1 // Allocator details. 2 3 // Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc. 4 // 5 // This file is part of the GNU ISO C++ Library. This library is free 6 // software; you can redistribute it and/or modify it under the 7 // terms of the GNU General Public License as published by the 8 // Free Software Foundation; either version 2, or (at your option) 9 // any later version. 10 11 // This library is distributed in the hope that it will be useful, 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 // GNU General Public License for more details. 15 16 // You should have received a copy of the GNU General Public License along 17 // with this library; see the file COPYING. If not, write to the Free 18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 19 // USA. 20 21 // As a special exception, you may use this file as part of a free software 22 // library without restriction. Specifically, if other files instantiate 23 // templates or use macros or inline functions from this file, or you compile 24 // this file and link it with other files to produce an executable, this 25 // file does not by itself cause the resulting executable to be covered by 26 // the GNU General Public License. This exception does not however 27 // invalidate any other reasons why the executable file might be covered by 28 // the GNU General Public License. 29 30 // 31 // ISO C++ 14882: 32 // 33 34 #include <bits/c++config.h> 35 #include <ext/concurrence.h> 36 #include <ext/mt_allocator.h> 37 #include <cstring> 38 39 namespace 40 { 41 #ifdef __GTHREADS 42 struct __freelist 43 { 44 typedef __gnu_cxx::__pool<true>::_Thread_record _Thread_record; 45 _Thread_record* _M_thread_freelist; 46 _Thread_record* _M_thread_freelist_array; 47 size_t _M_max_threads; 48 __gthread_key_t _M_key; 49 50 ~__freelist() 51 { 52 if (_M_thread_freelist_array) 53 { 54 __gthread_key_delete(_M_key); 55 ::operator delete(static_cast<void*>(_M_thread_freelist_array)); 56 } 57 } 58 }; 59 60 // Ensure freelist is constructed first. 61 static __freelist freelist; 62 __gnu_cxx::__mutex freelist_mutex; 63 64 static void 65 _M_destroy_thread_key(void* __id) 66 { 67 // Return this thread id record to the front of thread_freelist. 68 __gnu_cxx::__scoped_lock sentry(freelist_mutex); 69 size_t _M_id = reinterpret_cast<size_t>(__id); 70 71 typedef __gnu_cxx::__pool<true>::_Thread_record _Thread_record; 72 _Thread_record* __tr = &freelist._M_thread_freelist_array[_M_id - 1]; 73 __tr->_M_next = freelist._M_thread_freelist; 74 freelist._M_thread_freelist = __tr; 75 } 76 #endif 77 } // anonymous namespace 78 79 _GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx) 80 81 void 82 __pool<false>::_M_destroy() throw() 83 { 84 if (_M_init && !_M_options._M_force_new) 85 { 86 for (size_t __n = 0; __n < _M_bin_size; ++__n) 87 { 88 _Bin_record& __bin = _M_bin[__n]; 89 while (__bin._M_address) 90 { 91 _Block_address* __tmp = __bin._M_address->_M_next; 92 ::operator delete(__bin._M_address->_M_initial); 93 __bin._M_address = __tmp; 94 } 95 ::operator delete(__bin._M_first); 96 } 97 ::operator delete(_M_bin); 98 ::operator delete(_M_binmap); 99 } 100 } 101 102 void 103 __pool<false>::_M_reclaim_block(char* __p, size_t __bytes) 104 { 105 // Round up to power of 2 and figure out which bin to use. 106 const size_t __which = _M_binmap[__bytes]; 107 _Bin_record& __bin = _M_bin[__which]; 108 109 char* __c = __p - _M_get_align(); 110 _Block_record* __block = reinterpret_cast<_Block_record*>(__c); 111 112 // Single threaded application - return to global pool. 113 __block->_M_next = __bin._M_first[0]; 114 __bin._M_first[0] = __block; 115 } 116 117 char* 118 __pool<false>::_M_reserve_block(size_t __bytes, const size_t __thread_id) 119 { 120 // Round up to power of 2 and figure out which bin to use. 121 const size_t __which = _M_binmap[__bytes]; 122 _Bin_record& __bin = _M_bin[__which]; 123 const _Tune& __options = _M_get_options(); 124 const size_t __bin_size = (__options._M_min_bin << __which) 125 + __options._M_align; 126 size_t __block_count = __options._M_chunk_size - sizeof(_Block_address); 127 __block_count /= __bin_size; 128 129 // Get a new block dynamically, set it up for use. 130 void* __v = ::operator new(__options._M_chunk_size); 131 _Block_address* __address = static_cast<_Block_address*>(__v); 132 __address->_M_initial = __v; 133 __address->_M_next = __bin._M_address; 134 __bin._M_address = __address; 135 136 char* __c = static_cast<char*>(__v) + sizeof(_Block_address); 137 _Block_record* __block = reinterpret_cast<_Block_record*>(__c); 138 __bin._M_first[__thread_id] = __block; 139 while (--__block_count > 0) 140 { 141 __c += __bin_size; 142 __block->_M_next = reinterpret_cast<_Block_record*>(__c); 143 __block = __block->_M_next; 144 } 145 __block->_M_next = NULL; 146 147 __block = __bin._M_first[__thread_id]; 148 __bin._M_first[__thread_id] = __block->_M_next; 149 150 // NB: For alignment reasons, we can't use the first _M_align 151 // bytes, even when sizeof(_Block_record) < _M_align. 152 return reinterpret_cast<char*>(__block) + __options._M_align; 153 } 154 155 void 156 __pool<false>::_M_initialize() 157 { 158 // _M_force_new must not change after the first allocate(), which 159 // in turn calls this method, so if it's false, it's false forever 160 // and we don't need to return here ever again. 161 if (_M_options._M_force_new) 162 { 163 _M_init = true; 164 return; 165 } 166 167 // Create the bins. 168 // Calculate the number of bins required based on _M_max_bytes. 169 // _M_bin_size is statically-initialized to one. 170 size_t __bin_size = _M_options._M_min_bin; 171 while (_M_options._M_max_bytes > __bin_size) 172 { 173 __bin_size <<= 1; 174 ++_M_bin_size; 175 } 176 177 // Setup the bin map for quick lookup of the relevant bin. 178 const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type); 179 _M_binmap = static_cast<_Binmap_type*>(::operator new(__j)); 180 _Binmap_type* __bp = _M_binmap; 181 _Binmap_type __bin_max = _M_options._M_min_bin; 182 _Binmap_type __bint = 0; 183 for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct) 184 { 185 if (__ct > __bin_max) 186 { 187 __bin_max <<= 1; 188 ++__bint; 189 } 190 *__bp++ = __bint; 191 } 192 193 // Initialize _M_bin and its members. 194 void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size); 195 _M_bin = static_cast<_Bin_record*>(__v); 196 for (size_t __n = 0; __n < _M_bin_size; ++__n) 197 { 198 _Bin_record& __bin = _M_bin[__n]; 199 __v = ::operator new(sizeof(_Block_record*)); 200 __bin._M_first = static_cast<_Block_record**>(__v); 201 __bin._M_first[0] = NULL; 202 __bin._M_address = NULL; 203 } 204 _M_init = true; 205 } 206 207 208 #ifdef __GTHREADS 209 void 210 __pool<true>::_M_destroy() throw() 211 { 212 if (_M_init && !_M_options._M_force_new) 213 { 214 if (__gthread_active_p()) 215 { 216 for (size_t __n = 0; __n < _M_bin_size; ++__n) 217 { 218 _Bin_record& __bin = _M_bin[__n]; 219 while (__bin._M_address) 220 { 221 _Block_address* __tmp = __bin._M_address->_M_next; 222 ::operator delete(__bin._M_address->_M_initial); 223 __bin._M_address = __tmp; 224 } 225 ::operator delete(__bin._M_first); 226 ::operator delete(__bin._M_free); 227 ::operator delete(__bin._M_used); 228 ::operator delete(__bin._M_mutex); 229 } 230 } 231 else 232 { 233 for (size_t __n = 0; __n < _M_bin_size; ++__n) 234 { 235 _Bin_record& __bin = _M_bin[__n]; 236 while (__bin._M_address) 237 { 238 _Block_address* __tmp = __bin._M_address->_M_next; 239 ::operator delete(__bin._M_address->_M_initial); 240 __bin._M_address = __tmp; 241 } 242 ::operator delete(__bin._M_first); 243 } 244 } 245 ::operator delete(_M_bin); 246 ::operator delete(_M_binmap); 247 } 248 } 249 250 void 251 __pool<true>::_M_reclaim_block(char* __p, size_t __bytes) 252 { 253 // Round up to power of 2 and figure out which bin to use. 254 const size_t __which = _M_binmap[__bytes]; 255 const _Bin_record& __bin = _M_bin[__which]; 256 257 // Know __p not null, assume valid block. 258 char* __c = __p - _M_get_align(); 259 _Block_record* __block = reinterpret_cast<_Block_record*>(__c); 260 if (__gthread_active_p()) 261 { 262 // Calculate the number of records to remove from our freelist: 263 // in order to avoid too much contention we wait until the 264 // number of records is "high enough". 265 const size_t __thread_id = _M_get_thread_id(); 266 const _Tune& __options = _M_get_options(); 267 const size_t __limit = (100 * (_M_bin_size - __which) 268 * __options._M_freelist_headroom); 269 270 size_t __remove = __bin._M_free[__thread_id]; 271 __remove *= __options._M_freelist_headroom; 272 273 // NB: We assume that reads of _Atomic_words are atomic. 274 const size_t __max_threads = __options._M_max_threads + 1; 275 _Atomic_word* const __reclaimed_base = 276 reinterpret_cast<_Atomic_word*>(__bin._M_used + __max_threads); 277 const _Atomic_word __reclaimed = __reclaimed_base[__thread_id]; 278 const size_t __net_used = __bin._M_used[__thread_id] - __reclaimed; 279 280 // NB: For performance sake we don't resync every time, in order 281 // to spare atomic ops. Note that if __reclaimed increased by, 282 // say, 1024, since the last sync, it means that the other 283 // threads executed the atomic in the else below at least the 284 // same number of times (at least, because _M_reserve_block may 285 // have decreased the counter), therefore one more cannot hurt. 286 if (__reclaimed > 1024) 287 { 288 __bin._M_used[__thread_id] -= __reclaimed; 289 __atomic_add(&__reclaimed_base[__thread_id], -__reclaimed); 290 } 291 292 if (__remove >= __net_used) 293 __remove -= __net_used; 294 else 295 __remove = 0; 296 if (__remove > __limit && __remove > __bin._M_free[__thread_id]) 297 { 298 _Block_record* __first = __bin._M_first[__thread_id]; 299 _Block_record* __tmp = __first; 300 __remove /= __options._M_freelist_headroom; 301 const size_t __removed = __remove; 302 while (--__remove > 0) 303 __tmp = __tmp->_M_next; 304 __bin._M_first[__thread_id] = __tmp->_M_next; 305 __bin._M_free[__thread_id] -= __removed; 306 307 __gthread_mutex_lock(__bin._M_mutex); 308 __tmp->_M_next = __bin._M_first[0]; 309 __bin._M_first[0] = __first; 310 __bin._M_free[0] += __removed; 311 __gthread_mutex_unlock(__bin._M_mutex); 312 } 313 314 // Return this block to our list and update counters and 315 // owner id as needed. 316 if (__block->_M_thread_id == __thread_id) 317 --__bin._M_used[__thread_id]; 318 else 319 __atomic_add(&__reclaimed_base[__block->_M_thread_id], 1); 320 321 __block->_M_next = __bin._M_first[__thread_id]; 322 __bin._M_first[__thread_id] = __block; 323 324 ++__bin._M_free[__thread_id]; 325 } 326 else 327 { 328 // Not using threads, so single threaded application - return 329 // to global pool. 330 __block->_M_next = __bin._M_first[0]; 331 __bin._M_first[0] = __block; 332 } 333 } 334 335 char* 336 __pool<true>::_M_reserve_block(size_t __bytes, const size_t __thread_id) 337 { 338 // Round up to power of 2 and figure out which bin to use. 339 const size_t __which = _M_binmap[__bytes]; 340 const _Tune& __options = _M_get_options(); 341 const size_t __bin_size = ((__options._M_min_bin << __which) 342 + __options._M_align); 343 size_t __block_count = __options._M_chunk_size - sizeof(_Block_address); 344 __block_count /= __bin_size; 345 346 // Are we using threads? 347 // - Yes, check if there are free blocks on the global 348 // list. If so, grab up to __block_count blocks in one 349 // lock and change ownership. If the global list is 350 // empty, we allocate a new chunk and add those blocks 351 // directly to our own freelist (with us as owner). 352 // - No, all operations are made directly to global pool 0 353 // no need to lock or change ownership but check for free 354 // blocks on global list (and if not add new ones) and 355 // get the first one. 356 _Bin_record& __bin = _M_bin[__which]; 357 _Block_record* __block = NULL; 358 if (__gthread_active_p()) 359 { 360 // Resync the _M_used counters. 361 const size_t __max_threads = __options._M_max_threads + 1; 362 _Atomic_word* const __reclaimed_base = 363 reinterpret_cast<_Atomic_word*>(__bin._M_used + __max_threads); 364 const _Atomic_word __reclaimed = __reclaimed_base[__thread_id]; 365 __bin._M_used[__thread_id] -= __reclaimed; 366 __atomic_add(&__reclaimed_base[__thread_id], -__reclaimed); 367 368 __gthread_mutex_lock(__bin._M_mutex); 369 if (__bin._M_first[0] == NULL) 370 { 371 void* __v = ::operator new(__options._M_chunk_size); 372 _Block_address* __address = static_cast<_Block_address*>(__v); 373 __address->_M_initial = __v; 374 __address->_M_next = __bin._M_address; 375 __bin._M_address = __address; 376 __gthread_mutex_unlock(__bin._M_mutex); 377 378 // No need to hold the lock when we are adding a whole 379 // chunk to our own list. 380 char* __c = static_cast<char*>(__v) + sizeof(_Block_address); 381 __block = reinterpret_cast<_Block_record*>(__c); 382 __bin._M_free[__thread_id] = __block_count; 383 __bin._M_first[__thread_id] = __block; 384 while (--__block_count > 0) 385 { 386 __c += __bin_size; 387 __block->_M_next = reinterpret_cast<_Block_record*>(__c); 388 __block = __block->_M_next; 389 } 390 __block->_M_next = NULL; 391 } 392 else 393 { 394 // Is the number of required blocks greater than or equal 395 // to the number that can be provided by the global free 396 // list? 397 __bin._M_first[__thread_id] = __bin._M_first[0]; 398 if (__block_count >= __bin._M_free[0]) 399 { 400 __bin._M_free[__thread_id] = __bin._M_free[0]; 401 __bin._M_free[0] = 0; 402 __bin._M_first[0] = NULL; 403 } 404 else 405 { 406 __bin._M_free[__thread_id] = __block_count; 407 __bin._M_free[0] -= __block_count; 408 __block = __bin._M_first[0]; 409 while (--__block_count > 0) 410 __block = __block->_M_next; 411 __bin._M_first[0] = __block->_M_next; 412 __block->_M_next = NULL; 413 } 414 __gthread_mutex_unlock(__bin._M_mutex); 415 } 416 } 417 else 418 { 419 void* __v = ::operator new(__options._M_chunk_size); 420 _Block_address* __address = static_cast<_Block_address*>(__v); 421 __address->_M_initial = __v; 422 __address->_M_next = __bin._M_address; 423 __bin._M_address = __address; 424 425 char* __c = static_cast<char*>(__v) + sizeof(_Block_address); 426 __block = reinterpret_cast<_Block_record*>(__c); 427 __bin._M_first[0] = __block; 428 while (--__block_count > 0) 429 { 430 __c += __bin_size; 431 __block->_M_next = reinterpret_cast<_Block_record*>(__c); 432 __block = __block->_M_next; 433 } 434 __block->_M_next = NULL; 435 } 436 437 __block = __bin._M_first[__thread_id]; 438 __bin._M_first[__thread_id] = __block->_M_next; 439 440 if (__gthread_active_p()) 441 { 442 __block->_M_thread_id = __thread_id; 443 --__bin._M_free[__thread_id]; 444 ++__bin._M_used[__thread_id]; 445 } 446 447 // NB: For alignment reasons, we can't use the first _M_align 448 // bytes, even when sizeof(_Block_record) < _M_align. 449 return reinterpret_cast<char*>(__block) + __options._M_align; 450 } 451 452 void 453 __pool<true>::_M_initialize() 454 { 455 // _M_force_new must not change after the first allocate(), 456 // which in turn calls this method, so if it's false, it's false 457 // forever and we don't need to return here ever again. 458 if (_M_options._M_force_new) 459 { 460 _M_init = true; 461 return; 462 } 463 464 // Create the bins. 465 // Calculate the number of bins required based on _M_max_bytes. 466 // _M_bin_size is statically-initialized to one. 467 size_t __bin_size = _M_options._M_min_bin; 468 while (_M_options._M_max_bytes > __bin_size) 469 { 470 __bin_size <<= 1; 471 ++_M_bin_size; 472 } 473 474 // Setup the bin map for quick lookup of the relevant bin. 475 const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type); 476 _M_binmap = static_cast<_Binmap_type*>(::operator new(__j)); 477 _Binmap_type* __bp = _M_binmap; 478 _Binmap_type __bin_max = _M_options._M_min_bin; 479 _Binmap_type __bint = 0; 480 for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct) 481 { 482 if (__ct > __bin_max) 483 { 484 __bin_max <<= 1; 485 ++__bint; 486 } 487 *__bp++ = __bint; 488 } 489 490 // Initialize _M_bin and its members. 491 void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size); 492 _M_bin = static_cast<_Bin_record*>(__v); 493 494 // If __gthread_active_p() create and initialize the list of 495 // free thread ids. Single threaded applications use thread id 0 496 // directly and have no need for this. 497 if (__gthread_active_p()) 498 { 499 { 500 __gnu_cxx::__scoped_lock sentry(freelist_mutex); 501 502 if (!freelist._M_thread_freelist_array 503 || freelist._M_max_threads < _M_options._M_max_threads) 504 { 505 const size_t __k = sizeof(_Thread_record) 506 * _M_options._M_max_threads; 507 __v = ::operator new(__k); 508 _M_thread_freelist = static_cast<_Thread_record*>(__v); 509 510 // NOTE! The first assignable thread id is 1 since the 511 // global pool uses id 0 512 size_t __i; 513 for (__i = 1; __i < _M_options._M_max_threads; ++__i) 514 { 515 _Thread_record& __tr = _M_thread_freelist[__i - 1]; 516 __tr._M_next = &_M_thread_freelist[__i]; 517 __tr._M_id = __i; 518 } 519 520 // Set last record. 521 _M_thread_freelist[__i - 1]._M_next = NULL; 522 _M_thread_freelist[__i - 1]._M_id = __i; 523 524 if (!freelist._M_thread_freelist_array) 525 { 526 // Initialize per thread key to hold pointer to 527 // _M_thread_freelist. 528 __gthread_key_create(&freelist._M_key, 529 ::_M_destroy_thread_key); 530 freelist._M_thread_freelist = _M_thread_freelist; 531 } 532 else 533 { 534 _Thread_record* _M_old_freelist 535 = freelist._M_thread_freelist; 536 _Thread_record* _M_old_array 537 = freelist._M_thread_freelist_array; 538 freelist._M_thread_freelist 539 = &_M_thread_freelist[_M_old_freelist - _M_old_array]; 540 while (_M_old_freelist) 541 { 542 size_t next_id; 543 if (_M_old_freelist->_M_next) 544 next_id = _M_old_freelist->_M_next - _M_old_array; 545 else 546 next_id = freelist._M_max_threads; 547 _M_thread_freelist[_M_old_freelist->_M_id - 1]._M_next 548 = &_M_thread_freelist[next_id]; 549 _M_old_freelist = _M_old_freelist->_M_next; 550 } 551 ::operator delete(static_cast<void*>(_M_old_array)); 552 } 553 freelist._M_thread_freelist_array = _M_thread_freelist; 554 freelist._M_max_threads = _M_options._M_max_threads; 555 } 556 } 557 558 const size_t __max_threads = _M_options._M_max_threads + 1; 559 for (size_t __n = 0; __n < _M_bin_size; ++__n) 560 { 561 _Bin_record& __bin = _M_bin[__n]; 562 __v = ::operator new(sizeof(_Block_record*) * __max_threads); 563 std::memset(__v, 0, sizeof(_Block_record*) * __max_threads); 564 __bin._M_first = static_cast<_Block_record**>(__v); 565 566 __bin._M_address = NULL; 567 568 __v = ::operator new(sizeof(size_t) * __max_threads); 569 std::memset(__v, 0, sizeof(size_t) * __max_threads); 570 571 __bin._M_free = static_cast<size_t*>(__v); 572 573 __v = ::operator new(sizeof(size_t) * __max_threads 574 + sizeof(_Atomic_word) * __max_threads); 575 std::memset(__v, 0, (sizeof(size_t) * __max_threads 576 + sizeof(_Atomic_word) * __max_threads)); 577 __bin._M_used = static_cast<size_t*>(__v); 578 579 __v = ::operator new(sizeof(__gthread_mutex_t)); 580 __bin._M_mutex = static_cast<__gthread_mutex_t*>(__v); 581 582 #ifdef __GTHREAD_MUTEX_INIT 583 { 584 // Do not copy a POSIX/gthr mutex once in use. 585 __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT; 586 *__bin._M_mutex = __tmp; 587 } 588 #else 589 { __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); } 590 #endif 591 } 592 } 593 else 594 { 595 for (size_t __n = 0; __n < _M_bin_size; ++__n) 596 { 597 _Bin_record& __bin = _M_bin[__n]; 598 __v = ::operator new(sizeof(_Block_record*)); 599 __bin._M_first = static_cast<_Block_record**>(__v); 600 __bin._M_first[0] = NULL; 601 __bin._M_address = NULL; 602 } 603 } 604 _M_init = true; 605 } 606 607 size_t 608 __pool<true>::_M_get_thread_id() 609 { 610 // If we have thread support and it's active we check the thread 611 // key value and return its id or if it's not set we take the 612 // first record from _M_thread_freelist and sets the key and 613 // returns it's id. 614 if (__gthread_active_p()) 615 { 616 void* v = __gthread_getspecific(freelist._M_key); 617 size_t _M_id = (size_t)v; 618 if (_M_id == 0) 619 { 620 { 621 __gnu_cxx::__scoped_lock sentry(freelist_mutex); 622 if (freelist._M_thread_freelist) 623 { 624 _M_id = freelist._M_thread_freelist->_M_id; 625 freelist._M_thread_freelist 626 = freelist._M_thread_freelist->_M_next; 627 } 628 } 629 630 __gthread_setspecific(freelist._M_key, (void*)_M_id); 631 } 632 return _M_id >= _M_options._M_max_threads ? 0 : _M_id; 633 } 634 635 // Otherwise (no thread support or inactive) all requests are 636 // served from the global pool 0. 637 return 0; 638 } 639 640 // XXX GLIBCXX_ABI Deprecated 641 void 642 __pool<true>::_M_destroy_thread_key(void*) { } 643 644 // XXX GLIBCXX_ABI Deprecated 645 void 646 __pool<true>::_M_initialize(__destroy_handler) 647 { 648 // _M_force_new must not change after the first allocate(), 649 // which in turn calls this method, so if it's false, it's false 650 // forever and we don't need to return here ever again. 651 if (_M_options._M_force_new) 652 { 653 _M_init = true; 654 return; 655 } 656 657 // Create the bins. 658 // Calculate the number of bins required based on _M_max_bytes. 659 // _M_bin_size is statically-initialized to one. 660 size_t __bin_size = _M_options._M_min_bin; 661 while (_M_options._M_max_bytes > __bin_size) 662 { 663 __bin_size <<= 1; 664 ++_M_bin_size; 665 } 666 667 // Setup the bin map for quick lookup of the relevant bin. 668 const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type); 669 _M_binmap = static_cast<_Binmap_type*>(::operator new(__j)); 670 _Binmap_type* __bp = _M_binmap; 671 _Binmap_type __bin_max = _M_options._M_min_bin; 672 _Binmap_type __bint = 0; 673 for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct) 674 { 675 if (__ct > __bin_max) 676 { 677 __bin_max <<= 1; 678 ++__bint; 679 } 680 *__bp++ = __bint; 681 } 682 683 // Initialize _M_bin and its members. 684 void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size); 685 _M_bin = static_cast<_Bin_record*>(__v); 686 687 // If __gthread_active_p() create and initialize the list of 688 // free thread ids. Single threaded applications use thread id 0 689 // directly and have no need for this. 690 if (__gthread_active_p()) 691 { 692 { 693 __gnu_cxx::__scoped_lock sentry(freelist_mutex); 694 695 if (!freelist._M_thread_freelist_array 696 || freelist._M_max_threads < _M_options._M_max_threads) 697 { 698 const size_t __k = sizeof(_Thread_record) 699 * _M_options._M_max_threads; 700 __v = ::operator new(__k); 701 _M_thread_freelist = static_cast<_Thread_record*>(__v); 702 703 // NOTE! The first assignable thread id is 1 since the 704 // global pool uses id 0 705 size_t __i; 706 for (__i = 1; __i < _M_options._M_max_threads; ++__i) 707 { 708 _Thread_record& __tr = _M_thread_freelist[__i - 1]; 709 __tr._M_next = &_M_thread_freelist[__i]; 710 __tr._M_id = __i; 711 } 712 713 // Set last record. 714 _M_thread_freelist[__i - 1]._M_next = NULL; 715 _M_thread_freelist[__i - 1]._M_id = __i; 716 717 if (!freelist._M_thread_freelist_array) 718 { 719 // Initialize per thread key to hold pointer to 720 // _M_thread_freelist. 721 __gthread_key_create(&freelist._M_key, 722 ::_M_destroy_thread_key); 723 freelist._M_thread_freelist = _M_thread_freelist; 724 } 725 else 726 { 727 _Thread_record* _M_old_freelist 728 = freelist._M_thread_freelist; 729 _Thread_record* _M_old_array 730 = freelist._M_thread_freelist_array; 731 freelist._M_thread_freelist 732 = &_M_thread_freelist[_M_old_freelist - _M_old_array]; 733 while (_M_old_freelist) 734 { 735 size_t next_id; 736 if (_M_old_freelist->_M_next) 737 next_id = _M_old_freelist->_M_next - _M_old_array; 738 else 739 next_id = freelist._M_max_threads; 740 _M_thread_freelist[_M_old_freelist->_M_id - 1]._M_next 741 = &_M_thread_freelist[next_id]; 742 _M_old_freelist = _M_old_freelist->_M_next; 743 } 744 ::operator delete(static_cast<void*>(_M_old_array)); 745 } 746 freelist._M_thread_freelist_array = _M_thread_freelist; 747 freelist._M_max_threads = _M_options._M_max_threads; 748 } 749 } 750 751 const size_t __max_threads = _M_options._M_max_threads + 1; 752 for (size_t __n = 0; __n < _M_bin_size; ++__n) 753 { 754 _Bin_record& __bin = _M_bin[__n]; 755 __v = ::operator new(sizeof(_Block_record*) * __max_threads); 756 std::memset(__v, 0, sizeof(_Block_record*) * __max_threads); 757 __bin._M_first = static_cast<_Block_record**>(__v); 758 759 __bin._M_address = NULL; 760 761 __v = ::operator new(sizeof(size_t) * __max_threads); 762 std::memset(__v, 0, sizeof(size_t) * __max_threads); 763 __bin._M_free = static_cast<size_t*>(__v); 764 765 __v = ::operator new(sizeof(size_t) * __max_threads + 766 sizeof(_Atomic_word) * __max_threads); 767 std::memset(__v, 0, (sizeof(size_t) * __max_threads 768 + sizeof(_Atomic_word) * __max_threads)); 769 __bin._M_used = static_cast<size_t*>(__v); 770 771 __v = ::operator new(sizeof(__gthread_mutex_t)); 772 __bin._M_mutex = static_cast<__gthread_mutex_t*>(__v); 773 774 #ifdef __GTHREAD_MUTEX_INIT 775 { 776 // Do not copy a POSIX/gthr mutex once in use. 777 __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT; 778 *__bin._M_mutex = __tmp; 779 } 780 #else 781 { __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); } 782 #endif 783 } 784 } 785 else 786 { 787 for (size_t __n = 0; __n < _M_bin_size; ++__n) 788 { 789 _Bin_record& __bin = _M_bin[__n]; 790 __v = ::operator new(sizeof(_Block_record*)); 791 __bin._M_first = static_cast<_Block_record**>(__v); 792 __bin._M_first[0] = NULL; 793 __bin._M_address = NULL; 794 } 795 } 796 _M_init = true; 797 } 798 #endif 799 800 // Instantiations. 801 template class __mt_alloc<char>; 802 template class __mt_alloc<wchar_t>; 803 804 _GLIBCXX_END_NAMESPACE 805