
519 	  /* If the machine description needs to modify the tests, such as
520 	     setting a conditional execution register from a comparison, it can
521 	     do so here.  */
522 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
523 	  IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
524 
525 	  /* See if the conversion failed.  */
526 	  if (!t || !f)
527 	    goto fail;
528 #endif
529 
530 	  true_expr = t;
531 	  false_expr = f;
532 	}
533       while (bb != last_test_bb);
534     }
535 
536   /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
537      on then THEN block.  */
538   then_mod_ok = (else_bb == NULL_BLOCK);
539 
540   /* Go through the THEN and ELSE blocks converting the insns if possible
541      to conditional execution.  */
542 
543   if (then_end
544       && (! false_expr
545 	  || ! cond_exec_process_insns (ce_info, then_start, then_end,
546 					false_expr, false_prob_val,
547 					then_mod_ok)))
548     goto fail;
549 
550   if (else_bb && else_end
551       && ! cond_exec_process_insns (ce_info, else_start, else_end,
552 				    true_expr, true_prob_val, TRUE))
553     goto fail;
554 
555   /* If we cannot apply the changes, fail.  Do not go through the normal fail
556      processing, since apply_change_group will call cancel_changes.  */
557   if (! apply_change_group ())
558     {
559 #ifdef IFCVT_MODIFY_CANCEL
560       /* Cancel any machine dependent changes.  */
561       IFCVT_MODIFY_CANCEL (ce_info);
562 #endif
563       return FALSE;
564     }
565 
566 #ifdef IFCVT_MODIFY_FINAL
567   /* Do any machine dependent final modifications.  */
568   IFCVT_MODIFY_FINAL (ce_info);
569 #endif
570 
571   /* Conversion succeeded.  */
572   if (dump_file)
573     fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
574 	     n_insns, (n_insns == 1) ? " was" : "s were");
575 
576   /* Merge the blocks!  */
577   merge_if_block (ce_info);
578   cond_exec_changed_p = TRUE;
579   return TRUE;
580 
581  fail:
582 #ifdef IFCVT_MODIFY_CANCEL
583   /* Cancel any machine dependent changes.  */
584   IFCVT_MODIFY_CANCEL (ce_info);
585 #endif
586 
587   cancel_changes (0);
588   return FALSE;
589 }
590 
591 /* Used by noce_process_if_block to communicate with its subroutines.
592 
593    The subroutines know that A and B may be evaluated freely.  They
594    know that X is a register.  They should insert new instructions
595    before cond_earliest.  */
596 
597 struct noce_if_info
598 {
599   basic_block test_bb;
600   rtx insn_a, insn_b;
601   rtx x, a, b;
602   rtx jump, cond, cond_earliest;
603   /* True if "b" was originally evaluated unconditionally.  */
604   bool b_unconditional;
605 };
606 
607 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
608 static int noce_try_move (struct noce_if_info *);
609 static int noce_try_store_flag (struct noce_if_info *);
610 static int noce_try_addcc (struct noce_if_info *);
611 static int noce_try_store_flag_constants (struct noce_if_info *);
612 static int noce_try_store_flag_mask (struct noce_if_info *);
613 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
614 			    rtx, rtx, rtx);
615 static int noce_try_cmove (struct noce_if_info *);
616 static int noce_try_cmove_arith (struct noce_if_info *);
617 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
618 static int noce_try_minmax (struct noce_if_info *);
619 static int noce_try_abs (struct noce_if_info *);
620 static int noce_try_sign_mask (struct noce_if_info *);
621 
622 /* Helper function for noce_try_store_flag*.  */
623 
624 static rtx
625 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
626 		      int normalize)
627 {
628   rtx cond = if_info->cond;
629   int cond_complex;
630   enum rtx_code code;
631 
632   cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
633 		  || ! general_operand (XEXP (cond, 1), VOIDmode));
634 
635   /* If earliest == jump, or when the condition is complex, try to
636      build the store_flag insn directly.  */
637 
638   if (cond_complex)
639     cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
640 
641   if (reversep)
642     code = reversed_comparison_code (cond, if_info->jump);
643   else
644     code = GET_CODE (cond);
645 
646   if ((if_info->cond_earliest == if_info->jump || cond_complex)
647       && (normalize == 0 || STORE_FLAG_VALUE == normalize))
648     {
649       rtx tmp;
650 
651       tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
652 			    XEXP (cond, 1));
653       tmp = gen_rtx_SET (VOIDmode, x, tmp);
654 
655       start_sequence ();
656       tmp = emit_insn (tmp);
657 
658       if (recog_memoized (tmp) >= 0)
659 	{
660 	  tmp = get_insns ();
661 	  end_sequence ();
662 	  emit_insn (tmp);
663 
664 	  if_info->cond_earliest = if_info->jump;
665 
666 	  return x;
667 	}
668 
669       end_sequence ();
670     }
671 
672   /* Don't even try if the comparison operands or the mode of X are weird.  */
673   if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
674     return NULL_RTX;
675 
676   return emit_store_flag (x, code, XEXP (cond, 0),
677 			  XEXP (cond, 1), VOIDmode,
678 			  (code == LTU || code == LEU
679 			   || code == GEU || code == GTU), normalize);
680 }
681 
682 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
683    X is the destination/target and Y is the value to copy.  */
684 
685 static void
686 noce_emit_move_insn (rtx x, rtx y)
687 {
688   enum machine_mode outmode;
689   rtx outer, inner;
690   int bitpos;
691 
692   if (GET_CODE (x) != STRICT_LOW_PART)
693     {
694       rtx seq, insn, target;
695       optab ot;
696 
697       start_sequence ();
698       /* Check that the SET_SRC is reasonable before calling emit_move_insn,
699 	 otherwise construct a suitable SET pattern ourselves.  */
700       insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
701 	     ? emit_move_insn (x, y)
702 	     : emit_insn (gen_rtx_SET (VOIDmode, x, y));
703       seq = get_insns ();
704       end_sequence();
705 
706       if (recog_memoized (insn) <= 0)
707 	{
708 	  if (GET_CODE (x) == ZERO_EXTRACT)
709 	    {
710 	      rtx op = XEXP (x, 0);
711 	      unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
712 	      unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
713 
714 	      /* store_bit_field expects START to be relative to
715 		 BYTES_BIG_ENDIAN and adjusts this value for machines with
716 		 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN.  In order to be able to
717 		 invoke store_bit_field again it is necessary to have the START
718 		 value from the first call.  */
719 	      if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
720 		{
721 		  if (MEM_P (op))
722 		    start = BITS_PER_UNIT - start - size;
723 		  else
724 		    {
725 		      gcc_assert (REG_P (op));
726 		      start = BITS_PER_WORD - start - size;
727 		    }
728 		}
729 
730 	      gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
731 	      store_bit_field (op, size, start, GET_MODE (x), y);
732 	      return;
733 	    }
734 
735 	  switch (GET_RTX_CLASS (GET_CODE (y)))
736 	    {
737 	    case RTX_UNARY:
738 	      ot = code_to_optab[GET_CODE (y)];
739 	      if (ot)
740 		{
741 		  start_sequence ();
742 		  target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
743 		  if (target != NULL_RTX)
744 		    {
745 		      if (target != x)
746 			emit_move_insn (x, target);
747 		      seq = get_insns ();
748 		    }
749 		  end_sequence ();
750 		}
751 	      break;
752 
753 	    case RTX_BIN_ARITH:
754 	    case RTX_COMM_ARITH:
755 	      ot = code_to_optab[GET_CODE (y)];
756 	      if (ot)
757 		{
758 		  start_sequence ();
759 		  target = expand_binop (GET_MODE (y), ot,
760 					 XEXP (y, 0), XEXP (y, 1),
761 					 x, 0, OPTAB_DIRECT);
762 		  if (target != NULL_RTX)
763 		    {
764 		      if (target != x)
765 			  emit_move_insn (x, target);
766 		      seq = get_insns ();
767 		    }
768 		  end_sequence ();
769 		}
770 	      break;
771 
772 	    default:
773 	      break;
774 	    }
775 	}
776 
777       emit_insn (seq);
778       return;
779     }
780 
781   outer = XEXP (x, 0);
782   inner = XEXP (outer, 0);
783   outmode = GET_MODE (outer);
784   bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
785   store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
786 }
787 
788 /* Return sequence of instructions generated by if conversion.  This
789    function calls end_sequence() to end the current stream, ensures
790    that are instructions are unshared, recognizable non-jump insns.
791    On failure, this function returns a NULL_RTX.  */
792 
793 static rtx
794 end_ifcvt_sequence (struct noce_if_info *if_info)
795 {
796   rtx insn;
797   rtx seq = get_insns ();
798 
799   set_used_flags (if_info->x);
800   set_used_flags (if_info->cond);
801   unshare_all_rtl_in_chain (seq);
802   end_sequence ();
803 
804   /* Make sure that all of the instructions emitted are recognizable,
805      and that we haven't introduced a new jump instruction.
806      As an exercise for the reader, build a general mechanism that
807      allows proper placement of required clobbers.  */
808   for (insn = seq; insn; insn = NEXT_INSN (insn))
809     if (JUMP_P (insn)
810 	|| recog_memoized (insn) == -1)
811       return NULL_RTX;
812 
813   return seq;
814 }
815 
816 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
817    "if (a == b) x = a; else x = b" into "x = b".  */
818 
819 static int
820 noce_try_move (struct noce_if_info *if_info)
821 {
822   rtx cond = if_info->cond;
823   enum rtx_code code = GET_CODE (cond);
824   rtx y, seq;
825 
826   if (code != NE && code != EQ)
827     return FALSE;
828 
829   /* This optimization isn't valid if either A or B could be a NaN
830      or a signed zero.  */
831   if (HONOR_NANS (GET_MODE (if_info->x))
832       || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
833     return FALSE;
834 
835   /* Check whether the operands of the comparison are A and in
836      either order.  */
837   if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
838        && rtx_equal_p (if_info->b, XEXP (cond, 1)))
839       || (rtx_equal_p (if_info->a, XEXP (cond, 1))
840 	  && rtx_equal_p (if_info->b, XEXP (cond, 0))))
841     {
842       y = (code == EQ) ? if_info->a : if_info->b;
843 
844       /* Avoid generating the move if the source is the destination.  */
845       if (! rtx_equal_p (if_info->x, y))
846 	{
847 	  start_sequence ();
848 	  noce_emit_move_insn (if_info->x, y);
849 	  seq = end_ifcvt_sequence (if_info);
850 	  if (!seq)
851 	    return FALSE;
852 
853 	  emit_insn_before_setloc (seq, if_info->jump,
854 				   INSN_LOCATOR (if_info->insn_a));
855 	}
856       return TRUE;
857     }
858   return FALSE;
859 }
860 
861 /* Convert "if (test) x = 1; else x = 0".
862 
863    Only try 0 and STORE_FLAG_VALUE here.  Other combinations will be
864    tried in noce_try_store_flag_constants after noce_try_cmove has had
865    a go at the conversion.  */
866 
867 static int
868 noce_try_store_flag (struct noce_if_info *if_info)
869 {
870   int reversep;
871   rtx target, seq;
872 
873   if (GET_CODE (if_info->b) == CONST_INT
874       && INTVAL (if_info->b) == STORE_FLAG_VALUE
875       && if_info->a == const0_rtx)
876     reversep = 0;
877   else if (if_info->b == const0_rtx
878 	   && GET_CODE (if_info->a) == CONST_INT
879 	   && INTVAL (if_info->a) == STORE_FLAG_VALUE
880 	   && (reversed_comparison_code (if_info->cond, if_info->jump)
881 	       != UNKNOWN))
882     reversep = 1;
883   else
884     return FALSE;
885 
886   start_sequence ();
887 
888   target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
889   if (target)
890     {
891       if (target != if_info->x)
892 	noce_emit_move_insn (if_info->x, target);
893 
894       seq = end_ifcvt_sequence (if_info);
895       if (! seq)
896 	return FALSE;
897 
898       emit_insn_before_setloc (seq, if_info->jump,
899 			       INSN_LOCATOR (if_info->insn_a));
900       return TRUE;
901     }
902   else
903     {
904       end_sequence ();
905       return FALSE;
906     }
907 }
908 
909 /* Convert "if (test) x = a; else x = b", for A and B constant.  */
910 
911 static int
912 noce_try_store_flag_constants (struct noce_if_info *if_info)
913 {
914   rtx target, seq;
915   int reversep;
916   HOST_WIDE_INT itrue, ifalse, diff, tmp;
917   int normalize, can_reverse;
918   enum machine_mode mode;
919 
920   if (! no_new_pseudos
921       && GET_CODE (if_info->a) == CONST_INT
922       && GET_CODE (if_info->b) == CONST_INT)
923     {
924       mode = GET_MODE (if_info->x);
925       ifalse = INTVAL (if_info->a);
926       itrue = INTVAL (if_info->b);
927 
928       /* Make sure we can represent the difference between the two values.  */
929       if ((itrue - ifalse > 0)
930 	  != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
931 	return FALSE;
932 
933       diff = trunc_int_for_mode (itrue - ifalse, mode);
934 
935       can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
936 		     != UNKNOWN);
937 
938       reversep = 0;
939       if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
940 	normalize = 0;
941       else if (ifalse == 0 && exact_log2 (itrue) >= 0
942 	       && (STORE_FLAG_VALUE == 1
943 		   || BRANCH_COST >= 2))
944 	normalize = 1;
945       else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
946 	       && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
947 	normalize = 1, reversep = 1;
948       else if (itrue == -1
949 	       && (STORE_FLAG_VALUE == -1
950 		   || BRANCH_COST >= 2))
951 	normalize = -1;
952       else if (ifalse == -1 && can_reverse
953 	       && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
954 	normalize = -1, reversep = 1;
955       else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
956 	       || BRANCH_COST >= 3)
957 	normalize = -1;
958       else
959 	return FALSE;
960 
961       if (reversep)
962 	{
963 	  tmp = itrue; itrue = ifalse; ifalse = tmp;
964 	  diff = trunc_int_for_mode (-diff, mode);
965 	}
966 
967       start_sequence ();
968       target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
969       if (! target)
970 	{
971 	  end_sequence ();
972 	  return FALSE;
973 	}
974 
975       /* if (test) x = 3; else x = 4;
976 	 =>   x = 3 + (test == 0);  */
977       if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
978 	{
979 	  target = expand_simple_binop (mode,
980 					(diff == STORE_FLAG_VALUE
981 					 ? PLUS : MINUS),
982 					GEN_INT (ifalse), target, if_info->x, 0,
983 					OPTAB_WIDEN);
984 	}
985 
986       /* if (test) x = 8; else x = 0;
987 	 =>   x = (test != 0) << 3;  */
988       else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
989 	{
990 	  target = expand_simple_binop (mode, ASHIFT,
991 					target, GEN_INT (tmp), if_info->x, 0,
992 					OPTAB_WIDEN);
993 	}
994 
995       /* if (test) x = -1; else x = b;
996 	 =>   x = -(test != 0) | b;  */
997       else if (itrue == -1)
998 	{
999 	  target = expand_simple_binop (mode, IOR,
1000 					target, GEN_INT (ifalse), if_info->x, 0,
1001 					OPTAB_WIDEN);
1002 	}
1003 
1004       /* if (test) x = a; else x = b;
1005 	 =>   x = (-(test != 0) & (b - a)) + a;  */
1006       else
1007 	{
1008 	  target = expand_simple_binop (mode, AND,
1009 					target, GEN_INT (diff), if_info->x, 0,
1010 					OPTAB_WIDEN);
1011 	  if (target)
1012 	    target = expand_simple_binop (mode, PLUS,
1013 					  target, GEN_INT (ifalse),
1014 					  if_info->x, 0, OPTAB_WIDEN);
1015 	}
1016 
1017       if (! target)
1018 	{
1019 	  end_sequence ();
1020 	  return FALSE;
1021 	}
1022 
1023       if (target != if_info->x)
1024 	noce_emit_move_insn (if_info->x, target);
1025 
1026       seq = end_ifcvt_sequence (if_info);
1027       if (!seq)
1028 	return FALSE;
1029 
1030       emit_insn_before_setloc (seq, if_info->jump,
1031 			       INSN_LOCATOR (if_info->insn_a));
1032       return TRUE;
1033     }
1034 
1035   return FALSE;
1036 }
1037 
1038 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1039    similarly for "foo--".  */
1040 
1041 static int
1042 noce_try_addcc (struct noce_if_info *if_info)
1043 {
1044   rtx target, seq;
1045   int subtract, normalize;
1046 
1047   if (! no_new_pseudos
1048       && GET_CODE (if_info->a) == PLUS
1049       && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1050       && (reversed_comparison_code (if_info->cond, if_info->jump)
1051 	  != UNKNOWN))
1052     {
1053       rtx cond = if_info->cond;
1054       enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1055 
1056       /* First try to use addcc pattern.  */
1057       if (general_operand (XEXP (cond, 0), VOIDmode)
1058 	  && general_operand (XEXP (cond, 1), VOIDmode))
1059 	{
1060 	  start_sequence ();
1061 	  target = emit_conditional_add (if_info->x, code,
1062 					 XEXP (cond, 0),
1063 					 XEXP (cond, 1),
1064 					 VOIDmode,
1065 					 if_info->b,
1066 					 XEXP (if_info->a, 1),
1067 					 GET_MODE (if_info->x),
1068 					 (code == LTU || code == GEU
1069 					  || code == LEU || code == GTU));
1070 	  if (target)
1071 	    {
1072 	      if (target != if_info->x)
1073 		noce_emit_move_insn (if_info->x, target);
1074 
1075 	      seq = end_ifcvt_sequence (if_info);
1076 	      if (!seq)
1077 		return FALSE;
1078 
1079 	      emit_insn_before_setloc (seq, if_info->jump,
1080 				       INSN_LOCATOR (if_info->insn_a));
1081 	      return TRUE;
1082 	    }
1083 	  end_sequence ();
1084 	}
1085 
1086       /* If that fails, construct conditional increment or decrement using
1087 	 setcc.  */
1088       if (BRANCH_COST >= 2
1089 	  && (XEXP (if_info->a, 1) == const1_rtx
1090 	      || XEXP (if_info->a, 1) == constm1_rtx))
1091         {
1092 	  start_sequence ();
1093 	  if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1094 	    subtract = 0, normalize = 0;
1095 	  else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1096 	    subtract = 1, normalize = 0;
1097 	  else
1098 	    subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1099 
1100 
1101 	  target = noce_emit_store_flag (if_info,
1102 					 gen_reg_rtx (GET_MODE (if_info->x)),
1103 					 1, normalize);
1104 
1105 	  if (target)
1106 	    target = expand_simple_binop (GET_MODE (if_info->x),
1107 					  subtract ? MINUS : PLUS,
1108 					  if_info->b, target, if_info->x,
1109 					  0, OPTAB_WIDEN);
1110 	  if (target)
1111 	    {
1112 	      if (target != if_info->x)
1113 		noce_emit_move_insn (if_info->x, target);
1114 
1115 	      seq = end_ifcvt_sequence (if_info);
1116 	      if (!seq)
1117 		return FALSE;
1118 
1119 	      emit_insn_before_setloc (seq, if_info->jump,
1120 				       INSN_LOCATOR (if_info->insn_a));
1121 	      return TRUE;
1122 	    }
1123 	  end_sequence ();
1124 	}
1125     }
1126 
1127   return FALSE;
1128 }
1129 
1130 /* Convert "if (test) x = 0;" to "x &= -(test == 0);"  */
1131 
1132 static int
1133 noce_try_store_flag_mask (struct noce_if_info *if_info)
1134 {
1135   rtx target, seq;
1136   int reversep;
1137 
1138   reversep = 0;
1139   if (! no_new_pseudos
1140       && (BRANCH_COST >= 2
1141 	  || STORE_FLAG_VALUE == -1)
1142       && ((if_info->a == const0_rtx
1143 	   && rtx_equal_p (if_info->b, if_info->x))
1144 	  || ((reversep = (reversed_comparison_code (if_info->cond,
1145 						     if_info->jump)
1146 			   != UNKNOWN))
1147 	      && if_info->b == const0_rtx
1148 	      && rtx_equal_p (if_info->a, if_info->x))))
1149     {
1150       start_sequence ();
1151       target = noce_emit_store_flag (if_info,
1152 				     gen_reg_rtx (GET_MODE (if_info->x)),
1153 				     reversep, -1);
1154       if (target)
1155         target = expand_simple_binop (GET_MODE (if_info->x), AND,
1156 				      if_info->x,
1157 				      target, if_info->x, 0,
1158 				      OPTAB_WIDEN);
1159 
1160       if (target)
1161 	{
1162 	  if (target != if_info->x)
1163 	    noce_emit_move_insn (if_info->x, target);
1164 
1165 	  seq = end_ifcvt_sequence (if_info);
1166 	  if (!seq)
1167 	    return FALSE;
1168 
1169 	  emit_insn_before_setloc (seq, if_info->jump,
1170 				   INSN_LOCATOR (if_info->insn_a));
1171 	  return TRUE;
1172 	}
1173 
1174       end_sequence ();
1175     }
1176 
1177   return FALSE;
1178 }
1179 
1180 /* Helper function for noce_try_cmove and noce_try_cmove_arith.  */
1181 
1182 static rtx
1183 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1184 		 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1185 {
1186   /* If earliest == jump, try to build the cmove insn directly.
1187      This is helpful when combine has created some complex condition
1188      (like for alpha's cmovlbs) that we can't hope to regenerate
1189      through the normal interface.  */
1190 
1191   if (if_info->cond_earliest == if_info->jump)
1192     {
1193       rtx tmp;
1194 
1195       tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1196       tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1197       tmp = gen_rtx_SET (VOIDmode, x, tmp);
1198 
1199       start_sequence ();
1200       tmp = emit_insn (tmp);
1201 
1202       if (recog_memoized (tmp) >= 0)
1203 	{
1204 	  tmp = get_insns ();
1205 	  end_sequence ();
1206 	  emit_insn (tmp);
1207 
1208 	  return x;
1209 	}
1210 
1211       end_sequence ();
1212     }
1213 
1214   /* Don't even try if the comparison operands are weird.  */
1215   if (! general_operand (cmp_a, GET_MODE (cmp_a))
1216       || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1217     return NULL_RTX;
1218 
1219 #if HAVE_conditional_move
1220   return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1221 				vtrue, vfalse, GET_MODE (x),
1222 			        (code == LTU || code == GEU
1223 				 || code == LEU || code == GTU));
1224 #else
1225   /* We'll never get here, as noce_process_if_block doesn't call the
1226      functions involved.  Ifdef code, however, should be discouraged
1227      because it leads to typos in the code not selected.  However,
1228      emit_conditional_move won't exist either.  */
1229   return NULL_RTX;
1230 #endif
1231 }
1232 
1233 /* Try only simple constants and registers here.  More complex cases
1234    are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1235    has had a go at it.  */
1236 
1237 static int
1238 noce_try_cmove (struct noce_if_info *if_info)
1239 {
1240   enum rtx_code code;
1241   rtx target, seq;
1242 
1243   if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1244       && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1245     {
1246       start_sequence ();
1247 
1248       code = GET_CODE (if_info->cond);
1249       target = noce_emit_cmove (if_info, if_info->x, code,
1250 				XEXP (if_info->cond, 0),
1251 				XEXP (if_info->cond, 1),
1252 				if_info->a, if_info->b);
1253 
1254       if (target)
1255 	{
1256 	  if (target != if_info->x)
1257 	    noce_emit_move_insn (if_info->x, target);
1258 
1259 	  seq = end_ifcvt_sequence (if_info);
1260 	  if (!seq)
1261 	    return FALSE;
1262 
1263 	  emit_insn_before_setloc (seq, if_info->jump,
1264 				   INSN_LOCATOR (if_info->insn_a));
1265 	  return TRUE;
1266 	}
1267       else
1268 	{
1269 	  end_sequence ();
1270 	  return FALSE;
1271 	}
1272     }
1273 
1274   return FALSE;
1275 }
1276 
1277 /* Try more complex cases involving conditional_move.  */
1278 
1279 static int
1280 noce_try_cmove_arith (struct noce_if_info *if_info)
1281 {
1282   rtx a = if_info->a;
1283   rtx b = if_info->b;
1284   rtx x = if_info->x;
1285   rtx orig_a, orig_b;
1286   rtx insn_a, insn_b;
1287   rtx tmp, target;
1288   int is_mem = 0;
1289   int insn_cost;
1290   enum rtx_code code;
1291 
1292   /* A conditional move from two memory sources is equivalent to a
1293      conditional on their addresses followed by a load.  Don't do this
1294      early because it'll screw alias analysis.  Note that we've
1295      already checked for no side effects.  */
1296   if (! no_new_pseudos && cse_not_expected
1297       && MEM_P (a) && MEM_P (b)
1298       && BRANCH_COST >= 5)
1299     {
1300       a = XEXP (a, 0);
1301       b = XEXP (b, 0);
1302       x = gen_reg_rtx (Pmode);
1303       is_mem = 1;
1304     }
1305 
1306   /* ??? We could handle this if we knew that a load from A or B could
1307      not fault.  This is also true if we've already loaded
1308      from the address along the path from ENTRY.  */
1309   else if (may_trap_p (a) || may_trap_p (b))
1310     return FALSE;
1311 
1312   /* if (test) x = a + b; else x = c - d;
1313      => y = a + b;
1314         x = c - d;
1315 	if (test)
1316 	  x = y;
1317   */
1318 
1319   code = GET_CODE (if_info->cond);
1320   insn_a = if_info->insn_a;
1321   insn_b = if_info->insn_b;
1322 
1323   /* Total insn_rtx_cost should be smaller than branch cost.  Exit
1324      if insn_rtx_cost can't be estimated.  */
1325   if (insn_a)
1326     {
1327       insn_cost = insn_rtx_cost (PATTERN (insn_a));
1328       if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1329 	return FALSE;
1330     }
1331   else
1332     {
1333       insn_cost = 0;
1334     }
1335 
1336   if (insn_b) {
1337     insn_cost += insn_rtx_cost (PATTERN (insn_b));
1338     if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1339       return FALSE;
1340   }
1341 
1342   /* Possibly rearrange operands to make things come out more natural.  */
1343   if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1344     {
1345       int reversep = 0;
1346       if (rtx_equal_p (b, x))
1347 	reversep = 1;
1348       else if (general_operand (b, GET_MODE (b)))
1349 	reversep = 1;
1350 
1351       if (reversep)
1352 	{
1353 	  code = reversed_comparison_code (if_info->cond, if_info->jump);
1354 	  tmp = a, a = b, b = tmp;
1355 	  tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1356 	}
1357     }
1358 
1359   start_sequence ();
1360 
1361   orig_a = a;
1362   orig_b = b;
1363 
1364   /* If either operand is complex, load it into a register first.
1365      The best way to do this is to copy the original insn.  In this
1366      way we preserve any clobbers etc that the insn may have had.
1367      This is of course not possible in the IS_MEM case.  */
1368   if (! general_operand (a, GET_MODE (a)))
1369     {
1370       rtx set;
1371 
1372       if (no_new_pseudos)
1373 	goto end_seq_and_fail;
1374 
1375       if (is_mem)
1376 	{
1377 	  tmp = gen_reg_rtx (GET_MODE (a));
1378 	  tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1379 	}
1380       else if (! insn_a)
1381 	goto end_seq_and_fail;
1382       else
1383 	{
1384 	  a = gen_reg_rtx (GET_MODE (a));
1385 	  tmp = copy_rtx (insn_a);
1386 	  set = single_set (tmp);
1387 	  SET_DEST (set) = a;
1388 	  tmp = emit_insn (PATTERN (tmp));
1389 	}
1390       if (recog_memoized (tmp) < 0)
1391 	goto end_seq_and_fail;
1392     }
1393   if (! general_operand (b, GET_MODE (b)))
1394     {
1395       rtx set, last;
1396 
1397       if (no_new_pseudos)
1398 	goto end_seq_and_fail;
1399 
1400       if (is_mem)
1401 	{
1402           tmp = gen_reg_rtx (GET_MODE (b));
1403 	  tmp = gen_rtx_SET (VOIDmode, tmp, b);
1404 	}
1405       else if (! insn_b)
1406 	goto end_seq_and_fail;
1407       else
1408 	{
1409           b = gen_reg_rtx (GET_MODE (b));
1410 	  tmp = copy_rtx (insn_b);
1411 	  set = single_set (tmp);
1412 	  SET_DEST (set) = b;
1413 	  tmp = PATTERN (tmp);
1414 	}
1415 
1416       /* If insn to set up A clobbers any registers B depends on, try to
1417 	 swap insn that sets up A with the one that sets up B.  If even
1418 	 that doesn't help, punt.  */
1419       last = get_last_insn ();
1420       if (last && modified_in_p (orig_b, last))
1421 	{
1422 	  tmp = emit_insn_before (tmp, get_insns ());
1423 	  if (modified_in_p (orig_a, tmp))
1424 	    goto end_seq_and_fail;
1425 	}
1426       else
1427 	tmp = emit_insn (tmp);
1428 
1429       if (recog_memoized (tmp) < 0)
1430 	goto end_seq_and_fail;
1431     }
1432 
1433   target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1434 			    XEXP (if_info->cond, 1), a, b);
1435 
1436   if (! target)
1437     goto end_seq_and_fail;
1438 
1439   /* If we're handling a memory for above, emit the load now.  */
1440   if (is_mem)
1441     {
1442       tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1443 
1444       /* Copy over flags as appropriate.  */
1445       if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1446 	MEM_VOLATILE_P (tmp) = 1;
1447       if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1448 	MEM_IN_STRUCT_P (tmp) = 1;
1449       if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1450 	MEM_SCALAR_P (tmp) = 1;
1451       if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1452 	set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1453       set_mem_align (tmp,
1454 		     MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1455 
1456       noce_emit_move_insn (if_info->x, tmp);
1457     }
1458   else if (target != x)
1459     noce_emit_move_insn (x, target);
1460 
1461   tmp = end_ifcvt_sequence (if_info);
1462   if (!tmp)
1463     return FALSE;
1464 
1465   emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1466   return TRUE;
1467 
1468  end_seq_and_fail:
1469   end_sequence ();
1470   return FALSE;
1471 }
1472 
1473 /* For most cases, the simplified condition we found is the best
1474    choice, but this is not the case for the min/max/abs transforms.
1475    For these we wish to know that it is A or B in the condition.  */
1476 
1477 static rtx
1478 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1479 			rtx *earliest)
1480 {
1481   rtx cond, set, insn;
1482   int reverse;
1483 
1484   /* If target is already mentioned in the known condition, return it.  */
1485   if (reg_mentioned_p (target, if_info->cond))
1486     {
1487       *earliest = if_info->cond_earliest;
1488       return if_info->cond;
1489     }
1490 
1491   set = pc_set (if_info->jump);
1492   cond = XEXP (SET_SRC (set), 0);
1493   reverse
1494     = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1495       && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1496 
1497   /* If we're looking for a constant, try to make the conditional
1498      have that constant in it.  There are two reasons why it may
1499      not have the constant we want:
1500 
1501      1. GCC may have needed to put the constant in a register, because
1502         the target can't compare directly against that constant.  For
1503         this case, we look for a SET immediately before the comparison
1504         that puts a constant in that register.
1505 
1506      2. GCC may have canonicalized the conditional, for example
1507 	replacing "if x < 4" with "if x <= 3".  We can undo that (or
1508 	make equivalent types of changes) to get the constants we need
1509 	if they're off by one in the right direction.  */
1510 
1511   if (GET_CODE (target) == CONST_INT)
1512     {
1513       enum rtx_code code = GET_CODE (if_info->cond);
1514       rtx op_a = XEXP (if_info->cond, 0);
1515       rtx op_b = XEXP (if_info->cond, 1);
1516       rtx prev_insn;
1517 
1518       /* First, look to see if we put a constant in a register.  */
1519       prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1520       if (prev_insn
1521 	  && INSN_P (prev_insn)
1522 	  && GET_CODE (PATTERN (prev_insn)) == SET)
1523 	{
1524 	  rtx src = find_reg_equal_equiv_note (prev_insn);
1525 	  if (!src)
1526 	    src = SET_SRC (PATTERN (prev_insn));
1527 	  if (GET_CODE (src) == CONST_INT)
1528 	    {
1529 	      if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1530 		op_a = src;
1531 	      else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1532 		op_b = src;
1533 
1534 	      if (GET_CODE (op_a) == CONST_INT)
1535 		{
1536 		  rtx tmp = op_a;
1537 		  op_a = op_b;
1538 		  op_b = tmp;
1539 		  code = swap_condition (code);
1540 		}
1541 	    }
1542 	}
1543 
1544       /* Now, look to see if we can get the right constant by
1545 	 adjusting the conditional.  */
1546       if (GET_CODE (op_b) == CONST_INT)
1547 	{
1548 	  HOST_WIDE_INT desired_val = INTVAL (target);
1549 	  HOST_WIDE_INT actual_val = INTVAL (op_b);
1550 
1551 	  switch (code)
1552 	    {
1553 	    case LT:
1554 	      if (actual_val == desired_val + 1)
1555 		{
1556 		  code = LE;
1557 		  op_b = GEN_INT (desired_val);
1558 		}
1559 	      break;
1560 	    case LE:
1561 	      if (actual_val == desired_val - 1)
1562 		{
1563 		  code = LT;
1564 		  op_b = GEN_INT (desired_val);
1565 		}
1566 	      break;
1567 	    case GT:
1568 	      if (actual_val == desired_val - 1)
1569 		{
1570 		  code = GE;
1571 		  op_b = GEN_INT (desired_val);
1572 		}
1573 	      break;
1574 	    case GE:
1575 	      if (actual_val == desired_val + 1)
1576 		{
1577 		  code = GT;
1578 		  op_b = GEN_INT (desired_val);
1579 		}
1580 	      break;
1581 	    default:
1582 	      break;
1583 	    }
1584 	}
1585 
1586       /* If we made any changes, generate a new conditional that is
1587 	 equivalent to what we started with, but has the right
1588 	 constants in it.  */
1589       if (code != GET_CODE (if_info->cond)
1590 	  || op_a != XEXP (if_info->cond, 0)
1591 	  || op_b != XEXP (if_info->cond, 1))
1592 	{
1593 	  cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1594 	  *earliest = if_info->cond_earliest;
1595 	  return cond;
1596 	}
1597     }
1598 
1599   cond = canonicalize_condition (if_info->jump, cond, reverse,
1600 				 earliest, target, false, true);
1601   if (! cond || ! reg_mentioned_p (target, cond))
1602     return NULL;
1603 
1604   /* We almost certainly searched back to a different place.
1605      Need to re-verify correct lifetimes.  */
1606 
1607   /* X may not be mentioned in the range (cond_earliest, jump].  */
1608   for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1609     if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1610       return NULL;
1611 
1612   /* A and B may not be modified in the range [cond_earliest, jump).  */
1613   for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1614     if (INSN_P (insn)
1615 	&& (modified_in_p (if_info->a, insn)
1616 	    || modified_in_p (if_info->b, insn)))
1617       return NULL;
1618 
1619   return cond;
1620 }
1621 
1622 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc.  */
1623 
1624 static int
1625 noce_try_minmax (struct noce_if_info *if_info)
1626 {
1627   rtx cond, earliest, target, seq;
1628   enum rtx_code code, op;
1629   int unsignedp;
1630 
1631   /* ??? Can't guarantee that expand_binop won't create pseudos.  */
1632   if (no_new_pseudos)
1633     return FALSE;
1634 
1635   /* ??? Reject modes with NaNs or signed zeros since we don't know how
1636      they will be resolved with an SMIN/SMAX.  It wouldn't be too hard
1637      to get the target to tell us...  */
1638   if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1639       || HONOR_NANS (GET_MODE (if_info->x)))
1640     return FALSE;
1641 
1642   cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1643   if (!cond)
1644     return FALSE;
1645 
1646   /* Verify the condition is of the form we expect, and canonicalize
1647      the comparison code.  */
1648   code = GET_CODE (cond);
1649   if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1650     {
1651       if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1652 	return FALSE;
1653     }
1654   else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1655     {
1656       if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1657 	return FALSE;
1658       code = swap_condition (code);
1659     }
1660   else
1661     return FALSE;
1662 
1663   /* Determine what sort of operation this is.  Note that the code is for
1664      a taken branch, so the code->operation mapping appears backwards.  */
1665   switch (code)
1666     {
1667     case LT:
1668     case LE:
1669     case UNLT:
1670     case UNLE:
1671       op = SMAX;
1672       unsignedp = 0;
1673       break;
1674     case GT:
1675     case GE:
1676     case UNGT:
1677     case UNGE:
1678       op = SMIN;
1679       unsignedp = 0;
1680       break;
1681     case LTU:
1682     case LEU:
1683       op = UMAX;
1684       unsignedp = 1;
1685       break;
1686     case GTU:
1687     case GEU:
1688       op = UMIN;
1689       unsignedp = 1;
1690       break;
1691     default:
1692       return FALSE;
1693     }
1694 
1695   start_sequence ();
1696 
1697   target = expand_simple_binop (GET_MODE (if_info->x), op,
1698 				if_info->a, if_info->b,
1699 				if_info->x, unsignedp, OPTAB_WIDEN);
1700   if (! target)
1701     {
1702       end_sequence ();
1703       return FALSE;
1704     }
1705   if (target != if_info->x)
1706     noce_emit_move_insn (if_info->x, target);
1707 
1708   seq = end_ifcvt_sequence (if_info);
1709   if (!seq)
1710     return FALSE;
1711 
1712   emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1713   if_info->cond = cond;
1714   if_info->cond_earliest = earliest;
1715 
1716   return TRUE;
1717 }
1718 
1719 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc.  */
1720 
1721 static int
1722 noce_try_abs (struct noce_if_info *if_info)
1723 {
1724   rtx cond, earliest, target, seq, a, b, c;
1725   int negate;
1726 
1727   /* ??? Can't guarantee that expand_binop won't create pseudos.  */
1728   if (no_new_pseudos)
1729     return FALSE;
1730 
1731   /* Recognize A and B as constituting an ABS or NABS.  The canonical
1732      form is a branch around the negation, taken when the object is the
1733      first operand of a comparison against 0 that evaluates to true.  */
1734   a = if_info->a;
1735   b = if_info->b;
1736   if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1737     negate = 0;
1738   else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1739     {
1740       c = a; a = b; b = c;
1741       negate = 1;
1742     }
1743   else
1744     return FALSE;
1745 
1746   cond = noce_get_alt_condition (if_info, b, &earliest);
1747   if (!cond)
1748     return FALSE;
1749 
1750   /* Verify the condition is of the form we expect.  */
1751   if (rtx_equal_p (XEXP (cond, 0), b))
1752     c = XEXP (cond, 1);
1753   else if (rtx_equal_p (XEXP (cond, 1), b))
1754     {
1755       c = XEXP (cond, 0);
1756       negate = !negate;
1757     }
1758   else
1759     return FALSE;
1760 
1761   /* Verify that C is zero.  Search one step backward for a
1762      REG_EQUAL note or a simple source if necessary.  */
1763   if (REG_P (c))
1764     {
1765       rtx set, insn = prev_nonnote_insn (earliest);
1766       if (insn
1767 	  && (set = single_set (insn))
1768 	  && rtx_equal_p (SET_DEST (set), c))
1769 	{
1770 	  rtx note = find_reg_equal_equiv_note (insn);
1771 	  if (note)
1772 	    c = XEXP (note, 0);
1773 	  else
1774 	    c = SET_SRC (set);
1775 	}
1776       else
1777 	return FALSE;
1778     }
1779   if (MEM_P (c)
1780       && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1781       && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1782     c = get_pool_constant (XEXP (c, 0));
1783 
1784   /* Work around funny ideas get_condition has wrt canonicalization.
1785      Note that these rtx constants are known to be CONST_INT, and
1786      therefore imply integer comparisons.  */
1787   if (c == constm1_rtx && GET_CODE (cond) == GT)
1788     ;
1789   else if (c == const1_rtx && GET_CODE (cond) == LT)
1790     ;
1791   else if (c != CONST0_RTX (GET_MODE (b)))
1792     return FALSE;
1793 
1794   /* Determine what sort of operation this is.  */
1795   switch (GET_CODE (cond))
1796     {
1797     case LT:
1798     case LE:
1799     case UNLT:
1800     case UNLE:
1801       negate = !negate;
1802       break;
1803     case GT:
1804     case GE:
1805     case UNGT:
1806     case UNGE:
1807       break;
1808     default:
1809       return FALSE;
1810     }
1811 
1812   start_sequence ();
1813 
1814   target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1815 
1816   /* ??? It's a quandary whether cmove would be better here, especially
1817      for integers.  Perhaps combine will clean things up.  */
1818   if (target && negate)
1819     target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1820 
1821   if (! target)
1822     {
1823       end_sequence ();
1824       return FALSE;
1825     }
1826 
1827   if (target != if_info->x)
1828     noce_emit_move_insn (if_info->x, target);
1829 
1830   seq = end_ifcvt_sequence (if_info);
1831   if (!seq)
1832     return FALSE;
1833 
1834   emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1835   if_info->cond = cond;
1836   if_info->cond_earliest = earliest;
1837 
1838   return TRUE;
1839 }
1840 
1841 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;".  */
1842 
1843 static int
1844 noce_try_sign_mask (struct noce_if_info *if_info)
1845 {
1846   rtx cond, t, m, c, seq;
1847   enum machine_mode mode;
1848   enum rtx_code code;
1849 
1850   if (no_new_pseudos)
1851     return FALSE;
1852 
1853   cond = if_info->cond;
1854   code = GET_CODE (cond);
1855   m = XEXP (cond, 0);
1856   c = XEXP (cond, 1);
1857 
1858   t = NULL_RTX;
1859   if (if_info->a == const0_rtx)
1860     {
1861       if ((code == LT && c == const0_rtx)
1862 	  || (code == LE && c == constm1_rtx))
1863 	t = if_info->b;
1864     }
1865   else if (if_info->b == const0_rtx)
1866     {
1867       if ((code == GE && c == const0_rtx)
1868 	  || (code == GT && c == constm1_rtx))
1869 	t = if_info->a;
1870     }
1871 
1872   if (! t || side_effects_p (t))
1873     return FALSE;
1874 
1875   /* We currently don't handle different modes.  */
1876   mode = GET_MODE (t);
1877   if (GET_MODE (m) != mode)
1878     return FALSE;
1879 
1880   /* This is only profitable if T is cheap, or T is unconditionally
1881      executed/evaluated in the original insn sequence.  */
1882   if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1883       && (!if_info->b_unconditional
1884           || t != if_info->b))
1885     return FALSE;
1886 
1887   start_sequence ();
1888   /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1889      "(signed) m >> 31" directly.  This benefits targets with specialized
1890      insns to obtain the signmask, but still uses ashr_optab otherwise.  */
1891   m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1892   t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1893 	: NULL_RTX;
1894 
1895   if (!t)
1896     {
1897       end_sequence ();
1898       return FALSE;
1899     }
1900 
1901   noce_emit_move_insn (if_info->x, t);
1902 
1903   seq = end_ifcvt_sequence (if_info);
1904   if (!seq)
1905     return FALSE;
1906 
1907   emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1908   return TRUE;
1909 }
1910 
1911 
1912 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1913    transformations.  */
1914 
1915 static int
1916 noce_try_bitop (struct noce_if_info *if_info)
1917 {
1918   rtx cond, x, a, result, seq;
1919   enum machine_mode mode;
1920   enum rtx_code code;
1921   int bitnum;
1922 
1923   x = if_info->x;
1924   cond = if_info->cond;
1925   code = GET_CODE (cond);
1926 
1927   /* Check for no else condition.  */
1928   if (! rtx_equal_p (x, if_info->b))
1929     return FALSE;
1930 
1931   /* Check for a suitable condition.  */
1932   if (code != NE && code != EQ)
1933     return FALSE;
1934   if (XEXP (cond, 1) != const0_rtx)
1935     return FALSE;
1936   cond = XEXP (cond, 0);
1937 
1938   /* ??? We could also handle AND here.  */
1939   if (GET_CODE (cond) == ZERO_EXTRACT)
1940     {
1941       if (XEXP (cond, 1) != const1_rtx
1942 	  || GET_CODE (XEXP (cond, 2)) != CONST_INT
1943 	  || ! rtx_equal_p (x, XEXP (cond, 0)))
1944 	return FALSE;
1945       bitnum = INTVAL (XEXP (cond, 2));
1946       mode = GET_MODE (x);
1947       if (BITS_BIG_ENDIAN)
1948 	bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
1949       if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
1950 	return FALSE;
1951     }
1952   else
1953     return FALSE;
1954 
1955   a = if_info->a;
1956   if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
1957     {
1958       /* Check for "if (X & C) x = x op C".  */
1959       if (! rtx_equal_p (x, XEXP (a, 0))
1960           || GET_CODE (XEXP (a, 1)) != CONST_INT
1961 	  || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1962 	     != (unsigned HOST_WIDE_INT) 1 << bitnum)
1963         return FALSE;
1964 
1965       /* if ((x & C) == 0) x |= C; is transformed to x |= C.   */
1966       /* if ((x & C) != 0) x |= C; is transformed to nothing.  */
1967       if (GET_CODE (a) == IOR)
1968 	result = (code == NE) ? a : NULL_RTX;
1969       else if (code == NE)
1970 	{
1971 	  /* if ((x & C) == 0) x ^= C; is transformed to x |= C.   */
1972 	  result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
1973 	  result = simplify_gen_binary (IOR, mode, x, result);
1974 	}
1975       else
1976 	{
1977 	  /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C.  */
1978 	  result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
1979 	  result = simplify_gen_binary (AND, mode, x, result);
1980 	}
1981     }
1982   else if (GET_CODE (a) == AND)
1983     {
1984       /* Check for "if (X & C) x &= ~C".  */
1985       if (! rtx_equal_p (x, XEXP (a, 0))
1986 	  || GET_CODE (XEXP (a, 1)) != CONST_INT
1987 	  || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1988 	     != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
1989         return FALSE;
1990 
1991       /* if ((x & C) == 0) x &= ~C; is transformed to nothing.  */
1992       /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C.  */
1993       result = (code == EQ) ? a : NULL_RTX;
1994     }
1995   else
1996     return FALSE;
1997 
1998   if (result)
1999     {
2000       start_sequence ();
2001       noce_emit_move_insn (x, result);
2002       seq = end_ifcvt_sequence (if_info);
2003       if (!seq)
2004 	return FALSE;
2005 
2006       emit_insn_before_setloc (seq, if_info->jump,
2007 			       INSN_LOCATOR (if_info->insn_a));
2008     }
2009   return TRUE;
2010 }
2011 
2012 
2013 /* Similar to get_condition, only the resulting condition must be
2014    valid at JUMP, instead of at EARLIEST.  */
2015 
2016 static rtx
2017 noce_get_condition (rtx jump, rtx *earliest)
2018 {
2019   rtx cond, set, tmp;
2020   bool reverse;
2021 
2022   if (! any_condjump_p (jump))
2023     return NULL_RTX;
2024 
2025   set = pc_set (jump);
2026 
2027   /* If this branches to JUMP_LABEL when the condition is false,
2028      reverse the condition.  */
2029   reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2030 	     && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2031 
2032   /* If the condition variable is a register and is MODE_INT, accept it.  */
2033 
2034   cond = XEXP (SET_SRC (set), 0);
2035   tmp = XEXP (cond, 0);
2036   if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2037     {
2038       *earliest = jump;
2039 
2040       if (reverse)
2041 	cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2042 			       GET_MODE (cond), tmp, XEXP (cond, 1));
2043       return cond;
2044     }
2045 
2046   /* Otherwise, fall back on canonicalize_condition to do the dirty
2047      work of manipulating MODE_CC values and COMPARE rtx codes.  */
2048   return canonicalize_condition (jump, cond, reverse, earliest,
2049 				 NULL_RTX, false, true);
2050 }
2051 
2052 /* Initialize for a simple IF-THEN or IF-THEN-ELSE block.  We will not
2053    be using conditional execution.  Set some fields of IF_INFO based
2054    on CE_INFO: test_bb, cond, jump, cond_earliest.  Return TRUE if
2055    things look OK.  */
2056 
2057 static int
2058 noce_init_if_info (struct ce_if_block *ce_info, struct noce_if_info *if_info)
2059 {
2060   basic_block test_bb = ce_info->test_bb;
2061   rtx cond, jump;
2062 
2063   /* If test is comprised of && or || elements, don't handle it unless
2064      it is the special case of && elements without an ELSE block.  */
2065   if (ce_info->num_multiple_test_blocks)
2066     {
2067       if (ce_info->else_bb || !ce_info->and_and_p)
2068 	return FALSE;
2069 
2070       ce_info->test_bb = test_bb = ce_info->last_test_bb;
2071       ce_info->num_multiple_test_blocks = 0;
2072       ce_info->num_and_and_blocks = 0;
2073       ce_info->num_or_or_blocks = 0;
2074     }
2075 
2076   /* If this is not a standard conditional jump, we can't parse it.  */
2077   jump = BB_END (test_bb);
2078   cond = noce_get_condition (jump, &if_info->cond_earliest);
2079   if (!cond)
2080     return FALSE;
2081 
2082   /* If the conditional jump is more than just a conditional
2083      jump, then we can not do if-conversion on this block.  */
2084   if (! onlyjump_p (jump))
2085     return FALSE;
2086 
2087   /* We must be comparing objects whose modes imply the size.  */
2088   if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2089     return FALSE;
2090 
2091   if_info->test_bb = test_bb;
2092   if_info->cond = cond;
2093   if_info->jump = jump;
2094 
2095   return TRUE;
2096 }
2097 
2098 /* Return true if OP is ok for if-then-else processing.  */
2099 
2100 static int
2101 noce_operand_ok (rtx op)
2102 {
2103   /* We special-case memories, so handle any of them with
2104      no address side effects.  */
2105   if (MEM_P (op))
2106     return ! side_effects_p (XEXP (op, 0));
2107 
2108   if (side_effects_p (op))
2109     return FALSE;
2110 
2111   return ! may_trap_p (op);
2112 }
2113 
2114 /* Return true if a write into MEM may trap or fault.  */
2115 
2116 static bool
2117 noce_mem_write_may_trap_or_fault_p (rtx mem)
2118 {
2119   rtx addr;
2120 
2121   if (MEM_READONLY_P (mem))
2122     return true;
2123 
2124   if (may_trap_or_fault_p (mem))
2125     return true;
2126 
2127   addr = XEXP (mem, 0);
2128 
2129   /* Call target hook to avoid the effects of -fpic etc....  */
2130   addr = targetm.delegitimize_address (addr);
2131 
2132   while (addr)
2133     switch (GET_CODE (addr))
2134       {
2135       case CONST:
2136       case PRE_DEC:
2137       case PRE_INC:
2138       case POST_DEC:
2139       case POST_INC:
2140       case POST_MODIFY:
2141 	addr = XEXP (addr, 0);
2142 	break;
2143       case LO_SUM:
2144       case PRE_MODIFY:
2145 	addr = XEXP (addr, 1);
2146 	break;
2147       case PLUS:
2148 	if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2149 	  addr = XEXP (addr, 0);
2150 	else
2151 	  return false;
2152 	break;
2153       case LABEL_REF:
2154 	return true;
2155       case SYMBOL_REF:
2156 	if (SYMBOL_REF_DECL (addr)
2157 	    && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2158 	  return true;
2159 	return false;
2160       default:
2161 	return false;
2162       }
2163 
2164   return false;
2165 }
2166 
2167 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2168    without using conditional execution.  Return TRUE if we were
2169    successful at converting the block.  */
2170 
2171 static int
2172 noce_process_if_block (struct ce_if_block * ce_info)
2173 {
2174   basic_block test_bb = ce_info->test_bb;	/* test block */
2175   basic_block then_bb = ce_info->then_bb;	/* THEN */
2176   basic_block else_bb = ce_info->else_bb;	/* ELSE or NULL */
2177   struct noce_if_info if_info;
2178   rtx insn_a, insn_b;
2179   rtx set_a, set_b;
2180   rtx orig_x, x, a, b;
2181   rtx jump, cond;
2182 
2183   /* We're looking for patterns of the form
2184 
2185      (1) if (...) x = a; else x = b;
2186      (2) x = b; if (...) x = a;
2187      (3) if (...) x = a;   // as if with an initial x = x.
2188 
2189      The later patterns require jumps to be more expensive.
2190 
2191      ??? For future expansion, look for multiple X in such patterns.  */
2192 
2193   if (!noce_init_if_info (ce_info, &if_info))
2194     return FALSE;
2195 
2196   cond = if_info.cond;
2197   jump = if_info.jump;
2198 
2199   /* Look for one of the potential sets.  */
2200   insn_a = first_active_insn (then_bb);
2201   if (! insn_a
2202       || insn_a != last_active_insn (then_bb, FALSE)
2203       || (set_a = single_set (insn_a)) == NULL_RTX)
2204     return FALSE;
2205 
2206   x = SET_DEST (set_a);
2207   a = SET_SRC (set_a);
2208 
2209   /* Look for the other potential set.  Make sure we've got equivalent
2210      destinations.  */
2211   /* ??? This is overconservative.  Storing to two different mems is
2212      as easy as conditionally computing the address.  Storing to a
2213      single mem merely requires a scratch memory to use as one of the
2214      destination addresses; often the memory immediately below the
2215      stack pointer is available for this.  */
2216   set_b = NULL_RTX;
2217   if (else_bb)
2218     {
2219       insn_b = first_active_insn (else_bb);
2220       if (! insn_b
2221 	  || insn_b != last_active_insn (else_bb, FALSE)
2222 	  || (set_b = single_set (insn_b)) == NULL_RTX
2223 	  || ! rtx_equal_p (x, SET_DEST (set_b)))
2224 	return FALSE;
2225     }
2226   else
2227     {
2228       insn_b = prev_nonnote_insn (if_info.cond_earliest);
2229       /* We're going to be moving the evaluation of B down from above
2230 	 COND_EARLIEST to JUMP.  Make sure the relevant data is still
2231 	 intact.  */
2232       if (! insn_b
2233 	  || !NONJUMP_INSN_P (insn_b)
2234 	  || (set_b = single_set (insn_b)) == NULL_RTX
2235 	  || ! rtx_equal_p (x, SET_DEST (set_b))
2236 	  || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2237 	  || modified_between_p (SET_SRC (set_b),
2238 				 PREV_INSN (if_info.cond_earliest), jump)
2239 	  /* Likewise with X.  In particular this can happen when
2240 	     noce_get_condition looks farther back in the instruction
2241 	     stream than one might expect.  */
2242 	  || reg_overlap_mentioned_p (x, cond)
2243 	  || reg_overlap_mentioned_p (x, a)
2244 	  || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
2245 	insn_b = set_b = NULL_RTX;
2246     }
2247 
2248   /* If x has side effects then only the if-then-else form is safe to
2249      convert.  But even in that case we would need to restore any notes
2250      (such as REG_INC) at then end.  That can be tricky if
2251      noce_emit_move_insn expands to more than one insn, so disable the
2252      optimization entirely for now if there are side effects.  */
2253   if (side_effects_p (x))
2254     return FALSE;
2255 
2256   b = (set_b ? SET_SRC (set_b) : x);
2257 
2258   /* Only operate on register destinations, and even then avoid extending
2259      the lifetime of hard registers on small register class machines.  */
2260   orig_x = x;
2261   if (!REG_P (x)
2262       || (SMALL_REGISTER_CLASSES
2263 	  && REGNO (x) < FIRST_PSEUDO_REGISTER))
2264     {
2265       if (no_new_pseudos || GET_MODE (x) == BLKmode)
2266 	return FALSE;
2267 
2268       if (GET_MODE (x) == ZERO_EXTRACT
2269 	  && (GET_CODE (XEXP (x, 1)) != CONST_INT
2270 	      || GET_CODE (XEXP (x, 2)) != CONST_INT))
2271 	return FALSE;
2272 
2273       x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2274 				 ? XEXP (x, 0) : x));
2275     }
2276 
2277   /* Don't operate on sources that may trap or are volatile.  */
2278   if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2279     return FALSE;
2280 
2281   /* Set up the info block for our subroutines.  */
2282   if_info.insn_a = insn_a;
2283   if_info.insn_b = insn_b;
2284   if_info.x = x;
2285   if_info.a = a;
2286   if_info.b = b;
2287   if_info.b_unconditional = else_bb == 0;
2288 
2289   /* Try optimizations in some approximation of a useful order.  */
2290   /* ??? Should first look to see if X is live incoming at all.  If it
2291      isn't, we don't need anything but an unconditional set.  */
2292 
2293   /* Look and see if A and B are really the same.  Avoid creating silly
2294      cmove constructs that no one will fix up later.  */
2295   if (rtx_equal_p (a, b))
2296     {
2297       /* If we have an INSN_B, we don't have to create any new rtl.  Just
2298 	 move the instruction that we already have.  If we don't have an
2299 	 INSN_B, that means that A == X, and we've got a noop move.  In
2300 	 that case don't do anything and let the code below delete INSN_A.  */
2301       if (insn_b && else_bb)
2302 	{
2303 	  rtx note;
2304 
2305 	  if (else_bb && insn_b == BB_END (else_bb))
2306 	    BB_END (else_bb) = PREV_INSN (insn_b);
2307 	  reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2308 
2309 	  /* If there was a REG_EQUAL note, delete it since it may have been
2310 	     true due to this insn being after a jump.  */
2311 	  if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2312 	    remove_note (insn_b, note);
2313 
2314 	  insn_b = NULL_RTX;
2315 	}
2316       /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2317 	 x must be executed twice.  */
2318       else if (insn_b && side_effects_p (orig_x))
2319 	return FALSE;
2320 
2321       x = orig_x;
2322       goto success;
2323     }
2324 
2325   /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2326      for optimizations if writing to x may trap or fault, i.e. it's a memory
2327      other than a static var or a stack slot, is misaligned on strict
2328      aligned machines or is read-only.
2329      If x is a read-only memory, then the program is valid only if we
2330      avoid the store into it.  If there are stores on both the THEN and
2331      ELSE arms, then we can go ahead with the conversion; either the
2332      program is broken, or the condition is always false such that the
2333      other memory is selected.  */
2334   if (!set_b && MEM_P (orig_x) && noce_mem_write_may_trap_or_fault_p (orig_x))
2335     return FALSE;
2336 
2337   if (noce_try_move (&if_info))
2338     goto success;
2339   if (noce_try_store_flag (&if_info))
2340     goto success;
2341   if (noce_try_bitop (&if_info))
2342     goto success;
2343   if (noce_try_minmax (&if_info))
2344     goto success;
2345   if (noce_try_abs (&if_info))
2346     goto success;
2347   if (HAVE_conditional_move
2348       && noce_try_cmove (&if_info))
2349     goto success;
2350   if (! HAVE_conditional_execution)
2351     {
2352       if (noce_try_store_flag_constants (&if_info))
2353 	goto success;
2354       if (noce_try_addcc (&if_info))
2355 	goto success;
2356       if (noce_try_store_flag_mask (&if_info))
2357 	goto success;
2358       if (HAVE_conditional_move
2359 	  && noce_try_cmove_arith (&if_info))
2360 	goto success;
2361       if (noce_try_sign_mask (&if_info))
2362 	goto success;
2363     }
2364 
2365   return FALSE;
2366 
2367  success:
2368   /* The original sets may now be killed.  */
2369   delete_insn (insn_a);
2370 
2371   /* Several special cases here: First, we may have reused insn_b above,
2372      in which case insn_b is now NULL.  Second, we want to delete insn_b
2373      if it came from the ELSE block, because follows the now correct
2374      write that appears in the TEST block.  However, if we got insn_b from
2375      the TEST block, it may in fact be loading data needed for the comparison.
2376      We'll let life_analysis remove the insn if it's really dead.  */
2377   if (insn_b && else_bb)
2378     delete_insn (insn_b);
2379 
2380   /* The new insns will have been inserted immediately before the jump.  We
2381      should be able to remove the jump with impunity, but the condition itself
2382      may have been modified by gcse to be shared across basic blocks.  */
2383   delete_insn (jump);
2384 
2385   /* If we used a temporary, fix it up now.  */
2386   if (orig_x != x)
2387     {
2388       start_sequence ();
2389       noce_emit_move_insn (orig_x, x);
2390       insn_b = get_insns ();
2391       set_used_flags (orig_x);
2392       unshare_all_rtl_in_chain (insn_b);
2393       end_sequence ();
2394 
2395       emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2396     }
2397 
2398   /* Merge the blocks!  */
2399   merge_if_block (ce_info);
2400 
2401   return TRUE;
2402 }
2403 
2404 /* Check whether a block is suitable for conditional move conversion.
2405    Every insn must be a simple set of a register to a constant or a
2406    register.  For each assignment, store the value in the array VALS,
2407    indexed by register number.  COND is the condition we will
2408    test.  */
2409 
2410 static int
2411 check_cond_move_block (basic_block bb, rtx *vals, rtx cond)
2412 {
2413   rtx insn;
2414 
2415   FOR_BB_INSNS (bb, insn)
2416     {
2417       rtx set, dest, src;
2418 
2419       if (!INSN_P (insn) || JUMP_P (insn))
2420 	continue;
2421       set = single_set (insn);
2422       if (!set)
2423 	return FALSE;
2424 
2425       dest = SET_DEST (set);
2426       src = SET_SRC (set);
2427       if (!REG_P (dest)
2428 	  || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2429 	return FALSE;
2430 
2431       if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2432 	return FALSE;
2433 
2434       if (side_effects_p (src) || side_effects_p (dest))
2435 	return FALSE;
2436 
2437       if (may_trap_p (src) || may_trap_p (dest))
2438 	return FALSE;
2439 
2440       /* Don't try to handle this if the source register was
2441 	 modified earlier in the block.  */
2442       if ((REG_P (src)
2443 	   && vals[REGNO (src)] != NULL)
2444 	  || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2445 	      && vals[REGNO (SUBREG_REG (src))] != NULL))
2446 	return FALSE;
2447 
2448       /* Don't try to handle this if the destination register was
2449 	 modified earlier in the block.  */
2450       if (vals[REGNO (dest)] != NULL)
2451 	return FALSE;
2452 
2453       /* Don't try to handle this if the condition uses the
2454 	 destination register.  */
2455       if (reg_overlap_mentioned_p (dest, cond))
2456 	return FALSE;
2457 
2458       vals[REGNO (dest)] = src;
2459 
2460       /* Don't try to handle this if the source register is modified
2461 	 later in the block.  */
2462       if (!CONSTANT_P (src)
2463 	  && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2464 	return FALSE;
2465     }
2466 
2467   return TRUE;
2468 }
2469 
2470 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2471    using only conditional moves.  Return TRUE if we were successful at
2472    converting the block.  */
2473 
2474 static int
2475 cond_move_process_if_block (struct ce_if_block *ce_info)
2476 {
2477   basic_block then_bb = ce_info->then_bb;
2478   basic_block else_bb = ce_info->else_bb;
2479   struct noce_if_info if_info;
2480   rtx jump, cond, insn, seq, cond_arg0, cond_arg1, loc_insn;
2481   int max_reg, size, c, i;
2482   rtx *then_vals;
2483   rtx *else_vals;
2484   enum rtx_code code;
2485 
2486   if (!HAVE_conditional_move || no_new_pseudos)
2487     return FALSE;
2488 
2489   memset (&if_info, 0, sizeof if_info);
2490 
2491   if (!noce_init_if_info (ce_info, &if_info))
2492     return FALSE;
2493 
2494   cond = if_info.cond;
2495   jump = if_info.jump;
2496 
2497   /* Build a mapping for each block to the value used for each
2498      register.  */
2499   max_reg = max_reg_num ();
2500   size = (max_reg + 1) * sizeof (rtx);
2501   then_vals = (rtx *) alloca (size);
2502   else_vals = (rtx *) alloca (size);
2503   memset (then_vals, 0, size);
2504   memset (else_vals, 0, size);
2505 
2506   /* Make sure the blocks are suitable.  */
2507   if (!check_cond_move_block (then_bb, then_vals, cond)
2508       || (else_bb && !check_cond_move_block (else_bb, else_vals, cond)))
2509     return FALSE;
2510 
2511   /* Make sure the blocks can be used together.  If the same register
2512      is set in both blocks, and is not set to a constant in both
2513      cases, then both blocks must set it to the same register.  We
2514      have already verified that if it is set to a register, that the
2515      source register does not change after the assignment.  Also count
2516      the number of registers set in only one of the blocks.  */
2517   c = 0;
2518   for (i = 0; i <= max_reg; ++i)
2519     {
2520       if (!then_vals[i] && !else_vals[i])
2521 	continue;
2522 
2523       if (!then_vals[i] || !else_vals[i])
2524 	++c;
2525       else
2526 	{
2527 	  if (!CONSTANT_P (then_vals[i])
2528 	      && !CONSTANT_P (else_vals[i])
2529 	      && !rtx_equal_p (then_vals[i], else_vals[i]))
2530 	    return FALSE;
2531 	}
2532     }
2533 
2534   /* Make sure it is reasonable to convert this block.  What matters
2535      is the number of assignments currently made in only one of the
2536      branches, since if we convert we are going to always execute
2537      them.  */
2538   if (c > MAX_CONDITIONAL_EXECUTE)
2539     return FALSE;
2540 
2541   /* Emit the conditional moves.  First do the then block, then do
2542      anything left in the else blocks.  */
2543 
2544   code = GET_CODE (cond);
2545   cond_arg0 = XEXP (cond, 0);
2546   cond_arg1 = XEXP (cond, 1);
2547 
2548   start_sequence ();
2549 
2550   FOR_BB_INSNS (then_bb, insn)
2551     {
2552       rtx set, target, dest, t, e;
2553       unsigned int regno;
2554 
2555       if (!INSN_P (insn) || JUMP_P (insn))
2556 	continue;
2557       set = single_set (insn);
2558       gcc_assert (set && REG_P (SET_DEST (set)));
2559 
2560       dest = SET_DEST (set);
2561       regno = REGNO (dest);
2562       t = then_vals[regno];
2563       e = else_vals[regno];
2564       gcc_assert (t);
2565       if (!e)
2566 	e = dest;
2567       target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
2568 				t, e);
2569       if (!target)
2570 	{
2571 	  end_sequence ();
2572 	  return FALSE;
2573 	}
2574 
2575       if (target != dest)
2576 	noce_emit_move_insn (dest, target);
2577     }
2578 
2579   if (else_bb)
2580     {
2581       FOR_BB_INSNS (else_bb, insn)
2582 	{
2583 	  rtx set, target, dest;
2584 	  unsigned int regno;
2585 
2586 	  if (!INSN_P (insn) || JUMP_P (insn))
2587 	    continue;
2588 	  set = single_set (insn);
2589 	  gcc_assert (set && REG_P (SET_DEST (set)));
2590 
2591 	  dest = SET_DEST (set);
2592 	  regno = REGNO (dest);
2593 
2594 	  /* If this register was set in the then block, we already
2595 	     handled this case above.  */
2596 	  if (then_vals[regno])
2597 	    continue;
2598 	  gcc_assert (else_vals[regno]);
2599 
2600 	  target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
2601 				    dest, else_vals[regno]);
2602 	  if (!target)
2603 	    {
2604 	      end_sequence ();
2605 	      return FALSE;
2606 	    }
2607 
2608 	  if (target != dest)
2609 	    noce_emit_move_insn (dest, target);
2610 	}
2611     }
2612 
2613   seq = end_ifcvt_sequence (&if_info);
2614   if (!seq)
2615     return FALSE;
2616 
2617   loc_insn = first_active_insn (then_bb);
2618   if (!loc_insn)
2619     {
2620       loc_insn = first_active_insn (else_bb);
2621       gcc_assert (loc_insn);
2622     }
2623   emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2624 
2625   FOR_BB_INSNS (then_bb, insn)
2626     if (INSN_P (insn) && !JUMP_P (insn))
2627       delete_insn (insn);
2628   if (else_bb)
2629     {
2630       FOR_BB_INSNS (else_bb, insn)
2631 	if (INSN_P (insn) && !JUMP_P (insn))
2632 	  delete_insn (insn);
2633     }
2634   delete_insn (jump);
2635 
2636   merge_if_block (ce_info);
2637 
2638   return TRUE;
2639 }
2640 
2641 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2642    straight line code.  Return true if successful.  */
2643 
2644 static int
2645 process_if_block (struct ce_if_block * ce_info)
2646 {
2647   if (! reload_completed
2648       && noce_process_if_block (ce_info))
2649     return TRUE;
2650 
2651   if (HAVE_conditional_move
2652       && cond_move_process_if_block (ce_info))
2653     return TRUE;
2654 
2655   if (HAVE_conditional_execution && reload_completed)
2656     {
2657       /* If we have && and || tests, try to first handle combining the && and
2658          || tests into the conditional code, and if that fails, go back and
2659          handle it without the && and ||, which at present handles the && case
2660          if there was no ELSE block.  */
2661       if (cond_exec_process_if_block (ce_info, TRUE))
2662 	return TRUE;
2663 
2664       if (ce_info->num_multiple_test_blocks)
2665 	{
2666 	  cancel_changes (0);
2667 
2668 	  if (cond_exec_process_if_block (ce_info, FALSE))
2669 	    return TRUE;
2670 	}
2671     }
2672 
2673   return FALSE;
2674 }
2675 
2676 /* Merge the blocks and mark for local life update.  */
2677 
2678 static void
2679 merge_if_block (struct ce_if_block * ce_info)
2680 {
2681   basic_block test_bb = ce_info->test_bb;	/* last test block */
2682   basic_block then_bb = ce_info->then_bb;	/* THEN */
2683   basic_block else_bb = ce_info->else_bb;	/* ELSE or NULL */
2684   basic_block join_bb = ce_info->join_bb;	/* join block */
2685   basic_block combo_bb;
2686 
2687   /* All block merging is done into the lower block numbers.  */
2688 
2689   combo_bb = test_bb;
2690 
2691   /* Merge any basic blocks to handle && and || subtests.  Each of
2692      the blocks are on the fallthru path from the predecessor block.  */
2693   if (ce_info->num_multiple_test_blocks > 0)
2694     {
2695       basic_block bb = test_bb;
2696       basic_block last_test_bb = ce_info->last_test_bb;
2697       basic_block fallthru = block_fallthru (bb);
2698 
2699       do
2700 	{
2701 	  bb = fallthru;
2702 	  fallthru = block_fallthru (bb);
2703 	  merge_blocks (combo_bb, bb);
2704 	  num_true_changes++;
2705 	}
2706       while (bb != last_test_bb);
2707     }
2708 
2709   /* Merge TEST block into THEN block.  Normally the THEN block won't have a
2710      label, but it might if there were || tests.  That label's count should be
2711      zero, and it normally should be removed.  */
2712 
2713   if (then_bb)
2714     {
2715       if (combo_bb->il.rtl->global_live_at_end)
2716 	COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2717 		      then_bb->il.rtl->global_live_at_end);
2718       merge_blocks (combo_bb, then_bb);
2719       num_true_changes++;
2720     }
2721 
2722   /* The ELSE block, if it existed, had a label.  That label count
2723      will almost always be zero, but odd things can happen when labels
2724      get their addresses taken.  */
2725   if (else_bb)
2726     {
2727       merge_blocks (combo_bb, else_bb);
2728       num_true_changes++;
2729     }
2730 
2731   /* If there was no join block reported, that means it was not adjacent
2732      to the others, and so we cannot merge them.  */
2733 
2734   if (! join_bb)
2735     {
2736       rtx last = BB_END (combo_bb);
2737 
2738       /* The outgoing edge for the current COMBO block should already
2739 	 be correct.  Verify this.  */
2740       if (EDGE_COUNT (combo_bb->succs) == 0)
2741 	gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2742 		    || (NONJUMP_INSN_P (last)
2743 			&& GET_CODE (PATTERN (last)) == TRAP_IF
2744 			&& (TRAP_CONDITION (PATTERN (last))
2745 			    == const_true_rtx)));
2746 
2747       else
2748       /* There should still be something at the end of the THEN or ELSE
2749          blocks taking us to our final destination.  */
2750 	gcc_assert (JUMP_P (last)
2751 		    || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2752 			&& CALL_P (last)
2753 			&& SIBLING_CALL_P (last))
2754 		    || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2755 			&& can_throw_internal (last)));
2756     }
2757 
2758   /* The JOIN block may have had quite a number of other predecessors too.
2759      Since we've already merged the TEST, THEN and ELSE blocks, we should
2760      have only one remaining edge from our if-then-else diamond.  If there
2761      is more than one remaining edge, it must come from elsewhere.  There
2762      may be zero incoming edges if the THEN block didn't actually join
2763      back up (as with a call to a non-return function).  */
2764   else if (EDGE_COUNT (join_bb->preds) < 2
2765 	   && join_bb != EXIT_BLOCK_PTR)
2766     {
2767       /* We can merge the JOIN.  */
2768       if (combo_bb->il.rtl->global_live_at_end)
2769 	COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2770 		      join_bb->il.rtl->global_live_at_end);
2771 
2772       merge_blocks (combo_bb, join_bb);
2773       num_true_changes++;
2774     }
2775   else
2776     {
2777       /* We cannot merge the JOIN.  */
2778 
2779       /* The outgoing edge for the current COMBO block should already
2780 	 be correct.  Verify this.  */
2781       gcc_assert (single_succ_p (combo_bb)
2782 		  && single_succ (combo_bb) == join_bb);
2783 
2784       /* Remove the jump and cruft from the end of the COMBO block.  */
2785       if (join_bb != EXIT_BLOCK_PTR)
2786 	tidy_fallthru_edge (single_succ_edge (combo_bb));
2787     }
2788 
2789   num_updated_if_blocks++;
2790 }
2791 
2792 /* Find a block ending in a simple IF condition and try to transform it
2793    in some way.  When converting a multi-block condition, put the new code
2794    in the first such block and delete the rest.  Return a pointer to this
2795    first block if some transformation was done.  Return NULL otherwise.  */
2796 
2797 static basic_block
2798 find_if_header (basic_block test_bb, int pass)
2799 {
2800   ce_if_block_t ce_info;
2801   edge then_edge;
2802   edge else_edge;
2803 
2804   /* The kind of block we're looking for has exactly two successors.  */
2805   if (EDGE_COUNT (test_bb->succs) != 2)
2806     return NULL;
2807 
2808   then_edge = EDGE_SUCC (test_bb, 0);
2809   else_edge = EDGE_SUCC (test_bb, 1);
2810 
2811   /* Neither edge should be abnormal.  */
2812   if ((then_edge->flags & EDGE_COMPLEX)
2813       || (else_edge->flags & EDGE_COMPLEX))
2814     return NULL;
2815 
2816   /* Nor exit the loop.  */
2817   if ((then_edge->flags & EDGE_LOOP_EXIT)
2818       || (else_edge->flags & EDGE_LOOP_EXIT))
2819     return NULL;
2820 
2821   /* The THEN edge is canonically the one that falls through.  */
2822   if (then_edge->flags & EDGE_FALLTHRU)
2823     ;
2824   else if (else_edge->flags & EDGE_FALLTHRU)
2825     {
2826       edge e = else_edge;
2827       else_edge = then_edge;
2828       then_edge = e;
2829     }
2830   else
2831     /* Otherwise this must be a multiway branch of some sort.  */
2832     return NULL;
2833 
2834   memset (&ce_info, '\0', sizeof (ce_info));
2835   ce_info.test_bb = test_bb;
2836   ce_info.then_bb = then_edge->dest;
2837   ce_info.else_bb = else_edge->dest;
2838   ce_info.pass = pass;
2839 
2840 #ifdef IFCVT_INIT_EXTRA_FIELDS
2841   IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2842 #endif
2843 
2844   if (find_if_block (&ce_info))
2845     goto success;
2846 
2847   if (HAVE_trap && HAVE_conditional_trap
2848       && find_cond_trap (test_bb, then_edge, else_edge))
2849     goto success;
2850 
2851   if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2852       && (! HAVE_conditional_execution || reload_completed))
2853     {
2854       if (find_if_case_1 (test_bb, then_edge, else_edge))
2855 	goto success;
2856       if (find_if_case_2 (test_bb, then_edge, else_edge))
2857 	goto success;
2858     }
2859 
2860   return NULL;
2861 
2862  success:
2863   if (dump_file)
2864     fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2865   return ce_info.test_bb;
2866 }
2867 
2868 /* Return true if a block has two edges, one of which falls through to the next
2869    block, and the other jumps to a specific block, so that we can tell if the
2870    block is part of an && test or an || test.  Returns either -1 or the number
2871    of non-note, non-jump, non-USE/CLOBBER insns in the block.  */
2872 
2873 static int
2874 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2875 {
2876   edge cur_edge;
2877   int fallthru_p = FALSE;
2878   int jump_p = FALSE;
2879   rtx insn;
2880   rtx end;
2881   int n_insns = 0;
2882   edge_iterator ei;
2883 
2884   if (!cur_bb || !target_bb)
2885     return -1;
2886 
2887   /* If no edges, obviously it doesn't jump or fallthru.  */
2888   if (EDGE_COUNT (cur_bb->succs) == 0)
2889     return FALSE;
2890 
2891   FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2892     {
2893       if (cur_edge->flags & EDGE_COMPLEX)
2894 	/* Anything complex isn't what we want.  */
2895 	return -1;
2896 
2897       else if (cur_edge->flags & EDGE_FALLTHRU)
2898 	fallthru_p = TRUE;
2899 
2900       else if (cur_edge->dest == target_bb)
2901 	jump_p = TRUE;
2902 
2903       else
2904 	return -1;
2905     }
2906 
2907   if ((jump_p & fallthru_p) == 0)
2908     return -1;
2909 
2910   /* Don't allow calls in the block, since this is used to group && and ||
2911      together for conditional execution support.  ??? we should support
2912      conditional execution support across calls for IA-64 some day, but
2913      for now it makes the code simpler.  */
2914   end = BB_END (cur_bb);
2915   insn = BB_HEAD (cur_bb);
2916 
2917   while (insn != NULL_RTX)
2918     {
2919       if (CALL_P (insn))
2920 	return -1;
2921 
2922       if (INSN_P (insn)
2923 	  && !JUMP_P (insn)
2924 	  && GET_CODE (PATTERN (insn)) != USE
2925 	  && GET_CODE (PATTERN (insn)) != CLOBBER)
2926 	n_insns++;
2927 
2928       if (insn == end)
2929 	break;
2930 
2931       insn = NEXT_INSN (insn);
2932     }
2933 
2934   return n_insns;
2935 }
2936 
2937 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2938    block.  If so, we'll try to convert the insns to not require the branch.
2939    Return TRUE if we were successful at converting the block.  */
2940 
2941 static int
2942 find_if_block (struct ce_if_block * ce_info)
2943 {
2944   basic_block test_bb = ce_info->test_bb;
2945   basic_block then_bb = ce_info->then_bb;
2946   basic_block else_bb = ce_info->else_bb;
2947   basic_block join_bb = NULL_BLOCK;
2948   edge cur_edge;
2949   basic_block next;
2950   edge_iterator ei;
2951 
2952   ce_info->last_test_bb = test_bb;
2953 
2954   /* Discover if any fall through predecessors of the current test basic block
2955      were && tests (which jump to the else block) or || tests (which jump to
2956      the then block).  */
2957   if (HAVE_conditional_execution && reload_completed
2958       && single_pred_p (test_bb)
2959       && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
2960     {
2961       basic_block bb = single_pred (test_bb);
2962       basic_block target_bb;
2963       int max_insns = MAX_CONDITIONAL_EXECUTE;
2964       int n_insns;
2965 
2966       /* Determine if the preceding block is an && or || block.  */
2967       if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
2968 	{
2969 	  ce_info->and_and_p = TRUE;
2970 	  target_bb = else_bb;
2971 	}
2972       else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
2973 	{
2974 	  ce_info->and_and_p = FALSE;
2975 	  target_bb = then_bb;
2976 	}
2977       else
2978 	target_bb = NULL_BLOCK;
2979 
2980       if (target_bb && n_insns <= max_insns)
2981 	{
2982 	  int total_insns = 0;
2983 	  int blocks = 0;
2984 
2985 	  ce_info->last_test_bb = test_bb;
2986 
2987 	  /* Found at least one && or || block, look for more.  */
2988 	  do
2989 	    {
2990 	      ce_info->test_bb = test_bb = bb;
2991 	      total_insns += n_insns;
2992 	      blocks++;
2993 
2994 	      if (!single_pred_p (bb))
2995 		break;
2996 
2997 	      bb = single_pred (bb);
2998 	      n_insns = block_jumps_and_fallthru_p (bb, target_bb);
2999 	    }
3000 	  while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3001 
3002 	  ce_info->num_multiple_test_blocks = blocks;
3003 	  ce_info->num_multiple_test_insns = total_insns;
3004 
3005 	  if (ce_info->and_and_p)
3006 	    ce_info->num_and_and_blocks = blocks;
3007 	  else
3008 	    ce_info->num_or_or_blocks = blocks;
3009 	}
3010     }
3011 
3012   /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3013      other than any || blocks which jump to the THEN block.  */
3014   if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3015     return FALSE;
3016 
3017   /* The edges of the THEN and ELSE blocks cannot have complex edges.  */
3018   FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3019     {
3020       if (cur_edge->flags & EDGE_COMPLEX)
3021 	return FALSE;
3022     }
3023 
3024   FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3025     {
3026       if (cur_edge->flags & EDGE_COMPLEX)
3027 	return FALSE;
3028     }
3029 
3030   /* The THEN block of an IF-THEN combo must have zero or one successors.  */
3031   if (EDGE_COUNT (then_bb->succs) > 0
3032       && (!single_succ_p (then_bb)
3033           || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3034 	  || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3035     return FALSE;
3036 
3037   /* If the THEN block has no successors, conditional execution can still
3038      make a conditional call.  Don't do this unless the ELSE block has
3039      only one incoming edge -- the CFG manipulation is too ugly otherwise.
3040      Check for the last insn of the THEN block being an indirect jump, which
3041      is listed as not having any successors, but confuses the rest of the CE
3042      code processing.  ??? we should fix this in the future.  */
3043   if (EDGE_COUNT (then_bb->succs) == 0)
3044     {
3045       if (single_pred_p (else_bb))
3046 	{
3047 	  rtx last_insn = BB_END (then_bb);
3048 
3049 	  while (last_insn
3050 		 && NOTE_P (last_insn)
3051 		 && last_insn != BB_HEAD (then_bb))
3052 	    last_insn = PREV_INSN (last_insn);
3053 
3054 	  if (last_insn
3055 	      && JUMP_P (last_insn)
3056 	      && ! simplejump_p (last_insn))
3057 	    return FALSE;
3058 
3059 	  join_bb = else_bb;
3060 	  else_bb = NULL_BLOCK;
3061 	}
3062       else
3063 	return FALSE;
3064     }
3065 
3066   /* If the THEN block's successor is the other edge out of the TEST block,
3067      then we have an IF-THEN combo without an ELSE.  */
3068   else if (single_succ (then_bb) == else_bb)
3069     {
3070       join_bb = else_bb;
3071       else_bb = NULL_BLOCK;
3072     }
3073 
3074   /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3075      has exactly one predecessor and one successor, and the outgoing edge
3076      is not complex, then we have an IF-THEN-ELSE combo.  */
3077   else if (single_succ_p (else_bb)
3078 	   && single_succ (then_bb) == single_succ (else_bb)
3079 	   && single_pred_p (else_bb)
3080 	   && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3081 	   && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3082     join_bb = single_succ (else_bb);
3083 
3084   /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination.  */
3085   else
3086     return FALSE;
3087 
3088   num_possible_if_blocks++;
3089 
3090   if (dump_file)
3091     {
3092       fprintf (dump_file,
3093 	       "\nIF-THEN%s block found, pass %d, start block %d "
3094 	       "[insn %d], then %d [%d]",
3095 	       (else_bb) ? "-ELSE" : "",
3096 	       ce_info->pass,
3097 	       test_bb->index,
3098 	       BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3099 	       then_bb->index,
3100 	       BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3101 
3102       if (else_bb)
3103 	fprintf (dump_file, ", else %d [%d]",
3104 		 else_bb->index,
3105 		 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3106 
3107       fprintf (dump_file, ", join %d [%d]",
3108 	       join_bb->index,
3109 	       BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3110 
3111       if (ce_info->num_multiple_test_blocks > 0)
3112 	fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3113 		 ce_info->num_multiple_test_blocks,
3114 		 (ce_info->and_and_p) ? "&&" : "||",
3115 		 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3116 		 ce_info->last_test_bb->index,
3117 		 ((BB_HEAD (ce_info->last_test_bb))
3118 		  ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3119 		  : -1));
3120 
3121       fputc ('\n', dump_file);
3122     }
3123 
3124   /* Make sure IF, THEN, and ELSE, blocks are adjacent.  Actually, we get the
3125      first condition for free, since we've already asserted that there's a
3126      fallthru edge from IF to THEN.  Likewise for the && and || blocks, since
3127      we checked the FALLTHRU flag, those are already adjacent to the last IF
3128      block.  */
3129   /* ??? As an enhancement, move the ELSE block.  Have to deal with
3130      BLOCK notes, if by no other means than backing out the merge if they
3131      exist.  Sticky enough I don't want to think about it now.  */
3132   next = then_bb;
3133   if (else_bb && (next = next->next_bb) != else_bb)
3134     return FALSE;
3135   if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3136     {
3137       if (else_bb)
3138 	join_bb = NULL;
3139       else
3140 	return FALSE;
3141     }
3142 
3143   /* Do the real work.  */
3144   ce_info->else_bb = else_bb;
3145   ce_info->join_bb = join_bb;
3146 
3147   return process_if_block (ce_info);
3148 }
3149 
3150 /* Convert a branch over a trap, or a branch
3151    to a trap, into a conditional trap.  */
3152 
3153 static int
3154 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3155 {
3156   basic_block then_bb = then_edge->dest;
3157   basic_block else_bb = else_edge->dest;
3158   basic_block other_bb, trap_bb;
3159   rtx trap, jump, cond, cond_earliest, seq;
3160   enum rtx_code code;
3161 
3162   /* Locate the block with the trap instruction.  */
3163   /* ??? While we look for no successors, we really ought to allow
3164      EH successors.  Need to fix merge_if_block for that to work.  */
3165   if ((trap = block_has_only_trap (then_bb)) != NULL)
3166     trap_bb = then_bb, other_bb = else_bb;
3167   else if ((trap = block_has_only_trap (else_bb)) != NULL)
3168     trap_bb = else_bb, other_bb = then_bb;
3169   else
3170     return FALSE;
3171 
3172   if (dump_file)
3173     {
3174       fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3175 	       test_bb->index, trap_bb->index);
3176     }
3177 
3178   /* If this is not a standard conditional jump, we can't parse it.  */
3179   jump = BB_END (test_bb);
3180   cond = noce_get_condition (jump, &cond_earliest);
3181   if (! cond)
3182     return FALSE;
3183 
3184   /* If the conditional jump is more than just a conditional jump, then
3185      we can not do if-conversion on this block.  */
3186   if (! onlyjump_p (jump))
3187     return FALSE;
3188 
3189   /* We must be comparing objects whose modes imply the size.  */
3190   if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3191     return FALSE;
3192 
3193   /* Reverse the comparison code, if necessary.  */
3194   code = GET_CODE (cond);
3195   if (then_bb == trap_bb)
3196     {
3197       code = reversed_comparison_code (cond, jump);
3198       if (code == UNKNOWN)
3199 	return FALSE;
3200     }
3201 
3202   /* Attempt to generate the conditional trap.  */
3203   seq = gen_cond_trap (code, XEXP (cond, 0),
3204 		       XEXP (cond, 1),
3205 		       TRAP_CODE (PATTERN (trap)));
3206   if (seq == NULL)
3207     return FALSE;
3208 
3209   num_true_changes++;
3210 
3211   /* Emit the new insns before cond_earliest.  */
3212   emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3213 
3214   /* Delete the trap block if possible.  */
3215   remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3216   if (EDGE_COUNT (trap_bb->preds) == 0)
3217     delete_basic_block (trap_bb);
3218 
3219   /* If the non-trap block and the test are now adjacent, merge them.
3220      Otherwise we must insert a direct branch.  */
3221   if (test_bb->next_bb == other_bb)
3222     {
3223       struct ce_if_block new_ce_info;
3224       delete_insn (jump);
3225       memset (&new_ce_info, '\0', sizeof (new_ce_info));
3226       new_ce_info.test_bb = test_bb;
3227       new_ce_info.then_bb = NULL;
3228       new_ce_info.else_bb = NULL;
3229       new_ce_info.join_bb = other_bb;
3230       merge_if_block (&new_ce_info);
3231     }
3232   else
3233     {
3234       rtx lab, newjump;
3235 
3236       lab = JUMP_LABEL (jump);
3237       newjump = emit_jump_insn_after (gen_jump (lab), jump);
3238       LABEL_NUSES (lab) += 1;
3239       JUMP_LABEL (newjump) = lab;
3240       emit_barrier_after (newjump);
3241 
3242       delete_insn (jump);
3243     }
3244 
3245   return TRUE;
3246 }
3247 
3248 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3249    return it.  */
3250 
3251 static rtx
3252 block_has_only_trap (basic_block bb)
3253 {
3254   rtx trap;
3255 
3256   /* We're not the exit block.  */
3257   if (bb == EXIT_BLOCK_PTR)
3258     return NULL_RTX;
3259 
3260   /* The block must have no successors.  */
3261   if (EDGE_COUNT (bb->succs) > 0)
3262     return NULL_RTX;
3263 
3264   /* The only instruction in the THEN block must be the trap.  */
3265   trap = first_active_insn (bb);
3266   if (! (trap == BB_END (bb)
3267 	 && GET_CODE (PATTERN (trap)) == TRAP_IF
3268          && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3269     return NULL_RTX;
3270 
3271   return trap;
3272 }
3273 
3274 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3275    transformable, but not necessarily the other.  There need be no
3276    JOIN block.
3277 
3278    Return TRUE if we were successful at converting the block.
3279 
3280    Cases we'd like to look at:
3281 
3282    (1)
3283 	if (test) goto over; // x not live
3284 	x = a;
3285 	goto label;
3286 	over:
3287 
3288    becomes
3289 
3290 	x = a;
3291 	if (! test) goto label;
3292 
3293    (2)
3294 	if (test) goto E; // x not live
3295 	x = big();
3296 	goto L;
3297 	E:
3298 	x = b;
3299 	goto M;
3300 
3301    becomes
3302 
3303 	x = b;
3304 	if (test) goto M;
3305 	x = big();
3306 	goto L;
3307 
3308    (3) // This one's really only interesting for targets that can do
3309        // multiway branching, e.g. IA-64 BBB bundles.  For other targets
3310        // it results in multiple branches on a cache line, which often
3311        // does not sit well with predictors.
3312 
3313 	if (test1) goto E; // predicted not taken
3314 	x = a;
3315 	if (test2) goto F;
3316 	...
3317 	E:
3318 	x = b;
3319 	J:
3320 
3321    becomes
3322 
3323 	x = a;
3324 	if (test1) goto E;
3325 	if (test2) goto F;
3326 
3327    Notes:
3328 
3329    (A) Don't do (2) if the branch is predicted against the block we're
3330    eliminating.  Do it anyway if we can eliminate a branch; this requires
3331    that the sole successor of the eliminated block postdominate the other
3332    side of the if.
3333 
3334    (B) With CE, on (3) we can steal from both sides of the if, creating
3335 
3336 	if (test1) x = a;
3337 	if (!test1) x = b;
3338 	if (test1) goto J;
3339 	if (test2) goto F;
3340 	...
3341 	J:
3342 
3343    Again, this is most useful if J postdominates.
3344 
3345    (C) CE substitutes for helpful life information.
3346 
3347    (D) These heuristics need a lot of work.  */
3348 
3349 /* Tests for case 1 above.  */
3350 
3351 static int
3352 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3353 {
3354   basic_block then_bb = then_edge->dest;
3355   basic_block else_bb = else_edge->dest, new_bb;
3356   int then_bb_index;
3357 
3358   /* If we are partitioning hot/cold basic blocks, we don't want to
3359      mess up unconditional or indirect jumps that cross between hot
3360      and cold sections.
3361 
3362      Basic block partitioning may result in some jumps that appear to
3363      be optimizable (or blocks that appear to be mergeable), but which really
3364      must be left untouched (they are required to make it safely across
3365      partition boundaries).  See  the comments at the top of
3366      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
3367 
3368   if ((BB_END (then_bb)
3369        && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3370       || (BB_END (test_bb)
3371 	  && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3372       || (BB_END (else_bb)
3373 	  && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3374 			    NULL_RTX)))
3375     return FALSE;
3376 
3377   /* THEN has one successor.  */
3378   if (!single_succ_p (then_bb))
3379     return FALSE;
3380 
3381   /* THEN does not fall through, but is not strange either.  */
3382   if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3383     return FALSE;
3384 
3385   /* THEN has one predecessor.  */
3386   if (!single_pred_p (then_bb))
3387     return FALSE;
3388 
3389   /* THEN must do something.  */
3390   if (forwarder_block_p (then_bb))
3391     return FALSE;
3392 
3393   num_possible_if_blocks++;
3394   if (dump_file)
3395     fprintf (dump_file,
3396 	     "\nIF-CASE-1 found, start %d, then %d\n",
3397 	     test_bb->index, then_bb->index);
3398 
3399   /* THEN is small.  */
3400   if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
3401     return FALSE;
3402 
3403   /* Registers set are dead, or are predicable.  */
3404   if (! dead_or_predicable (test_bb, then_bb, else_bb,
3405 			    single_succ (then_bb), 1))
3406     return FALSE;
3407 
3408   /* Conversion went ok, including moving the insns and fixing up the
3409      jump.  Adjust the CFG to match.  */
3410 
3411   bitmap_ior (test_bb->il.rtl->global_live_at_end,
3412 	      else_bb->il.rtl->global_live_at_start,
3413 	      then_bb->il.rtl->global_live_at_end);
3414 
3415 
3416   /* We can avoid creating a new basic block if then_bb is immediately
3417      followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3418      thru to else_bb.  */
3419 
3420   if (then_bb->next_bb == else_bb
3421       && then_bb->prev_bb == test_bb
3422       && else_bb != EXIT_BLOCK_PTR)
3423     {
3424       redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3425       new_bb = 0;
3426     }
3427   else
3428     new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3429                                              else_bb);
3430 
3431   then_bb_index = then_bb->index;
3432   delete_basic_block (then_bb);
3433 
3434   /* Make rest of code believe that the newly created block is the THEN_BB
3435      block we removed.  */
3436   if (new_bb)
3437     {
3438       new_bb->index = then_bb_index;
3439       SET_BASIC_BLOCK (then_bb_index, new_bb);
3440       /* Since the fallthru edge was redirected from test_bb to new_bb,
3441          we need to ensure that new_bb is in the same partition as
3442          test bb (you can not fall through across section boundaries).  */
3443       BB_COPY_PARTITION (new_bb, test_bb);
3444     }
3445   /* We've possibly created jump to next insn, cleanup_cfg will solve that
3446      later.  */
3447 
3448   num_true_changes++;
3449   num_updated_if_blocks++;
3450 
3451   return TRUE;
3452 }
3453 
3454 /* Test for case 2 above.  */
3455 
3456 static int
3457 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3458 {
3459   basic_block then_bb = then_edge->dest;
3460   basic_block else_bb = else_edge->dest;
3461   edge else_succ;
3462   rtx note;
3463 
3464   /* If we are partitioning hot/cold basic blocks, we don't want to
3465      mess up unconditional or indirect jumps that cross between hot
3466      and cold sections.
3467 
3468      Basic block partitioning may result in some jumps that appear to
3469      be optimizable (or blocks that appear to be mergeable), but which really
3470      must be left untouched (they are required to make it safely across
3471      partition boundaries).  See  the comments at the top of
3472      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
3473 
3474   if ((BB_END (then_bb)
3475        && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3476       || (BB_END (test_bb)
3477 	  && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3478       || (BB_END (else_bb)
3479 	  && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3480 			    NULL_RTX)))
3481     return FALSE;
3482 
3483   /* ELSE has one successor.  */
3484   if (!single_succ_p (else_bb))
3485     return FALSE;
3486   else
3487     else_succ = single_succ_edge (else_bb);
3488 
3489   /* ELSE outgoing edge is not complex.  */
3490   if (else_succ->flags & EDGE_COMPLEX)
3491     return FALSE;
3492 
3493   /* ELSE has one predecessor.  */
3494   if (!single_pred_p (else_bb))
3495     return FALSE;
3496 
3497   /* THEN is not EXIT.  */
3498   if (then_bb->index < NUM_FIXED_BLOCKS)
3499     return FALSE;
3500 
3501   /* ELSE is predicted or SUCC(ELSE) postdominates THEN.  */
3502   note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3503   if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3504     ;
3505   else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3506 	   || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3507 			      else_succ->dest))
3508     ;
3509   else
3510     return FALSE;
3511 
3512   num_possible_if_blocks++;
3513   if (dump_file)
3514     fprintf (dump_file,
3515 	     "\nIF-CASE-2 found, start %d, else %d\n",
3516 	     test_bb->index, else_bb->index);
3517 
3518   /* ELSE is small.  */
3519   if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3520     return FALSE;
3521 
3522   /* Registers set are dead, or are predicable.  */
3523   if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3524     return FALSE;
3525 
3526   /* Conversion went ok, including moving the insns and fixing up the
3527      jump.  Adjust the CFG to match.  */
3528 
3529   bitmap_ior (test_bb->il.rtl->global_live_at_end,
3530 	      then_bb->il.rtl->global_live_at_start,
3531 	      else_bb->il.rtl->global_live_at_end);
3532 
3533   delete_basic_block (else_bb);
3534 
3535   num_true_changes++;
3536   num_updated_if_blocks++;
3537 
3538   /* ??? We may now fallthru from one of THEN's successors into a join
3539      block.  Rerun cleanup_cfg?  Examine things manually?  Wait?  */
3540 
3541   return TRUE;
3542 }
3543 
3544 /* A subroutine of dead_or_predicable called through for_each_rtx.
3545    Return 1 if a memory is found.  */
3546 
3547 static int
3548 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3549 {
3550   return MEM_P (*px);
3551 }
3552 
3553 /* Used by the code above to perform the actual rtl transformations.
3554    Return TRUE if successful.
3555 
3556    TEST_BB is the block containing the conditional branch.  MERGE_BB
3557    is the block containing the code to manipulate.  NEW_DEST is the
3558    label TEST_BB should be branching to after the conversion.
3559    REVERSEP is true if the sense of the branch should be reversed.  */
3560 
3561 static int
3562 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3563 		    basic_block other_bb, basic_block new_dest, int reversep)
3564 {
3565   rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3566 
3567   jump = BB_END (test_bb);
3568 
3569   /* Find the extent of the real code in the merge block.  */
3570   head = BB_HEAD (merge_bb);
3571   end = BB_END (merge_bb);
3572 
3573   /* If merge_bb ends with a tablejump, predicating/moving insn's
3574      into test_bb and then deleting merge_bb will result in the jumptable
3575      that follows merge_bb being removed along with merge_bb and then we
3576      get an unresolved reference to the jumptable.  */
3577   if (tablejump_p (end, NULL, NULL))
3578     return FALSE;
3579 
3580   if (LABEL_P (head))
3581     head = NEXT_INSN (head);
3582   if (NOTE_P (head))
3583     {
3584       if (head == end)
3585 	{
3586 	  head = end = NULL_RTX;
3587 	  goto no_body;
3588 	}
3589       head = NEXT_INSN (head);
3590     }
3591 
3592   if (JUMP_P (end))
3593     {
3594       if (head == end)
3595 	{
3596 	  head = end = NULL_RTX;
3597 	  goto no_body;
3598 	}
3599       end = PREV_INSN (end);
3600     }
3601 
3602   /* Disable handling dead code by conditional execution if the machine needs
3603      to do anything funny with the tests, etc.  */
3604 #ifndef IFCVT_MODIFY_TESTS
3605   if (HAVE_conditional_execution)
3606     {
3607       /* In the conditional execution case, we have things easy.  We know
3608 	 the condition is reversible.  We don't have to check life info
3609 	 because we're going to conditionally execute the code anyway.
3610 	 All that's left is making sure the insns involved can actually
3611 	 be predicated.  */
3612 
3613       rtx cond, prob_val;
3614 
3615       cond = cond_exec_get_condition (jump);
3616       if (! cond)
3617 	return FALSE;
3618 
3619       prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3620       if (prob_val)
3621 	prob_val = XEXP (prob_val, 0);
3622 
3623       if (reversep)
3624 	{
3625 	  enum rtx_code rev = reversed_comparison_code (cond, jump);
3626 	  if (rev == UNKNOWN)
3627 	    return FALSE;
3628 	  cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3629 			         XEXP (cond, 1));
3630 	  if (prob_val)
3631 	    prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3632 	}
3633 
3634       if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3635 				     prob_val, 0))
3636 	goto cancel;
3637 
3638       earliest = jump;
3639     }
3640   else
3641 #endif
3642     {
3643       /* In the non-conditional execution case, we have to verify that there
3644 	 are no trapping operations, no calls, no references to memory, and
3645 	 that any registers modified are dead at the branch site.  */
3646 
3647       rtx insn, cond, prev;
3648       regset merge_set, tmp, test_live, test_set;
3649       struct propagate_block_info *pbi;
3650       unsigned i, fail = 0;
3651       bitmap_iterator bi;
3652 
3653       /* Check for no calls or trapping operations.  */
3654       for (insn = head; ; insn = NEXT_INSN (insn))
3655 	{
3656 	  if (CALL_P (insn))
3657 	    return FALSE;
3658 	  if (INSN_P (insn))
3659 	    {
3660 	      if (may_trap_p (PATTERN (insn)))
3661 		return FALSE;
3662 
3663 	      /* ??? Even non-trapping memories such as stack frame
3664 		 references must be avoided.  For stores, we collect
3665 		 no lifetime info; for reads, we'd have to assert
3666 		 true_dependence false against every store in the
3667 		 TEST range.  */
3668 	      if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3669 		return FALSE;
3670 	    }
3671 	  if (insn == end)
3672 	    break;
3673 	}
3674 
3675       if (! any_condjump_p (jump))
3676 	return FALSE;
3677 
3678       /* Find the extent of the conditional.  */
3679       cond = noce_get_condition (jump, &earliest);
3680       if (! cond)
3681 	return FALSE;
3682 
3683       /* Collect:
3684 	   MERGE_SET = set of registers set in MERGE_BB
3685 	   TEST_LIVE = set of registers live at EARLIEST
3686 	   TEST_SET  = set of registers set between EARLIEST and the
3687 		       end of the block.  */
3688 
3689       tmp = ALLOC_REG_SET (&reg_obstack);
3690       merge_set = ALLOC_REG_SET (&reg_obstack);
3691       test_live = ALLOC_REG_SET (&reg_obstack);
3692       test_set = ALLOC_REG_SET (&reg_obstack);
3693 
3694       /* ??? bb->local_set is only valid during calculate_global_regs_live,
3695 	 so we must recompute usage for MERGE_BB.  Not so bad, I suppose,
3696          since we've already asserted that MERGE_BB is small.  */
3697       /* If we allocated new pseudos (e.g. in the conditional move
3698 	 expander called from noce_emit_cmove), we must resize the
3699 	 array first.  */
3700       if (max_regno < max_reg_num ())
3701 	{
3702 	  max_regno = max_reg_num ();
3703 	  allocate_reg_info (max_regno, FALSE, FALSE);
3704 	}
3705       propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3706 
3707       /* For small register class machines, don't lengthen lifetimes of
3708 	 hard registers before reload.  */
3709       if (SMALL_REGISTER_CLASSES && ! reload_completed)
3710 	{
3711           EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3712 	    {
3713 	      if (i < FIRST_PSEUDO_REGISTER
3714 		  && ! fixed_regs[i]
3715 		  && ! global_regs[i])
3716 		fail = 1;
3717 	    }
3718 	}
3719 
3720       /* For TEST, we're interested in a range of insns, not a whole block.
3721 	 Moreover, we're interested in the insns live from OTHER_BB.  */
3722 
3723       COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start);
3724       pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3725 				       0);
3726 
3727       for (insn = jump; ; insn = prev)
3728 	{
3729 	  prev = propagate_one_insn (pbi, insn);
3730 	  if (insn == earliest)
3731 	    break;
3732 	}
3733 
3734       free_propagate_block_info (pbi);
3735 
3736       /* We can perform the transformation if
3737 	   MERGE_SET & (TEST_SET | TEST_LIVE)
3738 	 and
3739 	   TEST_SET & merge_bb->il.rtl->global_live_at_start
3740 	 are empty.  */
3741 
3742       if (bitmap_intersect_p (test_set, merge_set)
3743 	  || bitmap_intersect_p (test_live, merge_set)
3744 	  || bitmap_intersect_p (test_set,
3745 	    			 merge_bb->il.rtl->global_live_at_start))
3746 	fail = 1;
3747 
3748       FREE_REG_SET (tmp);
3749       FREE_REG_SET (merge_set);
3750       FREE_REG_SET (test_live);
3751       FREE_REG_SET (test_set);
3752 
3753       if (fail)
3754 	return FALSE;
3755     }
3756 
3757  no_body:
3758   /* We don't want to use normal invert_jump or redirect_jump because
3759      we don't want to delete_insn called.  Also, we want to do our own
3760      change group management.  */
3761 
3762   old_dest = JUMP_LABEL (jump);
3763   if (other_bb != new_dest)
3764     {
3765       new_label = block_label (new_dest);
3766       if (reversep
3767 	  ? ! invert_jump_1 (jump, new_label)
3768 	  : ! redirect_jump_1 (jump, new_label))
3769 	goto cancel;
3770     }
3771 
3772   if (! apply_change_group ())
3773     return FALSE;
3774 
3775   if (other_bb != new_dest)
3776     {
3777       redirect_jump_2 (jump, old_dest, new_label, -1, reversep);
3778 
3779       redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3780       if (reversep)
3781 	{
3782 	  gcov_type count, probability;
3783 	  count = BRANCH_EDGE (test_bb)->count;
3784 	  BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3785 	  FALLTHRU_EDGE (test_bb)->count = count;
3786 	  probability = BRANCH_EDGE (test_bb)->probability;
3787 	  BRANCH_EDGE (test_bb)->probability
3788 	    = FALLTHRU_EDGE (test_bb)->probability;
3789 	  FALLTHRU_EDGE (test_bb)->probability = probability;
3790 	  update_br_prob_note (test_bb);
3791 	}
3792     }
3793 
3794   /* Move the insns out of MERGE_BB to before the branch.  */
3795   if (head != NULL)
3796     {
3797       rtx insn;
3798 
3799       if (end == BB_END (merge_bb))
3800 	BB_END (merge_bb) = PREV_INSN (head);
3801 
3802       if (squeeze_notes (&head, &end))
3803 	return TRUE;
3804 
3805       /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
3806 	 notes might become invalid.  */
3807       insn = head;
3808       do
3809 	{
3810 	  rtx note, set;
3811 
3812 	  if (! INSN_P (insn))
3813 	    continue;
3814 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3815 	  if (! note)
3816 	    continue;
3817 	  set = single_set (insn);
3818 	  if (!set || !function_invariant_p (SET_SRC (set)))
3819 	    remove_note (insn, note);
3820 	} while (insn != end && (insn = NEXT_INSN (insn)));
3821 
3822       reorder_insns (head, end, PREV_INSN (earliest));
3823     }
3824 
3825   /* Remove the jump and edge if we can.  */
3826   if (other_bb == new_dest)
3827     {
3828       delete_insn (jump);
3829       remove_edge (BRANCH_EDGE (test_bb));
3830       /* ??? Can't merge blocks here, as then_bb is still in use.
3831 	 At minimum, the merge will get done just before bb-reorder.  */
3832     }
3833 
3834   return TRUE;
3835 
3836  cancel:
3837   cancel_changes (0);
3838   return FALSE;
3839 }
3840 
3841 /* Main entry point for all if-conversion.  */
3842 
3843 static void
3844 if_convert (int x_life_data_ok)
3845 {
3846   basic_block bb;
3847   int pass;
3848 
3849   num_possible_if_blocks = 0;
3850   num_updated_if_blocks = 0;
3851   num_true_changes = 0;
3852   life_data_ok = (x_life_data_ok != 0);
3853 
3854   if ((! targetm.cannot_modify_jumps_p ())
3855       && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3856 	  || !targetm.have_named_sections))
3857     {
3858       struct loops loops;
3859 
3860       flow_loops_find (&loops);
3861       mark_loop_exit_edges (&loops);
3862       flow_loops_free (&loops);
3863       free_dominance_info (CDI_DOMINATORS);
3864     }
3865 
3866   /* Compute postdominators if we think we'll use them.  */
3867   if (HAVE_conditional_execution || life_data_ok)
3868     calculate_dominance_info (CDI_POST_DOMINATORS);
3869 
3870   if (life_data_ok)
3871     clear_bb_flags ();
3872 
3873   /* Go through each of the basic blocks looking for things to convert.  If we
3874      have conditional execution, we make multiple passes to allow us to handle
3875      IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks.  */
3876   pass = 0;
3877   do
3878     {
3879       cond_exec_changed_p = FALSE;
3880       pass++;
3881 
3882 #ifdef IFCVT_MULTIPLE_DUMPS
3883       if (dump_file && pass > 1)
3884 	fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3885 #endif
3886 
3887       FOR_EACH_BB (bb)
3888 	{
3889 	  basic_block new_bb;
3890 	  while ((new_bb = find_if_header (bb, pass)))
3891 	    bb = new_bb;
3892 	}
3893 
3894 #ifdef IFCVT_MULTIPLE_DUMPS
3895       if (dump_file && cond_exec_changed_p)
3896 	print_rtl_with_bb (dump_file, get_insns ());
3897 #endif
3898     }
3899   while (cond_exec_changed_p);
3900 
3901 #ifdef IFCVT_MULTIPLE_DUMPS
3902   if (dump_file)
3903     fprintf (dump_file, "\n\n========== no more changes\n");
3904 #endif
3905 
3906   free_dominance_info (CDI_POST_DOMINATORS);
3907 
3908   if (dump_file)
3909     fflush (dump_file);
3910 
3911   clear_aux_for_blocks ();
3912 
3913   /* Rebuild life info for basic blocks that require it.  */
3914   if (num_true_changes && life_data_ok)
3915     {
3916       /* If we allocated new pseudos, we must resize the array for sched1.  */
3917       if (max_regno < max_reg_num ())
3918 	{
3919 	  max_regno = max_reg_num ();
3920 	  allocate_reg_info (max_regno, FALSE, FALSE);
3921 	}
3922       update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3923 					PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3924 					| PROP_KILL_DEAD_CODE);
3925     }
3926 
3927   /* Write the final stats.  */
3928   if (dump_file && num_possible_if_blocks > 0)
3929     {
3930       fprintf (dump_file,
3931 	       "\n%d possible IF blocks searched.\n",
3932 	       num_possible_if_blocks);
3933       fprintf (dump_file,
3934 	       "%d IF blocks converted.\n",
3935 	       num_updated_if_blocks);
3936       fprintf (dump_file,
3937 	       "%d true changes made.\n\n\n",
3938 	       num_true_changes);
3939     }
3940 
3941 #ifdef ENABLE_CHECKING
3942   verify_flow_info ();
3943 #endif
3944 }
3945 
3946 static bool
3947 gate_handle_if_conversion (void)
3948 {
3949   return (optimize > 0);
3950 }
3951 
3952 /* If-conversion and CFG cleanup.  */
3953 static unsigned int
3954 rest_of_handle_if_conversion (void)
3955 {
3956   if (flag_if_conversion)
3957     {
3958       if (dump_file)
3959         dump_flow_info (dump_file, dump_flags);
3960       cleanup_cfg (CLEANUP_EXPENSIVE);
3961       reg_scan (get_insns (), max_reg_num ());
3962       if_convert (0);
3963     }
3964 
3965   timevar_push (TV_JUMP);
3966   cleanup_cfg (CLEANUP_EXPENSIVE);
3967   reg_scan (get_insns (), max_reg_num ());
3968   timevar_pop (TV_JUMP);
3969   return 0;
3970 }
3971 
3972 struct tree_opt_pass pass_rtl_ifcvt =
3973 {
3974   "ce1",                                /* name */
3975   gate_handle_if_conversion,            /* gate */
3976   rest_of_handle_if_conversion,         /* execute */
3977   NULL,                                 /* sub */
3978   NULL,                                 /* next */
3979   0,                                    /* static_pass_number */
3980   TV_IFCVT,                             /* tv_id */
3981   0,                                    /* properties_required */
3982   0,                                    /* properties_provided */
3983   0,                                    /* properties_destroyed */
3984   0,                                    /* todo_flags_start */
3985   TODO_dump_func,                       /* todo_flags_finish */
3986   'C'                                   /* letter */
3987 };
3988 
3989 static bool
3990 gate_handle_if_after_combine (void)
3991 {
3992   return (optimize > 0 && flag_if_conversion);
3993 }
3994 
3995 
3996 /* Rerun if-conversion, as combine may have simplified things enough
3997    to now meet sequence length restrictions.  */
3998 static unsigned int
3999 rest_of_handle_if_after_combine (void)
4000 {
4001   no_new_pseudos = 0;
4002   if_convert (1);
4003   no_new_pseudos = 1;
4004   return 0;
4005 }
4006 
4007 struct tree_opt_pass pass_if_after_combine =
4008 {
4009   "ce2",                                /* name */
4010   gate_handle_if_after_combine,         /* gate */
4011   rest_of_handle_if_after_combine,      /* execute */
4012   NULL,                                 /* sub */
4013   NULL,                                 /* next */
4014   0,                                    /* static_pass_number */
4015   TV_IFCVT,                             /* tv_id */
4016   0,                                    /* properties_required */
4017   0,                                    /* properties_provided */
4018   0,                                    /* properties_destroyed */
4019   0,                                    /* todo_flags_start */
4020   TODO_dump_func |
4021   TODO_ggc_collect,                     /* todo_flags_finish */
4022   'C'                                   /* letter */
4023 };
4024 
4025 
4026 static bool
4027 gate_handle_if_after_reload (void)
4028 {
4029   return (optimize > 0);
4030 }
4031 
4032 static unsigned int
4033 rest_of_handle_if_after_reload (void)
4034 {
4035   /* Last attempt to optimize CFG, as scheduling, peepholing and insn
4036      splitting possibly introduced more crossjumping opportunities.  */
4037   cleanup_cfg (CLEANUP_EXPENSIVE
4038                | CLEANUP_UPDATE_LIFE
4039                | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
4040   if (flag_if_conversion2)
4041     if_convert (1);
4042   return 0;
4043 }
4044 
4045 
4046 struct tree_opt_pass pass_if_after_reload =
4047 {
4048   "ce3",                                /* name */
4049   gate_handle_if_after_reload,          /* gate */
4050   rest_of_handle_if_after_reload,       /* execute */
4051   NULL,                                 /* sub */
4052   NULL,                                 /* next */
4053   0,                                    /* static_pass_number */
4054   TV_IFCVT2,                            /* tv_id */
4055   0,                                    /* properties_required */
4056   0,                                    /* properties_provided */
4057   0,                                    /* properties_destroyed */
4058   0,                                    /* todo_flags_start */
4059   TODO_dump_func |
4060   TODO_ggc_collect,                     /* todo_flags_finish */
4061   'E'                                   /* letter */
4062 };
4063 
4064 
4065